©゙" doubtnut

PHYSICS

BOOKS - CHHAYA PHYSICS (BENGALI

ENGLISH)

ELECTRIC ENERGY AND POWER

Numerical Examples

1.2 A current was sent through a coil of resistance
100Ω for 30 min . Determine the amount of heat
produced, the quantity of charge passed and the amount of work doen.

D Watch Video Solution

2. Two separate circuits are made with resistances
r_{1} and r_{2} connected to the same storge battery.
What should be the interal resistance (r) of the
storage battery for which an equal amount of heat is produced in the exteranal circuits?
3. A heating coil of resistance 5Ω is connected to a cell . The internal resistance of the cell is 20Ω

Calculate the value of the shunt to be introduced,
so that , the energy consumed in the heating coil will be $\frac{1}{19}$ th of the previous value .

- Watch Video Solution

4. The rate of energy consumed in 5Ω resistance [shown in Fig . 3.3] is $10 \mathrm{~J} . \mathrm{s}^{-1}$. What will be the rate of energy consumed in 4Ω resistance?
5. Water boils in an electric kettle in 10 minutes after being switched on .How will you modify the heating coil to boil water is 5 minutes using the same source of power?

D Watch Video Solution

6. The maximum power rating of a 20Ω resistor is
2.0kW. (that is this is the maximum power the resistor can dissipate (as heat) without melting or changing in some other undesirable way). Would
you connect his resistor directly across a 300 V d.c. source of negligible internal resistance?

D Watch Video Solution

7. Three resistors of equal resistances when connected in series across a voltage souce , dissipate 100 watt of power. What would be the power dissipated. If the resistors are connected in parallel across the same source of emf?
8. The coil of a heater connected to a 200 V line,
con-sumes a power of 100 W . The coil is divided into two equal parts. The two parts are combined in parallel and connected to a 200 V line. What will be the power consumed by the new combination?

D Watch Video Solution

9. The power consumed in the circuit show in the fig. 3.6 is 150 W . What is the value of R ?

- View Text Solution

10. A cell of emf 1.5 V and of internal resistance
0.1Ω when connected with a resitor and an ammeter of negligible resistance in series, the ammeter shows a 2.0 A steady current .

Find (i) the rate of energy dissipated within the cell

- Watch Video Solution

11. A cell of emf 1.5 V and of internal resistance
0.1Ω when connected with a resitor and an ammeter of negligible resistance in series, the ammeter shows a 2.0 A steady current .

Find (ii) the power consumed in the resistor .

D Watch Video Solution

12. A balanced Wheatstone bridge has resistances
$100 \Omega, 10 \Omega, 500 \Omega$ and 50Ω repectively in its four
arms. Determine the ratio of powers consumed in its different arms.

- Watch Video Solution

13. A factory requires a power of 90 kW . The energy is tranmitted to the factory through a 2.5Ω line wire .If 10% of the power generated is lost in transmission, calculate

The trasmission line current
14. A factory requires a power of 90 kW . The energy is tranmitted to the factory through a 2.5Ω line wire .If 10% of the power generated is lost in transmission, calculate

The trasmission line current
the potential difference at the power genrating

station

the potential drop due to line resistance.

D Watch Video Solution

15. A factory requires a power of 90 kW . The energy is tranmitted to the factory through a 2.5Ω line wire .If 10% of the power generated is lost in transmission , calculate

The trasmission line current
the potential drop due to line resistance .

- Watch Video Solution

16. Electrical energy is transmitted at the rate of
2.2 MW through the line wire. The resistance of the line wire is 25Ω.Calculate the percentaage of
heat dissipation of the electrical energy for each line voltage :

22000 V

110 kV

- Watch Video Solution

17. Electrical energy is transmitted at the rate of
2.2 MW through the line wire . The resistance of the line wire is 25Ω.Calculate the percentaage of heat dissipation of the electrical energy for each line voltage :

110 kV
18. In a house there are 10 lamps of 40 W each, 5 fans of 80 W each and a TV set of 80 W . They run for 6 hours a day. Find the consumption of electrical in a month of 30 days. What is its value in BOT unit ?

D Watch Video Solution

19. In an evening college there are 100 bulbs of 60

W each , 80 bulbs of 100 W each and 70 fans of 100

W each. They run for $5 \mathrm{~h}, 4 \mathrm{~h}$ and 4 h respectively per day. If each kW. H costs Rs. 0.50 , calculate the electric bill of the college for a month .

D Watch Video Solution

20. In a hous there are 20 lamps of 60 W each 10
fans which operate in 0.5 A current. If main power
supply is 220 V , expense per kW h is 50 pise and each appliance runs 6 h per day then calculate the electric bill of November .
21. There are six 40 W and two 100 W lamps, four

40 W fans and a 1000 W electric heater in a house

If in April , each lamp runs for 5 hours a day, each
fan 15 hours a day and the heater 2 hours a day,
what will be the electric bill for that month ? It may be supposed that the main supply voltage is

200 V and cost of each BOT unit $=$ Rs. 1.50.

Which one of the give three wires of rating $5 \mathrm{~A}, 10$
A and 15 A will be appeopeiate for connection in the main switch ?

Watch Video Solution

22. The power of a small electric motor is $\frac{1}{8} \mathrm{HP}$. If it is con-nected to 220 V supply line, how much current will it draw? If the motor runs for 80 h , what will be the cost for BOT Unit is Rs 0.7 ?

D Watch Video Solution

23. A heating coil of resistance 100Ω is connected for 30 min to 220 V . By this time determine
(i) amount of charge flowing
(ii) amount of electrical energy consumed
(iii) amount of heat greanerted .Determine the
cost of consumed electrical energy if $1 \mathrm{~kW} . \mathrm{h}$ costs R.s 1.

D Watch Video Solution

24. A $220 \mathrm{~V}-60 \mathrm{~W}$ electric bulb is connected in 220
V line. What is the resistance of the filament of the bulb, when it is tured on ?

- Watch Video Solution

25. The resistance of a hot tungsten filament is about 10 times that in its normal state. What will
be the resistance of a $100 \mathrm{~W}-200 \mathrm{~V}$ tungsten lamp in its normal state ?

D Watch Video Solution

26. The main meter of a house is marked 10 A -

220V. How many 60 W electric lamps can used safely in this line?

(D) Watch Video Solution

27. A 220 V -100W electric lamp fuses above 150 W power. What should be the maximum tolerable
voltage for the lamp?

D Watch Video Solution

28. In order to run a 60 V - 120 W lamp in 220 V dc line, a resistor of what minimum magnitude should be placed in series with it ?

Watch Video Solution

29. Draw a household circuit having a 1200 w toaster, a 1000 W oven a 800 W heater and a

1500 W cooler. The circuit has a heavy duty wire
and a 20 A circuit breaker . Will the circuit breaker trip ,if all the appliances are operted simultaneously in a 200 V supply voltage ?

D Watch Video Solution

30. Two lamps of 200 W and 100 w are connected in series in 200 V mains. Assuming the resistance of the two lamps to remain unchanged, calculate the power consumed by each of them .
31. Two electric bulbs each designed to operate with a power of 500 W in a 220 V line are connected in series in a 110 V line. What will be the power generated by each bulb?

- Watch Video Solution

32. If the supply voltage drop from 220 V to 200 V
, what would be percentage reduction in heat produced by a 220V-1000W heater? Neglect the change of resistance. If the change of resistance is taken into consideration would the reduction of
heat produced be smaller or larger than the previously calculated value ? Explain.

(D) Watch Video Solution

33. the emf of the cell , $\mathrm{E}=20 \mathrm{~V}$. Rating of each
resistance R_{1} and R_{2} is $1 W-100 \Omega$. What
should be the minimum value of the resistance R in the circuit gt Also fond its minimum watt rating

- View Text Solution

34. If a $220 \mathrm{~V}-1000 \mathrm{w}$ lamp is connected in 110 V line then what will be the power consumed by it ?

D Watch Video Solution

35. 2.2 kW power is supplied through a line of 10Ω resistance under 22000 V voltage differnce. What is the rate of heat dissipation in the line?
36. The potential differnce between the two ends of an electric lamp is decrased by 1%. Neglecting the change in its resistance , calculate the percentage increase or decrease in the power of the lamp .

- Watch Video Solution

37. 15 kW power is supplied through a line of 0.5Ω resistance under 250 V potential difference .Fimd the efficiency of the supply in percentage .
38. Two incandescent lamps ($25 \mathrm{~W}, 120 \mathrm{~V}$) and ($100 \mathrm{~W}, 120 \mathrm{~V}$) are connnected in series across a

240 V supply. Assuming that the resistances of the lamps do not vary with current, find the power dissipated in each lamp after the connection .

D Watch Video Solution

Section Related Questions

1. What do you mean by mechanical equivalent of heat?
2. State Joule's law for heating effect of electric current .

D Watch Video Solution

3. What do you mean by $\mathrm{J}=4.2$ / cal for electric field?

- Watch Video Solution

4. why is Joule's constant named as mechenical equivalent of heat ?

D Watch Video Solution

5. Define electrical energy and electrical power.

Give their respective SI unit also.

D Watch Video Solution
6. Define BOT unit of electrical energy .
7. Express BOT unit in joule .

- Watch Video Solution

8. Express BOT unit in calorie . ($\mathrm{J}=4.2$ /cal)

- Watch Video Solution

9. Show that, the unit of the product of potential
differnce and current is the same as that for power.

- Watch Video Solution

10. How are lamps, fan etc. Connected in domestic electrical connection - in series combination or parallel combination ? Give reasons for ypur answer .

D Watch Video Solution
11. What do you mean by 5 A fuse?

D Watch Video Solution
12. What are the units of electrical power ? What are the relations of power with potential difference, current and resistance?

- Watch Video Solution

13. A fuse has radius r and the highest safe current through it is I show that $I \propto r^{3 / 2}$.
14. What do you mean by the voltage rating of an electrical equipment?

- Watch Video Solution

15. What is the voltage rating of a home appliance ?

- Watch Video Solution

16. What do you mean by the watt rating of an electrical equipment?

- Watch Video Solution

17. An electrical equipment is marked with 200 V
-1000W. What informations do you get from it ?

D Watch Video Solution

18. Prove that, the equivalent or total power for a parallel combinations of acertain number of electrical appliances is greater than the power of each of them .
19. Prove that, the equivalent or total power for a series combination of a certain number of electrical appliances is less than the power of each of them .

Or, prove that , for the different electrical appliances connected in series , power consumption will be lesser for the appliances of higher watt rating .

- View Text Solution

20. What do you mean by watt rating of a resistor ?
(D) Watch Video Solution
21. What do you mean by the statement 'rating' a resistor is $1 W-100 \Omega$?

D Watch Video Solution

Higher Order Thinking Skill Hots Questions

1. Among emf, energy ,power and charge, which one has the unit A.s ?

- Watch Video Solution

2. How are lamp, fan etc. Connected in domestic
electrical connection - in series combination or parallel combination ? Give reasons for your answer.
3. The speed of an electric fan is reduced with the help of a regulator. What will happen in the energy consumption ?

D View Text Solution

4. Is the filament of the lamp marked '240V-1000W'
thin or thick comparison to the filament of the lamp marked '240 V-100W ' ?

Watch Video Solution

5. A series combination of a 60 W and a 100 W lamp is connected to the main line.which lamp will glow brighter and why?

- Watch Video Solution

6. A heater coil is cut into two equal parts and only one part is now used in the heater. What is the percentage of increase or decrease in the rate f productu=ion of heat?

View Text Solution

7. A few wires of same dimension but of different specific resistances are connected in parallel and than this parallel combination is connected to a battery. In which wire will the rate of production of heat due to Joule effect be maximum?

D View Text Solution

8. The specific resistance of the material of a sonducting wire is ρ and current through cross sectional area of the wire (I,e., current decsity) is J
. What is the power cousumed per unit volume of the wire ?

- View Text Solution

9. A few electric bulbs are connected in series to the 220 V mains. One bulb fused, the remaining bulbs are again put in series and connected to the same supply of 220 V . In which case will the bulbs glow brighter and why?

- Watch Video Solution

10. Three resistances of equal value are connected
in four different combinations as shown in

Arrange them in ib=ncreasing order of power dissipation.

D View Text Solution

11. A heater coil has been cut into two equal parts

and one coil is used as heater. What is the percentage change in heat generation ?
12. Two electric bulbs of 50 W and 100 W are connected with mains in series then which bulb will glow brighter?

- Watch Video Solution

13. Two electric bulbs of 50 W and 100 W are connected in mains once in
(ii) prallel combi-nation . Which bulb will glow brighter in each case ?
14. when conneceted to 200 V mains suply, has power pieces, which P_{1}. Now the wire is cut into two equal pieces, which are connected in parallel to the same supply. Power dissipation in this case is P_{2}. What is te ratio of P_{2} and P_{1} ?

(D) Watch Video Solution

15. Power consumed in resistance $R_{3} i s P_{3}$

Determine the power consumed in resistances
R_{1} and R_{2}.
16. A generating station is supplying electric power P at voltage V to a factory through a cable of resistance R. Show that the loss of power in the connecting cable is inversely proportional to V^{2}.

D View Text Solution

17. Prove that total produced in different resistors
of the circuit is minimum when the current is
divided into a number of braches .

- View Text Solution

Exercise Multiple Choice Question

1. Which quantity expresses the work done by an electrical machine?
A. VI
B. Vit
C. $I^{2} R$
D. $\frac{I^{2} R t}{J}$

Answer: B

D Watch Video Solution

2. A.s is a unit of
A. emf
B. energy
C. power
D. charge

Answer: D

3. Which one is the unit of power?
A. A.s
B. W.h
C. $\frac{A^{2}}{\Omega}$
D. $A^{2} \Omega$

Answer: D

- Watch Video Solution

4. Two bulbs are marked $220 \mathrm{~V}-100 \mathrm{~W}$ and 110 V 100W. The ratio of the resistances of the two bulbs is
A. 1: 4
B. 1:2
C. 2:1
D. $4: 1$

Answer: D

- Watch Video Solution

5. A fuse wire of length I and radius r is connected in series with a circuit. The safe currrent that can pass through the circuit is proportinal to
A. r^{3}
B. $r^{\frac{3}{2}}$
C. $l^{-\frac{3}{2}}$
D. l^{-1}

Answer: B
(D) Watch Video Solution
6. The ration of the restistances of 100 W and 40

W bulbs of the same rated voltage is
A. $2: 5$
B. 5: 2
C. 25: 4
D. $4: 25$

Answer: A

- Watch Video Solution

7. If power dissipated in the 0ω resistor in the circuit shown is 36 W , the potential difference across the 2Ω resistor is
A. 4 V
B. 8 V
C. 10 V
D. 2 V

Answer: C

8. 1 BOT unit is equal to

A. 3600 W
B. 3600 J
C. $3.6 \times 10^{6} W$
D. $3.6 \times 10^{6} \mathrm{~J}$

Answer: D

D Watch Video Solution
9. BOT unit is a unit of
A. charge

B. energy

C. power
D. efficiency

Answer: B

- Watch Video Solution

10. 1 BOT unit is equal to
A. 1 W. h
B. 1000 W .h
C. $\frac{1}{1000} W . h$
D. $\frac{1}{1000} V . A$

Answer: B

D Watch Video Solution

Exercise Very Short Answer Type Questions

1. A current I flows through a potential drop V
across a conductor. What is the rate of heat production?
2. A small heating element connected to 10 V dc supply draws a current of 5 A . Find the electric power supplied to the heater .

- Watch Video Solution

3. $\mathrm{A} 220 \mathrm{~V}-1000 \mathrm{~W}$ electric heater is connected in parallel with a $220 \mathrm{~V}-60 \mathrm{~W}$ electric heater is connected in parallel with a $220 \mathrm{~V}-60 \mathrm{~W}$ electric
lamp and, the co
4. Two wires having resistances R and $2 R$ are coneected in series. If current is allowed to pass through the combination, what will be ratio of power consumed in the two resistances?

D Watch Video Solution

5. Two wires having resistances R and $2 R$ are coneected in parallel. If current is allowed to pass through the combination, what will be ratio of power consumed in the two resistances?
6. A $240 \mathrm{~V}-1000 \mathrm{~W}$ lamp and a $240 \mathrm{~V}-100 \mathrm{~W}$ lamp

- which of these two has a thinner filament ?

- Watch Video Solution

7. Two resistances, each of magnitude 2Ω are connected in series and a potential difference of 2

V is applied at the two ends of the combination .

What is the power of the combination?
8. Two resistances, each of magnitude 2Ω are connected in parallel and a potential difference of 2 V is applied at the two ends of the combination . What is the power of the combination?

- Watch Video Solution

9. what is the resistances each of an electric bulb marked 220 V -100 W in incandescent state?
10. A 2Ω resistance is connected to a source of constant emf. Another 2Ω resistance is connected in parallel to the previous one . The power consumed in the circuit becomes [Fill in the balnk]

- Watch Video Solution

11. Two resistance are connected in series. If
current is made to pass through the combination
, power consumed in the large resistance will be [Fill in the blank]
12. Two resistance are connected in parallel. If current is made to pass through the combination , power consumed in the large resistance will be [Fill in the blank]

(D) Watch Video Solution

13. A $220 \mathrm{~V}-100 \mathrm{~W}$ lamp and $220 \mathrm{~V}-60 \mathrm{~W}$ lamp are
connected in parallel. If current is made to pass
through the combination, the brightness of the
first lamp will be[Fill in the blank]

- Watch Video Solution

14. A $220 \mathrm{~V}-100 \mathrm{~W}$ lamp and $220 \mathrm{~V}-60 \mathrm{~W}$ lamp
are connected in series. If current is made to pass
through the combination, the brightness of the first lamp will be[Fill in the blank]

(D) Watch Video Solution

15. An electrical lamp os marked $240 \mathrm{~V}-60 \mathrm{~W}$.

What is the resistance of the lamp on incandescent state?
16. A $220 \mathrm{~V}-60 \mathrm{~W}$ electric lamp os connected to

220 V supply line. Determine the resistance of the lamp in incandescent state .

D Watch Video Solution

17. Which one of two electrical appliances ,rated
$100 \mathrm{~W}-200 \mathrm{~V}$ and $60 \mathrm{~W}-200 \mathrm{~V}$, would have a higher resistance?
18. What is the largest voltage you can safely put across a $98 \Omega, 0.5 W$ resistor ?

D Watch Video Solution

Exercise Short Answer Type Questions I

1. What precaution has to be take to run a 220 V -

600 W heater safely in a 440 V line ?

- Watch Video Solution

2. Why is Joule's constant called the mechanical equivalent of heat ?

(D) Watch Video Solution

3. Show that, the unit of the product of electric current and potential difference is identical ot the unit of power.

- Watch Video Solution

4. In dometic electric writing, are the lamps ,fans etc connected is series on in parallel ? Explain your answer.

- Watch Video Solution

5. What should you do to run a $220 \mathrm{~V}-600 \mathrm{~W}$ appliance using a 400 V mains ?

- Watch Video Solution

6. Two bulbs of power 60 W and 100 W , joined in series , are connected to the electric mains .

Which one of these two will glow brighter, and why?

- Watch Video Solution

Exercise Short Answer Type Questions If

1. Two electric bulbs A and B are marked 220 V ,

40 W and $220 \mathrm{~V}, 60 \mathrm{~W}$ respectively. Which of the
two has a higher resistance ? Which bulb will glow brightly if they are connected series ?

D Watch Video Solution

2. A 60 W electric bulb connected in series with a room heater is further connected across the mains. If 60 W bulb is now replaced by 100 W bulb
, will the heat produced by heater be smaller, remain the same or be larger and why?
3. An electric heater connected in parallel with an electric bulb is switched on. Explain why the bulb becomes dim . Why dimness decreases after sometime?

- Watch Video Solution

Problem Set I

1. Ratio of the cross sectional areas of two wires A
and B made up of the same material is 1:4. If the

Wires are connected across the same potential
difference, find the ratio of heat produced in them .

D Watch Video Solution

2. When an exteranal resistance is connected to a battery of emf 80 V , an ammeter records 200 mA .

If A voltmeter is connected to the two ends os the external resistance, it records 60 V . Determine the rate of supply of energy by theresistance .
3. An electric bulb is marked $100 \mathrm{w}-230 \mathrm{~V}$. How much energy is produced in 20 miutes when operted at 230 V ?

- Watch Video Solution

4. A current of 5 A flows through an electric press
of resistance 44Ω. What is the erergy consumed
by the press in 5 minutes?

Watch Video Solution

5. An electric bulb rated for 500 watt at 100 volt is connected to a 200 volt supply line . How much resistance has to be joined in seresies with the bulb so that , the bulb delivers 500 watt?

- Watch Video Solution

6. Two resistances 2Ω and 6Ω are connected in parallel and the combination is then connected to a source of emf 12 V . How much power is consumed in each resistance?
7. Two resistances 2Ω and 6Ω are connected in series and the combination is then connected to a source of emf 12 V . How much power is consumed in each resistance?

D Watch Video Solution

8. If the voltage of supply line drops to 180 V , what will be the power consumed by lamp marked as 220V-60W ? Neglect the change of resistance with temperature .
9. Two electric lamps marked $110 \mathrm{~V}-60 \mathrm{~W}$ and 110 V 100W are connected in series and the combination is connected to 220 V mains what will be efferctive power of the lamps? What will happen due to the above connection ?

D Watch Video Solution

10. Each of two electric lamps of power 500 W is designed to work in 220 V line. If the lamps are connnected in series and the combination is
connected to 110 V line, what will be the power of each lamp?

D Watch Video Solution

> 11. In a \quad Wheststone \quad bridge
> $P=20 \Omega, Q=10 \Omega, R=10 \Omega$ and $S=5 \Omega$.

What is the ratio of power consumed in Q and R resistance?

- Watch Video Solution

12. An electric heater is marked $110 \mathrm{~V}-550 \mathrm{~W}$ and
it is to be used in 200 v mains . How much resistance is to be added in series the heater ?

- Watch Video Solution

13. An electrical circuit contanis an electrical
appliance od reasistance 20Ω in a certain part of
it . A shunt of resistance 5Ω is connected in
parallel with the appliance. If the main current of
the circuit remains unchanged, ehat will be the
fractions of the rate of consumption of power in
the appliance with respect to that of the initail rate ?

D Watch Video Solution

14. Two wires of same measurements are taken .

The ratio of specific resiatance of the wires $1: 2$.
The two wires are first connected in parallel and then in series These tow combinations are alternately connected to the same supply line.

What will be the ratio of powers consumed by the two wires in the two cases ?
15. The ratio of resitance in the fourn arms of a

Wheatstone bridge is $3: 1: 12: 4$. What is the ratio of the powers consumed in the arms of the bridge?

- Watch Video Solution

16. A fuse wire of radius 0.1 mm can withstand a maximum current of 1 A . What is the minimum radius of a fuse wire , made of the same meatal,
that should be used to run a $220 \mathrm{~V}-100 \mathrm{~W}$ heater using a 220 V mains ?

- Watch Video Solution

17. Two electric lamps marked $110 \mathrm{~V}-60 \mathrm{~W}$ and 110 V 100W are connected in series and the
combination is connected to 220 V mains what
will be efferctive power of the lamps? What will happen due to the above connection?

18. A $110 \mathrm{~V}-550 \mathrm{~W}$ hearter is to be used with a 220 V

mains. What is the minimum value of resisrance that should with the heater? Find out the power of the whole circuit in that situation.

- Watch Video Solution

19. How many 60 W bulbs may be safely run on 220 v using a 5 A fuse?
20. If 10 bulbs of 40 each and 3 of 100w each run on the average for 5 hours a day, calculater the monthly bill. 1 bot unit costs Rs2. (1 month = 30 d)

- Watch Video Solution

21. In a house there are 10 lamps of 40 W each, 5
fans of 80 W each and a TV set of 80 W . They run
for 6 hours a day. Find the consumption of
electrical in a month of 30 days. What is its value in BOT unit?
22. The main meter of a house contains a 5 A fuse.

4 lamps rated 220V-60 w run in the house. Under
this condition, can a heater rated $220 \mathrm{~V}-1000 \mathrm{~W}$
be used ? What minimum number of lamps should be switched of to run the heater safely?

- Watch Video Solution

Problem Set li

1. An electric kettle has two coils when one of the

coils is switched on, the kettle can boil water inside it in 12 minutes to boil. When the coil are connected in
series

- View Text Solution

2. An electric kettle has two coils when one of the
coils is switched on, the kettle can boil water inside it in 12 minutes to boil.when the other coil is switched on it took 24 minutes o boil.If the coils
are connected in
parallel and is swiched on, find the times taken for boiling of water.

D Watch Video Solution

3. A 200 V dc genrator sends electrical energy to a distant factory through a 10 km long wire. Resistance of the wire per km is 0.04Ω.If tranmission line current is 150A, what is the efficiency of supplied energy ? If this amount of energy is tranmiited through 500V , find the change in efficiency?
4. If a heater is connected to 100 V , the power delivered is 100 W . Connecting 10Ω resistance in series with the heater and a resistance to the same 100 V line .waht should be the value of R to obtain 62.5 W power in the heater?

D Watch Video Solution

5. Two wires of resistances 6Ω and 9Ω are connected in series and this combination is
connected to another wire of

D View Text Solution

6. A house is fited with 2 lamps rated $60 \mathrm{w}, 2$ lamps rated 100 W each 3 fans rated 40 W each . If
all the appliances run simultaneously by 200 V
supply voltage , determine the magnitude of current that will be drawn from the mains. If each lamp works 5 h and each fan 15 H daily, calculate the monthly expenditure.$(1$ month $=30 \mathrm{~d}$, cost of 1 BOT unit Rs. 2)

Entrance Corner Assertion Reason Type

1. Statement I: Electric current is distributed in
differenent branches of a circuit in such a way,
that the total heat evolved in the circuit is the lowest.

Statement II : The transformation of electrical energy into heat energy in a circuit is less probable than its transformation into other forms of energy .
A. Statement I is true , Statement II is true ,

Statement II is a correct explanation for Statement I
B. Statement I is true, Statement II is true ,

Statement is not a correct explanation for statement I
C. Statement I is true, Statement II is false

D. Statement I is false , Statement II is true

Answer: C

2. Statement I : An external circuit can draw a maximum power of 9 W from a source of emf V and internal resistance 1Ω.

Statement II : The condition, for which an external circuit of resistance R draws the maximum power
from a source of internal reistance r, is $R=r$
A. Statement I is true, Statement II is true ,

Statement II is a correct explanation for

Statement I
B. Statement I is true , Statement II is true ,

Statement is not a correct explanation for

statement I

C. Statement I is true , Statement II is false
D. Statement I is false, Statement II is true

Answer: A

D View Text Solution

3. Statement I : the power consumed would be 50 w by each of tow 200 v-100 w lamps, when their series combination is driven by a potential difference of 200 V .

Staement II : if P is the power consumed by a
series com - bination of some electrical devices of
power

$$
P_{1}, P_{2}, P_{3}, \ldots ., \text { then }, \frac{1}{P}=\frac{1}{P_{1}}+\frac{1}{P_{2}}+\frac{1}{P_{3}}+
$$

A. Statement I is true, Statement II is true ,

Statement II is a correct explanation for

Statement I

B. Statement I is true, Statement II is true ,

Statement is not a correct explanation for statement I
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true

Answer: D

- View Text Solution

4. Statement I : A fuse wire of diameter 0.5 mm
can with 0 stand a maximum current of 1 A . For a
current of 8 A , a fuse wire made of the same alloy should have a diameter of 2 mm .

Statement II : The radius r of a fuse wire and the maximum safe current I that may pass through it are related as $I \propto r^{3 / 2}$.
A. Statement I is true , Statement II is true ,

Statement II is a correct explanation for Statement I
B. Statement I is true, Statement II is true ,

Statement is not a correct explanation for statement I
C. Statement I is true, Statement II is false

D. Statement I is false , Statement II is true

Answer: A

D Watch Video Solution
5. Statement I : The coil resistance of a 200 V - 100
w electric fan is 20Ω. A power of 5 W is lost as
heat when the fan rotates its maximum speed.

Statement II : If , for an electrical device the current is I and the termina potential difference is

V , the power consumed - VI .
A. Statement I is true, Statement II is true ,

Statement II is a correct explanation for

Statement I

B. Statement I is true , Statement II is true ,

Statement is not a correct explanation for

statement I

C. Statement I is true, Statement II is false
D. Statement I is false , Statement II is true

Answer: B

- Watch Video Solution

Entrance Corner Multiple Correct Answers Type

1. An electric conductor has a resistance R and its
terminal potential difference is V . If charge Q
passes through it in time t, then the amount of electrical energy transmitted is
A. QV
B. $\frac{Q^{2} R}{t}$
C. $\frac{V^{2} t}{R}$
D. $\frac{Q V}{t}$

Answer: A::B::C

- Watch Video Solution

2. Each of two electric lamps has a voltage rating V and a watt rating P.If they are joined in series and are connected to a supply line of V volt , then
A. current through each $=\frac{P}{V}$
B. current through each $=\frac{P}{2 V}$
C. power consumed by each $=\frac{P}{2}$
D. power consumed by each $=\frac{P}{4}$

Answer: B:C

- Watch Video Solution

3. A $10 k \Omega$ carbon resistor has a watt rating of 1 W
, i. e ., it may be damaged if the power consumed exceeds 1 W which of the floowing currents are safe for the resistor ?
A. 5 mA
B. 8 mA
C. 12 mA
D. 20 mA

Answer: B::D

- Watch Video Solution

4. A fuse wire has a length I and radius r. The maximum safe current through it is
A. proportinal to r^{2}
B. proportional to $r^{3 / 2}$
C. inversely proportional to I
D. independent if I

Answer: A::C

D Watch Video Solution

1. Let us take an electrical conductor in which the electrical energy supplied is entirely converted into heat. If, for the conductor, the terminal potential difference $=\mathrm{V}$, the curent through it $=\mathrm{l}$ and its resistance $=R$, then the electrical energy consumed in its t is , $W=I^{2} t$ (from Ohm'slaw $R=\frac{V}{I}$). So , if hr electrical and the heat
energies both are expressed in joule, the heat developed in tiem t is $H=I^{2} R t$. However, If H is expressed in the conventional unit calorie, then from the law, $\mathrm{W}=\mathrm{JH}$, we may write $H=\frac{I^{2} R t}{J}$, where , J = mechanical equivalent of heat
$=4.2 \mathrm{~J} . \mathrm{cal}^{-1}$.

The resistance R of a conducting wire depends on its material, its length I and its area of cross section a .The resistivity of the meterial of the conductor is , $\rho=\frac{R A}{l}$.

When more than one heat -producing conductors
are kept in series in a circuit, the same current passes through each of them, but as their resistance are $\mathrm{f}=\mathrm{different}$ in general, the terminal potential differences are also unequal. On the other hand , each conductor has the same terminal potential difference in a parallel combination, however, the curents through them are different .

The terminal potential difference and the currents through two conducting wires are both in the ratio 2: 1 The ratio of the rates of heat evolved in them is
A. 1:1
B. 2:1
C. $4: 1$
D. $8: 1$

Answer: C
2. Let us take an electrical conductor in which the
electrical energy supplied is entirely converted into heat. If, for the conductor, the terminal potential difference $=\mathrm{V}$, the curent through it $=\mathrm{I}$ and its resistance $=R$, then the electrical energy
consumed in its t is , $W=I^{2} t$ (from Ohm'slaw $R=\frac{V}{I}$). So , if the electrical and the heat
energies both are expressed in joule, the heat developed in them t is $H=I^{2} R t$. However, If H is expressed in the conventional unit calorie, then from the law, $\mathrm{W}=\mathrm{JH}$, we may write $H=\frac{I^{2} R t}{J}$, where , J = mechanical equivalent of heat $=4.2 \mathrm{~J} . \mathrm{cal}^{-1}$.

The resistance R of a conducting wire depends on its material, its length I and its area of cross section a .The resistivity of the meterial of the conductor is , $\rho=\frac{R A}{l}$.

When more than one heat -producing conductors
are kept in series in a circuit, the same current passes through each of them , but as their resistance are $\mathrm{f}=\mathrm{different}$ in general, the terminal potential differences are also unequal. On the other hand , each conductor has the same terminal potential difference in a parallel combination, however, the curents through them are different .

Heat is produced at he rate of $8 \mathrm{cal} . s^{-1}$ in a
uniform wire , when its terminal potential difference is 10 V What would be the rate in another wire of the same material, of the same potential difference?
A. $32 \mathrm{cal} . s^{-1}$
B. $16 \mathrm{cal} . \mathrm{s}^{-1}$
C. $4 \mathrm{cal} . s^{-1}$
D. 2cal. s^{-1}

Answer: D
3. Let us take an electrical conductor in which the electrical energy supplied is entirely converted into heat. If, for the conductor, the terminal potential difference $=\mathrm{V}$, the curent through it $=\mathrm{I}$ and its resistance $=R$, then the electrical energy
consumed in its t is , $W=I^{2} t$ (from Ohm'slaw $R=\frac{V}{I}$). So , if the electrical and the heat
energies both are expressed in joule, the heat developed in them t is $H=I^{2} R t$. However, If H is expressed in the conventional unit calorie, then from the law, $\mathrm{w}=\mathrm{JH}$, we may write $H=\frac{I^{2} R t}{J}$, where , J = mechanical equivalent of heat $=4.2 \mathrm{~J} . \mathrm{cal}^{-1}$.

The resistance R of a conducting wire depends on its material, its length I and its area of cross section a .The resistivity of the meterial of the conductor is , $\rho=\frac{R A}{l}$.

When more than one heat -producing conductors
are kept in series in a circuit, the same current passes through each of them , but as their resistance are $\mathrm{f}=\mathrm{different}$ in general, the terminal potential differences are also unequal. On the other hand , each conductor has the same terminal potential difference in a parallel combination, however, the curents through them are different .

The first one of two wires ,m of the same meterial
and of equal cross section, is longer than the second . A current through their series combination produces heat in them at the rates h_{1} and h_{2}, respectively.
A. $h_{1}=h_{2}$
B. $h_{1}>h_{2}$
C. $h_{1}<h_{2}$
D.

Answer: B

Entrance Corner Integer Answer Type

1. A power of 12 W is dissipated when two equal resistaances, joined in parallel, are connected with an electric source. What power is dissipated when they are connected in series with the same source ? (in W) ?

- Watch Video Solution

2. Two electric lamps ,each of powers 60 W , have voltage ratings of 220 V and 110 V respectively .

Find the ration of their resistances .
3. Two electric lamps of power 30 W and 60 W have the same voltage rating. Find the ratio of their resistances .

(D) Watch Video Solution

4. The power dissipated when three identical cells
of negligible internal resistance are connected in
series with a wire of length I, is exactly equal to
that, when N similar cells are coonected in series
with a wire of length 21 , of the same meterial and having the same area of cross section. Find the value of N .

D Watch Video Solution

5. The ration of the radii of two fuse wires of the same material is $1: 4$. What is the maximum safe
current (in A) for the second wire, if that for the first wie is 1 A ?
6. A parallel combination of three resistors $3 \Omega, 4 \Omega$ and 5Ω is connected across a battery.

Find which resistor will consume more electrical per energy per second.

(D) Watch Video Solution

2. how much will the power of an electric bulb decrease if the current drops by 0.5% ?
A. 0.25%
B. 05%
C. 1%
D. 2%

Answer: C

- Watch Video Solution

3. The rate of heat developed in a resistor R connected to a supply of potential V is H . What will be the rate of heat developed if the potential difference is $V / 3$ and the resistance doubled ?

Examination Archive Wbjee

1. Consider the circuit show in the figure. The
value of the resistance X for which the thermal
power gernerated in it is practically independent of small variation of its resistance is
A. $X=R$
B. $X=\frac{R}{3}$
C. $X=\frac{R}{2}$
D. $X=2 R$

Answer: C

- View Text Solution

Examination Archive Jee Main

1. In a large building there are 15 bulbs of $40 \mathrm{~W}, 5$
bulbs of $100 \mathrm{~W}, 5$ fans of 80 W and 1 kW . The voltage of the electric mains is 220 V . The minimum capacity of the main fuse of the building will be
A. $8 A$
B. 10 A
C. $12 A$
D. $14 A$

Answer: C

(D) Watch Video Solution

Examination Archive Aipmt

1. Two cities are 150 km apart. Electric power is
sent from one city to another city through copper wires. The fall of potential per km is 8 volt and the averge resistance per km is 0.5Ω.The power loss in the wire is
A. $19.2 W$
B. $19.2 k W$
C. 19.2J
D. $12.2 k W$

Answer: B

Examination Archive Neet

1. The charge flowing through a resistance R varies
with time t as $Q=a t-b t^{2}$, where a and b are positive constants The total heat produced in R is
(A) $\frac{a^{3} R}{3 b}$
(B) $\frac{a^{3} R}{2 b}$
(C) $\frac{a^{3} R}{b}$
(D) $\frac{a^{3} R}{6 b}$
A. $\frac{a^{3} R}{3 b}$
B. $\frac{a^{3} R}{2 b}$
C. $\frac{a^{3} R}{b}$
D. $\frac{a^{3} R}{6 b}$

Answer: D

D Watch Video Solution

Cbse Scanner

1. A light bulb is rated 100 W for 220 V ac supply of

50 Hz . Calculate
the resistance of the bulb,

D Watch Video Solution

2. A light bulb is rated 100 W for 220 V ac supply
of 50 Hz . Calculate
the rms current throught the bulb
3. Nichrome and copper wires of same length and same radius are connected in series. Current I is passed through them. Which wire gets heated up more? Justify you answers .

D Watch Video Solution

4. The potential differnce applied across a give resistor is altered that the heat produced per second increase by a Factor of 9 . By what factor does the applied potentail difference change ?
5. The current is drawn from a cell of emf E and intenal resistance r connected to the network of resistors each of sistance r as show in the figure. Obtain the expression the current drawn from the cell

D View Text Solution

6. The current is drawn from a cell of emf E and intenal resistance r connected to the network of resistors each of sistance r as show in the figure .

Obtain the expression
the power consumed in the network

- View Text Solution

7. Two electric bulbes P and Q have their resistance in the ration of $1: 2$. They are connected in series acrosse a battery. Find the ratio of the power dissipation in these bulbs .
