©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CHHAYA PHYSICS (BENGALI

ENGLISH)

QUESTION PAPER OF NEET 2017

Part A

1. Very high or very low resistance cannot be measured correctly by using the Wheatstone
bridge principle. Give reason.

D Watch Video Solution

2. The voltage applied across the cathode and anode of an X-ray generating machine is 50000 V. Determine the shortest wavelength of the X-ray emitted. Given $h=6.62 \times 10^{-34} \quad J \cdot s$.

Or, Write down the equation of β-decay. Why is the detection of neutrinos difficult?
3. Define amplitude modulation. The height of
a TV tower is 125 m . Find the maximum distance up to which transmitted signal from
the tower is available (radius of the earth

$$
\left.=6.4 \times 10^{6} \mathrm{~m}\right) .
$$

- Watch Video Solution

4. Define surface density of electric charge.

Two large conducting spheres carrying charges Q_{1} and Q_{2} are brought close to each
other. Is the magnitude of the electrostatice force between them exactly given by $\frac{Q_{1} Q_{2}}{4 \pi \in_{0} r^{2}}$, where r is the distance between their centres?

Or, Define dielectric constant . Two charges $\pm 20 \times 10^{-6} \mathrm{C}$, placed 2 mm apart from an electric dipole. Determine the electric field at a point 10 cm away from the centre of the dipole on its perpendicular bisector. Given, $\frac{1}{4 \pi \in_{0}}=9 \times 10^{9} \quad N \cdot m^{2} \cdot C^{-2}$.

- Watch Video Solution

5. Define dielectric polarisation.

D Watch Video Solution

6. Deduce an expression for the potential energy stored in a paralled plate capacitor

D Watch Video Solution

7. What is cyclotron frequency? Is it possible for a cyclotron to accelerate neutrons?
8. Write down the mathematical form of Ampere's circuital law related to magnetic field produced by electric current.

- Watch Video Solution

9. A rod of length ' L ' is bent in the form a circular loop with a number of turns and is suspended in a magnetic field of intensity B.

Find the expression for the maximum torque
produced on the circular loop when a current '
I ' is passed through it.

D Watch Video Solution
10. State one defect of Huygen's wave theory.

- Watch Video Solution

11. Define resolving power of an optical instrument.
12. The resolving power of a microscope at $6000 \AA$ is 10^{4}. What is its resolving power at 4000 Å ?

D Watch Video Solution

13. An image of size $\frac{1}{n}$ times the object size is
formed in a convex mirror. If r is the radius of corvature of the mirror, what would be the object distance?

Watch Video Solution

14. In a magnetic field the curvature of the path of a β-particle is greater than that of an α-particle of the same speed. Explain why.

- Watch Video Solution

15. What will be the wavelength of the light emitted due to a transition of electron from n
$=3$ orbit to $\mathrm{n}=2$ orbit in hydrogen atom?

Given: the Rydberg constant for hydrogen atom is $R_{H}=1.09 \times 10^{7} m^{-1}$.

D Watch Video Solution

16. Why is nuclear fusion reaction called a thermonuclear reaction?

- Watch Video Solution

17. In a nuclear decay, a nucleus emits one α particle and then two β-particles one after
another. Show that the final nucleus is an isotope of the former nucleus.

D Watch Video Solution

18. State one difference between n-type and p type semiconductors.

D Watch Video Solution

19. In a transistor, emitter-base junction is always forward biased, while the collector-base
junction is reverse biased. Why?

D Watch Video Solution

20. Show that equivalent resistance in parallel
combination is always less than each of the individual resistances connected in the combination.

- Watch Video Solution

21. How can the sensitivity of a potentiometer be increased?

D Watch Video Solution

22. A potentiometer has 10 wires each of 1 meter length and the total resistance is 20Ω.

Find the resistance to be connected to the driving battery of emf 2 volts to produce a potential drop of $1 \mu V$ per millimeter.
23. Draw a graph representing the change in specific resistance with temperature.

D Watch Video Solution

24. Find the equivalent resistance between the
two ends A and B of the following circuit:

25. Define lost volt. state the factors on which the internal resistance of a cell depends.

- Watch Video Solution

26. Define wattless current.

D Watch Video Solution
27. Show that Lenz's law obeys the law of conservation of energy.

- Watch Video Solution

28. Show that in ac circuit the average power dissipated per cycle in a pure inductor is zero.
29. Compare between inductive reactane and capacitive reactance.

- Watch Video Solution

30. State the factors on which the peak value of alternating emf depends.
31. In an LCR series combination, $R=400 \Omega$, $\mathrm{L}=$

100 mH and $\mathrm{C}=1 \mu F$. This combination is connected to a $25 \sin 2000 \mathrm{t}$ volt voltage source. Find (i) the impedance of the circuit and (ii) the peak value of the circuit current.

- Watch Video Solution

32. In a certain medium the path difference
$5 \times 10^{-5} \mathrm{~cm}$ corresponds to a phase
difference π. Estimate the speed of the light waves of frequency $3 \times 10^{14} \mathrm{~Hz}$ in the medium.

D Watch Video Solution

33. The optic axes of two polaroids are inclined at an angle of 45° with other, Unpolarised light of intensity I_{0} being incident on the first polaroid emerges from the second polaroid. Find the intensity of the emergent light.
34. Choose the correct alternative:

Electro-magnetic wave does not carry
A. energy
B. charge
C. information
D. momentum

Answer:

D Watch Video Solution
2. Choose the correct alternative:

When green light is incident on a certain metal surface, electrons are emitted but no electrons are emitted with yellow light. If red light is incident on the same metal surface
A. more energetic electrons will be emitted
B. less energetic electrone will be emitted
C. emission of electrons will depend on the intensity of light

D. no electrons will be emitted

Answer:

D Watch Video Solution

3. Choose the correct alternative:

Two capacitors of capacitances C_{1} and C_{2} are connected in parallel. If a charge q is given to the assembly, the charge gets shared. The ratio of the charge on the capacitor C_{1} to the charge on C_{2} is
A. $\frac{C_{1}}{C_{2}}$
B. $\frac{C_{2}}{C_{1}}$
C. $C_{1} C_{2}$
D. $\frac{1}{C_{1} C_{2}}$

Answer:

D Watch Video Solution
4. Choose the correct alternative:

A parallel beam of white light falls on one face
of a prism. The light emerging from the other

face suffers

A. angular deviation, no dispersion
B. dispersion, no angular deviation
C. both dispersion and angular deviation
D. none of these

Answer:
(Watch Video Solution
5. Choose the correct alternative:

For a transistor if $\beta=100$, then α will be
A. 0.99
B. 1.01
C. 100
D. 0.01

Answer:
(D) Watch Video Solution

6. Choose the correct alternative:

The lengths, radii and specific resistances of two conducting wires are each in the ratio of 1
: 3 . If the resistance of the thinner wire is 10Ω,
then the resistance of the other wire will be
A. 40Ω
B. 20Ω
C. 10Ω
D. 5Ω
7. Choose the correct alternative:

A radioactive element emits 2α-particles and
3β-particles. The values of atomic number (Z)
and mass number (A) of the new element will be
A. $(A+5),(Z-1)$
B. $(A-5),(Z+1)$
C. (A-8), (Z-1)
D. $(A-8),(Z+1)$

Answer:

D Watch Video Solution

8. Choose the correct alternative:

The number of electrons in 2C of charge is
A. 12.5×10^{-18}
B. 12.5×10^{-19}
C. 12.5×10^{18}
D. 12.5×10^{19}

Answer:

D Watch Video Solution

9. Choose the correct alternative:

A luminous object is separated from a screen
by a distance D. What is the greatest focal
length that a lens should have to focus the
image of the object on the screen?
A. $\frac{D}{4}$
B. $\frac{D}{2}$
C. D
D. 4 D

Answer:

D Watch Video Solution

10. Radio wave of fixed amplitude can be produced by
A. using filter
B. using rectifier

C. using FET

D. using oscillator

Answer:

D Watch Video Solution

11. Choose the correct alternative:

Mutual inductance of two coils can be increased by
A. decreasing the number of turns on the
coils
B. increasing the number of turns on the coils
C. winding the coils on the wooden core

D. none of these

Answer:

12. Choose the correct alternative:

If L and R denote inuctance and resistance
respectively, then the dimension of $\frac{L}{R}$ is
A. $M^{0} L^{0} T^{0}$
B. $M^{0} L^{0} T^{1}$
C. $M^{2} L^{0} T^{2}$
D. $M^{1} L^{1} T^{2}$

Answer:

13. Choose the correct alternative:

A straight conductor of length Im carrying a
current IA is bent in the form of a semicircle.

The magnetic field (in tesla) at the centre of the semicircle is

$$
\begin{aligned}
& \text { A. } \frac{\pi^{2} I}{l} \times 10^{-7} \\
& \text { B. } \frac{\pi I}{l} \times 10^{-7} \\
& \text { C. } \frac{\pi I}{l^{2}} \times 10^{-7} \\
& \text { D. } \frac{\pi I^{2}}{l} \times 10^{-7}
\end{aligned}
$$

Part B Section li

1. What will be the change in focal length f of a concave mirror when immersed in a liquid of refractive index n ?
2. Write down the values of
$(\bar{X}+X)$ and $(X \cdot \bar{X})$ in Boolean algebra.

D Watch Video Solution

Question Papers Of Jee Main 2017

1. A man grows into a giant such that his linear dimensions increase by a factor of 9 . Assuming
that his density remains same, the stress in
the leg will change by a factor of
A. 9
B. $\frac{1}{9}$
C. 81
D. $\frac{1}{81}$

Answer:

D Watch Video Solution

2. A body is thrown vertically upwards. Which one of the following graphs correctly represent the velocity vs time?
B.

C.

Answer:

3. A body of mass $m=10^{-2} \mathrm{~kg}$ is moving in a medium and experiences a frictional force $F=-$ $k v^{2}$. Its initial speed is $v_{0}=10 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. If after 10 s , its energy is $\frac{1}{8} m v_{0}^{2}$ the value of k will be

$$
\begin{aligned}
& \text { A. } 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{-1} \\
& \text { B. } 10^{-3} \mathrm{~kg} \cdot \mathrm{~s}^{-1} \\
& \text { C. } 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{-1} \\
& \text { D. } 10^{-1} \mathrm{~kg} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

Answer:

4. A time dependent force $F=6 t$ acts on a particle of mass 1 kg . If the particle starts from rest, the work done by the force during the first 1 s will be
A. 4.5 J
B. 22 J
C. 9 J
D. 18 J

Answer:

- Watch Video Solution

5. The moment of inertia of a uniform cylinder of length l and radius R about its perpendicular bisector is I . What is the ratio $\frac{l}{R}$ such that the moment of inertia is minimum?
A. $\sqrt{\frac{3}{2}}$
B. $\frac{\sqrt{3}}{2}$
C. 1
D. $\frac{3}{\sqrt{2}}$

Answer:

D Watch Video Solution

6. A slender uniform rod of mass M and length

I is pivoted one end so that it can rotate in a
vertical plane (see figure). There is negligible friction at the pivot. The free end is held vertically above the pivot and then released.

The angular acceleration of the rod when it makes an angle θ with the vertical is

CTB
A. $\frac{3 g}{2 l} \sin \theta$
B. $\frac{2 g}{3 l} \sin \theta$
C. $\frac{3 g}{2 l} \cos \theta$
D. $\frac{2 g}{3 l} \cos \theta$

Answer:

D Watch Video Solution

7. The variation of acceleration due to gravity

g with distance d from centre of the earth is

 best represented by ($\mathrm{R}=$ earth's radius)

D.

Answer:

D Watch Video Solution

8. A copper ball of mass 100 g is at a temperature T . it is dropped in a copper calorimeter of mass 100 g , filled with 170 g of water at room temperature. Subsequently, the
temperature of the system is found to be 75°
C. T is given by (given: room temperature $=$ $30^{\circ} \mathrm{C}$, specific heat of copper $=0.1 \mathrm{cal} / \mathrm{g}$
A. $800^{\circ} C$
B. $885^{\circ} C$
C. $1250^{\circ} \mathrm{C}$
D. $825^{\circ} \mathrm{C}$

Answer:

- Watch Video Solution

9. An external pressure P is applied on cube at
$0 \quad{ }^{\circ} C$ so that it is equally compressed from
all sides. K is the bulk modulus of the material
of the cube and α is its coefficient of linear expansion. Suppose we want to bring the cube
to its original size by heating. The temperature should be raised by
A. $\frac{P}{3 \alpha K}$
B. $\frac{P}{\alpha K}$
C. $\frac{3 \alpha}{P K}$
D. $3 P K \alpha$

Answer:

D Watch Video Solution

10. C_{P} and C_{v} are specific heats at constant pressure and constant volume respectively. It
is observed that
$C_{p}-C_{v}=a$ for hydrogen gas
$C_{p}-C_{v}=b \quad$ for nitrogen gas

The correct relation between a and b is

$$
\text { A. } a=\frac{1}{14} b
$$

B. $a=b$
C. $a=14 b$
D. $a=28 b$

Answer:

- Watch Video Solution

11. The temperature of an open room of volume $30 m^{3}$ increases from $17^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C}$ due to sunshine. The atmospheric pressure in the room remains $1 \times 10^{5} \mathrm{~Pa}$. If n_{i} and n_{f} are
the number of molecules in the room before and after heating, then $n_{f}-n_{i}$ will be

A. -1.61×10^{23}
B. 1.38×10^{23}
C. 2.5×10^{25}
D. -2.5×10^{25}

Answer:

12. A particle is executing simple harmonic motion with a time period T. At time $t=0$, it is at its position of equilibrium. The kinetic energy-time graph of the particle will look like

A.
B.

C.

D.

Answer:

D Watch Video Solution

13. An observer is moving with half the speed
of light towards a stationary microwave
source emitting waves at frequency 10 GHz .

What is the frequency of the microwave measured by the observer? (speed of light = $\left.3 \times 10^{8} m \cdot s^{-1}\right)$
A. 10.1 GHz

B. 12.1 GHz

C. 17.3 GHz
D. 15.3 GHz

Answer:

D Watch Video Solution

14. An electric dipole has fixed dipole moment \vec{p}, which makes angle θ with respect to x - axis. When subjected to an electric field $\overrightarrow{E_{1}}=E \hat{i}$,it experiences a torque $\quad \overrightarrow{T_{1}}=\tau \hat{k}$. When
subjected to another electric field
$\overrightarrow{E_{2}}=\sqrt{3} E_{1} \hat{j} \quad$ it experiences a torque $\overrightarrow{T_{2}}=-\overrightarrow{T_{1}}$. The angle θ is
A. 30°
B. 45°
C. 60°
D. 90°

Answer:

D Watch Video Solution
15. A capacitance of $2.0 \mu \mathrm{~F}$ is required in an electrical circuit across a potential difference of 1.0 kV . A large number of 1 muF capacitors
are avilable which can withstand a potential difference of not more than 300 V . The minimum number of capacitors required to achieve this is
A. 2
B. 16
C. 24
D. 32

Answer:

- Watch Video Solution

16. In the given circuit diagram when the
current reaches steady state in the circuit, the
charge on the capacitor of capacitance C will
be

A. CE
B. $\frac{C E r_{1}}{r_{2}+r}$
C. $\frac{C E r_{2}}{r+r_{2}}$
D. $\frac{C E r_{1}}{r_{1}+r}$

Answer:

D Watch Video Solution

17. In the given circuit the current in each resistance is

A. 1A
B. 0.25 A
C. 0.5 A
D. zero

Answer:

D Watch Video Solution

18. A magnetic needle of magnetic moment
$6.7 \times 10^{-2} A \cdot m^{2}$ and moment of inertia
$7.5 \times 10^{-6} \mathrm{~kg} \cdot \mathrm{~m}^{2} \quad$ is performing simple
harmonic oscillations in a magnetic field of
0.01 T. Time taken for 10 complete oscillations is
A. 6.65 s
B. 8.89 s
C. 6.98 s
D. 8.76 s

Answer:
(Watch Video Solution
19. When a current of 5 mA is passed through a galvanometer having a coil of resistance 15Ω,
it shows full scale deflection. The value of the resistance to be put in series with the galvanometer to convert it into a volmeter of range $0-10 \mathrm{~V}$ is

A. $1.985 \times 10^{3} \Omega$
B. $2.045 \times 10^{3} \Omega$
C. $2.535 \times 10^{3} \Omega$
D. $4.005 \times 10^{3} \Omega$

Answer:

D Watch Video Solution

20. In a coil of resistance 100Ω, a current is
induced by changing the magentic flux through it as shown in the figure. The magnitude of change in flux through the coil

A. 200 Wb
B. 225 Wb
C. 250 Wb
D. 275 Wb

Answer:

D Watch Video Solution

21. An electron beam is accelerated by a potential difference V to hit a metallic target to produce X - rays. It produces continuous as well as characteristic X - ray. If $\lambda_{\text {min }}$ is the smallest possible wavelength of X-ray in the spectrum, the varistion of $\log \lambda_{\min }$ with $\log \mathrm{V}$ is correctly represented in

22. A diverging lens with magnitude of focal
length 25 cm is placed at a distance of 15 cm
from a converging lens of magnitude of focal length 20 cm . A beam of parallel light falls on the diverging lens. The final image formed is
A. real and at a distance of 40 cm from
convergent lens
B. virtual and at a distance of 40 cm from
the convergent lens
C. real and at a distance of 40 cm from the
divergent lens
D. real and at a distance of 6 cm from the
convergent lens

Answer:
(Watch Video Solution
23. In a Young's double slit experiment,slits are separated by 0.5 mm , and the screen is placed

150 cm away. A beam of light consisting of two wavelengths, 650 nm and 520 nm is used to obtain interference fringes on the screen. The
least distance from the common central maximum to the point where the bright fringes due to both the wavelengths coincide is
A. 1.56 mm
B. 7.8 mm
C. 9.75 mm
D. 15.6 mm

Answer:

D Watch Video Solution

24. A particle A of mass m and initial velocity v collides with a particle B of mass $\frac{m}{2}$ which is at rest. The collision is head-on and elastic.

The ratio of the Broglie wavelengths λ_{A} to λ_{B}
after collision is

A. $\frac{\lambda_{A}}{\lambda_{B}}=\frac{1}{3}$
B. $\frac{\lambda_{A}}{\lambda_{B}}=2$
C. $\frac{\lambda_{A}}{\lambda_{B}}=\frac{2}{3}$
D. $\frac{\lambda_{A}}{\lambda_{B}}=\frac{1}{2}$
25. A radioactive nucleus A with a half-life, T, decays into a nucleus B. At $t=0$, there is no nucleus B. At sometime t, the ratio of the number of B to that of A is 0.3 . then, t is given by

$$
\begin{aligned}
& \text { A. } t=\frac{T}{2} \frac{\log 2}{\log 1.3} \\
& \text { B. } t=T \frac{\log 1.3}{\log 2} \\
& \text { C. } t=T \log (1.3)
\end{aligned}
$$

D. $t=\frac{T}{\log (1.3)}$

Answer:

D Watch Video Solution

26. In a common-emitter amplifier circuit using

an $n-p-n$ transistor, the phase difference between the input and the output voltages
will be
A. 45°
B. 90°
C. 135°
D. 180°

Answer:

- Watch Video Solution

27. Which of the following statements is false?
A. Wheatstone bridge is the most senitive
when all the four resistances are of the
same order of magnitude.
B. In a balanced Wheatstone bridge if the
cell and the galvanometer are
exchanged, the null point is disturbed.
C. A rheostat can be used as a potential
divider.
D. Kirchhoff's second law represents energy
conservation.

Answer:

28. The following observations were taken for determining surface tension T of water by capilary method:
diameter of capillary, $D=1.25 \times 10^{-2} \mathrm{~m}$
rise of water, $\mathrm{h} 1.45 \times 10^{-2} \mathrm{~m}$.
Using $g=9.80 m / s^{2}$ and the simplified relation $T=\frac{r h g}{2} \times 10^{3} \mathrm{~N} / \mathrm{m}$, the possible error in surface tension is closest to
A. 0.15%
B. 1.5%
C. 2.4%
D. 10%

Answer:

D Watch Video Solution

Question Papers Of Neet 2017

1. A molecule of a substance has permanent dipole moment p. A mole of this substance is polarised by applying a strong electrostatic
field E. The direction of the field is suddenly
changed by an angle of 60°. If N is the

Avogadro's number the amount of work done by the field is
A. 2 NpE
B. $\frac{1}{2} \mathrm{NpE}$
C. NpE
D. $\frac{3}{2} \mathrm{NpE}$

Answer:

2. If the angle of a prism is 60° and angle of

minimum deviation is 40°, then the angle of refraction will be
A. 4°
B. 30°
C. 20°
D. 3°

Answer:

- Watch Video Solution

3. A student performs an experiment of measuring the thickness of a slab with a vernier calliper whose 50 divisions of the vernier scale are equal to 49 divisions of the main scale. He noted that zero of the vernier scale is between 7.00 cm and 7.05 cm mark of
the main scale and 23 rd division of the vernier
scale exactly coninides with the scale. the measured value of the thickness of the given
slab using the calliper will be
A. 7.73 cm
B. 7.23 cm
C. 7.023 cm
D. 7.073 cm

Answer:

D Watch Video Solution

4. If the longest wavelength in the ultraviolet region of hydrogen spectrum is λ_{0} then the shortest wavelength in its infrared region is
A. $\frac{46}{7} \lambda_{0}$
B. $\frac{20}{3} \lambda_{0}$
C. $\frac{36}{5} \lambda_{0}$
D. $\frac{27}{4} \lambda_{0}$

Answer:

D Watch Video Solution

5. A circular coil of radius $10 \mathrm{~cm}, 500$ turns and resistance 2Ω is placed with its plane, perpendicular to the horizontal component of
the earth's magnetic field. It is rotated about
its vertical diameter through 180° in 0.25 s.

The induced emf in the coil is (take

$$
\left.H_{E}=3.0 \times 10^{-5} T\right)
$$

A. $6.6 \times 10^{-4} V$
B. $1.4 \times 10^{-2} V$
C. $2.6 \times 10^{-2} \mathrm{~V}$
D. $3.8 \times 10^{-3} \mathrm{~V}$

Answer:

6. Two reasons for using soft iron as the material for electromagnets.
A. low permeability and high retentivity
B. high permeability and low retentivity
C. low permeability and low retentivity
D. high permeability and high retentivity

Answer:

7. A person has near point at 60 cm . The focal
length of spectacles lenses to red at 22 cm having glasses separated 2 cm from the eyes is
A. 40 cm
B. 10 cm
C. 20 cm
D. 30 cm

Answer:

8. Two sides of a semiconductor germanuim crystal A and B are doped with arsenic and indium, respectively, They are connected to a battery as shown in figure.

The correct graph between current and voltage for the arrangement is

Answer:

9. A bulb connected in series with an air-cored solenoid is lit by an ac source. If a soft iron core is introduced in the solenoid

A. the bulb stops glowing
B. the bulb will glow brighter
C. there is no change in glow of bulb

D. the bulb will become dimmer

Answer:

D Watch Video Solution

10. Due to Doppler effect, the shift in wavelength observed is $0.1 \AA$, for a star producing a wavelength $6000 \AA$. The velocity of recession of the star will be
A. $20 \mathrm{~km} \cdot \mathrm{~s}^{-1}$
B. $2.5 \mathrm{~km} \cdot \mathrm{~s}^{-1}$
C. $10 \mathrm{~km} \cdot s^{-1}$
D. $5 \mathrm{~km} \cdot s^{-1}$

Answer:

D Watch Video Solution

11. The angular momentum of a rigid body of mass m about an axis is n times the linear momentum (P) of the body. Total kinetic energy of the rigid body is:
A. $\frac{n^{2} P^{2}}{2}$
B. $\frac{P^{2}\left[1+n^{2}\right]}{2 m}$
C. $\frac{n^{2} P^{2}}{2 m}$
D. $n^{2} P^{2} \times 2 m$

Answer:

- Watch Video Solution

12. A parallel plate capacitor is to be designed, using a dielectric of dielectric constant 5 , so as to have a dielectric strength of $10^{9} V \cdot m^{-1}$. If
the votage rating of the capacitor is 12 kV , the minimum area of each plate required to have a capacitance of 80 pF is
A. $10.5 \times 10^{-6} m^{2}$
B. $21.7 \times 10^{-6} m^{2}$
C. $25.0 \times 10^{-5} \mathrm{~m}^{2}$
D. $12.5 \times 10^{-5} m^{2}$

Answer:

D Watch Video Solution
13. A cyclist on a level road takes a sharp circular turn of radius $3 \mathrm{~m}\left(\mathrm{~g}=10 \mathrm{~ms}^{-2}\right)$. If the coefficient of static friction between the cycle tyres and the road is 0.2 , at which of the following speeds will the cyclist not skid while taking the turn?
A. $14.4 \mathrm{~km} \cdot h^{-1}$
B. $7.2 k m \cdot h^{-1}$
C. $9 \mathrm{~km} \cdot h^{-1}$
D. $10.8 \mathrm{~km} \cdot h^{-1}$

Answer:

D Watch Video Solution

14. An electron moves straight inside a charged parallel plate capacitor of uniform charge density σ. The space between the plates is filled with uniform magnetic field of intensity B, as shown in the figure. Neglecting effect of gravity, the time of straight line
motion of the electron in the capacitor is

A. $\frac{\varepsilon_{0} l B}{\sigma}$
B. $\frac{\sigma}{\varepsilon_{0} l B}$
C. $\frac{\varepsilon_{0} B}{\sigma}$
D. $\frac{\sigma}{\varepsilon_{0} B}$

Answer:

D Watch Video Solution

15. The volume of 1 mole of an ideal gas with
the adiabatic exponent λ is changed according to the relation $V=\frac{b}{T}$ where $\mathrm{b}=$ constant. The amount of heat absorbed by the
gas in the process if the temperature is increased by ΔT will be

$$
\text { A. }\left(\frac{1-\lambda}{\lambda+1}\right) R \Delta T
$$

B. $\frac{R}{\lambda-1} \Delta T$
C. $\left(\frac{2-\lambda}{\lambda-1}\right) R \Delta T$
D. $\frac{R \Delta T}{\lambda-1}$

Answer:

- Watch Video Solution

16. Two coherent sources of intensity ratio α interfere. The value of $\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}$ is
A. $2 \sqrt{\frac{\alpha}{1+\alpha}}$
B. $\frac{2 \sqrt{\alpha}}{1+\alpha}$
C. $\frac{1+\alpha}{2 \sqrt{\alpha}}$
D. $\frac{1-\alpha}{1+\alpha}$

Answer:

D Watch Video Solution

17. When the temperature of a gas is raised from $30^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$, the percentage increase in the rms velocity of the molecules will be
A. 60%
B. 10%
C. 15%
D. 30%

Answer:

D Watch Video Solution

18. A parallel beam of light of wavelength λ is incident normally on a single slit of width d.

Diffraction bands are obtained on a screen
placed at a distance D from the slit. The second dark band from the central bright band will be at a distance given by

$$
\begin{aligned}
& \text { A. } \frac{2 \lambda D}{d} \\
& \text { B. } \lambda \mathrm{dD} \\
& \text { C. } \frac{\lambda D}{2 d} \\
& \text { D. } \frac{2 \lambda d}{D}
\end{aligned}
$$

Answer:

- Watch Video Solution

19. A thin uniform rod of mass M and length L
is rotating about a perpendicular axis passing
through its centre with a constant angular
velocity ω. Two objects each of mass $\frac{M}{3}$ are attached gently to the two end of the rod. The rod will now rotate with an angular velocity of

$$
\begin{aligned}
& \text { A. } \frac{1}{3} \omega \\
& \text { B. } \frac{1}{7} \omega \\
& \text { C. } \frac{1}{6} \omega \\
& \text { D. } \frac{1}{2} \omega
\end{aligned}
$$

Answer:

- Watch Video Solution

20. Two open organ pipes of fundamental frequencies n_{1} and n_{2} are joined in series.

The fundamental frequency of the new pipe so obtained will be
A. $\left(n_{1}+n_{2}\right)$
B. $\frac{n_{1}+n_{2}}{2}$
C. $\sqrt{n_{1}^{2}+n_{2}^{2}}$
D. $\frac{n_{1} n_{2}}{n_{1}+n_{2}}$

Answer:

D Watch Video Solution

21. The density of a metal at normal pressure
is ρ. Its density when it is subjected to an excess pressure p is ρ^{\prime}. If B is bulk modulus of the metal, the ratio of $\frac{\rho^{\prime}}{\rho}$ is

$$
\text { A. } 1+\frac{B}{p}
$$

$$
\begin{aligned}
& \text { B. } \frac{1}{1-\frac{p}{B}} \\
& \text { C. } 1+\frac{p}{B} \\
& \text { D. } \frac{1}{1+\frac{p}{B}}
\end{aligned}
$$

Answer:

D Watch Video Solution

22. In the electrical circuit shown in the figure, the current I through the side $A B$ is

A. $\frac{6}{25}$ A
B. $\frac{10}{33} \mathrm{~A}$
C. $\frac{1}{5} \mathrm{~A}$
D. $\frac{10}{63} \mathrm{~A}$

Answer:

23. If the mass of neutron is $1.7 \times 10^{-27} \mathrm{~kg}$,
then the de Broglie wavelength of neutron of energy 3 eV is
$\left(h=6.6 \times 10^{-34} J \cdot s\right)$
A. $1.4 \times 10^{-11} \mathrm{~m}$
B. $1.6 \times 10^{-10} \mathrm{~m}$
C. $1.65 \times 10^{-11} \mathrm{~m}$
D. $1.4 \times 10^{-10} \mathrm{~m}$

Answer:
24. Imagine earth to be a solid sphere of mass
M and radius R. If the value of acceleration due to gravity at a depth d below earth's surface is same as its value at a height h above its
surface and equal to $\frac{g}{4}$ (where g is the value of acceleration due to gravity on the surface of earth), the ratio of $\frac{h}{d}$ will be
A. 1
B. $\frac{4}{3}$
C. $\frac{3}{2}$
D. $\frac{2}{3}$

Answer:

D Watch Video Solution

25. A metal block of base area $0.2 \mathrm{~m}^{2}$ is connected to a 0.02 kg mass via a string that passes over an ideal pulley as shown in figure.

A liquid film of thickness 0.6 mm is placed between the block and the table. When
released the block moves to the right with a constant speed of $0.17 \mathrm{~m} / \mathrm{s}$. The co-efficient of viscosity of the liquid is

A. 3.45×10^{3} Pa.s
B. 3.45×10^{-2} Pa.s
C. 3.45×10^{-3} Pa.s
D. 3.45×10^{2} Pa.s

Answer:

D Watch Video Solution

26. The energy liberated per nuclear fission is 200 MeV . If 10^{20} fission occur per second the amount of power produced will be
A. $2 \times 10^{22} \mathrm{~W}$
B. $32 \times 10^{8} \mathrm{~W}$
C. $16 \times 10^{8} \mathrm{~W}$
D. $5 \times 10^{11} \mathrm{~W}$

Answer:

D Watch Video Solution

27. A ball of mass 1 kg is thrown vertically upward and returns to the ground after 3 second. Another ball, thrown at 60° with vertical also stays in air for the same time before it touches the ground. The ratio of the two heights are
A. $1: 3$
B. 1:2
C. 1:1
D. 2:1

Answer:

D Watch Video Solution

28. A body initially at rest, breaks up into two
pieces of masses $2 M$ and $3 M$ respectively, together having a total kinetic energy E . The
piece of mass 2 M , after breaking up, has a kinetic energy
A. $\frac{2 E}{5}$
B. $\frac{E}{2}$
C. $\frac{E}{5}$
D. $\frac{3 E}{5}$

Answer:
(Watch Video Solution
29. A light beam is incident on a denser medium whose refractive index is 1.414 at an angle of incidence 45°. Find the ratio of width of refracted beam in medium to the width of the incident beam in air.
A. $\sqrt{3}: \sqrt{2}$
B. $1: \sqrt{2}$
C. $\sqrt{2}: 1$
D. $\sqrt{2}: \sqrt{3}$
30. From the circuit of the following logic gates, the basic logic gate obtained is

A. NAND gate
B. AND gate
C. OR gate
D. NOT gate

Answer:

- Watch Video Solution

31. A body starts moving unidirectionally under the influence of a source of constant power. Which one of the graph corectly shows the variation of displacement (s) with time (t)?

Answer:

D Watch Video Solution
32. In an experiment of photoelectric effect
the stopping potential was measured to be
V_{1} and V_{2} with incident light of wavelength
λ and $\frac{\lambda}{2}$, respectively. The relation between V_{1} and V_{2} is
A. $V_{2}>2 V_{1}$
B. $V_{2}<V_{1}$
C. $V_{1}<V_{2}<2 V_{1}$
D. $V_{2}=2 V_{1}$

Answer:
33. A cell of emf E and internal resistance r is connected to a variable external resistor R .

The graph which gives the terminal voltage of cell V with respect to R is

A.

B.

Answer:

D Watch Video Solution

34. A wall consists of alternating blocks of
length d and coefficient of thermal
conducitivitly K_{1} and K_{2} respectively as
shown in figure. The cross sectional area of
the blocks are the same. The equivalent coefficient of thermal conductivity of the wall
between left and right is

A. $\frac{K_{1}+K_{2}}{2}$
B. $\frac{2 K_{1} K_{2}}{K_{1}+K_{2}}$
C. $\frac{K_{1} K_{2}}{3}$
D. $\frac{3 K_{1} K_{2}}{K_{1}+K_{2}}$

Answer:

D Watch Video Solution

35. A common-emitter amplifier circuit is
shown in the figure below. For the transistor
used in the circuit the current amplification
factor, $\beta_{d c}=100$. other parameters are
mentioned in the figure.

We find that

A. $V_{B E}=+18.2 \quad V, \quad V_{B C}=-3.45 V$
and amplifier is working
B. $V_{B E}=+18.5 \quad V, \quad V_{B C}=+2.85 V$
and amplifier is not working
C. $V_{B E}=+20.7 \quad V, \quad V_{B C}=+3.75 V$
and amplifier is not working

$$
\text { D. } V_{B E}=+21.5 V, \quad V_{B C}=-2.75 \mathrm{~V}
$$

and amplifier is working

Answer:

D Watch Video Solution

> 36. $\vec{A}-\vec{B}$ and $\vec{A} \times \vec{B}$ is $(\vec{A} \neq \vec{B})$
A. 60°
B. 90°
C. 120°
D. 45°

Answer:

D Watch Video Solution

37. A satellite of mass m is in circular orbit of radius $3 R_{E}$ about earth (mass of earth M_{E}, radius or earth R_{E}). How much additional
energy is required to transfer the satellite to an orbit of radius $9 R_{E}$?

$$
\begin{aligned}
& \text { A. } \frac{G M_{E^{m}}}{3 R_{E}} \\
& \text { B. } \frac{G M_{E^{m}}}{18 R_{E}} \\
& \text { C. } \frac{3 G M_{E^{m}}}{2 R_{E}} \\
& \text { D. } \frac{G M_{E^{m}}}{9 R_{E}}
\end{aligned}
$$

Answer:

D Watch Video Solution

38. A wheel having mass m has charges $+q$ and -q on diametrically opposite points. It remains in equilibrium on a rough inclined plane in the presence of a vertical electric field E. Then value of E is

A. $\frac{m g \tan \theta}{q}$

> B. $\frac{m g}{q}$
> C. $\frac{m g}{2 q}$
> D. $\frac{m>a n \theta}{2 q}$

Answer:

D Watch Video Solution

39. A uniform magnetic field of 0.3 T is established along the positive Z-direction. A rectangular loop in XY- plane of sides 10 cm and 5 cm carries a current of $\mathrm{I}=12 \mathrm{~A}$ as shown.

The torque on the loop is

A. $+1.8 \times 10^{-2} \hat{i} N \cdot m$
B. $-1.8 \times 10^{-2} \hat{j} N \cdot m$
C. zero
D. $-1.8 \times 10^{-2} \hat{i} N \cdot m$

Answer:

- Watch Video Solution

