©゙doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CHHAYA PHYSICS (BENGALI

ENGLISH)

ELECTROMAGNETIC INDUCTION \&
 ALTERNATING CURRENT

Example

1. A coil of resistance 100Ω having 100 turns is
placed in a magnetic field. A galvanometer of resistance 400Ω is connected in series with it.

If the coil is brought from the present magnetic field to another magnetic field in $\frac{1}{10} s$, determine the average emf and the current. Given, the initial and final magnetic flux linked with each turn of the coil are 1 mWb and 0.2 mWb respectively.
2. A conducting wire is wound around the great circle of a spherical balloon. This circular loop can contract with the balloon. A hemispherical cross section of the balloon is shown in figure. The initial radius of the balloon is 0.60 m . A uniform magnetic field $B=$
0.25 T exists along the perpendicular to the
plane of the circular loop, i.e., in $+y-$ direction. After $5.0 \times 10^{-2} \mathrm{~s}$ the balloon is defiated to a radius of 0.30 m . What will be the average emf induced in the loop during this
time?

- View Text Solution

3. A copper wire of diameter 0.04 in . and length 50 cm is bent in the form of a circular
loop. The plane of the loop is normal to a uniform magnetic field which is increasing
with time at a constant rate of $100 \mathrm{G} s^{-1}$.

What is the rate of joule heating in the loop?
[Resistivity
of
copper
$=1.7 \times 10^{-8} \Omega . m, 1 \quad$ in. $\left.=2.54 \mathrm{~cm}\right]$

- Watch Video Solution

4. The distance between the two end-points of
the wings of an aeroplane is 5 m and the aeroplane is flying parallel to earth's surface
with a velocity of $360 \mathrm{~km} h^{-1}$. If the geomagnetic intensity is $4 \times 10^{-4} W b . m^{-2}$
and the angle of dip at that place is 30°, determine the emf induced between the two end-points of the wings.

D Watch Video Solution

5. A copper disc of diameter 20 cm is rotating uniformly about its horizontal axis passing through the centre with angular frequency 600 rpm . A uniform magnetic field of strength
$10^{-2} T$ acts perpendicular to the plane of the
disc. Calculate the induced emf between its centre and a point on the rim of the disc.

D Watch Video Solution

6. A pair of parallel horizontal conducting ralls of negligible resistance shorted at one end is
fixed on a smooth table. The distance between
the ralls is L. A massless conducting rod of resistance R can slide on the rails frictionlessly.

The rod is tied to a massless string which passes over a pulley fixed to another edge of
the table. A mass m, tied to the other end of the string, hangs vertically. A constant magnetic field B exists along the perpendicular to the plane of the table in upward direction. If the system is released from rest, calculate [i] the terminal velocity of the rod, [ii] the acceleration of the mass at the instant, when the velocity of the rod is half the terminal velocity.

7. The mutual inductance between two adjacent coils is 1.5 H . If the current in the primary coil changes from 0 to 20 A in 0.05 s , determine the average emf induced in the secondary coil. If the number of turns in the secondary coil is 800 , what change in flux will be observed in it?
8. When current in a coil changes from $+2 A$ to $-2 A$ in 0.05 s , an emf of 8 V is induced in
the coil. Determine the self-inductance of the coil.

- Watch Video Solution

9. Mutual inductance of two coils is 0.005 H , ac in primary coil, $I=I_{0} \sin \omega t$, where $I_{0}=10 \mathrm{~A}$ and $\omega=100 \pi \mathrm{rad} / \mathrm{s}$. What is the maximum emf in the secondary coil?
10. If a rate of change of current of $2 A . s^{-1}$ induces an emf of 10 mV in a solenoid, what is the self-inductance of the solenoid?

- Watch Video Solution

11. Resistance of a coil is 10Ω and its self inductance is 5 H . Find the energy stored when it is connected with a 100 V battery.
12. Self-inductance of an air core solenoid increases from 0.01 mH to 10 mH when an iron core is introduced in it. What is the relative magnetic permeability of iron?

D Watch Video Solution

13. A small square loop of wire of side y is
placed inside a large square loop of side $x(x \gg y)$. The loops are coplanar and their
centres coincide. Find the mutual inductance of the system.

D Watch Video Solution

14. Cross sectional area of a solenoid is $10 \mathrm{~cm}^{2}$.

Half of its cross section is filled with iron
($\mu_{r}=450$) and the remaining half with air
($\mu_{r}=1$). Calculate the self-inductance of the
solenoid if its length is 2 m and number of turns is 3000.

Section Related Questions

1. What do you mean by electromagnetic induction?

D Watch Video Solution
2. What is induced electromotive force?
(D) Watch Video Solution

3. What do you mean by induced current?

D Watch Video Solution
4. Define flux in a magnetic field.

- Watch Video Solution

5. What do you mean by magnetic flux density?
(D) Watch Video Solution
6. State and explain Faraday's laws of electromagnetic induction.

- Watch Video Solution

7. State and explain the three laws of electromagnetic induction.

- Watch Video Solution

8. State and explain Lenz's law related with the electromagnetic induction.
9. How would you obtain the expression for induced emf from the laws of electromagnetic induction?

- Watch Video Solution

10. How would you demonstrate the phenomenon of electromagnetic induction with the help of two circular conducting coils?

Watch Video Solution

11. What do you mean by magnetic flux and magnetic flux density?

- Watch Video Solution

12. Justify Lenz's law from the point of view of the law of conservation of energy.
13. State Fleming's right hand rule. Mention one of its uses in an electrical appliance.

D Watch Video Solution

14. State, Fleming's right hand rule related with the direction of induced emf.

D Watch Video Solution

15. If a straight conductor moves in a magnetic
field, what will be the expression for emf
induced in that conductor? On what factors does this emf depend?

D Watch Video Solution

16. When an aeroplane flies horizontally, a potential difference is developed across the two ends of its wings. Why? On what factors does this potential difference depend?

D Watch Video Solution

17. What is eddy current?

D Watch Video Solution

18. What do you mean by energy loss due to eddy currents?

- Watch Video Solution

19. How can the loss of energy due to eddy current be minimised?

- Watch Video Solution

20. State an application of eddy current.

- Watch Video Solution

21. What do you mean by non-inductive resistance coil?

D
Watch Video Solution

22. What is a choke?

- Watch Video Solution

23. Define Henry.

- Watch Video Solution

24. Self-inductance of a coil is $1 \mathrm{H}^{\prime}$. What do you mean by this statement?
25. Mutual inductance between a pair of coils
is $1 \mathrm{H}^{\prime}$. What do you mean by this statement?

D Watch Video Solution

26. Find out the energy stored in a coil of self inductance L due to a current I through it.

D Watch Video Solution

27. Establish an expression for self inductance

 of a solenoid- Watch Video Solution

28. find out the mutual inductance of two inseparable solenoids.

- Watch Video Solution

29. Establish the equation for energy density at any point in the magnetic field of a solenoid.

D Watch Video Solution

Hots

1. A cylindrical bar magnet is placed along the
axis of a circular coil. If the magnet is rotated
about that axis, will any current be induced in the coil?

D Watch Video Solution

2. With reference to where a small bar magnet
M approaches a coil C (with ends connected to
a galvanometer), show that, Lenz's law is
consistent with the principle of conservation
of energy. What will be the magnetic polarity
of the coil according to the diagram, as the magnet moves through it and comes out from
the left?

- Watch Video Solution

3. A conducting wire is bent in the form of a circle of a circle and a straight conductor $A B$ is kept outside but near the conducting circle.

The wires are in the plane of the paper. If the
current flowing from A to B gradually
increases in magnitude, will there be any current in the circular conductor? If so, in what direction?

- Watch Video Solution

4. The conducting rings P and Q of radius r and $3 r$ move in opposite directions with velocity 2 v and v respectively on a conducting surface S. There is a uniform magnetic field of magnitude B perpendicular to the plane of the rings. What is the potential difference between the highest points of the two rings?

- Watch Video Solution

5. Two identical circular coils A and B are placed parallel to each other with their centres on the same axis. The coil B carries current in the clockwise direction as seen from
A. What would be the directions of the induced current in A as seen from B when
the current in B is increased

- Watch Video Solution

6. Two identical circular coils A and B are placed parallel to each other with their centres on the same axis. The coil B carries current in the clockwise direction as seen from
A. What would be the directions of the induced current in A as seen from B when
the coil B is moved towards A, keeping the current in B constant?
7. Show that the units of RC and $\frac{L}{R}$ are of time. R, L and C carry their usual significances.

D Watch Video Solution

8. Three identical closed coils A, B and C are
placed parallely. Coils A and C carry equal
currents as shown in Fig. Coils B and C are
fixed and coil A is moved towards B with uniform speed. Will there be any induced current in B? If no, give reason. If yes, mark the
direction of the induced current in fig.

- Watch Video Solution

9. A coil of resistance R having n turns is connected with a galvanometer of resistance

4R. If the magnetic flux changes from ϕ_{1} to ϕ_{2}
in time t in the circuit, what will be the value of induced current?
10. Self-inductance of a coil is 2 mH , current through this coil is, $I=t^{2} e^{-t}$ ($\mathrm{t}=$ time). After how much time will the induced emf be zero?

D Watch Video Solution

11. North pole of a bar magnet faces a closed ciruclar coil. It is oscillated rapidly along the common axis of the magnet and the coil.

Determine the direction of induced current in the coil from Lenz's law.

D Watch Video Solution

12. A bar magnet is pulled through a conducting loop along its axis with its south pole entering the loop first. Draw the graphs of
the induced current

D View Text Solution

13. A bar magnet is pulled through a conducting loop along its axis with its south pole entering the loop first. Draw the graphs of
joule heating as a function of time. Take the induced current to be positive, if it is clockwise when viewed along the path of the magnet.

D View Text Solution

14. A semicircular wire of radius r is rotating with angular velocity ω in a uniform magnetic
field B with its radius as axis. If the resistance of the circuit be R and if the axis of rotation remains perpendicular to B, what will be the average power produced in each period?

- Watch Video Solution

15. Write down the dimensional formula for induced emf?

D Watch Video Solution
16. A plot of magnetic flux (ϕ) versus current
(I) is shown in figure for two inductors A and B.
Which of the two has larger value of selfinductance?

- Watch Video Solution

17. A circular conducting coil of radius a and resistance R is placed with its plane perpendicular to a magnetic field. The magnetic field varies with time according to
the equation $B=B_{0} \sin \omega t$. Obtain the expression for the induced current in the coil.

D Watch Video Solution

18. A conducting wire is bent in the form of an
angle θ. The wire moves with velocity v along the bisector of $\angle A^{\prime} O B^{\prime}$ as shown in figure.

Find the emf induced between the two ends of
the wire if a magnetic field is acting perpendicular to the plane of the paper and directed into it.

$$
\begin{aligned}
& \times \times \times A^{\prime} \times \\
& \times \times \times+\cdots \\
& \times \circ \times-\cdots+\cdots
\end{aligned}
$$

19. A conducting rod $a b$ of length I, mass m and resistance R slides on a smooth, thick pair of metallic rails. The plane of the rails makes
an angles θ with the horizontal. A magnetic
field B acts along the perpendicular to the
horizontal plane in upward direction. If the rod slides down on the rails at a constant
speed v , then show that $B=\sqrt{\frac{m g R \sin \theta}{l^{2} v \cos ^{2} \theta}}$.

(Watch Video Solution

Ncerts Textbook Questions With Answer Hint

1. Use Lenz's law to determine the direction of
induced current in the situations described in
the figure :

A wire of irregular shape turning into a circular shape.

D View Text Solution
2. Use Lenz's law to determine the direction of induced current in the situations described in the figure :

A circular loop being deformed into a narrow straight wire.

D View Text Solution

3. A rectangular wire loop of sides 8 cm and 2 cm with a small cut is moving out of a region
of uniform magnetic field of magnitude 0.3 T
directed normal to the loop. What is the emf developed across the cut if the velocity of the loop is $1 \mathrm{~m} . s^{-1}$ in a direction normal to the longer side

- Watch Video Solution

4. A rectangular wire loop of sides 8 cm and 2
cm with a small cut is moving out of a region of uniform magnetic field of magnitude 0.3 T directed normal to the loop. What is the mef
developed across the cut if the velocity of the
loop is $1 \mathrm{~m} . s^{-1}$ in a direction normal to the
shorter side of the loop? For how long does the induced voltage last in each case?

D Watch Video Solution

5. A rectangular wire loop of sides 8 cm and 2
cm with a small cut is moving out of a region
of uniform magnetic field of magnitude 0.3 T
directed normal to the loop. What is the mef developed across the cut if the velocity of the
loop is $1 \mathrm{~m} . s^{-1}$ in a direction normal to the

Suppose in this case the loop is stationary but the current feeding the electromagnet produces the magnetic field is gradually reduced so that the field decreases from its initial value of 0.3 T at the rate of $0.02 \mathrm{~T} . s^{-1}$.

If the cut is joined and the loop has a resistance of 1.6Ω, how much power is dissipated by the loop as heat? What is the source of this power?

6. Indicates the direction of induced current in

each case of the fig.

7. A 1.0 m long metallic rod is rotated with an angular velocity of $400 \mathrm{rad} . \mathrm{s}^{-1}$ about an axis normal to the rod passing through its one end. The other end of the rod is in contact with a circular metallic ring. A constant and uniform magnetic field of 0.5 T parallel to the axis exists everywhere. Calculate the emf developed between the centre and the ring.

- Watch Video Solution

8. A circular coil of radius 8.0 cm and 20 turns
rotates about its vertical diameter with an
angular speed of 50 rad. s^{-1} in a uniform horizontal magnetic field of magnitude
$3.0 \times 10^{-2} T$. Obtain the maximum and
average emf induced in the coil. If the coil
forms a closed loop of resistance 10Ω, calculate the maximum value of current in the coil. Calculate the average power loss due to Joule heating. Where does this power come from?
9. A horizontal straight wire 10 m long extending from east to west is falling with a speed of $5 \mathrm{~m} . s^{-1}$, at right angles to the horizontal component of earth's magnetic field, $0.30 \times 10^{-4} W b . m^{-2}$.

What is the instantaneous value of the emf induced in the wire?

D Watch Video Solution

10. A horizontal straight wire 10 m long extending from east to west is falling with a speed of $5 \mathrm{~m} . s^{-1}$, at right angles to the horizontal component of earth's magnetic field, $0.30 \times 10^{-4} W b . m^{-2}$.

What is the direction of the emf?

D Watch Video Solution

11. A horizontal straight wire 10 m long extending from east to west is falling with a
speed of $5 \mathrm{~m} . s^{-1}$, at right angles to the horizontal component of earth's magnetic field, $0.30 \times 10^{-4} W b . m^{-2}$. what is the emf induced in the wire.

Which end of the wire is at higher electrical potential?

D Watch Video Solution

12. A square loop of side 12 cm with its sides parallel to X and Y axes is moved with a velocity of $8 \mathrm{~cm} . s^{-1}$ in the positive x-direction
in an environment containing a magnetic field
in the positive z-direction. The field is neither
uniform in space nor constant in time. It has a gradient of $10^{-3} \mathrm{~T} . \mathrm{cm}^{-1}$ along the negative x-direction and is decreasing in time at the rate of $10^{-3} T . s^{-1}$. Determine the direction and magnitude of induced current in the loop if its resistance is $4.50 \mathrm{~m} \Omega$.

D Watch Video Solution

13. Obtain an expression for the mutual inductance between a long straight wire and a square loop of side a as shown in fig.

14. Now assume that the straight wire carries
a current of 50 A and the loop is moved to the right with a constant velocity $v=10 \mathrm{~m} . \mathrm{s}^{-1}$. Calculate the induced emf in the loop at the instant when $\mathrm{x}=0.2 \mathrm{~m}$. Take $\mathrm{a}=0.1 \mathrm{~m}$ and assume that the loop has a large resistance.

- Watch Video Solution

15. A metal rod $P Q$ is resting on the rails $A^{\prime} B^{\prime}$ and positioned between the poles of a
permanent magnet. The rails, the rod and the magnetic field are in three mutually perpendicular directions. A galvanometer G connects the rails through a switch K. Length of the $\operatorname{rod}=15 \mathrm{~cm}, \mathrm{~B}=0.50 \mathrm{~T}$, resistance of the closed loop containing the rod $=9.0 \mathrm{~m} \Omega$. Assume the field to be uniform.

Suppose K is open and the rod is moved with a speed of $12 \mathrm{~cm} . s^{-1}$ in the direction shown.

Give the polarity and magnitude of the induced emf.

D Watch Video Solution

16. A metal rod $P Q$ is resting on the rails $A^{\prime} B^{\prime}$ and positioned between the poles of a permanent magnet. The rails, the rod and the magnetic field are in three mutually perpendicular directions. A galvanometer G connects the rails through a switch K. Length of the rod $=15 \mathrm{~cm}, \mathrm{~B}=0.50 \mathrm{~T}$, resistance of the
closed loop containing the rod $=9.0 \mathrm{~m} \Omega$.

Assume the field to be uniform.

Is there an excess charge built up at the ends of the rods when K is open? What if K is closed?
17. A metal rod $P Q$ is resting on the rails $A^{\prime} B^{\prime}$ and positioned between the poles of a permanent magnet. The rails, the rod and the magnetic field are in three mutually perpendicular directions. A galvanometer G connects the rails through a switch K. Length of the rod $=15 \mathrm{~cm}, \mathrm{~B}=0.50 \mathrm{~T}$, resistance of the
closed loop containing the rod $=9.0 \mathrm{~m} \Omega$.
Assume the field to be uniform.

With K open and the rod moving uniformly,
there is no net force on the electrons in thr rod $P Q$ even though they do experience magnetic force due to the motion of the rod. Explain.

D Watch Video Solution

18. Explain why are there gaps between the rails? Explain what will happen if there is no gap

D Watch Video Solution

19. A metal rod $P Q$ is resting on the rails $A^{\prime} B^{\prime}$ and positioned between the poles of a permanent magnet. The rails, the rod and the magnetic field are in three mutually perpendicular directions. A galvanometer G connects the rails through a switch K. Length of the $\operatorname{rod}=15 \mathrm{~cm}, B=0.50 \mathrm{~T}$, resistance of the closed loop containing the rod $=9.0 \mathrm{~m} \Omega$. Assume the field to be uniform.

How much power is required by an external agent to keep the rod moving at the same speed $\left(=12 c m . s^{-1}\right)$ when K is closed? How much power is required when K is open?

- Watch Video Solution

20. A metal rod $P Q$ is resting on the rails $A^{\prime} B^{\prime}$ and positioned between the poles of a
permanent magnet. The rails, the rod and the magnetic field are in three mutually perpendicular directions. A galvanometer G connects the rails through a switch K. Length of the $\operatorname{rod}=15 \mathrm{~cm}, B=0.50 \mathrm{~T}$, resistance of the closed loop containing the rod $=9.0 \mathrm{~m} \Omega$. Assume the field to be uniform.

How much power is dissipated as heat in the
closed circuit? What is the source of this power?

D View Text Solution

21. A metal rod $P Q$ is resting on the rails $A^{\prime} B^{\prime}$ and positioned between the poles of a permanent magnet. The rails, the rod and the magnetic field are in three mutually perpendicular directions. A galvanometer G connects the rails through a switch K. Length of the $\operatorname{rod}=15 \mathrm{~cm}, \mathrm{~B}=0.50 \mathrm{~T}$, resistance of the
closed loop containing the rod $=9.0 \mathrm{~m} \Omega$.

Assume the field to be uniform.

What is the induced emf in the moving rod if the magnetic field is parallel to the rails instead of being perpendicular?

D View Text Solution

1. A cylinder bar magnet is rotated about its
axis. A wire is connected from the axis and is
made to touch the cylindrical surface through

a contact. Then

A. a direct current flows in the ammeter A
B. no current flows through A
C. an alternating sinusoidal current flows
through the ammeter A with time
period, $T=\frac{2 \pi}{\omega}$
D. a time-varying non-sinusoidal current
flows through ammeter A

Answer: B

D Watch Video Solution

2. There are two coils A and B. When A is brought towards B, a current flows through B which stops when A

stops moving. The current in B is
counterclockwise. B is stationary when A
moves. We can infer that
A. a constant current flows through A in the clockwise direction
B. a varying current is passing through A
C. there is no current through A
D. a constant counter clockwise current is passing through A

Answer: D

- Watch Video Solution

3. A loop, made of straight edges has six corners at $A(0,0,0), B(L, 0,0), C(L, L, 0), D(0, L, 0)$,
$E(0, L, L)$ and $F(0, O, L)$. A magnetic field $\vec{B}=B_{0}(\hat{i}+\hat{k}) T$ is present in the region.

The flux passing through the loop ABCDEFA (in that order) is:

$$
\begin{aligned}
& z \sim F(0,0, L)
\end{aligned}
$$

A. $B_{0} L^{2} W b$
B. $2 B_{0} L^{2} W b$
C. $\sqrt{2} B_{0} L^{2} W b$
D. $4 B_{0} L^{2} W b$

Answer: B

- Watch Video Solution

4. The number of turns of a solenoid of length

I and area of cross-section A is N. The selfinductance L increases as
A. I and A increase
B. I decreases and A increases
C. I increases and A decreases
D. both I and A decrease

Answer: B

D Watch Video Solution
5. The two coils A and B are same as in the picture given below. The coil A is made to rotate about a vertical axis. No current flows in
B if A is at rest. The current in coil A, when the
current in B (at $t=0$) is counterclockwise and
the coil A is as shown at this instant $t=0$, is

A. constant current clockwise

B. varying current clockwise

C. varying current counterclockwise
D. constant current counterclockwise

Answer: A

D Watch Video Solution

Ncert Exemplar Questions With Answer Hint Mcq

1. A metal plate is getting heated. It can be because
A. a direct current is passing through it
B. it is placed in a time-varying magnetic
field
C. it is placed in a magnetic field which
varies with space but not with time
D. a current (either direct or alternating) is
passing through it

Answer: A::B::D

- Watch Video Solution

2. An emf is produced in a coil, which is not connected to an external voltage source. This can be due to
A. the coil being in a time-varying magnetic field
B. the coil moving in a time-varying magnetic field
C. the coil moving in a constant magnetic
field
D. the coil is stationary in external spatially
varying magnetic field, which does not
change with time

Answer: A::B::C

D Watch Video Solution

3. A circular coil expands radially in a region of magnetic field but no electromotive force is produced in the coil. It can be because
A. the magnetic field is constant
B. the magnetic field is in the same plane
as the circular coil and it may or may not
vary
C. the magnetic field may have a
perpendicular (to the plane of the coil)
component with suitably decreasing
magnitude
D. there is a constant magnetic field perpendicular (to the plane of the coil) direction

Answer: B::C

- Watch Video Solution

4. The mutual inductance M_{12} of coil 1 with respect to coil 2
A. increases when they are brought nearer
B. depends on the current passing through
the coils
C. increases when one of them is rotated about an axis
D. is the same as M_{21} of coil 2 with respect to coil 1

Answer: A::D

- Watch Video Solution

Exercise

1. If the emf induced in an electrical circuit be e and the current induced be I then,
A. both e and I depend on the resistance of
the circuit
B. none of e and I depends on the resistance of the circuit
C.e depends on the resistance of the circuit but not i
D. I depends on the resistance of the circuit but not e

Answer: D
(Watch Video Solution
2. The magnetic flux across a coil, of 50 turns
and of diameter 0.1 m , changes from
$3 \times 10^{-4} W b$ to $10^{-4} W b$ in 0.02 s . The emf induced in the coil is
A. 3.9 mV
B. 10 mV
C. 15 mV
D. 196 mV

Answer: B
3. A coil with a small area of $10^{-5} m^{2}$ is lying on the $x y$-plane around a point P. If the magnetic field at P is $(\hat{i}+\hat{j}+\hat{k}) W b . m^{-2}$, the magnetic flux passing through the coil would be
A. $10^{-5} \mathrm{~Wb}$
B. $\sqrt{2} \times 10^{-5} W b$
C. $\sqrt{3} \times 10^{-5} W b$
D. $3 \times 10^{-5} \mathrm{~Wb}$

Answer: A

D Watch Video Solution

4. The magnetic flux linked with a coil varies
with time t as $\phi=a t^{2}+b t+c$, where a, b
and c are constants. The emf induced in the
coil will be zero at a time of
A. $\frac{b}{a}$
B. $-\frac{b}{a}$
C. $\frac{b}{2 a}$

$$
\text { D. }-\frac{b}{2 a}
$$

Answer: D

D Watch Video Solution

5. Induced current in a coil due to electromagnetic induction does not depend
upon
A. rate of change of flux
B. shape of the coil

C. resistance of coil

D. non of these

Answer: D

D Watch Video Solution

6. A metal ring is held horizontally with the ground and a bar magnet is dropped through
the ring with its length along the axis of the ring. The acceleration of the falling magnet is
A. equal to g
B. less than g
C. more than g
D. zero

Answer: B

D Watch Video Solution

7. An electric potential difference will be induced between the ends of the conductor (AB) shown in the figure when the conductor
moves along

A. OP
B. OQ
C. OL
D. OM

Answer: D

- Watch Video Solution

8. In the figure a circular loop of radius r and
resistance R is shown. A variable magnetic field of induction $B=e^{-t}$ exists inside the loop. If the key (K) is closed at $\mathrm{t}=0$, the electrical power developed in the circuit at that instant is equal to

$$
\text { A. } \frac{\pi r^{2}}{R}
$$

> B. $\frac{10 r^{3}}{R}$
> C. $\frac{\pi^{2} r^{4}}{R}$
> D. $\frac{10 r^{4}}{R}$

Answer: D

D Watch Video Solution

9. Two identical circular loops of metal wire are

lying on a table without touching each other.

Loop A carries a current which increases with
time. In response, the loop B
A. remains stationary
B. is attracted by the loop A
C. is repelled by the loop A
D. rotates about its centre of mass with
centre of mass fixed

Answer: C

- Watch Video Solution

10. A circular disc of radius 0.2 m is placed in a uniform magnetic field of induction $\frac{1}{\pi} W b / m^{2}$ in such a way that its axis makes an angle 60° with the field. The magnetic flux linked with the disc is
A. 0.01 Wb
B. 0.02 Wb
C. 0.06 Wb
D. 0.08 Wb

Answer: B

- Watch Video Solution

11. A square wire loop of side 10 cm is placed at an angle of 45° with a magnetic field that changes uniformly from 0.1 T to zero in 0.7 s . If resistance of the loop is 1Ω, then the induced current in it is
A. 1 mA
B. 2.5 mA
C. 3.5 mA

D. 4 mA

Answer: A

D Watch Video Solution

12. A rod of length b moves with a constant
velocity v in the magnetic field of a infinitely
long straight conducting wire that carries a current I as shown in the figure. The induced
emf in the rod is

A. $\frac{\mu_{0} i v}{2 \pi} \tan ^{-1}\left(\frac{a}{b}\right)$
B. $\frac{\mu_{0} i v}{2 \pi} \ln \left(1+\frac{b}{a}\right)$
C. $\frac{\mu_{0} i v \sqrt{a b}}{4 \pi(a+b)}$
D. $\frac{\mu_{0} i v(a+b)}{4 \pi a b}$

Answer: B

D Watch Video Solution

13. A boat is moving due east in a region
where the earth's magnetic field is
$5.0 \times 10^{-5} N . A^{-1} . m^{-1}$ due north and
horizontal. The boat carries a vertical aerial 2
m long. If the speed of the boat is $1.50 \mathrm{~m} . s^{-1}$,
the magnitude of the induced emf in the wire of aerial is
A. 0.75 mV

B. 0.50 mV

C. 0.15 mV
D. 1 mV

Answer: C

D Watch Video Solution

14. SI unit henry (H) of inductance can be written as
A. $W b . A^{-2}$
B. J. A^{-1}
C. V.s. A^{-2}
D. $\Omega . s$

Answer: D

D Watch Video Solution

15. The self-inductance of a long straight solenoid is L. Each of the length, the diameter and the number of turns of another solenoid
is double that of the first. The self-inductance of the second solenoid is
A. 2 L
B. 4 L
C. 8 L
D. 16L

Answer: C
(Watch Video Solution
16. The self inductances of two coils are 16 mH
and 25 mH , and they have a mutual
inductances of 10 mH . Their coupling constant
is
A. 0.025
B. 0.05
C. 0.25
D. 0.5

Answer: D

17. If current I passes through a pure inductor of self-inductance L, the energy stored is
A. $L I^{2}$
B. $\frac{L I^{2}}{2}$
C. $\frac{L I^{2}}{4}$
D. zero

Answer: B

D Watch Video Solution
18. Two solenoids of equal number of turns
have their lengths and the radii in the same ratio $1: 2$. The ratio of their self-inductances will be
A. $1: 2$
B. 2:1
C. 1:1
D. 1: 4

- Watch Video Solution

19. The current I in a coil varies with time as
shown in the fig. The variation of induced emf with time would be

A.

B.
emf $\uparrow \underset{T / 4 T / 2}{\text { _ }}$

Answer: A

- Watch Video Solution

Very Short Answer Type Questions

1. What is the unit of magnetic induction or magnetic flux density in SI?

- Watch Video Solution

2. What is the relation of the magnetic field vector \vec{B} with magnetic induction and magnetic flux density?

- Watch Video Solution

3. Induced emf is directly proportional to the
rate of change with time of
magnetic___linked with a coil.
4. In case of electromagnetic induction, the________ always opposes the cause of its own generation.

D Watch Video Solution

5. With the help of Fleming's \qquad rule, the direction of induced current in a straight conductor in motion can be determined.
6. What is the relation between the units: tesla and weber?

D Watch Video Solution

7. What is the relation between the unit: weber and volt?

D Watch Video Solution
8. Which of the conservation laws would not hold if Lenz's law was incorrect?

D Watch Video Solution

9. Self-inductance of a coil is 1 H . If 1A current passes through it, what will be the magnetic flux linked with the coil?

D Watch Video Solution

10. What is the relation between the units: weber and ampere?

- Watch Video Solution

11. What is the relation between the units of self-inductance and mutual inductance?

D Watch Video Solution
12. Self-inductance of an air core inductor increases from 0.01 mH to 10 mH on introducing an iron core into it. What is the relative permeability of the core used?

D Watch Video Solution

Short Answer Type Questions I

1. A cylindrical bar magnet is kept along the axis of a circular coil. If the magnet is rotated
about the axis, will there be any current induced in that coil?

D Watch Video Solution

2. A metallic coil is kept at rest in a nonuniform static magnetic field. Will there be any emf induced in that coil?

D Watch Video Solution
3. Two circular coils are kept co-axially one alongside the other. If a current suddenly starts flowing in one coil, what will be the direction of current induced at that moment in the other coil?

D Watch Video Solution

4. A conducting rod $A B$ is moving parallel to
the positive x-axis. A magnetic field is acting along positive z-axis. The end A of the rod will
get a higher potential with respect to the end

B-state whether it is true or false?

D Watch Video Solution

5. What measures are to be taken to minimise energy loss due to flow of eddy current in an electromagnetic arrangement?
6. The use of a laminated core in a conducting coil reduces eddy currents. Explain why it is so.

D Watch Video Solution
7. How can the energy stored in an inductor be utilised?

D Watch Video Solution
8. The self-inductance of a solenoid is L. If it is
cut into two equal halves, what will be the selfinductance of each half?

D Watch Video Solution

9. The self-inductance of a solenoid is L. If it is
compressed to half its length by pressing it
from both ends, what will be the new selfinductance?

D Watch Video Solution
10. If a wire is stretched to double its length, find the new resistance if the original resistance be R .

D Watch Video Solution

11. A steady current from a source of emf is
passing through a straight conductor from
left to right. If the source in switched off, what
will be the direction of induced current in the
wire?
12. A solenoid carrying a current supplied by a

DC source with a constant emf contains an iron core inside it. How will the current change when the core is pulled out of the solenoid: will it increase, decrease, or remain the same?

D Watch Video Solution

13. The emf E of a source varies with time. It sends a current I through a coil of selfinductance L connected to it. What is the instantaneous effective emf of the circuit?

- Watch Video Solution

14. Why the coil of a dead beat galvanometer is wound on a metal frame?
15. Two identical loops, one of copper and another of constantan, are removed from a magnetic field within the same time interval. In which loop will the induced current be greater?

D Watch Video Solution

Short Answer Type Questions li

1. The current passing through a choke coil of

5 H is decreasing at the rate of $2 \mathrm{~A} / \mathrm{s}$. The e.m.f.

developed across the coil is?

D Watch Video Solution

2. The current I through a closed coil of selfinductance 0.25 H is related with time t as
$I=4 t-t^{2}$. Then the emf e induced in the
coil will vary with time in the manner shown in
the justify.

D Watch Video Solution

1. At an instant t , the magnetic flux linked with

a coil is, $\phi=5 t^{3}-100 t+300 \mathrm{~Wb}$. What will be the induced emf in the coil at time $t=2 s$?

- Watch Video Solution

2. A rectangular coil of area $0.2 m^{2}$ is held in a
magnetic field of strength $2 T$ in such a way
that the normal to the plane of the coil makes
an angle 30° with the field. What is the flux linked with the coil?

D Watch Video Solution

3. A magnet is being brought near a circular coil, of radius 10 cm , having 10 turns and of resistance 10Ω, along its axis. Due to this, if the magnetic flux density linked with the coil increases from 0.1 Wb. m^{-2} to
$0.5 W b . m^{-2}$ in $\frac{1}{10} s$, find out the current induced in the coil.

Watch Video Solution

4. A conducting wire of length 30 cm revolves

1000 times per minute about one of its ends and perpendicular to the direction of a magnetic field of 0.5 T . Determine the emf induced across the ends of the wire.

D Watch Video Solution

5. A 10 m long horizontal wire, lying along the magnetic east-west direction, begins to fall
with a velocity of $5.0 \mathrm{~m} . s^{-1}$. What will be the emf induced in the wire? [Given, $\left.H=0.3 \times 10^{-4} W b . m^{-2}\right]$

D Watch Video Solution

6. The distance between the extremities of the
two wings of an aeroplane is 30 m . It is flying horizontally with a velocity of $1080 \mathrm{~km} . \mathrm{h}^{-1}$.

The vertical component of earth's magnetic field in that region is $4.5 \times 10^{-5} T$. Find the
emf induced across the extremities of the two wings.

D Watch Video Solution

7. A coil of 100 turns and of diameter 0.2 m is
placed at right angles to a uniform magnetic
field. If the field increases uniformly from
$0.1 \mathrm{~Wb} . m^{-2}$ to $0.3 W b . m^{-2}$ in 0.05 s , find out
the emf induced in the coil.

D Watch Video Solution

8. A wire $x y$ has a semicircular part of radius a.

Obtain the expression for induced emf across
xy when the wire rotates in a uniform magnetic field B with a frequency f. The direction of B and rotation of $x y$ are shown in the fig.

- View Text Solution

9. A closed circular coil having a diameter of 50
cm and of 200 turns, with a total resistance of
10Ω is placed with its plane at right angles to a magnetic field of strength $10^{-2} T$. Calculate the quantity of electric charge that flows through it when the coil is turned through 180° about its diameter.

D View Text Solution

10. The current in a primary coil increases by

20 A in 0.1 s . If the average emf induced in the secondary coil be 100 V , determine the mutual
inductance between the coils and the change
in magnetic flux in the secondary coil.

D Watch Video Solution

11. The inductance of a coil of 400 turns is 8 mH . If a current of 5 mA flows through the coil, calculate the magnetic flux linked with it.

D Watch Video Solution
12. Find the amount of stored energy within a coil of inductance 10 mH due to a current of 50mA through it.

D Watch Video Solution

13. The ratio of the inductances of two coils is
$1: 2$ and that of the currents through them is
$2: 1$. Find the ratio of energy stored in the coils.
14. Self-inductance and resistance of a coil are

30 mH and 20Ω respectively. It is connected to
a 30Ω resistance and a 2 V battery in series.

How much energy will be stored in the coil?

D Watch Video Solution

15. The current in a coil increases by 10 A in
0.01 s . If the average emf induced in the coil is

100 V , find out the self-inductance of the coil and the flux linked with it.
16. An emf of 100 V is induced in a coil when
the current through it changes at the rate of
$50 \mathrm{~A} \cdot \mathrm{~s}^{-1}$. Determine the self-inductance of the coil.

- Watch Video Solution

17. The self-inductance of a circular coil of 600 turns is 36 mH . What will be the self-
inductance of another circular coil of identical shape, but of 500 turns?

D Watch Video Solution

18. A straight solenoid of length 50 cm and across sectional area $1 \mathrm{~cm}^{2}$ has a selfinductance of $10^{-5} \mathrm{H}$. If a current of 100 mA passes through it, what will be the magnetic field along its axis?
19. A solenoidal coil has 50 turns per centimeter along its length and a cross
sectional area of $4 \times 10^{-4} m^{2} .200$ turns of another wire is wound round the first solenoid co-axially. The two coils are electrically insulated from each other. Calculate the mutual inductance between the two coils.

D Watch Video Solution

Problem Set li

1. A square loop of wire of side 10 cm is placed
at angle of 45° with a magnetic field that
changes uniformly from 0.2 T to zero in 1 second. Find the current induced in the loop of resistance 1Ω.

D Watch Video Solution

2. The rails of a railway track are 1.80 m apart and assumed to be insulated from one another. Calculate the emf induced between
the rails if a train is passing at $120 \mathrm{~km} . h^{-1}$.
Assume that the horizontal component of earth's magnetic field, $H=0.36 \times 10^{-4} T$ and angle of dip. $\theta=\tan ^{-1}(1.026)$.

- Watch Video Solution

3. A wheel with 10 metallic spokes each 0.5 m
long, is rotated with a speed of 120 rpm.
Please of the wheel is normal to earth's magnetic field at that place. If the magnitude
of the field is 0.40 G , what is the induced emf between the axle and rim of the wheel?

D Watch Video Solution

4. A square metallic wire loop of side 10 cm and resistance 1Ω is moved with a constant velocity \vec{v} in a uniform magnetic field of induction 2T as shown in figure. The loop is connected to a network of resistances, each of value 3Ω. The resistance of wires QD and PB are
negligible. What should be the speed of the loop to have a steady current of 1 mA in the loop? What is the direction of flow of current?

- Watch Video Solution

5. Magnetic flux through a stationary loop with a resistance R varies during the time interval τ as $\phi=\alpha t(\tau-t)$ where α is a constant. Calculate the amount of heat
generated in the loop during the time interval
τ.

- Watch Video Solution

6. Two differenct coils have self-inductances
$L_{1}=16 \mathrm{mH}$ and $L_{2}=12 \mathrm{mH}$. At a certain
instant, the current in the two coils is increasing at the same rate and power supplied to the two coils is the same. Find the ratio of induced voltage

Watch Video Solution

7. Two differenct coils have self-inductances
$L_{1}=16 m H$ and $L_{2}=12 m H$. At a certain
instant, the current in the two coils is increasing at the same rate and power supplied to the two coils is the same. Find the ratio of induced current
8. Two differenct coils have self-inductances
$L_{1}=16 m H$ and $L_{2}=12 m H$. At a certain
instant, the current in the two coils is increasing at the same rate and power supplied to the two coils is the same. Find the ratio of energy stored in the two coils at that instant.

D Watch Video Solution

9. What will be the self-inductance of a solendoid of length 1 m , diameter 12 cm and number of turns 4000? How much energy will be stored in its magnetic field due to a current of 2 A through it? $\left(\mu_{0}=4 \pi \times 10^{-7} H . m^{-1}\right)$.

D Watch Video Solution

10. A long solenoid having 450 turns per m
carries a current of 1.6 A. At the centre of the
solenoid a coil of 180 turns with cross
sectional area $3.5 \mathrm{~cm}^{2}$ is placed having its axis
parallel to the field produced by the solenoid.
What will be the amount of induced emf when
the direction of current in the solenoid is reversed within 0.03 s ?

D Watch Video Solution

Entrance Corner

1. Statement I: Induced emf in a conductor is
proportional to the time rate of change of
associated magnetic flux.

Statement II: In case of electromagnetic induction transfer of energy takes place in a manner so that total energy is conserved.
A. Statement I is true, statement II is true, statement II is a correct explanation for statement I
B. Statement I true, statement II is true,
statement II is not a correct explanation
for statement I
C. Statement I is true, statement II is false

D. Statement I is false, statement II is true

Answer: B

D Watch Video Solution

2. Statement I: The north pole of a bar magnet
is moving towards a closed circular coil along
its axis. As a result the direction of induced
current in the front face of the coil will be clockwise.

Statement II: Any incident connected with electromagnetic induction obeys Lenz's law.

D View Text Solution

3. Statement I: The charge passing through a coil in time Δt is $\frac{\Delta \phi}{R}$, where R is the resistance of the coil and $\Delta \phi$ is the change in flux linked with the coil in time Δt.

Statement II: The induced emf in a conductor
$e \propto \frac{d \phi}{d t}$, where $\frac{d \phi}{d t}$ is the time rate of change of flux linked with the conductor.

- Watch Video Solution

4. Statement I: A closed solenoid is placed in an external magnetic field. Both of the magnetic field and axis of the solenoid are directed along z-axis. No electromotive force will be induced if the solenoid is rotated along its own axis.

Statement II: Electromagnetic induction in a conducting coil takes place only when the magnetic flux linked with the coil changes with time.

- Watch Video Solution

5. Statement I: Self-inductance of a solenoid having 1000 turns is 100 mH if the associated magnetic flux linked with each turn is 10^{-3} Wb for a current of 1 A passig through the solenoid.

Statement II: The self-inductance L of a coil is defined as $\phi=L I$ when ϕ is the magnetic flux linked with the coil for a current I through it.

D Watch Video Solution

6. Statement I: When two coils are wound on
each other, the mutual induction between the coils is maximum.

Statement II: Mutual induction does not depend on the orientation of the coils.

D Watch Video Solution

7. Statement I: When the number of turns of a
coils is doubled, coefficient of self-inductance of the coil becomes 4 times.
$\propto(\text { number of turns })^{2}$

D Watch Video Solution

Mcq

1. In case of electromagnetic induction in a conductor
A. electromotive force is induced whenever
the conductor starts moving in a
magnetic field
B. induced electromotive force is
proportional to the magnetic flux linked
with the conductor
C. induced current may be zero even if the
induced emf is not zero
D. induced emf does not depend on the
resistance of the conductor

Answer: C::D

2. The induced emf between the two ends of a straight conductor moving perpendicular to its axis in a uniform magnetic field is
A. proportional to the length of the conductor
B. proportional to the velocity of the
conductor
C. proportional to the magnetic field

D. inversely proportional to the magnetic

field

Answer: A::C::D

D Watch Video Solution

3. The length and radius of a solenoid of N turns are I and respectively. The selfinductance of the solenoid is
A. proportional to N
B. proportional to N^{2}
C. inversely proportional to r
D. inversely proportional to I

Answer: A::C::D

D Watch Video Solution

4. Which of the following relations are

correct?

A. henry $=$ ohm \times second
B. farad =ohm/second
C. weber $=$ volt \times second
D. henry = weber/ampere

Answer: A:C:D

D Watch Video Solution

5. The mutual inductance of two adjacent coils depends on the
A. rate of change of current in any one of them
B. number of turns of the two solenoids
C. length of the solenoids
D. relative position of the solenoids

Answer: B::C::D

D Watch Video Solution
6. A conducting coil of resistance R and radius
r has its centre at the origin of the coordinate
system in a uniform magnetic field of induction B. When it is rotated about y-axis
through 90°, the change of flux in the coil is directly proportional to
A. B
B. R
C. r^{2}
D. r

Answer: B::C::D

D Watch Video Solution

7. A V-shaped conducting wire is moved with a speed of v in a magnetic field as shown in the
fig. Magnetic field is perpendicular to the paper, directed inwards, then
A. $v_{a}=v_{c}$
B. $v_{a}>v_{c}$

C. $v_{a}>v_{b}$

D. $v_{c}>v_{b}$

Answer: B::D

D Watch Video Solution

8. The magnetic flux (ϕ) linked with a coil
varies with time (t) as $\phi=a t^{n}$, where a and n
are constants. The induced emf in the coil is e.

Which of the following are correct?
A. if $0<n<1, e=0$
B. if $0<n<1, e \neq 0$ and $|\mathrm{e}|$ decreases
with time
C. if $\mathrm{n}=1$, e is constant
D. if $n>1,|e|$ increases with time

Answer: A::C

- Watch Video Solution

9. Current (i) passing through a coil varies with
time t as $i=2 t^{2}$. At 1 s total flux passing
through the coil is 10 Wb . Then
A. self-inductance of the coil is 10 H
B. self-inductance of the coil is 5 H
C. induced emf across the coil at 1 s is 20 V
D. induced emf across the coil at 1 s is 10 V

Answer: B::C

D Watch Video Solution

1. If the current through a solenoid changes
with time electromagnetic induction takes
place in the solenoid. This is known as self-
induction. In general, for a current I, the
induced emf in the coil is $e=-L \frac{d I}{d t}$.
L is the self-inductance of the solenoid. On the
other hand, such change in the current in a
solenoid can produce electromagnetic
induction in another adjacent solenoid. The
induced emf in the other solenoid
$e=-M \frac{d I}{d t}, \quad \mathrm{M} \quad$ is called the mutual inductance of the solenoids.

If L_{1} and L_{2} are the self-inductance of the adjacent coils then their mutual inductance
$M=k \sqrt{L_{1} L_{2}}$. If the magnetic flux produced by the current in one coil is totally linked with the other coil then $\mathrm{k}=1$.

- Watch Video Solution

2. If the current through a solenoid changes
with time electromagnetic induction takes
place in the solenoid. This is known as selfinduction. In general, for a current I, the induced emf in the coil is $e=-L \frac{d I}{d t}$. L is the self-inductance of the solenoid. On the other hand, such change in the current in a solenoid can produce electromagnetic induction in another adjacent solenoid. The induced emf in the other solenoid $e=-M \frac{d I}{d t}, M$ is called the mutual inductance of the solenoids.

If L_{1} and L_{2} are the self-inductance of the adjacent coils then their mutual inductance
$M=k \sqrt{L_{1} L_{2}}$. If the magnetic flux produced
by the current in one coil is totally linked with
the other coil then $\mathrm{k}=1$.

The self-inductance (in H) of a coil when the induced emf is $50 \mu V$ for a change of $1 \mathrm{~mA} . s^{-1}$ in current through it, is
A. 50
B. 5
C. 0.5
D. 0.05

Answer: D
3. If the current through a solenoid changes
with time electromagnetic induction takes
place in the solenoid. This is known as selfinduction. In general, for a current I, the induced emf in the coil is $e=-L \frac{d I}{d t}$. L is the self-inductance of the solenoid. On the other hand, such change in the current in a solenoid can produce electromagnetic induction in another adjacent solenoid. The induced emf in the other solenoid
$e=-M \frac{d I}{d t}, \quad \mathrm{M} \quad$ is called the mutual
inductance of the solenoids.

If L_{1} and L_{2} are the self-inductance of the adjacent coils then their mutual inductance
$M=k \sqrt{L_{1} L_{2}}$. If the magnetic flux produced by the current in one coil is totally linked with the other coil then $\mathrm{k}=1$.

If the induced emf in a coil totally linked with
the coil be $20 \mu V$ for change of $1 \mathrm{~mA} / \mathrm{s}$, the mutual inductance (in H) of the two coils is
A. 0.002
B. 0.02
C. 0.2
D. 2

Answer: B

- Watch Video Solution

4. If the current through a solenoid changes
with time electromagnetic induction takes
place in the solenoid. This is known as selfinduction. In general, for a current I , the induced emf in the coil is $e=-L \frac{d I}{d t}$.
L is the self-inductance of the solenoid. On the other hand, such change in the current in a solenoid can produce electromagnetic induction in another adjacent solenoid. The induced emf in the other solenoid $e=-M \frac{d I}{d t}, \quad \mathrm{M} \quad$ is called the mutual inductance of the solenoids.

If L_{1} and L_{2} are the self-inductance of the adjacent coils then their mutual inductance
$M=k \sqrt{L_{1} L_{2}}$. If the magnetic flux produced by the current in one coil is totally linked with the other coil then $\mathrm{k}=1$.

Self-inductance (in H) of the coil in question
(III) is
A. 0.1
B. 0.08
C. 0.01
D. 0.008

Answer: D
(D) View Text Solution
5. If the current through a solenoid changes
with time electromagnetic induction takes
place in the solenoid. This is known as selfinduction. In general, for a current I, the
induced emf in the coil is $e=-L \frac{d I}{d t}$.
L is the self-inductance of the solenoid. On the
other hand, such change in the current in a solenoid can produce electromagnetic induction in another adjacent solenoid. The induced emf in the other solenoid
$e=-M \frac{d I}{d t}, \quad M$ is called the mutual inductance of the solenoids.

If L_{1} and L_{2} are the self-inductance of the adjacent coils then their mutual inductance
$M=k \sqrt{L_{1} L_{2}}$. If the magnetic flux produced by the current in one coil is totally linked with the other coil then $\mathrm{k}=1$.

The negative sign in the expression of induced emf is explained by
A. Faraday's first law
B. Faraday's second law
C. Law of conservation of energy
D. Law of conservation of charge

Answer: C

- Watch Video Solution

Integer Answer Type

1. The current through a coil of self-inductance

500 mH is 4 A . What amount of magnetic energy (in J) is stored in its magnetic field?
2. A straight conductor of length 50 cm is moving with a velocity $5 \mathrm{~m} . s^{-1}$ in a magnetic field of strength $2 T$ in a direction perpendicular to the field. What is the emf (in V) induced between the two ends of the conductor?

D Watch Video Solution

3. The magnetic flux (ϕ) (in Wb) linked with a
100Ω coil changes with time t (in s) according to the relation $\phi=8 t^{2}-2 t+1$. What is the
value of induced current (in A) in the coil at $t=$ $2 s ?$

D Watch Video Solution

4. A straight conductor of length 10 cm is rotating in a vertical plane with one of its ends fixed. The angular velocity is $10 \mathrm{rad} . s^{-1}$. What is the value of emf (in μV) induced between
the two ends of the conductor if the horizontal component of earth's magnetic field at the place is $10^{-4} T$?
5. Find the change in magnetic flux (in Wb) in an inductor of 10 H in which the emf induced is 300 V in $10^{-2} s$.

- Watch Video Solution

6. An average induced emf of 0.20 V appears in
a coil when the current in it is changed from
5 A in one direction to 5 A in the opposite
direction in 0.20 s . Find the self-inductance of the coil in mH .
(D) Watch Video Solution

Examination Archive With Solution

1. Which of the following is the unit of magnetic flux?
A. tesla
B. tesla/ m^{2}
C. tesla $\times m^{2}$
D. weber $/ m^{2}$

Answer: C

- Watch Video Solution

2. Write Lenz's law in relation to electromagnetic inuction. Explain the law from the principle of conservation of energy.
3. A current flowing through a coil changes
from +2 A to -2 A in 0.05 s and an emf of 8 V is
induced in the coil. The value of selfinductance of the coil is
A. 0.8 H
B. 0.1 H
C. 0.2 H
D. 0.4 H

Answer: B
4. State Fleming's right hand rule. Define selfinductance of a coil. Explain non-inductive coil with diagram.

D Watch Video Solution

5. A metallic disc of radius 10 cm is rotating uniformly about a horizontal axis passing through its centre with angular velocity 10 revolution per second. A uniform magnetic
field of intensity $10^{-2} T$ acts along the axis of
the disc. Find the potential difference induced between the centre and the rim of the disc.

D Watch Video Solution

6. Dimension of magnetic flux is
A. $M L^{2} T^{-2} A^{-1}$
B. $M L T^{-1} A^{-2}$
C. $M L^{-1} T A^{-1}$
D. $M L^{-1} A$

Answer: A

- Watch Video Solution

7. What do you mean by magnetic flux density?

- Watch Video Solution

8. State Faraday's law of electromagnetic induction.
9. The magnetic flux through a coil is varying according to the relation
$\phi=\left(4 t^{2}+2 t-5\right) W b, \quad \mathrm{t}$ measured in
seconds. Calculate the induced current
through the coil at $t=2 s$, if the resistance of the coil is 5Ω.

D Watch Video Solution

10. Show that Lenz's law obeys the law of conservation of energy.

- Watch Video Solution

11. Mutual inductance of two coils can be increased by
A. decreasing the number of turns on the coils
B. increasing the number of turns on the coils
C. winding the coils on the wooden core
D. none of these

Answer: B

D Watch Video Solution

12. If L and R denote inductance and resistance
respectively, then the dimension of $\frac{L}{R}$ is
A. $M^{0} L^{0} T^{0}$
B. $M^{0} L^{0} T^{1}$
C. $M^{2} L^{0} T^{2}$
D. $M^{1} L^{1} T^{2}$

Answer: B

D Watch Video Solution

13. A horizontal straight wire 5 m long extending from east to west is falling with a speed of $10 \mathrm{~m} / \mathrm{s}$ at right angles to the horizontal component of earth's magnetic field $0.40 \times 10^{-4} W b . m^{-2}$.
find the instantaneous value of emf induced in the wire.
14. A horizontal straight wire 5 m long extending from east to west is falling with a speed of $10 \mathrm{~m} / \mathrm{s}$ at right angles to the horizontal component of earth's magnetic field $0.40 \times 10^{-4} W b . m^{-2}$.

What is the direction of the emf?

- Watch Video Solution

15. A horizontal straight wire 5 m long extending from east to west is falling with a speed of $10 \mathrm{~m} / \mathrm{s}$ at right angles to the horizontal component of earth's magnetic field $0.40 \times 10^{-4} W b . m^{-2}$.

Which end of the wire will be at higher potential? (Neglect acceleration due to gravity.)
16. Derive the expression for energy stored in an inductor of coefficient of self-inductance L carrying current i_{0}.

D Watch Video Solution

17. A coil of metallic wire is at rest in a nonuniform magnetic field. Would any electromotive force be induced in the coil?
18. A very small circular loop of radius a is initially (at $t=0$) coplaner and concentric with a much larger fixed circular loop of radius b. A constant I flows in the larger loop. The smaller
loop is rotated with a constant angular speed
ω about the common diameter. The emf
induced in the smaller loop as a function of time t is

$$
\text { A. } \frac{\pi a^{2} \mu_{0} I}{2 b} \omega \cos (\omega t)
$$

$$
\begin{aligned}
& \text { B. } \frac{\pi a^{2} \mu_{0} I}{2 b} \omega \sin \left(\omega^{2} t^{2}\right) \\
& \text { C. } \frac{\pi a^{2} \mu_{0} I}{2 b} \omega \sin (\omega t) \\
& \text { D. } \frac{\pi a^{2} \mu_{0} I}{2 b} \omega \sin ^{2}(\omega t)
\end{aligned}
$$

Answer: C

- Watch Video Solution

2. A straight conductor 0.1 m long moves in a uniform magnetic field 0.1 T. The velocity of the conductor is $15 \mathrm{~m} / \mathrm{s}$ and is directed
perpendicular to the field. The emf induced between the two ends of the conductor is
A. 0.10 V
B. 0.15 V
C. 1.50 V
D. 15.00 V

Answer: B
(Watch Video Solution
3. A conducting loop in the form of a circle is
placed in a uniform magnetic field with its
plane perpendicular to the direction of the field. An emf will be induced in the loop if
A. it is translated parallel to itself
B. it is rotated about one of its diameters
C. it is rotated about its own axis which is
parallel to the field
D. the loop is deformed from the original
shape

Answer: B::D

D Watch Video Solution

4. Two coils of self-inductances 6 mH and 8 mH are connected in series and are adjusted for highest coefficient of coupling. Equivalent selfinductance L for the assembly is approximately
A. 50 mH
B. 36 mH
C. 28 mH

D. 18 mH

Answer: C

D Watch Video Solution

5. As shown in the figure, a rectangular loop of
a conducting wire is moving away with a constant velocity v in a perpendicular direction from a very long straight conductor carrying a steady current I. When the breadth of the rectangular loop is very small compared
to its distance from the straight conductor,
how does the emf E induced in the loop vary with time t ?

> A. $E \propto \frac{1}{t^{2}}$
> B. $E \propto \frac{1}{t}$
C. $E \propto-\ln (t)$
D. $E \propto \frac{1}{t^{3}}$

Answer: A

Jee Main

1. In a coil of resistance 100Ω, a current is
induced by changing the magnetic flux through it as shown in the figure. The magnitude of change in flux through the coil is
A. 200 Wb
B. 225 Wb
C. 250 Wb
D. 275 Wb

Answer: C

D Watch Video Solution

Aipmt

1. A thin semicircular conducting ring (PQR) of
radius r is falling with its plane vertical in a
horizontal magnetic field B, as shown in The
potential difference developed across the ring when its speed is v, is
A. zero
B. $\frac{B v \pi r^{2}}{2}$ and P is at higher potential
C. $\pi r B v$ and R is at higher potential
D. $2 r B v$ and R is at higher potential

Answer: D

D View Text Solution
2. A conducting square frame of side a and a long straight wire carrying current I are located in the same plane as shown in the figure. The frame moves to the right with a constant velocity v . The emf induced in the frame will be proportional to
A. $\frac{1}{x^{2}}$
B. $\frac{1}{(2 x-a)^{2}}$
C. $\frac{1}{(2 x+a)^{2}}$
D. $\frac{1}{(2 x-a)(2 x+a)}$

Answer: D

D View Text Solution

Neet

1. A long solenoid has 1000 turns. When a current of 4A flows through it, the magnetic
flux linked with each turn of the solenoid is
$4 \times 10^{-3} W b$. The self-inductance of the solenoid is
A. 3 H
B. 2 H
C. 1 H
D. 4 H

Answer: C

D Watch Video Solution

2. A circular coil of radius $10 \mathrm{~cm}, 500$ turns and resistance 2Ω is placed with its plane, perpendicular to the horizontal component of
the earth's magnetic field. It is rotated about
its vertical diameter through 180° in 0.25 s .

The induced emf in the coil is (take

$$
\left.H_{E}=3.0 \times 10^{-5} T\right)
$$

A. $6.6 \times 10^{-4} V$
B. $1.4 \times 10^{-2} V$
C. $2.6 \times 10^{-2} V$
D. $3.8 \times 10^{-3} V$

Answer: D

3. Inside a parallel plate capacitor the electric field E varies with time as t^{2}. The variation of induced magnetic field with time is given by
A. a) t^{2}
B. b) no variation
C. c) t^{3}
D. d) t

Answer: D

D Watch Video Solution
4. The magnetic potential energy stored in a certain inductor is 25 mJ , when the current in
the inductor is 60 mA . This inductor is of inductance
A. 1.389 H
B. 138.88 H
C. 0.138 H
D. 13.89 H

Cbse Scanner

1. A bar magnet is moved in the direction
indicated by the arrow between two coils PQ
and CD. Predict the directions of induced

current in each coil.

2. The motion of copper plate is damped when
it is allowed to oscillate between the two plates of a magnet. What is the cause of this damping?

- Watch Video Solution

3. A rectangular conductor LMNO is placed in a uniform magnetic field of 0.5 T . The field is
directed perpendicular to the plane of the conductor. When the arm MN of length of 20
cm is moved towards left with a velocity of 10
$\mathrm{m} . s^{-1}$, calculate the emf induced in the arm.

Given the resistance of the arm to be 5Ω, (assuming that the other arms are of negligible resistance) find the value of the current in the arm.

D Watch Video Solution

4. A wheel with 8 metallic spokes each 50 cm
long is rotated with a speed of $120 \mathrm{rev} . \mathrm{min}^{-1}$ in a plane normal to the horizontal
component of the Earth's magnetic field. The
Earth's magnetic field at the place in 0.4 G and the angle of dip is 60°. Calculate the emf induced between the axle and the rim of the wheel. How will the value of emf be affected if the number of spokes were increased.

D Watch Video Solution

5. How does the mutual inductance of a pair of coils change when
distance between the coils is increased and

Watch Video Solution

6. How does the mutual inductance of a pair of coils change when number of turns in the coils is increased?

- Watch Video Solution

7. A light metal disc on the top of an electromagnet is thrown up as the current is switched on. Why? Give reason.
8. The motion of copper plate is damped when it is allowed to oscillate between the two plates of a magnet. What is the cause of this damping?

- Watch Video Solution

9. A conducting loop is held above a current carrying wire PQ as shown in the figure. Depict the direction of the current induced in the
loop when the current in the wire $P Q$ is constantly increasing.

- Watch Video Solution

10. Define the term self-inductance of a solenoid. Obtain the expression for the magnetic energy stored in an inductor of selfinductance L to build up a current I through it.
11. A varying current in a coil change from 10A to 0 in 0.5 sec . If the average emf induced in the coil is 220 V , the self inductance of the coil is :

D Watch Video Solution

12. A rod of length I is moved horizontally with
a uniform velocity v in a direction perpendicular to its length through a region in which a uniform magnetic field is acting
vertically downward. Derive an expression for the emf induced across the ends of the rod.

D Watch Video Solution

13. How does one understand this motional emf by invoking the Lorentz force acting on the free charge carriers of the conductor? Explain.
14. Describe, with the help of a suitable diagram, how one can demonstrate that emf can be induced in a coil due to the change of magnetic flux. Hence state Faraday's law of electromagnetic induction.

D Watch Video Solution

15. Two loops, one rectangular of dimensions
$10 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ and second of square shape of side 5 cm are moved out of a uniform
magnetic field \vec{B} perpendicular to the planes of the loops with equal velocity v as is shown in the figure.

In which case will the emf induced be more?

- Watch Video Solution

16. Two loops, one rectangular of dimensions
$10 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ and second of square shape of side 5 cm are moved out of a uniform magnetic field \vec{B} perpendicular to the planes
of the loops with equal velocity v as is shown in the figure.

In which case will the current flowing through the two loops be less?

D View Text Solution

17. Sketch the change in flux, emf and force when a conducting rod $P Q$ of resistance R and
length L moves freely to and fro between A and C will speed v on a rectangular conductor
placed in uniform magnetic field as shown in the figure.

D View Text Solution
18. Define mutual inductance.

D Watch Video Solution

19. A pair of adjacent coils has a mutual
inductance of 1.5 H . If the current in one coil
changes from 0 to 20 A in 0.5 s , what is the change of flux linkage with the other coil?

D Watch Video Solution

20. A long straight current carrying wire passes normally through the centre of circular loop. If the current through the wire increases, will there be an induced emf in the loop? Justify.
21. Predict the polarity of the capacitor in the situation described below:

- View Text Solution

22. The average self-induced emf in a 25 mH solenoid when the current in it falls from 0.2A to $O A$ in 0.01 second, is
23. What is the direction of induced currents in metal rings 1 and 2 when current I in the wire is increasing steadily?

- View Text Solution

24. A horizontal conducting rod 10 m long extending from east to west is falling with a speed $5.0 \mathrm{~m} . s^{-1}$ at right angles to the horizontal component of the Earth's magnetic field, $0.3 \times 10^{-4} W b . m^{-2}$.

Find
the

rod.

D Watch Video Solution

25. Define the term 'self-inductance' and write

 its SI unit.
D Watch Video Solution

26. Obtain the expression for the mutual inductance of two long coaxial solenoids S_{1}
and s_{2} wound one over the other, each of length L and radii r_{1} and r_{2} and n_{1} and n_{2} number of turns per unit length, when a current I is set up in the outer solenoid S_{2}.

- Watch Video Solution

27. Define self-inductance of a coil. Obtain the expression for the energy stored in an inductor L connected across a source of emf.

D Watch Video Solution

28. An aeroplane is flying horizontally from west to east with a velocity of $900 \mathrm{~km} / \mathrm{h}$.

Calculate the potential difference developed between the ends of its wings having a span of 20 m . The horizontal component of the Earth's magnetic field is $5 \times 10^{-4} T$ and the angle of dip is 30°.

D Watch Video Solution

