

MATHS

BOOKS - CHHAYA PUBLICATION MATHS (BENGALI ENGLISH)

RELATIONS

liiustrative Examples

1. Let A ={1,2,3} be a given set. Define a relation

on A which is

(i) reflexive and transitive but not symmetric

on A

2. Let A ={1,2,3} be a given set. Define a relation

on A which is

reflexive and symmetric but not transitive on A

3. Let A ={1,2,3} be a given set. Define a relation

on A which is

transitive and symmetric but not reflexive on A

4. Let A ={1,2,3} be a given set. Define a relation

on A which is

reflexive but neither symmetric nor transitive

on A

5. Let A ={1,2,3} be a given set. Define a relation on A which is

symmetric but neither reflexive nor transitive

on A

Watch Video Solution

6. Let A ={1,2,3} be a given set. Define a relation

on A which is

transitivebut neither reflexive nor symmetric

on A

7. Let A ={1,2,3} be a given set. Define a relation

on A which is

neither reflexive nor symmetric and transitive

on A

Watch Video Solution

8. Let A ={1,2,3} be a given set. Define a relation

on A which is

an equivalence relation on A

9. Let A ={1,2,3} be a given set. Define a relation

on A which is

neither symmetric nor antismmetric on A

Watch Video Solution

10. Let A ={1,2,3} be a given set. Define a

relation on A which is

symmetric but not antisymmetric on A

Watch Video Solution

11. Show that the relation is congruent to on the set T of all triangles in a plane is an equivalence relation.

Watch Video Solution

12. Check the relation is a factor of on the set of natural numbers N for reflexivity symmetry

and transitivity.

Watch Video Solution

13. Let A be a family of sets and let R be the relation on A defined by X is disjoint from Y . State whether or not R is

reflexive on A

14. Let A be a family of sets and let R be the relation on A defined by X is disjoint from Y.
State whether or not R is

symmetric on A

Watch Video Solution

15. Let A be a family of sets and let R be the

relation on A defined by X is disjoint from Y.

State whether or not R is

transitive on A

16. Let A be a family of sets and let R be the relation on A defined by X is disjoint from Y . State whether or not R is antisymmetric on A

Watch Video Solution

17. A relation R is defined on the set of natural

numbers NN as follows

 $\mathsf{R} = \{(\mathsf{x},\mathsf{y}):\mathsf{x},\mathsf{y} \ \in \ NN \text{ and } \mathsf{x}+\mathsf{3y}=\mathsf{12}\}$

Show that R is transitive and antisymmetric

but neither reflexive nor symmetric on NN.

18. A relation R on the set of natural number NN is defined as follows :

(x,y) $\in R
ightarrow$ (x-y) is divisible by 5 for all x,y

 $\in NN$ Prove that R is an equivalence relation

on NN.

19. A relation R_1 is defined on the set of real number RR as follows :

$$R_1 = \{(x,y)\!:\!1+xy>0$$
 , x $\ \in RR$ y $\ \in RR$

Show that R_1 is reflexive and symmetric but not transitive on RR.

20. A relation R is defined on the set of integers ZZ as follows

 $\mathsf{R}=\{(\mathsf{x},\mathsf{y}): \mathsf{x},\mathsf{y} \in ZZ \text{ and } (\mathsf{x}\text{-}\mathsf{y}) \text{ is even } \}$

show that R is an equivalence relation on ZZ.

21. Let R be a relation on the set N be defined by $\{(x, y) \mid x, y \in N, 2x + y = 41\}$. Then prove that the R is neither reflexive nor symmetric and nor transitive.

22. Let A ={a,b,c } and R ={b,b),(c,c), (a,b)} be a relation on A . Add a minimum and maximum number of ordered pairs to R so that the enlarged relations become equivalence relations on A.

Watch Video Solution

23. Let NN be the set of natural numbers and R be a relation on NN imes NN defined by, (a,b) R (c,d) \rightarrow a+d=b+c, for all (a,b) and (c,d) $iNNN \times NN.$

prove that R is an equivalence relation on NN imes NN.

Watch Video Solution

24. Let NN be the set of natural numbers and R be a relation on $NN \times NN$ defined by, (a,b) R (c,d) \rightarrow ad =bc , for all (a,b) and (c,d) $iNNN \times NN$. Show that R is an equivalence relation on $NN \times NN$.

25. Let ZZ be the set of all integers and let m be an arbitrary but fixed positive integer. Show that the relation "congruence modulo m" on ZZ defined by :

 $\mathsf{a}~\equiv\mathsf{b}$ '(mod m)' $~\Rightarrow~$ (a-b) is divisible by m, for

all a, b $\in ZZ$ is an equivalence relation on ZZ.

26. Show that the relation R, on the set

A={x $\in \mathbb{Z}$: $0 \le x \le 12$ } given by R = {(a,b) : |a-

b is a multiple of 4 and a,b \in A } is an

equivalance relation on A.

Watch Video Solution

Multiple Choice Type Questions

1. If A={1,2,3,4,} and I_A be the identity relation

on A, then _____

A. (1,2)
$$\,\in\, I_A$$

B. (2,2)
$$\in I_A$$

C. (2,1)
$$\in I_A$$

D. (3,4)
$$\,\in\, I_A$$

Answer: B

Watch Video Solution

2. Let A be a non-empty set. Then a relation R

on A is said to be an equivalence relation on A.

If R is ____

A. reflexive on A

B. symmetric on A

C. transitive on A

D. reflexive, symmetric and transitive on A

Answer: D

Watch Video Solution

3. Which of the following statement is true ?

A. If A={1,2,3,4,} and R={1,1), (2,2),(2,3), (1,2) }

then the relation R on set A is reflexive.

B. Let A ={a,b,c,d} and a relation R on A be

defined as follows :

R={a,c), (b,d), (b,c), (c,a), (d,b) }

Then R is a symmetric relation on A.

C. A reflexive relation defined on a non-

empty set A is always symmetric.

D. The universal relation defined on a non-

empty set A is transitive.

Answer: D

4. Which of the following statement is false?

A. The identity relation I_A on a non-empty

set A is always a reflexive relation on A.

B. A reflexive relation on a non-empty set A

is not necessarily the idenitity relation

5. Total number of relations that can be defined on set A={1,2,3,4} is

A. 2^4

 $\mathsf{B.}\,2^8$

 $\mathsf{C.}\,2^{12}$

 $\mathsf{D.}\,2^{16}$

Answer: D

6. State which of the following is total number of relations from set A={a,b,c} to set B ={d,e} is

A. 2^{6}

 $\mathsf{B.}\,2^8$

 $C. 2^4$

 $\mathsf{D.}\,2^{15}$

Answer: A

7. Set A ={8,9,10} and B={2,3,4,5} and let R be a relation from A to B defined by $xRy \Rightarrow$ "y divides x " . Then the domain of R is

A. {2,3,4,5,}

B. {8,9,10}

C. {8,9,10,11}

D. {8,9}

Answer: B

8. If R ={(x,y) :x is an integer and |x| < 3andy = |x - 3|} then the range of R is

A. {-2,-1,0,1,2}

B. {-2,-1,0}

C. {5,4,3,2,1}

D. {4,3,2,1,}

Answer: C

9. A relation ϕ from $\mathbb{C}\mathrm{or}RR$ is defined by $x\phi y \Rightarrow |x|$ =y. which one is coR Rect ?

A. (2+3i) ϕ 13

B. 3 ϕ (-3)

C. (1+i) ϕ 2

D. $i\phi 1$

Answer: D

10. Let A={1,2,3}. Then the number of relations containing (1,2) and (1,3) which are reflexive and symmetric but not transitive is

A. 1

B. 2

C. 3

D. 4

Answer: A

1. Let A={1,3,5}, B ={2,4,6} and R be the relation

defined by

xRy \Rightarrow (x+y) is even.

Show that R is a void relation from A to B.

Watch Video Solution

2. When is a relation R on a set A not reflexive

?

Let A {a,b,c,d} and R be a relation on A given by

```
R= {(a,a), (a,c), (c,a) , (c,c), (d,d)}. Is R reflexive on
```

Α?

3. When is a relation R on a set A not symmetric?

Let X= {1,2,3,4} and R be a relation on set X

defined by R ={(1,2), (3,4), (2,2), (4,3), (2,3) }. Is R

symmetric on X?

4. When is a relation R on a set A not antisymmetric?
Let A={1,2,3,4} and R be a relation on A defined by
R={(1,1), (2,2), (3,4), (3,3),(2,1), (4,3)}. Is R antisymmetric on A?

Watch Video Solution

5. When is a relation R on a set A not transitive

?

Let A={1,2,3,4} and a relation R on A be given by

```
R={(2,3),(2,2), (3,1), (3,2), (4,1)} Is R transitive on
```

A?

7. Find the domain and range of each of the following relations :

(i).
$$R_1 = \left\{ \left(a, rac{1}{a}
ight) : 0 < a < 5$$
 and a is an

integer }

8. Find the domain and range of each of the

following relations :

 R_2 ={(x,y) : x $\in NN$,y are integers and xy =4 }

9. Find the domain and range of each of the

following relations :

 R_3 ={ (x,y) :x,y $\in NN$, and 2x+y=41 }

10. Find the domain and range of each of the following relations :

 R_4 ={(x,y) :x and y are integers and $x^2 + y^2$ = 25

Watch Video Solution

}

11. Find the domain and range of each of the following relations :

 $R_5 = \{(x-5,2x-7) : x \text{ is an odd natural number} \}$

less than 10 }

Watch Video Solution

12. Find the domain and range of each of the following relations :

 $R_6 = ig\{ ig(x, x^2 - 31 ig):$ x is a prime number less than 12 $ig\}$

14. Find the domain and range of each of the following relations :
S={(x,y) :x,y $\in \mathbb{N}$ and x+3y=12}.

15. Define an equivalence relation. Show that the relation similarity on the set of all triangles in a plene is an equivalence relation.

Watch Video Solution

16. Define a relation R on the set A ={a,b,c} which is neither reflexive nor symmetric and

17. R is a relation is defined on the set {1,2,3,4} as follow
R={(1,2), (2,2), (1,1), (4,4), (1,3), (3,3), (3,2)}
Then choose the coR Rect option of the following

A. R is reflexive symmetric but not transitive

B. R is reflexive transitive but not

symmetric

C. R is symmetric transitive but not

reflexive

D. R is an equivalence

Answer:

18. Let A= {1,2,3} and R={(1,2), (2,3), (3,3), }be a relation on A. Add a (i) minimum (ii) maximum number of ordered pairs to R so that enlarged relation becomes an equivalence relation on A.

19. consider three right angle triangles T_1 with sides 3,4,5 T_2 with sides 2,12,13 and T_3 with sides 6,8,10. Which triangles among T_1, T_2 , and T_3 are related ?

Short Answer Type Questions

1. Show that the relation is greater than on the set of real numbers \mathbb{R} is transitive but neither reflexive nor symmetric on \mathbb{R} .

Watch Video Solution

2. Prove that the relation is perpendicular to on the set L of all straight lines in a plane is

symmetric but neither reflexive nor transitive

on L.

3. A relation R is defined on the set \mathbb{N} of natural number follows : (x,y) $\in R \Rightarrow x$ divides y for all x,y $\in \mathbb{N}$

show that R is reflexive and transitive but not symmetric on \mathbb{N} .

4. A relation R is defined on the set of natural numbers \mathbb{N} follows :

(x,y) $\in R \Rightarrow$ x+y =12 for all x,y $\in \mathbb{N}$

Prove that R is symmetric but neither reflexive

nor transitive on \mathbb{N} .

Watch Video Solution

5. A relation R is defined on the set NN of natural number follows :

(x,y) $\,\in \mathrm{R} \Rightarrow\,$ x+2y=10, for all x,y $\,\in\, NN$

Show that R is antisymmetric on $N\!N$

symmetric on S.

7. A relation R is defined on the set of integers

ZZ as follows

 $\mathsf{R}=\{(\mathsf{x},\mathsf{y}): \mathsf{x},\mathsf{y} \in ZZ \text{ and } (\mathsf{x}\text{-}\mathsf{y}) \text{ is even } \}$

show that R is an equivalence relation on ZZ.

8. A relation R is defined on the set of all integers ZZ follows :

(x,y) $\in \mathbf{R} \Rightarrow$ (x,y) is divisible by n

Prove that R is an equivalence relation on ZZ.

9. Show that the relation R defined in the set A of all polygons as $R = \{(P_1, P_2) : P_1 \text{ and } P_2$ have same number of sides}, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3,4 and 5 ?

Watch Video Solution

10. Let O be the origin. We define a relation S between two points P and Q in a plane such

that OP=OQ. Show that the relation S is an

equivalence relation.

11. A relation S is defined on the set of real numbers RR a follows:

 $\mathsf{S=}\{(\mathsf{x},\mathsf{y}):\mathsf{s},\mathsf{y}\ \in\ RR \text{ and }\mathsf{and}\ \mathsf{x=+-y}\}$

Show that S is an equivalence relation on RR.

12. On a given set \forall define the smalest and

the large equivalence relation.

Watch Video Solution

13. A relation S is defined on the set of real numbers RR a follows :

S{(x,y) : $x^2+y^2=1$ for all x,y $\,\in RR$ }

Check the relation S for (i) reflexivity (ii)

symmetry an (iii) transitivity.

14. Let A={ a,b,c} be a given set. Define a relation on A which is :

(i) reflexive and transitive but not symmetric

on A

Watch Video Solution

15. Let A={ a,b,c} be a given set. Define a

relation on A which is :

reflexive and symmetric but not transitive on A

16. Let A={ a,b,c} be a given set. Define a relation on A which is :

transitive and symmetric but not reflexive on A

Watch Video Solution

17. Let A={ a,b,c} be a given set. Define a relation on A which is :

reflexive but neither symmetric nor transitive

on A

18. Let A={ a,b,c} be a given set. Define a relation on A which is :

symmetric but neither reflexive nor transitive

on A

Watch Video Solution

19. Let A={ a,b,c} be a given set. Define a relation on A which is :

transitive but neither reflexive nor symmetric

on A

20. Let A={ a,b,c} be a given set. Define a

relation on A which is :

neither reflexive nor symmetric and transitive

on A

21. Let A={ a,b,c} be a given set. Define a

relation on A which is :

an equivalence relation on A.

22. A relation R is defined on the set of natural numbers \mathbb{N} as follows :

R {(x,y) : $x \in \mathbb{N}$ and x is a multiple of y }.

Prove that R is reflexive, antisymmetric and

transitive but not symmetric on \mathbb{N} .

23. Let R and S be two relations on a set A. If

(i) R and S are both symmetric on A prove that

 $R \cap S$ and $R \cup S$ are also symmetric on A

Watch Video Solution

24. Let R and S be two relations on a set A. If

(ii) R is reflexive and S is any relation prove

that R \cup S is reflexive

25. Let R and S be two relations on a set A. If (iii). R and S are both transitive on A prove that $R \cap S$ is transitive but $R \cup S$ is not necessarily transitive on A.

26. A relation R is defined on the set NN of natural as follows :

(x,y) $\in \mathrm{R} \Rightarrow$ x-y+ $\sqrt{3}$ is an iR Rational

number for all x,y $\in NN$.

Show that R is reflexive on NN.

Sample Question For Competitive Examination Multiple Cor Recy Answers Type

1. If R and R' are symmetric relations (not disjoint) on a set A then the relation R \cap R' is not

A. reflexive

B. symmetric

C. transitive

D. equivalence

Answer: A::C::D

> Watch Video Solution

2. Let A= {1,2,3}, we define $R_1 = \{(1, 2), (3, 2), (1, 3)\}$ and R_(2)= {(1,3), (3,6), (2,1), (1,2)}. Then which of the relation on A is not coR Rect ?

- A. R_1 is a relation and R_2 is not
- B. R_1 and R_2 are relation
- C. R_1 and R_2 are both non-relation
- D. R_2 is a relation and R_1 is not

Answer: B::C::D

Watch Video Solution

3. Let A= {1,2,3}, we define R ={ (1,1), (2,2), (3,3) }

then it is

A. reflexive

B. symmetric

C. equivalence

D. ordered relation on A

Answer: A::B::C::D

Watch Video Solution

4. Let A={ (a,b,c} we define

R = { (a,b), (b,a), (b,b), (a,a)} then

- A. R is not symmetric
- B. R is not reflexive
- C. R is not anti symmetric
- D. R is not transitive

Answer: B::C

5. The relation R defined on the set NN of natural numbers by xRy $\, \Leftrightarrow 2x^2 - 3xy + y^2$

A. symmetric

B. reflexive

C. not symmetric

D. not reflexive

Answer: B::C

Watch Video Solution

Sample Question For Competitive Examination Integer Answer Type **1.** If R be a relation < from A ={ 1,2,3,4 } to B = { 1,3,5} i.e (a,b) \in R iff a < b then R^{-1} is { (3,1), (k,1), (3,2), (k,2), (k,3), (k,4) } what will be the value of k ?

Watch Video Solution

2. Let R be a relation on NN defined by R = {(x,y) :x+2y=8}. The range of R is { 1, λ 3} find the value of λ .

3. If R ={ (x,y) : x,y $\in z, x^2 + y^2 \le 4$ } is a relation on ZZ then domain of R is { 0,-1,k,-2,2} find the value of k.

4. Let A and B have 3 and 6 elements respectively. What will be the minimum number of elements in A \cup B?

5. If the number of elements in sets A and B are 3 and 1 respectively then the number of relations from A to B is

Sample Question For Competitive Examination Matrix Match Type

1. Let R and S be two non - void relations on a

set A.

	\int	Column I		Column II
	A	If <i>R</i> and <i>S</i> transitive then $R \cup S$ will be	(p)	symmetric
	B	If <i>R</i> and <i>S</i> transitive then $R \cap S$ will be	(q)	reflexive
	C	If R and S symmetric then $R \cup S$ will be	(r)	transitive
(If R and S reflexive then $R \cap S$ vill be	(s)	not transitive

Watch Video Solution

2. The relation R : A \rightarrow B where A =

 $\{2,3,4,5,6,7,\}$ and B= $\{1,4,\}$ is defined by R = $\{(x,y) :$

 $\mathsf{x} \, > y, x \in \mathsf{A}, \mathsf{y} \, \in \, \mathsf{B} \}$

	Column I		Column II
	Domain of <i>R</i>	(p)	{1,4}
₿	Range of <i>R</i>	(q) ⁻	{2, 3, 4, 5, 6, 7}
C	Domain of R^{-1}	(r)	{2, 3, 4, 5, 6, 7}
D	Range of <i>R</i> ⁻¹	(s)	{1, 4}

0

Watch Video Solution

Sample Question For Competitive Examination Comprehension Type

1. Let X = {1,2,3,4,5} and Y = { 1,3,5,7,9}.

(i) If R_1 = { (x,y) : y =x+2, x \in X, y \in Y} then

 R_1 is a relation from X to Y because

A. $R_1 \supseteq (X imes Y)$

- ${\tt B}.\,R_1\subseteq (X\times Y)$
- $\mathsf{C.}\,R_1 \swarrow (X \times Y)$
- D. None of these

Answer: B

2. Let X = {1,2,3,4,5} and Y = { 1,3,5,7,9}.

If $R_2 = \{ (1,1), (1,3), (3,5), (3,7), (5,7) \}$ then R_2 is a relation from X to Y because

A. $R_2 \subseteq (X imes Y)$

 ${\sf B}.\,R_2\subset (X\times Y)$

$$\mathsf{C.}\,R_2 \swarrow (X \times Y)$$

D. None of these

Answer: A

3. Let X = {1,2,3,4,5} and Y = { 1,3,5,7,9}.

If R_3 = { (1,3) ,(2,5), (2,4), (7,9) } then R_3 is not a relation from X to Y because

A. (2,5)
$$\swarrow$$
 $(X \times Y)$
B. (1,3) \checkmark $(X \times Y)$
C. (2,4), (7,9) \checkmark $(X \times Y)$

D. (1,3), (2,5) \swarrow $(X \times Y)$

Answer: C

4. Each question in this section has four choices A, B, C, and D out of which only one is coR Rect. Mark your choices as follows . Let R be a relation on the set NN of the natural numbers defined by nRm $< \Rightarrow$ n is a factor of m. Let R be the relation over the set of integers such that mRn if and only if m is a multiple of n Then R is reflexive because A. mRn as m is multiple of n

B. mRn as m is multiple of m

D. None of these

Answer: B

5. Each question in this section has four choices A , B, C , and D out of which only one is coR Rect. Mark your choices as follows . Let R be a relation on the set *NN* of the natural numbers defined by nRm $< \Rightarrow$ n is a

factor of m. Then R is not symmetric because

A. mRn nRp 📈 nRm

B. mRn and nRp \Rightarrow mRp

C. mRn 💉 nRm

D. None of these

Answer: C

6. Each question in this section has four choices A, B, C, and D out of which only one is coR Rect. Mark your choices as follows . Let R be a relation on the set NN of the natural numbers defined by nRm $< \Rightarrow$ n is a factor of m. Then R is transitive because

A. mRn, nRp \Rightarrow mRp

B. mRn 💉 nRm

C. mRm as m is multiple of m

D. None of these

Sample Question For Competitive Examination Assertion Reason Type

1. Each question in this section has four choices A, B, C, and D out of which only one is coR Rect. Mark your choices as follows . Let R be a relation on the set NN of the natural numbers defined by nRm $< \Rightarrow$ n is a factor of m.

Statement -1 : R is not oan equivalence relation.

Statement -II: R is not symmetric

A. Statement -I is True Statemint- II is True,

Statement -II is a caR Rect explanation

for Statement -I

B. Statement -I is True Statemint- II is True,

Statement -II is a caR Rect explanation

for Statement -I

C. Statement -I is True Statement -II is False.

D. Statement -I is False Statement-II is True.

Answer: A

Watch Video Solution

2. Each question in this section has four choices A, B, C, and D out of which only one is coR Rect. Mark your choices as follows . Let RR be a real line, Consider the following subsets of the plane $RR \times RR$:

S= {(x,y) : y =x+1 and 0 < x < 2 }

T ={ (x,y) : (x-y) is an integer }.

Statement - I : T is an equivalence relation on RR nut S is not an equivalence relation on RR.

Statement -II : S is neither reflexive nor symmetric but T is reflexive symmetric and transitive.

A. Statement -I is True Statemint- II is True,

Statement -II is a caR Rect explanation

for Statement -I

B. Statement -I is True Statemint- II is True,

Statement -II is a caR Rect explanation

for Statement -I

C. Statement -I is True Statement -II is False.

D. Statement -I is False Statement-II is True.

Answer: A

View Text Solution