© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

MATHS

BOOKS - CHHAYA PUBLICATION MATHS

(BENGALI ENGLISH)

REVISION OF PREVIOUS TWO

DIMENSIONAL COORDINATE GEOMETRY

Illustrative Examples

1. Show that the points (3,0), (6,4) and ($-1,3$) are the vertices of a right angled isosceles triangle.
2. Find the point on the y-axis which is equidistant from the points (2,3) and (-1,2).

- Watch Video Solution

3. If the three points (a, b),
$(a+k \cos \alpha, b+k \sin \alpha)$ and $(a+k \cos \beta, b+k \sin \beta)$
are the vertices of an equilateral triangle, then which of the following is true and why?
(i) $|\alpha-\beta|=\frac{\pi}{4}$, (ii) $|\alpha-\beta|=\frac{\pi}{2}$
(iii) $|\alpha-\beta|=\frac{\pi}{6}$, (iv) $|\alpha-\beta|=\frac{\pi}{3}$
4. Find the circumcentre and circumradius of the triangle whose vertices are (3,4), (3,-6) and (-1,2).

D Watch Video Solution

5. Show that , if the four points $(-7,2),(19,8),(15,-6)$ and
$(-11,-12)$ are joined successively , then a parallelogram will be formed .
6. Show that the four points $(2,5),(5,9),(9,12)$ and $(6,8)$ when joined in order, form a rhombus .

- Watch Video Solution

7. the coordinates of the vertices A, B, C of the triangle

ABC are $(7,-3),(x, 8)$ and $(4, y)$ respectively, if the coordinates of the centroid of the triangle be (2,-1) , find x and y.

- Watch Video Solution

8. The coordinates of the vertex A of the triangle $A B C$ are $(7,-4)$. If the coordinates of the centroid of the triangle be (1,2), find the coordinates of the mid point of the side $\overline{B C}$.

- Watch Video Solution

9. The coordinates of the points A and B are ($3, \sqrt{3}$) and $(0,2 \sqrt{3})$ respectively, if ABC be an equilateral triangle find the coordinates of C.

D Watch Video Solution

10. If the line - segment joining the points
$A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ subtends an angle α at the origin O , then find the value of $\cos \alpha$.

- Watch Video Solution

11. Show that the straight line joining the points
$(4,-3)$ and $(-8,6)$ passes through the origin .

D Watch Video Solution

12. Find the condition that the points (a, b), (b, a) and
$\left(a^{2},-b^{2}\right)$ are in a straight line.
13. Find the value of x for which the area of the triangle with vertices at $(-1,-4),(\mathrm{x}, 1)$ and $(\mathrm{x},-4)$ is $12^{\frac{1}{2}}$ square units.

- Watch Video Solution

14. the point A, B, C have respective coordinates (3,4),
$(-4,3)$ and $(8,-6)$. Find the area of $\triangle A B C$ and the length of the perpendicular from A on $\overline{B C}$.
15. If x_{1}, x_{2}, x_{3} as well as y_{1}, y_{2}, y_{3} are in A.P. with the same common difference, then show that the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ are collinear.

- Watch Video Solution

16. The points A, B, C, D have the respective coordinates
$(-2,-3),(6,-5),(18,9)$ and (0,12) . Find the area of the quadrilateral $A B C D$.

- Watch Video Solution

17. The coordinates of the points A, B, C, D are ($0,-1$), $(-1,2),(15,2)$ and ($4,-5$) respectively . Find the ratio in which $\overline{A C}$ divides $\overline{B D}$.

- Watch Video Solution

18. If the vertex of a triangle is $(1,1)$ and the the mid points of two sides through this vetex are ($-1,2$) and $(3,2)$, them find the coordinates of the centroid of the triangle .
19. Find the value of x for which the points ($x+1,2$),
$(1, \mathrm{x}+2)$ and $\left(\frac{1}{x+1}, \frac{2}{x+1}\right)$ are collinear .

- Watch Video Solution

20. The coordinates of the points O, A and B are $(0,0)$,
(x, y) and (y, x) respectively. If $\angle A O B=\theta$, then find the value of $\cos \theta$.

- Watch Video Solution

21. If $A(3,5), B(-5,-4), C(7,10)$ are the vertices of a parallelogram taken in order, then the
coorinates of the fourth vertex are:

D Watch Video Solution

22. The coordinates of the mid -point of the sides of a triangle are (0,1) (1,1) and (1,0),find the coordinates of the triangle.

- Watch Video Solution

23. find the area of the triangle formed by the lines
$y=0, x+y=0$ and $x-4=0$
24. If the coordinates of the vertices of a triangle $A B C$ be (3,0), (0,6) and (6,9) and if D and E respectively divide $\overline{A B}$ and $\overline{A C}$ internally in the ratio 1:2, then show that the area of $\triangle A B C=9 \mathrm{x}$ the area of $\triangle A D E$.

- Watch Video Solution

25. What does the equation $\frac{x}{a}+\frac{y}{b}=1$ become if the axes are transferred to parallel axes through the point (a, b)?
26. Transform the equations
$2 x^{2}+y^{2}-4 x+4 y=0$ to parallel axes through the point ($1,-2$).

D Watch Video Solution

27. Transform the equation
$3 x^{2}+2 y^{2}-4 x+3 y=0$ to parallel axes through
the point (1,-2).

- Watch Video Solution

28. find the new origin on the x-axis so that the equation $a x+b y+c=0$ reduce to the form $a x+b y=0$

D Watch Video Solution

29. Find the point to which the origin should be shifted after a translation of axes, so that the equation $3 x^{2}+8 x y+3 y^{2}-2 x+2 y-2=0$ will have no first degree terms.

- Watch Video Solution

30. Reduce the equation $5 x^{2}-2 y^{2}-30 x+8 y=0$
to the form $a x^{2}+b y^{2}=1$ by proper translation of axes without rotation.

- Watch Video Solution

31. Prove that the area of a triangle is invariant under the translation of the axes .

- Watch Video Solution

32. Retaining the directions of axes, the origin is
lies on the new x - axis and the point $(-3,2)$ lies on the new y-axis .

- Watch Video Solution

33. A point moves in such a manner that 3 times its
distance from the x-axis is greater than 4 times its
distance from the y-axis by 7 , find the equation of its locus.

- Watch Video Solution

34. Find the equation to the locus of a moving point
which is always equidistant from the points $(2,-1)$ and

$(3,2)$. What curve does the locus represent ?

- Watch Video Solution

35. A and B are two given points whose coordinates are $(-5,3)$ and $(2,4)$ respectively . A point P moves in such a manner that $P A: P B=3: 2$. Find the equation to the locus traced out by P. What curve does it represent?

- Watch Video Solution

36. Find the locus of a point which forms a triangle of area 21 square unit with the points $(2,7)$ and $(-4,3)$.
37. The sum of the distances of a moving point from the points $(c, 0)$ and $(-c, 0)$ is always 2 a unit $(a>c)$. Find the equation to the locus of the moving point.

- Watch Video Solution

38. The sum of the intercepts cut off from the axes of coordinates by a variable straight line is 10 units .

Find the locus of the point which divides internally
the part of the straight line intercepted between the axes of coordinates in the ratio $2: 3$.

D Watch Video Solution

39. For all values of θ, the coordinates of a moving point P are $(a \cos \theta, b \sin \theta)$, find the equation to the locus of P .

- Watch Video Solution

40. The coodinates of any position of a moving points P are given by $\left(\frac{7 t-2}{3 t+2}, \frac{4 t+5}{t-1}\right)$, where t is variable parameter Find the equation to the locus of P.
41. The coordinates of a moving point P are $\left[\frac{a}{2}(\operatorname{coses} \theta+\sin \theta), \frac{b}{2}(\operatorname{coses} \theta-\sin \theta)\right]$, where θ is a variable parameter Show that, the, the equation to the locus of P is $b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}$.

- Watch Video Solution

42. If θ is a variable and a, b are constants then find the locus of the point of intersection of the lines $x \sin \theta+y \cos \theta=a$ and $x \cos \theta-y \sin \theta=b$.

Exercise 1 Mcq

1. The abscissa of any point on y-axis is -
A. 0
B. 1
C. -1
D. none of these

Answer: A

- Watch Video Solution

2. If the axes are transferred to parallel axes throught the point ($0-4$) , then the equation $4 x+3 y+12=0$ reduces to the form -
A. $4 x+3 y=5$
B. $4 x+3 y=2$
C. $4 x+3 y=0$
D. $4 x-3 y=0$

Answer: C

3. If the axis are transferred to parallel axis throught

 the point (α, β), then equation of the circle $(x-\alpha)^{2}+(y-\beta)^{2}=a^{2}$ reduces to the form-A. $x^{2}+y^{2}=a^{2}$
B. $x^{2}+y^{2}=\alpha^{2}$
C. $x^{2}+y^{2}=\beta^{2}$
D. $x^{2}+y^{2}=0$

Answer: A
4. The square of the distance between the points (x ,-
$y)$ and (-x,y) is -
A. $2\left(x^{2}+y^{2}\right)$
B. $x^{2}+y^{2}$
C. $4\left(x^{2}+y^{2}\right)$
D. $2 x^{2}+4 y^{2}$

Answer: C

5. The coordinates of the mid -point of line -segment

 joining the points ($a,-b$) and ($-a, b$) are -A. $\left(\frac{a}{2}, 0\right)$
B. $(0,0)$
C. $\left(0, \frac{b}{2}\right)$
D. $\left(\frac{a}{2}, \frac{b}{2}\right)$

Answer: B
6. A diameter of a circle has the extreme points $(7,9)$ and $(-1,-3)$. The coordinates of the centre of the circle are -
A. $(-3,3)$
B. $(-3,-3)$
C. $(3,-3)$
D. $(3,3)$

Answer: D

7. The coordiantes of the centroid of the triangle
fromed
by the points
$(x-y, y-z),(-x,-y)$ and (y, z) are -
A. $(-3,3)$
B. $(-3,-3)$
C. $(3,-3)$
D. $(3,3)$

Answer: C

8. If twice the abscissa of a point moving in the $x y$ plane always exceeds three times its ordinate by 1 , then the locus of the points is a-
A. circle
B. straight line
C. parabola
D. none of these

Answer: B
9. For all values of θ, the coordinates of a moving point P are $(a \cos \theta, a \sin \theta)$, the locus of P will be a-
A. circle
B. straight line
C. parabola
D. none of these

Answer: A
10. If the square of distance of a moving point from the point $(2,0)$ is equal to 4 units , then the locus of the moving point is a -
A. straight
B. circle
C. hyperbola
D. parabola

Answer: B
11. The point P lies on 3rd quadrant and its distances
from x - axis and y-axis are 6 and 4 respectively. The coordinates of P will be -

$$
\begin{aligned}
& \text { A. }(-6,-4) \\
& \text { B. }(-4,-6) \\
& \text { С. }(6,-4) \\
& \text { D. }(-6,4)
\end{aligned}
$$

Answer: B
12. When the origin is shifted (retaining the direction of the axis) at the point ($-5,9$) ,then the coordinates of the point $(3,4)$ will be -
A. $(-8,-5)$
B. $(-8,5)$
C. $(8,-5)$
D. $(8,5)$

Answer: C

13. $A B$ is a diameter of a circle having centre at C, if the coordinates of A and C are $(6,7)$ and $(5,-2)$ respectively, then the coordinates of B will be -
A. $(4,3)$
B. $(-4,3)$
C. $(4,-3)$
D. $(-4,-3)$

Answer: A
14. The centroid of the triangle formed by the points
$(1,2),(2,4)$ and $(-3,6)$ is -
A. $(0,0)$
B. $(0,4)$
C. $(4,0)$
D. $(4,4)$

Answer: B
15. ($a, 2 b$) divides the line segment joining by the points (3a,0),(0,3b) in the ratio-
A. 1:2
B. 2:1
C. 1:3
D. $3: 1$

Answer: C
16. A point moves in the $x y$-plan such that three times its distance from the y - axis exceeds two times its distance from the x - axis by 4 . Then the equation to the moving points is -

$$
\begin{aligned}
& \text { A. } 2 x-3 y=4 \\
& \text { B. } 3 x+2 y=4 \\
& \text { C. } 3 x-2 y=4 \\
& \text { D. } 3 x-2 y+4=0
\end{aligned}
$$

Answer: C
17. State in which of the following quadrants the point $(\sqrt{5}-3, \sqrt{5}-2)$ lies ?
A. first
B. second
C. third
D. fourth

Answer: B
18. The coordinates of a point referred to rectangular axis $\overleftrightarrow{O X}$ and $\overleftrightarrow{O Y}$ are $(4,-3)$, state which of the following are the coordinates of the same point when the axis are shifted to the point $(-2,5)$ without rotation?
A. $(-6,8)$
B. $(6,-8)$
C. $(-6,-8)$
D. $(-8,6)$

Answer: B
19. If the points $\left(a m^{2}, 2 a m\right),\left(a n^{2}, 2 a n\right)$ and $(a, 0)$ are collinaear then value of mn is -
A. 1
B. -2
C. - 1
D. 1

Answer: C

- Watch Video Solution

20. State which of the follwing is the distance between the
$(a+b, c-d)$ and $(a-b, c+d)$?
A. $2 \sqrt{a^{2}+c^{2}}$
B. $2 \sqrt{b^{2}+d^{2}}$
C. $\sqrt{a^{2}+c^{2}}$
D. $\sqrt{b^{2}+d^{2}}$

Answer: B
21. Which of the following is equal to the distance between the points $(-13,-11)$ and $(-2,-9)^{\prime}$?
A. $5 \sqrt{10}$
B. $5 \sqrt{3}$
C. $2 \sqrt{30}$
D. $5 \sqrt{5}$

Answer: D

22. the ditance between the points ($x,-7$) and ($3,-3$) is 5

unit , state which of the following are the values of x ?
A. 0 or 6
B. 2 or 3
C. 5 or 1
D. -6 or 0

Answer: A
23. State which of the follwing are the coordinates of the mid - point of the line -segment joining the points $(l, 2 m)$ and $(-l+2 m, 2 l-2 m)$?
A. (I, m)
B. (I,-m)
C. (m, I)
D. (m, l)

Answer: D

24. The point P divides the line -segmen joining the points $A(1,5)$ and $B(-4,7)$ internally in the ratio $2: 3$.State which of the following is the abscissa of P?

$$
\text { A. }-1
$$

B. 11
C. 1
D. -11

Answer: A
25. A point divides the line -segment joining the points (2,-5) and ($-3,-2$) externally in the ratio 4:3. State which of the follwing is the ordinate of the point?
A. -18
B. -7
C. 18
D. 7

Answer: D

D Watch Video Solution
26. State which of the following are the coordinates of the centroid of the triangle formed by joining the points (7,-5),(-2,5) and (4,6) ?
A. (3,-2)
B. $(2,3)$
C. $(3,2)$
D. $(2,-3)$

Answer: C
27. State which of the following is equal to the area of the traingle formed by joining the points $(0,4)$, $(0,0)$ and $(-6,0)$?
A. 24 square unit
B. 12 square unit
C. 6 square unit
D. 8 square unit

Answer: B
28. E is the mid - point of the diagonal $A C$ of the rectangle $A B C D$, if the coordinates of A and E are
$(7,-8)$ and $(2,-2)$, then state which of the following are the coordinates of C?
A. $(3,4)$
B. $(-3,-4)$
C. (3,-4)
D. $(-3,4)$

Answer: D
29. State which of the following is equal to the area
of the triangle formed by joining the points $(3,2)$,
$(5,4)$ and $(2,2)$?
A. 1 square unit
B. 2 square unit
C. $\frac{1}{2}$ square unit
D. 6 square unit

Answer: A

- Watch Video Solution

30. A point moves in the $x y$-plane in such a manner that its distance from the origin is always 3 unit . State which of the following is the equation to the locus of the moving point?
A. $x+y=3$
B. $x^{2}+y^{2}=3$
C. $x+y=9$
D. $x^{2}+y^{2}=9$

Answer: D

Exercise 1 Very Short Type Questions

1. The sides of the rectangle $A B C D$ are parallel to the coordinate axis. If the coordinates of the vertices B and D be $(7,3)$ and $(2,6)$ respectively, find the coordinates of the vertices A and C.

D Watch Video Solution

> 2. Transform $x^{2}+x y-3 x-y+2=0$ to parallel axis through
the point (1,1).
3. Transform the equation $y^{2}-4 x+4 y+8=0$ to parallel axes through the point ($1,-2$).

- Watch Video Solution

4. What does the equation
$(a-b)\left(x^{2}+y^{2}\right)-2 a b x=0$ become when the
origin is shifted to the point $\left(\frac{a b}{a-b}, 0\right)$ without rotation of axes?

- Watch Video Solution

5. Retaining the directions of axes, the origin is shifted to (h,k), find (h,k), given that the point (3,-1)
lies on the new x - axis and the point $(-2,4)$ lies on the new y-axis.

D Watch Video Solution

6. Show that the distance between the points (1,1)
and $\left[\frac{2 m^{2}}{1+m^{2}}, \frac{(1-m)^{2}}{1+m^{2}}\right]$ is the same for all values of m.
7. The square of the distance between the points $(-2, a)$ and $(a,-3)$ is 85 , find a.

- Watch Video Solution

8. If the point (x, y) is equidistant from the points (2,-1) and $(-3,4)$, then show that, $\mathrm{y}=\mathrm{x}+2$.

- Watch Video Solution

9. Find the condition so that the point (a, b) may be equidistant from the points $(8,4)$ and $(-2,-4)$.
10. Show that the points $(2,2),(-2,-2)$ and $(-2 \sqrt{3}, 2 \sqrt{3})$ are the vertices of an equilateral triangle .

- Watch Video Solution

11. Prove that the points $(-1,5),(3,2)$ and $(-1,-1)$ are the vertices of an isosceles traigle. Find the coordinates of its centroid.
12. Show that the points $(6,6),(2,3)$ and $(4,7)$ are the vertices of a right angled triangle

D Watch Video Solution

13. Prove that the points $(7,9),(3,7)$ and $(-3,3)$ form a right angled isoseles triangle .

- Watch Video Solution

14. The coordinates of the points A and B are $(2,4)$ and $(2,6)$ respectively. The point P is on that side of
$A B$ opposite to the origin. If $P A B$ be an equilateral triangle , find the coordinates of P .

- Watch Video Solution

15. The centre of a circle is at $(5,3)$ and its radius is 5 .

Find the length of the chord which is bisected at $(3,2)$

D Watch Video Solution

16. If the point (x, y) be equidistant from the points
$(a+b, b-a)$ and $(a-b, a+b)$, prove that $b x=a y$.
17. The base of an isosceles triangle is the line segment joining the points $(7,-1)$ and $(9,3)$, if the abscissa of the vertex be 4 find its ordinate .

- Watch Video Solution

18. Find the ratio in which the point $(1,2)$ divides the
line-segment joining the points $(-3,8)$ and (7,7) .

D Watch Video Solution
19. Find the ratio in which the point $(-5,-20)$ divides the line -segment joining the points $(4,7)$ and $(1,-2)$.

- Watch Video Solution

20. In what ratio the line-segment joining the points
$(3,4)$ and $(2,-3)$ is divided by the x-axes ? Also find the ratio in which it is divided by the y - axis .

- Watch Video Solution

21. P is a point on the line - segment $\overline{A B}$ such that
$\overline{A P}=\overline{3 P B}$, if the coordinates of A and B are $(3,-4)$
and $(-5,2)$ respectively , find the coordinates of P.

- Watch Video Solution

22. The line -segment $\overline{C D}$ is produced to Q such that
$2 \overline{C Q}=5 \overline{D Q}$, if the coordinates of C and D are $(4,7)$ and $(-2,4)$ respectively , find the coordinates of Q .

- Watch Video Solution

23. Find the coordinates of the point of trisection of the line - segment joining the points ($-2,3$) and ($3,-1$) that is nearer to $(-2,3)$.
24. Show that the line -segment joining the points
$(8,3),(-2,7)$ and the line -segment joining (11,-2),(-5,12)
bisect each other .

D Watch Video Solution

25. Find (x, y) if $(3,2),(6,3),(x, y)$ and $(6,5)$ are the vertices of a parallelogram taken in order,
26. If $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ and $\left(x_{4}, y_{4}\right)$ be the consecutive vertices of a parallelogram, show that , $x_{1}+x_{3}=x_{2}+x_{4}$ and $y_{1}+y_{3}=y_{2}+y_{4}$.

- Watch Video Solution

27. Find the coordinates of the point of intersection of the medians of the triangle formed by joining the points (-1,-2),(8,4) and (5,7).

- Watch Video Solution

28. The coordinates of the vertices of a triangle are $(4,-3),(-5,2)$ and (x, y). If the centre of gravity of the triangle is at the origin then find x, y.

- Watch Video Solution

29. The centroid of a triangle is $(-1,-2)$ and coordinates of its two vertices are $(4,6)$ and ($-8-12$). Find the coordinates of its third vertex.

- Watch Video Solution

30. The coordinates of the vertices A, B and C of the triangle $A B C$ are ($-1,3$),(1,-1) and (5,1) respectively . Find the length of the median through the vertex A .

D Watch Video Solution

31. For what value of k the points $(1,-1),(2,1)$ and $(k, 5)$
shall be on the same straight line?

- Watch Video Solution

32. If the points (a,0),($0, b$) and (1,1) are collinear , then
show that $\frac{1}{a}+\frac{1}{b}=1$.
33. If the points $(1,2)$ and $(2,4)$ and ($t, 6$) be collinear, find the value of t.

- Watch Video Solution

34. Find the area of the triangle having vertices (1,4),
$(-1,2)$ and $(-4,-1)$. Interpret the result .
35. Find the area of the triangle having vertices $(a, b+c),(b, c+a)$ and (c,a+b) and interpret the result geometrically .

- Watch Video Solution

36. Show that the straight line joining the points
$(-3,2)$ and $(6,-4)$ passes through the origin .

D Watch Video Solution

37. Examine the collinearity of the point (2,3),(4,5),and

- Watch Video Solution

38. If the A and B have coordinates $(a \cos \theta, b \sin \theta)$ and $(-a \sin \theta, b \cos \theta)$ respectively and O is the origin then, then show that the area of $\triangle O A B)$ is independent of θ.

- Watch Video Solution

39. What does the eqution $\frac{x}{a}+\frac{y}{b}=2$ become if the axes are transferred to parallel axes through the point (a,b)
40. A point moves in the xy - plane in such a way that its distances from the x-axes and the point $(1,-2)$ are always equal. Find the eqution to its locus.

- Watch Video Solution

41. A point moves such that its distance from the y axes is equal to its distance from the point (2,0). Find its locus and identify the nature of the conic.

Exercise 1 Short Type Questions

1. Coordinates of the vertices A, B, C of a triangle $A B C$ are $(m+3, m),(m, m-2)$ and $(m+2, m+2)$ respectively Show that the area of the triangle $A B C$ is independent of m

- Watch Video Solution

2. Find the coordinates of the point which is equaidistant from the points $(-1,3),(2,-2)$ and $(4,6)$.

Watch Video Solution

3. Find the circumcentre of the triangle formed by

 the points $(-3,1),(1,3)$ and $(3,0)$.
- Watch Video Solution

4. The coordinates of the vertices of a triangle are
$(0,0)$, $(5,3)$ and $(3,5)$ respectively , find the circumcentre and circumradius of the triangle .

- Watch Video Solution

5. The coordinates of the circumcentre of the triangle
$A B C$ are $(8,3)$, if the coordinates of the vertices A, B
and C be $(x,-9),(y-2)$ and $(-5,3)$ respectively, find the values of x and y.

- Watch Video Solution

6. Prove that the points (2,-2),(8,4), (5,7) and (-1,1) are the vertices of a rectangle, find the area of the rectangle.

D Watch Video Solution

7. Show that the points ($-2,-1$),(5,4),((6,7) and ($-1,2$) are
the vertices of a parallelogram .Is the parallelogram a rectangle?
8. Prove that the four points $(4,3),(6,4),(5,6)$ and $(3,5)$ are the vertices of a square.

- Watch Video Solution

9. Prove that the points $(0,0),(0,10),(8,16)$ and (8,6)are the vertices of a rhombus, find the area of the rhombus. Show also that the diogonal of the rhombus intersect at right angle
10. If the point $(0,4)$ divides the line-segment joining the points ($-4,10$) and (2,1), internally in a definite ratio, find the coordinate of the point which divide the segment externally in the same ratio.

- Watch Video Solution

11. The straight line joining the points ($2,-2$) and $(4,6)$ extended each way a distance equal to half it own length. Determine the coordinate of the terminal point.
12. The coordinates of the vertex A of $\Delta A B C$ are (2,5), if the centroid of the triangle at $(-2,1)$, find the coordiinates of the mid-point of the side $\overline{B C}$.

- Watch Video Solution

13. The area of the trianglr formed by joining the points (2,7), (5,1) and (x.3)is 18 square units . Find x

- Watch Video Solution

14. Prove that the points $(-4,-5),(9,8)$ and the midpoint of the line-segment joining the point $(2,1)$ and
$(6,5)$ are on the same straight line

- Watch Video Solution

15. Find the value of m for which the area of the triangle having vertices at ($-1, m$), ($m-2,1$) and ($m-2, m$) is $12 \frac{1}{2}$ square units.

- Watch Video Solution

16. The vertices A, B and C of $\triangle A B C$ have coordinates
$(-3,-2),(2,-2)$ and $(6,1)$ respectively . Find the area of the
$\triangle A B C$ and the length of the perpendicular from A on $\overline{B C}$.
17. Prove that the points
$\left(p, p^{2}\right),\left(q, q^{2}\right)$ and $\left(r, r^{2}\right)(p \neq r)$ can never be collinear.

(Watch Video Solution

18. Find the area of the vertices A, B, C and D of the quadrilateral whose vertices have coordinates (1,1) ,
$(3,4),(5,-2)$ and (4,-7).

- Watch Video Solution

19. The coordinates of the vertices A, B, C and D of the quadrilateral ABCD are (1,2), (-5,6) , (7,-4) and (k-2) , if the area of the quadrilateral be zero , then find the value of k.

D Watch Video Solution

20. What does the equation
$3 x^{2}+2 x y+3 y^{2}-18 x-22 y+50=0$ become if
the axis are tranferred to parallel axis through the point $(2,3)$?
21. Find the point to which the origin should be shifted after a translation of axis so that the following equations will have no first degree terms :
(i) $\quad x^{2}+y^{2}-4 x-8 y+3=0$
$x^{2}+y^{2}-5 x+2 y-5=0$

- Watch Video Solution

22. Verify that the area of the triangle with vertices
$(6,2),(-3,4)$ and $(4,-3)$ remains unaltered under the translation of axis when the origin is shifted to the point (2,-1).
23. The distance of a point P from the striaght line $x=-4$ is equal to its distance from the point $(3,0)$. Find the equation to the locus of P .

- Watch Video Solution

24. A point $P(x, y)$ moves in the $x y$ - plane in such a way
that its distance from the point $(0,4)$ is equal to $\frac{2}{3}$ rd of its distance from the x axis, find the equation to the locus of P .
25. A point moves in a plane such that its distance from the point $(2,3)$ exceeds its distance from the y axis by 2 . Find the equation to the locus of the point

- Watch Video Solution

26. Find the locus of a point which moves so that the sum of the squares of its distances from the points
$(3,0)$ and $(-3,0)$ is always equal to 50 .

Watch Video Solution

27. Find the equation to the locus of a moving point which is equidistant from the points $(2,3)$ and $(4,-1)$.

D Watch Video Solution

28. The coordinates of a moving point P are $\left(a t^{2}, 2 a t\right)$, where t is a variable parameter. Find the equation to the locus of P.

- Watch Video Solution

29. If θ is a variable, find the equation to the locus of
a moving point whose coordinates are
$(a \sec \theta, b \tan \theta)$

- Watch Video Solution

30. The ratio of the distances of a moving point from the points $(3,4)$ and $(1,-2)$ is $2: 3$, find the locus of the moving point.

- Watch Video Solution

31. A point so moves that the sum of squares of its distances from $(a, 0)$ and $(-a, 0)$ is $2 b^{2}$. Find the equation to the locus of the moving point. If $a=b$
then what will be the locus of the moving point?
32. $A(1,2)$ and $B(5,-2)$ are two given point on the $x y^{-}$ plane, on which C is such a moving point, that the numerical value of the area of $\Delta C A B$ IS 12 square unit.

Find the equation to the locus of C .

- Watch Video Solution

33. A moving point is always collinear with the point
$(2,-1)$ and $(3,4)$, find the equation to the locus of the moving point
34. Find the equation to the locus of the moving point which is equidistant from the point ($2 \mathrm{a}, 2 \mathrm{~b}$) and ($2 \mathrm{c}, 2 \mathrm{~d}$). Interpret geometrically the equationto the locus.

D Watch Video Solution

35. The coordinates of a moving point P are $\left(c t+\frac{c}{t}, c t-\frac{c}{T}\right)$, where t is a variable parameter.

Find the equation to the locus of P .
36. The sum of the distances of a moving point from the points $(3,0)$ and $(-3,0)$ is always equal to 12 . Find the equation to the locus and identify the conic represented by the equation.

D Watch Video Solution

37. Find the equation to the locus of a moving point which moves in such a way that the difference of its distance from the points $(5,0)$ and $(-5,0)$ is always 5 unit.
38. The variable straight line $\frac{x}{a}+\frac{y}{b}=1$ is such
that , $a+b=10$. Find the locus of the middle point of that part of the line, which is intercepted between the axes.

- Watch Video Solution

39. The sum of the intercepts cut off from the coordinate axes by a variable line is 14 units. Find the locus of the point which divides internally the portion of the line intercepted between the coordinate axes in the ratio 3:4.
40. $S\left(\sqrt{a^{2}-b^{2}}, 0\right)$ and $S^{\prime}\left(-\sqrt{a^{2}-b^{2}}, 0\right)$ are two given points and P is a moving point in the $x y$ plane such that $S P+S^{\prime} P=2 a$. Find the equation to the locus of P .

- Watch Video Solution

41. The coordinates of moving point P are $\left(\frac{2 t+1}{3 t-2}, \frac{t-1}{t+1}\right)$, where t is a variable parameter.

Find the equation to the locus of P.
42. The coordinates of a moving point P are $[6 \sec \theta, 8 \tan \theta]$ where θ is a variable parameter. Show that equation to the locus of P is $\frac{x^{2}}{36}-\frac{y^{2}}{64}=1$.

- Watch Video Solution

43. If θ is a variable and a is contant, then find the locus of the point of intersection of the lines $x \cos \theta+y \sin \theta=a$ and $x \sin \theta-y \cos \theta=a$.
44. line $x \sin \theta+y \cos \theta=p$ intercepted between the coordinate axes .

D View Text Solution

Exercise 1 Long Type Questions

1. The coordinates of the points A, B, C are $(-2,1),(-1,-3)$ and $(3,-2)$ respectively . Show that , $A B=B C$ and
$\angle A B C$ is a right angle If D is the fourth vertex of the square $A B C D$, find the coordinates of D and also find the point of intersection of diagonals of ABCD.
2. Find the lenghts of the medians of the triangle whose vertices are ($2,-4$),($6,-2$) and ($-4,2$).

D Watch Video Solution

3. If $(4,3),(-2,7)$ and $(0,11)$ are the coordinates of the mid -points of the sides of a triangle , find the coordinates of its vertices .
$\overline{A M}: \overline{B M}=b: a$, prove that $x+y \tan \frac{\alpha+\beta}{2}=0$.

D Watch Video Solution

5. $A(-1,5), B(3,1)$ and $C(5,7)$ are the vertices of the
$\Delta A B C$. If D, E and F are the mid - points of the sides
$\overline{B C}, \overline{C A}$ and $\overline{A B}$ respectively, find the area of $\triangle D E F$. Show also that,$\triangle A B C=4 \Delta D E F$.

6. The coordinates of A, B, C are $(6,3),(-3,5)$ and $(4,-2)$

 respectively and P is the point (x, y), show that , $\frac{\text { area of the } \triangle P B C}{\text { area of the } \Delta A B C}=\left|\frac{x+y-2}{7}\right|$
D Watch Video Solution

7. The points P, Q, R are collinear, if the coordinates of

P and Q be $(3,4)$ and $(7,7)$ respectively and $\overline{P R}=10$
unit, find the coordinates of R.

D Watch Video Solution

8. The coordinates of the points $A, B, C \quad D$ are respectively $(6,3),(-3,5),(4,-2)$ and $(x, 3 x)$, if $\frac{\text { area of the } \triangle D B C}{\text { area of the } \triangle A B C}=\frac{1}{2}$, find x.

D Watch Video Solution

9. The coordinates of the points A, B, C and D are ($-2,3$),
$(8,9),(0,4)$ and $(3,0)$ respectively . Find the ratio in which the line -segment $\overline{A B}$ is divided by the line segment $\overline{C D}$.
10. The coordinates of the points A and B are $(3,4)$ and $(5,-2)$ respectively, if $\overline{P A}=\overline{P B}$ and the area of the $\Delta P A B=10$ square unit, find the coordinates of P.

D Watch Video Solution

11. The area of a quadrilateral is 28 square unit. If the coordinates of its angular points be ($-1,6$) $(-2,-4),(3,-2)$ and (a, b), then show that , $2 a+b=6$ or , $2 a+b=2$
12. If x_{1}, x_{2}, x_{3} as well as y_{1}, y_{2}, y_{3} are in G.P. with the same common ratio , then show that the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ lie on a straight line.

- Watch Video Solution

13. Shift the origin to a suitable point so that the equation $2 x^{2}-4 x+3 y+5=0$ will not contain the term in x and the constant term.

- Watch Video Solution

14. Find the point to which the origin should be shifted so that the equation $3 y^{2}+6 y-5 x-7=0$ is reduced to the form $y^{2}=a x$.

- Watch Video Solution

15. Show that the distance between two points remains unaltered by the translation of axes.

- Watch Video Solution

16.

Reduce
the
equation
$x+y+5=0$ and $x-2 y+2=0$ to the form
$a x+b y=0$ by proper choice of the origin and find this new origin.

D Watch Video Solution

17. Choose a new origin (h, k) (retaining the directions of axes) so that the equation
$5 x y+y^{2}+25 x-5 y-65=0$ is reduced to the form $A x^{\prime} y^{\prime}+B y^{\prime 2}=1$. Also find the actual values of
A and B.
18. Find the distance between the point
$(1+\sqrt{2}, 1-\sqrt{2})$ and $(0,0)$

- Watch Video Solution

19. Show that the straight line joining the mid points of two sides of a triangle is equal to half the third side .

- Watch Video Solution

20. Show that the straight lines joining the mid points of the opposite sides of a quadrilateral bisect
each other .

- Watch Video Solution

21. Prove analytically that the area of a triangle is
four times that of the triangle obtained by joining the mid - points of the sides of the given triangle .

- Watch Video Solution

22. Using analytical method prove that the mid point of the hypotenuse of a right angled triangle is equidistant from the three vertices .
23. If two medians of a triangle are equal, prove analytically that the triangle is isosceles .

D Watch Video Solution

24. Using coordinate geometry prove that an isosceles traigle has two equal medians.
25. D, E, F are the mid - points of the sides $\overline{B C}, \overline{C A}$ and $\overline{A B}$ respectively of the triangle $A B C$, using coordinate geometry show that , $3\left(B C^{2}+C A^{2}+A B^{2}\right)=4\left(A D^{2}+B E^{2}+C F^{2}\right)$.

D Watch Video Solution

26. $A B C$ is a right angled triangle right angled at B. If
P and Q are the mid - points of the sides
$\overline{A B}$ and $\overline{B C}$ respectively , then show that , $4\left(A Q^{2}+P C^{2}\right)=5 A C^{2}$.

Sample Questions For Competitive Exams A Multiple

 Correct Answer Type1. Area of a traigle $A B C$ is 5 sq . Units, slope of a median through A is -2 and the coordinates of B and
C are $(-1,3)$ and $(3,5)$ respectively, then the distance of
A from origin will be -
A. 6 units
B. 4 units
C. $2 \sqrt{2}$ units
D. $3 \sqrt{2}$ units

Answer: A,C
2. If $B(1,3)$ be equidistant from the point $A(6,-1)$ and $C(\lambda, 8)$, then the value of λ is /are -
A. -3
B. 3
C. 5

$$
\text { D. }-5
$$

Answer: A,C
3. The base of an isosceles triangle $A B C$ is the line segment joining the points
$B(a+b, b-a)$ and $C(a-b, a+b)$ then the coordinate of A is -
A. (a, b)
B. (b, a)
C. $\left(\frac{a}{b}, \frac{b}{a}\right)$
D. $\left(1, \frac{b}{a}\right)$

Answer: A,D
4. $A(1,2)$ and $B(7,10)$ are two given points on the $x y$ plane, for a point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ in the xy - plane such that
$\angle A P B=60^{\circ}$, area of the triangle APB is maximum , then P is lying on-
A. the straight line $3 x+4 y=36$
B. the any line which is perpendicular on $A B$
C. the line which is perpendicular bisector of $A B$
D. the circle which is passing through $(1,2)$ and
$(7,10)$ with radius 10 units.

Answer: A,C
5. Point P divides line joining $A(-5,1)$ and $B(3,5)$ in the ratio $\lambda: 1$. The coordinates of P and Q are $(1,5)$ and
$(7,2)$ respectively . If the area of the triangle $P Q R$ be 2 sq. Units , then the value of λ is -

> A. $\frac{19}{5}$
> B. $\frac{31}{9}$
C. 23
D. 6

Answer: A,C Answer Type

1. $A(0, \sqrt{2})$ and $B(2 \sqrt{2}, 0)$ are two vertices of a triangle $A B C$ and $A B=B C$. If the equation of the side $B C$ be $x=2 \sqrt{2}$, then the area of triangle $A B C$ is (in sq. Units)-

D Watch Video Solution

2. Is the coordinate of the three vertices of a recengle
$A B C D$ be $A(1,0), B(2,0)$ and $D(-1,4)$, then the abscissa of C is -
3. Let $O(0,0), P(2,0)$ and $Q(6,0)$ be the vertices of triangle OPQ . If R be a point inside the triangle OPQ such that areas of $\triangle O P Q, \triangle P Q R$ and $\triangle O Q R$ are equal , then the abscissa of R is -

D View Text Solution

4. $(0,0),(0,21)$ and $(21,0)$ are the vertices of a triangle
. If there are $95 x$ number of points inside the triangle having coordinates as integral value, then the value of x is -
5. The vertices of the triangle are $(0,0),(3,4)$ and $(4,0)$. If the coordinate of its orthocetre be $\left(3, \frac{x}{4}\right)$, then the value of x is -

- Watch Video Solution

Sample Questions For Competitive Exams C Matrix Match Type

1. Find the distance between the point $(\sqrt{3}, 4)$ and $(0,0)$
2. Find the distance between the point
$(11,9)$ and $(7,2)$

(D) Watch Video Solution

Sample Questions For Competitive Exams D Comprehension Type

1. Let us consider one vertex and one side through the vertex along x -axis of a triangle . Now the coordinates of the vertices B, C and A of any triangle
$A B C(0,0),(a, 0)$ and (h, k) respectively should be taken .

If in triangle $A B C, A C=3, B C=4$ and median $A D$ is perpendicular with median $B E$, then the area of $\triangle A B C$ is -
A. $\sqrt{7}$ sq. Units
B. $\sqrt{11}$ sq . Units
C. $2 \sqrt{2}$ sq. units
D. none of these

Answer: B
2. Let us consider one vertex and one side through the vertex along x -axis of a triangle . Now the coordinates of the vertices B, C and A of any triangle $A B C(0,0),(a, 0)$ and (h, k) respectively should be taken . If internal bisector of angle $\angle A$ of the triangle $A B C$ intersects $B C$ at D such that $B D=4$ and $D C=2$ then -
A. $A C>6$ and $A B>4$
B. $2<A C<6$ and $A B<1$
C. $2<A C<6$ and $4<A B<K$
D. none of these

Answer: C
3. Let us consider one vertex and one side through the vertex along x -axis of a triangle . Now the coordinates of the vertices B, C and A of any triangle
$A B C(0,0),(a, 0)$ and (h,k) respectively should be taken .
If the altitude (AE) of the triangle in question (ii) greater than $\sqrt{10}$ and the lenght of $A B$ and $A C$ are of integral value, then the lenght of $A C$ is -
A. 3
B. 6
C. 4 or 5

D. none of these

Answer: C

D View Text Solution

4. Let $A B C D$ is a square with sides of unit lenghts .

Points E and F are taken on sides $A B$ and $A D$ respectively so that $A E=A F$. Let P be a point inside the square $A B C D$.

The maximum area of quandrilateral CDFE will be -
A. $\frac{1}{8}$
B. $\frac{1}{4}$
C. $\frac{5}{8}$
D. $\frac{3}{8}$

Answer: C

- Watch Video Solution

5. Let $A B C D$ is a square with sides of unit lenghts .

Points E and F are taken on sides $A B$ and $A D$ respectively so that $A E=A F$. Let P be a point inside the square $A B C D$.

The value of $(P A)^{2}-(P B)^{2}+(P C)^{2}-(P D)^{2}$ is equal to -
A. 3
B. 2
C. 1
D. 0

Answer: D

- Watch Video Solution

6. Let $A B C D$ is a square with sides of unit lenghts .

Points E and F are taken on sides $A B$ and $A D$ respectively so that $A E=A F$. Let P be a point inside the square $A B C D$. Let a line passing throught point A
divides the square $A B C D$ into two parts so that area of one part is double to another, then lenght of the
line segment inside the square is -

$$
\begin{aligned}
& \text { A. } \frac{\sqrt{10}}{3} \\
& \text { B. } \frac{\sqrt{13}}{3} \\
& \text { C. } \frac{\sqrt{11}}{3} \\
& \text { D. } \frac{2}{\sqrt{3}}
\end{aligned}
$$

Answer: B

D Watch Video Solution

1. Consider two point $A(2,5)$ and $B(3,4)$ in the $X Y$ plane. P is a point divides the line segment $A B$ externally in the ratio $2: 5$. Find the co ordinate of P.

- Watch Video Solution

2. Consider two point $A(1,-1)$ and $B(3,2)$ in the
$X Y$ plane. P is a point divides the line segment $A B$ externally in the ratio 1:2. Find the co ordinate of P .
