© " doubtnut

MATHS

BOOKS - CHHAYA PUBLICATION

 MATHS (BENGALI ENGLISH)
RELATIONS

Iifustrative Examples

1. Let $A=\{1,2,3\}$ be a given set. Define a relation
on A which is
(i) reflexive and transitive but not symmetric on A

D Watch Video Solution

2. Let $A=\{1,2,3\}$ be a given set. Define a relation on A which is
reflexive and symmetric but not transitive on A

- Watch Video Solution

3. Let $A=\{1,2,3\}$ be a given set. Define a relation on A which is
transitive and symmetric but not reflexive on A

D Watch Video Solution

4. Let $A=\{1,2,3\}$ be a given set. Define a relation
on A which is
reflexive but neither symmetric nor transitive on A
5. Let $A=\{1,2,3\}$ be a given set. Define a relation on A which is
symmetric but neither reflexive nor transitive on A

D Watch Video Solution

6. Let $A=\{1,2,3\}$ be a given set. Define a relation on A which is
transitivebut neither reflexive nor symmetric on A
7. Let $A=\{1,2,3\}$ be a given set. Define a relation on A which is
neither reflexive nor symmetric and transitive on A

- Watch Video Solution

8. Let $A=\{1,2,3\}$ be a given set. Define a relation on A which is
an equivalence relation on A

D Watch Video Solution

9. Let $A=\{1,2,3\}$ be a given set. Define a relation on A which is neither symmetric nor antismmetric on A

- Watch Video Solution

10. Let $A=\{1,2,3\}$ be a given set. Define a relation on A which is
symmetric but not antisymmetric on A

D Watch Video Solution

11. Show that the relation is congruent to on
the set T of all triangles in a plane is an equivalence relation.

- Watch Video Solution

12. Check the relation is a factor of on the set of natural numbers N for reflexivity symmetry
and transitivity.

- Watch Video Solution

13. Let A be a family of sets and let R be the relation on A defined by X is disjoint from Y. State whether or not R is reflexive on A

- Watch Video Solution

14. Let A be a family of sets and let R be the relation on A defined by X is disjoint from Y.

State whether or not R is
symmetric on A

D Watch Video Solution

15. Let A be a family of sets and let R be the relation on A defined by X is disjoint from Y. State whether or not R is transitive on A
16. Let A be a family of sets and let R be the relation on A defined by X is disjoint from Y. State whether or not R is antisymmetric on A

D Watch Video Solution

17. A relation R is defined on the set of natural numbers $N N$ as follows

$$
\mathrm{R}=\{(\mathrm{x}, \mathrm{y}): \mathrm{x}, \mathrm{y} \in N N \text { and } \mathrm{x}+3 \mathrm{y}=12\}
$$

Show that R is transitive and antisymmetric but neither reflexive nor symmetric on $N N$.

D Watch Video Solution

18. A relation R on the set of natural number
$N N$ is defined as follows :
$(\mathrm{x}, \mathrm{y}) \in R \rightarrow(\mathrm{x}-\mathrm{y})$ is divisible by 5 for all x, y
$\in N N$ Prove that R is an equivalence relation on $N N$.
19. A relation R_{1} is defined on the set of real number $R R$ as follows :
$R_{1}=\{(x, y): 1+x y>0, \mathrm{x} \in R R \mathrm{y} \in R R$ \}

Show that R_{1} is reflexive and symmetric but not transitive on $R R$.

- Watch Video Solution

20. A relation R is defined on the set of integers $Z Z$ as follows
$\mathrm{R}=\{(\mathrm{x}, \mathrm{y}): \mathrm{x}, \mathrm{y} \in Z Z$ and $(\mathrm{x}-\mathrm{y})$ is even $\}$
show that R is an equivalence relation on $Z Z$.

D Watch Video Solution

21. Let R be a relation on the set N be defined
by $\quad\{(x, y) \mid x, y \varepsilon N, 2 x+y=41\}$. Then
prove that the R is neither reflexive nor symmetric and nor transitive.

D Watch Video Solution

22. Let $A=\{a, b, c\}$ and $R=\{b, b),(c, c),(a, b)\}$ be a relation on A. Add a minimum and maximum number of ordered pairs to R so that the enlarged relations become equivalence relations on A .

D Watch Video Solution

23. Let $N N$ be the set of natural numbers and

R be a relation on $N N \times N N$ defined by,
$(a, b) R(c, d) \rightarrow a+d=b+c$, for all (a, b) and (c, d)
$i N N N \times N N$.
prove that R is an equivalence relation on
$N N \times N N$.

D Watch Video Solution

24. Let $N N$ be the set of natural numbers and

R be a relation on $N N \times N N$ defined by,
$(a, b) R(c, d) \rightarrow a d=b c$, for $a l l(a, b)$ and (c, d)
$i N N N \times N N$.

Show that R is an equivalence relation on
$N N \times N N$.
25. Let $Z Z$ be the set of all integers and let m be an arbitrary but fixed positive integer. Show that the relation "congruence modulo m " on
$Z Z$ defined by :
$a \equiv b^{\prime}(\bmod m)^{\prime} \Rightarrow(a-b)$ is divisible by m, for all $\mathrm{a}, \mathrm{b} \in Z Z$ is an equivalence relation on $Z Z$.

- Watch Video Solution

26. Show that the relation R, on the set
$A=\{x \in \mathbb{Z}: 0 \leq x \leq 12\}$ given by $R=\{(a, b): \mid a-$ $\mathrm{b} \mid$ is a multiple of 4 and $\mathrm{a}, \mathrm{b} \in \mathrm{A}\}$ is an equivalance relation on A.

- Watch Video Solution

Multiple Choice Type Questions

1. If $A=\{1,2,3,4$,$\} and I_{A}$ be the identity relation
A. $(1,2) \in I_{A}$
B. $(2,2) \in I_{A}$
C. $(2,1) \in I_{A}$
D. $(3,4) \in I_{A}$

Answer: B

D Watch Video Solution
2. Let A be a non-empty set. Then a relation R on A is said to be an equivalence relation on A.
A. reflexive on A
B. symmetric on A
C. transitive on A
D. reflexive, symmetric and transitive on A

Answer: D

D Watch Video Solution
3. Which of the following statement is true ?
A. If $A=\{1,2,3,4$,$\} and R=\{1,1),(2,2),(2,3),(1,2)\}$ then the relation R on set A is reflexive.
B. Let $A=\{a, b, c, d)$ and a relation R on A be
defined as follows :
$R=\{a, c),(b, d),(b, c),(c, a),(d, b)\}$

Then R is a symmetric relation on A.
C. A reflexive relation defined on a nonempty set A is always symmetric.
D. The universal relation defined on a nonempty set A is transitive.

Answer: D

D Watch Video Solution

4. Which of the following statement is false?
A. The identity relation I_{A} on a non-empty
set A is always a reflexive relation on A.
B. A reflexive relation on a non-empty set A
is not necessarily the idenitity relation
on A .
C. Suppose a relation R is defined on the set $A=\{1,2,3\}$ as follows :

$$
R=\{(1,2),(3,2),(2,1),(1,1)\}
$$

Then R is a transitive relation on A.

$$
\begin{aligned}
& \text { D. If } \quad \mathrm{X}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \quad \text { and } \quad \mathrm{Y}=\{\mathrm{c}, \mathrm{a}, \mathrm{~b}\} \quad \text { then } \\
& X \times Y=Y \times X
\end{aligned}
$$

Answer: C

D Watch Video Solution

5. Total number of relations that can be defined on set $A=\{1,2,3,4\}$ is
A. 2^{4}
B. 2^{8}
C. 2^{12}
D. 2^{16}

Answer: D

D Watch Video Solution
6. State which of the following is total number of relations from set $A=\{a, b, c\}$ to set $B=\{d, e\}$ is
A. 2^{6}
B. 2^{8}
C. 2^{4}
D. 2^{15}

Answer: A

D Watch Video Solution

7. Set $A=\{8,9,10\}$ and $B=\{2,3,4,5\}$ and let R be a

 relation from A to B defined by xRy \Rightarrow " y divides x ". Then the domain of R isA. $\{2,3,4,5$,
B. $\{8,9,10\}$
C. $\{8,9,10,11\}$
D. $\{8,9\}$

Answer: B

D Watch Video Solution
8. If $R=\{(x, y): x$ is an integer and $|x|<3$ and $y=|x-3|\}$ then the range of R is
A. $\{-2,-1,0,1,2\}$
B. $\{-2,-1,0\}$
C. $\{5,4,3,2,1\}$
D. $\{4,3,2,1$,

Answer: C
9. A relation ϕ from $\mathbb{C o r} R R$ is defined by $x \phi y \Rightarrow|x|=\mathrm{y}$. which one is coR Rect ?
A. $(2+3 i) \phi 13$
B. $3 \phi(-3)$
C. $(1+\mathrm{i}) \phi 2$
D. $i \phi 1$

Answer: D

D Watch Video Solution
10. Let $A=\{1,2,3\}$. Then the number of relations containing (1,2) and (1,3) which are reflexive and symmetric but not transitive is
A. 1
B. 2
C. 3
D. 4

Answer: A

D Watch Video Solution

Very Short Answer Type Questions

1. Let $A=\{1,3,5\}, B=\{2,4,6\}$ and R be the relation defined by
$x R y \Rightarrow(x+y)$ is even.
Show that R is a void relation from A to B.

- Watch Video Solution

2. When is a relation R on a set A not reflexive ?

Let $\mathrm{A}\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and R be a relation on A given by
$R=\{(a, a),(a, c),(c, a),(c, c),(d, d)\}$. Is R reflexive on A ?

D Watch Video Solution

3. When is a relation R on a set A not symmetric?

Let $X=\{1,2,3,4\}$ and R be a relation on set X defined by $R=\{(1,2),(3,4),(2,2),(4,3),(2,3)\}$. Is R symmetric on X ?
4. When is a relation R on a set A not antisymmetric?

Let $A=\{1,2,3,4\}$ and R be a relation on A defined by
$R=\{(1,1), \quad(2,2), \quad(3,4), \quad(3,3),(2,1), \quad(4,3)\}$. Is R
antisymmetric on A?

D Watch Video Solution

5. When is a relation R on a set A not transitive
?

Let $A=\{1,2,3,4\}$ and a relation R on A be given by
$R=\{(2,3),(2,2),(3,1),(3,2),(4,1)\}$ Is R transitive on A?

D Watch Video Solution
6. Can a relation R on a set A be both symmetric and antisymmetric?

D Watch Video Solution

7. Find the domain and range of each of the following relations:
(i). $R_{1}=\left\{\left(a, \frac{1}{a}\right): 0<a<5\right.$ and a is an integer \}

D Watch Video Solution

8. Find the domain and range of each of the following relations:
$R_{2}=\{(\mathrm{x}, \mathrm{y}): \mathrm{x} \in N N, \mathrm{y}$ are integers and $\mathrm{xy}=4\}$

D Watch Video Solution

9. Find the domain and range of each of the following relations :
$R_{3}=\{(\mathrm{x}, \mathrm{y}): \mathrm{x}, \mathrm{y} \in N N$, and $2 \mathrm{x}+\mathrm{y}=41\}$

D Watch Video Solution

10. Find the domain and range of each of the following relations:
$R_{4}=\left\{(\mathrm{x}, \mathrm{y}): \mathrm{x}\right.$ and y are integers and $x^{2}+y^{2}=25$
\}

- Watch Video Solution

11. Find the domain and range of each of the following relations :
$R_{5}=\{(x-5,2 x-7): x$ is an odd natural number less than 10 \}

- Watch Video Solution

12. Find the domain and range of each of the following relations:
$R_{6}=\left\{\left(x, x^{2}-31\right): \mathrm{x}\right.$ is a prime number less
than 12 \}
13. Find the domain and range of each of the following relations:
$R=\{\quad(x, y) \quad: x$ is an integer and
$|x|<3$ and $y=|3|\}$

- Watch Video Solution

14. Find the domain and range of each of the
following relations:

$S=\{(x, y): x, y \in \mathbb{N}$ and $x+3 y=12\}$.

D Watch Video Solution

15. Define an equivalence relation. Show that the relation similarity on the set of all triangles in a plene is an equivalence relation.

- Watch Video Solution

16. Define a relation R on the set $A=\{a, b, c\}$ which is neither reflexive nor symmetric and
transitive.

D Watch Video Solution

17. R is a relation is defined on the set $\{1,2,3,4\}$
as follow
$R=\{(1,2),(2,2),(1,1),(4,4),(1,3),(3,3),(3,2)\}$
Then choose the coR Rect option of the following
A. R is reflexive symmetric but not transitive
B. R is reflexive transitive but not
symmetric
C. R is symmetric transitive but not reflexive
D. R is an equivalence

Answer:

- Watch Video Solution

18. Let $A=\{1,2,3\}$ and $R=\{(1,2),(2,3),(3,3)$, \}be a relation on A. Add a (i) minimum (ii) maximum number of ordered pairs to R so that enlarged relation becomes an equivalence relation on A .

D Watch Video Solution

19. consider three right angle triangles T_{1} with
sides 3,4,5 T_{2} with sides $2,12,13$ and T_{3} with
sides 6,8,10. Which triangles among
T_{1}, T_{2}, and T_{3} are related ?

Short Answer Type Questions

1. Show that the relation is greater than on
the set of real numbers \mathbb{R} is transitive but neither reflexive nor symmetric on \mathbb{R}.

D Watch Video Solution

2. Prove that the relation is perpendicular to
on the set L of all straight lines in a plane is
symmetric but neither reflexive nor transitive on L.

D Watch Video Solution

3. A relation R is defined on the set \mathbb{N} of natural number follows : $(\mathrm{x}, \mathrm{y}) \in R \Rightarrow \mathrm{x}$ divides y for all $x, y \in \mathbb{N}$
show that R is reflexive and transitive but not symmetric on \mathbb{N}.

4. A relation R is defined on the set of natural

 numbers \mathbb{N} follows :$(\mathrm{x}, \mathrm{y}) \in R \Rightarrow \mathrm{x}+\mathrm{y}=12$ for all $\mathrm{x}, \mathrm{y} \in \mathbb{N}$
Prove that R is symmetric but neither reflexive nor transitive on \mathbb{N}.

- Watch Video Solution

5. A relation R is defined on the set $N N$ of natural number follows :
$(\mathrm{x}, \mathrm{y}) \in \mathrm{R} \Rightarrow \mathrm{x}+2 \mathrm{y}=10$, for all $\mathrm{x}, \mathrm{y} \in N N$
Show that R is antisymmetric on $N N$
6. Show that the relation is a subset of on the set of all sets is reflexive and transitive but not symmetric on S .

D Watch Video Solution

7. A relation R is defined on the set of integers
$Z Z$ as follows
$\mathrm{R}=\{(\mathrm{x}, \mathrm{y}): \mathrm{x}, \mathrm{y} \in Z Z$ and $(\mathrm{x}-\mathrm{y})$ is even $\}$
show that R is an equivalence relation on $Z Z$.

D Watch Video Solution

8. A relation R is defined on the set of all integers $Z Z$ follows :
$(x, y) \in R \Rightarrow(x, y)$ is divisible by n
Prove that R is an equivalence relation on $Z Z$.
9. Show that the relation R defined in the set A
of all polygons as $R=\left\{\left(P_{1}, P_{2}\right): P_{1}\right.$ and P_{2}
have same number of sides\}, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3,4 and 5 ?

- Watch Video Solution

10. Let O be the origin. We define a relation S
between two points P and Q in a plane such
that $\mathrm{OP}=\mathrm{OQ}$. Show that the relation S is an equivalence relation.

D Watch Video Solution

11. A relation S is defined on the set of real numbers $R R$ a follows:
$\mathrm{S}=\{(\mathrm{x}, \mathrm{y}): \mathrm{s}, \mathrm{y} \in R R$ and and $\mathrm{x}=+-\mathrm{y}\}$

Show that S is an equivalence relation on $R R$.

D Watch Video Solution

12. On a given set \forall define the smalest and the large equivalence relation.

D Watch Video Solution

13. A relation S is defined on the set of real numbers $R R$ a follows :
$\mathrm{S}\left\{(\mathrm{x}, \mathrm{y}): x^{2}+y^{2}=1\right.$ for all $\left.\mathrm{x}, \mathrm{y} \in R R\right\}$

Check the relation S for (i) reflexivity
symmetry an (iii) transitivity.
14. Let $A=\{a, b, c\}$ be a given set. Define a relation on A which is :
(i) reflexive and transitive but not symmetric on A

- Watch Video Solution

15. Let $A=\{a, b, c\}$ be a given set. Define a relation on A which is :
reflexive and symmetric but not transitive on A
16. Let $A=\{a, b, c\}$ be a given set. Define a relation on A which is :
transitive and symmetric but not reflexive on A

- Watch Video Solution

17. Let $A=\{a, b, c\}$ be a given set. Define a relation on A which is :
reflexive but neither symmetric nor transitive on A

Watch Video Solution

18. Let $A=\{a, b, c\}$ be a given set. Define a relation on A which is :
symmetric but neither reflexive nor transitive on A

D Watch Video Solution

19. Let $A=\{a, b, c\}$ be a given set. Define a relation on A which is :
transitive but neither reflexive nor symmetric on A

D Watch Video Solution

20. Let $A=\{a, b, c\}$ be a given set. Define a relation on A which is :
neither reflexive nor symmetric and transitive on A
21. Let $A=\{a, b, c\}$ be a given set. Define a relation on A which is :
an equivalence relation on A.

D Watch Video Solution

22. A relation R is defined on the set of natural numbers \mathbb{N} as follows :
$R\{(x, y): x \in \mathbb{N}$ and x is a multiple of $y\}$.
Prove that R is reflexive, antisymmetric and transitive but not symmetric on \mathbb{N}.
23. Let R and S be two relations on a set A. If
(i) R and S are both symmetric on A prove that $R \cap S$ and $R \cup S$ are also symmetric on A

- Watch Video Solution

24. Let R and S be two relations on a set A. If
(ii) R is reflexive and S is any relation prove that $R \cup S$ is reflexive
25. Let R and S be two relations on a set A. If
(iii). R and S are both transitive on A prove that $R \cap S$ is transitive but $R \cup S$ is not necessarily transitive on A.

D Watch Video Solution

26. A relation R is defined on the set $N N$ of natural as follows:
$(x, y) \quad \in R \Rightarrow x-y+\sqrt{3}$ is an iR Rational
number for all $\mathrm{x}, \mathrm{y} \in N N$.

Show that R is reflexive on $N N$.

D Watch Video Solution

Sample Question For Competitive Examination Multiple Cor Recy Answers Type

1. If R and R^{\prime} are symmetric relations (not
disjoint) on a set A then the relation $R \cap R^{\prime}$ is not
A. reflexive
B. symmetric
C. transitive
D. equivalence

Answer: A::C::D

D Watch Video Solution

> 2. Let $\mathrm{A}=\quad\{1,2,3\}$ we define
> $R_{1}=\{(1,2),(3,2),(1,3)\}$ and $\mathrm{R}_{-}(2)=\{(1,3)$,
$(3,6),(2,1),(1,2)\}$. Then which of the relation on

A is not coR Rect ?
A. R_{1} is a relation and R_{2} is not
B. R_{1} and R_{2} are relation
C. R_{1} and R_{2} are both non-relation
D. R_{2} is a relation and R_{1} is not

Answer: B::C::D

- Watch Video Solution

3. Let $A=\{1,2,3\}$, we define $R=\{(1,1),(2,2),(3,3)\}$
then it is
A. reflexive
B. symmetric
C. equivalence
D. ordered relation on A

Answer: A::B::C::D

D Watch Video Solution
4. Let $A=\{(a, b, c\}$ we define
$R=\{(a, b),(b, a),(b, b),(a, a)\}$ then
A. R is not symmetric
B. R is not reflexive
C. R is not anti symmetric
D. R is not transitive

Answer: B::C

D Watch Video Solution
5. The relation R defined on the set $N N$ of
natural numbers by $\mathrm{xRy} \Leftrightarrow 2 x^{2}-3 x y+y^{2}$
$=0$ is
A. symmetric
B. reflexive
C. not symmetric
D. not reflexive

Answer: B::C

D Watch Video Solution

Sample Question For Competitive Examination Integer Answer Type

1. If R be a relation $<$ from $A=\{1,2,3,4\}$ to $B=$ $\{1,3,5\}$ i.e (a,b) $\in \mathrm{R}$ iff $\mathrm{a}<\mathrm{b}$ then R^{-1} is $\{$ $(3,1),(k, 1),(3,2),(k, 2),(k, 3),(k, 4)\}$ what will be the value of k ?

D Watch Video Solution

2. Let R be a relation on $N N$ defined by $\mathrm{R}=\{($
$x, y): x+2 y=8\}$. The range of R is $\{1, \lambda 3\}$ find the value of λ.
3. If $\mathrm{R}=\left\{(\mathrm{x}, \mathrm{y}): \mathrm{x}, \mathrm{y} \in z, x^{2}+y^{2} \leq 4\right\}$ is a relation on $Z Z$ then domain of R is $\{0,-1, k,-2,2\}$
find the value of k.

D Watch Video Solution

4. Let A and B have 3 and 6 elements respectively. What will be the minimum number of elements in $A \cup B$?
5. If the number of elements in sets A and B
are 3 and 1 respectively then the number of relations from A to B is

D Watch Video Solution

Sample Question For Competitive Examination Matrix Match Type

1. Let R and S be two non - void relations on a
set A.

	Column I		Column II
(A)	If R and S transitive then $R \cup S$ will be	(p)	symmetric
(B)	If R and S transitive then $R \cap S$ will be	(q)	reflexive
(C)	If R and S symmetric then $R \cup S$ will be	(r)	transitive
(D)	If R and S reflexive then $R \cap S$ will be	(s)	not transitive

- Watch Video Solution

2. The relation $R: A \rightarrow B$ where $A=$ $\{2,3,4,5,6,7$,$\} and B=\{1,4$,$\} is defined by R=\{(x, y)$:
$\mathrm{x}>y, x \in \mathrm{~A}, \mathrm{y} \in \mathrm{B}\}$

	Column I		Column II
(A)	Domain of R	(p)	$\{1,4\}$
(B)	Range of R	(q)	$\{2,3,4,5,6,7\}$
(C)	Domain of R^{-1}	(r)	$\{2,3,4,5,6,7\}$
(D)	Range of R^{-1}	(s)	$\{1,4\}$

- Watch Video Solution

Sample Question For Competitive Examination Comprehension Type

1. Let $X=\{1,2,3,4,5\}$ and $Y=\{1,3,5,7,9\}$.
(i) If $R_{1}=\{(x, y): y=x+2, x \in X, y \in Y\}$ then
R_{1} is a relation from X to Y because
A. $R_{1} \supseteq(X \times Y)$
B. $R_{1} \subseteq(X \times Y)$
C. $R_{1} \not \subset(X \times Y)$
D. None of these

Answer: B
2. Let $X=\{1,2,3,4,5\}$ and $Y=\{1,3,5,7,9\}$.

If $R_{2}=\{(1,1),(1,3),(3,5),(3,7),(5,7)\}$ then R_{2} is a relation from X to Y because
A. $R_{2} \subseteq(X \times Y)$
B. $R_{2} \subset(X \times Y)$
C. $R_{2} \not \subset(X \times Y)$
D. None of these

Answer: A

D Watch Video Solution
3. Let $X=\{1,2,3,4,5\}$ and $Y=\{1,3,5,7,9\}$.

If $R_{3}=\{(1,3),(2,5),(2,4),(7,9)\}$ then R_{3} is not a
relation from X to Y because
A. $(2,5) \not \subset(X \times Y)$
B. $(1,3) \not \subset(X \times Y)$
C. $(2,4),(7,9) \not \subset(X \times Y)$
D. $(1,3),(2,5) \not \subset(X \times Y)$

Answer: C

D Watch Video Solution
4. Each question in this section has four choices A, B, C, and D out of which only one is coR Rect. Mark your choices as follows .

Let R be a relation on the set $N N$ of the natural numbers defined by $\mathrm{nRm}<\Rightarrow \mathrm{n}$ is a factor of m. Let R be the relation over the set of integers such that mRn if and only if m is a multiple of n

Then R is reflexive because
A. $m R n$ as m is multiple of n
B. $m R n$ as m is multiple of m

C. mRn nRm

D. None of these

Answer: B

D Watch Video Solution

5. Each question in this section has four choices A, B, C, and D out of which only one is coR Rect. Mark your choices as follows .

Let R be a relation on the set $N N$ of the
natural numbers defined by $\mathrm{nRm}<\Rightarrow \mathrm{n}$ is a
factor of m. Then R is not symmetric because
A. mRnnRp nRm
B. mRn and $\mathrm{nRp} \Rightarrow \mathrm{mRp}$
C. $\mathrm{mRn} \Rightarrow \mathrm{nRm}$
D. None of these

Answer: C
(Watch Video Solution
6. Each question in this section has four choices A, B, C, and D out of which only one is coR Rect. Mark your choices as follows .

Let R be a relation on the set $N N$ of the natural numbers defined by $\mathrm{nRm}<\Rightarrow \mathrm{n}$ is a
factor of m. Then R is transitive because
A. $\mathrm{mRn}, \mathrm{nRp} \Rightarrow \mathrm{mRp}$
B. mRn nRm
C. $m R m$ as m is multiple of m
D. None of these

Answer: A

D Watch Video Solution

Sample Question For Competitive Examination Assertion Reason Type

1. Each question in this section has four choices A, B, C, and D out of which only one is coR Rect. Mark your choices as follows .

Let R be a relation on the set $N N$ of the natural numbers defined by $\mathrm{nRm}<\Rightarrow \mathrm{n}$ is a
factor of m.

Statement -1 : R is not oan equivalence relation.

Statement -II: R is not symmetric
A. Statement - is True Statemint- II is True,

Statement -II is a caR Rect explanation
for Statement -I
B. Statement - is True Statemint- II is True,

Statement -II is a caR Rect explanation
for Statement -I
C. Statement -I is True Statement -II is False.

D. Statement -I is False Statement-II is True.

Answer: A

D Watch Video Solution

2. Each question in this section has four choices A, B, C, and D out of which only one is coR Rect. Mark your choices as follows .

Let $R R$ be a real line, Consider the following subsets of the plane $R R \times R R$:

$$
\mathrm{S}=\{(\mathrm{x}, \mathrm{y}): \mathrm{y}=\mathrm{x}+1 \text { and } 0<x<2\}
$$

$T=\{(x, y):(x-y)$ is an integer $\}$.

Statement -I:T is an equivalence relation on
$R R$ nut S is not an equivalence relation on
$R R$.

Statement -II : S is neither reflexive nor symmetric but T is reflexive symmetric and transitive.
A. Statement - is True Statemint- II is True,

Statement -II is a caR Rect explanation
for Statement -I
B. Statement ו- is True Statemint- II is True,

Statement -II is a caR Rect explanation
for Statement -I
C. Statement -I is True Statement -II is False.
D. Statement I-I False Statement-II is True.

Answer: A

- View Text Solution

