©゙’ doubtnut India's Number 1 Education App

CHEMISTRY

BOOKS - NIKITA CHEMISTRY (HINGLISH)

CHEMICAL KINETICS

Mcqs

1. The rate of chemical reaction (except zero order)
A. decreases from moment to moment
B. independent constant throughout
C. independent of the order of reaction
D. reamin unchange

Answer:

- View Text Solution

2. For the reaction,$A+2 B \rightarrow C$, the rate of reaction at a given instant can be represented by \qquad .
A. $+\frac{d[A]}{d t}=+\frac{1}{2} \frac{d[B]}{d t}=+\frac{d[C]}{d t}$
B. $\frac{d[A]}{d t}=+\frac{1}{2} \frac{d[B]}{d t}=-\frac{d[C]}{d t}$
C. $-\frac{d[A]}{d t}=-\frac{1}{2} \frac{d[B]}{d t}=+\frac{d[C]}{d t}$
D. $+\frac{d[A]}{d t}=+\frac{1}{2} \frac{d[B]}{d t}=+\frac{d[C]}{d t}$

Answer:

3. The rate constant of $n^{\text {th }}$ order has units :
A. litre e^{1-n} mol $^{-n} \sec ^{-1}$
B. mol $^{1-n}$ litre $e^{1-n} \sec ^{-1}$
C. mol $^{1-n}$ litre $e^{n-1} \sec ^{-1}$
D. $\sec ^{-1}$

Answer:

D Watch Video Solution

4. The rate of a reaction is expressed in different ways as follows:
$+\frac{1}{2} \frac{d[C]}{d t}=-\frac{1}{3} \frac{d[D]}{d t}=+\frac{1}{4} \frac{d[A]}{d t}=-\frac{d[B]}{d t}$ the reaction is
A. $4 A+B \rightarrow 2 C+3 D$
B. $B+3 D \rightarrow 4 A+2 C$
C. $A+B \rightarrow C+D$
D. $B+D \rightarrow A+C$

Answer:

5. Which does not influence the rate of reaction
A. pressure
B. concentration of reactant
C. temperature
D. molecularity

- View Text Solution

6. On addition of AgNO_{3} to NaCl , white ppt. occurs
A. instantaneously
B. with a measurable speed
C. slowly
D. very slow

Answer:

- View Text Solution

7. The rate of formation of ammonia by the reaction:
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
expressed as $\frac{d\left[\mathrm{NH}_{3}\right]}{d t}=2.5 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$
The rate of consumption expressed in terms of H_{2} as $\frac{-d\left[H_{2}\right]}{d t}$ will be
A. double
B. Three times
C. Same
D. one and a half time of that expressed in terms of NH_{3}

Answer:

8. The temperature coefficient of a reaction is:
A. the rate constant at a fixed temperature
B. the ratio of rate constant at two temperatures
C. the ratio of rate constant differing by 10° preferably
25° and $35^{\circ} \mathrm{C}$
D. none

Answer:

(D) Watch Video Solution

9. For the reaction
$4 A+B \rightarrow 2 C+2 D$ which of the following statements is not
A. the rate of disappearance of B is one fourth of the rate of disappearance of A
B. the rate of formation of C is one- half of the rate of consumption of A
C. the rate of appearance of D is half of the rate of disappearance of B
D. the rates of formation of C and D are equal

Answer:

- Watch Video Solution

10. For the reaction $A+B+C \rightarrow$ products, the term
$(-d[C] / d t)$ in rate equation refers to
A. the concentration of a reactant
B. the decrease in concentration of the reactant with time
C. the velocity constant of reaction
D. none

Answer:

11. For the reaction $A+B \rightarrow C+D$, the variation of the concentration of the reactant with time sis given by the curve
A. I
B. II
C. III
D. IV

Answer:

- View Text Solution

12. The rate of reaction:
A. decreases with time
B. decreases with decrease in concentration of reactant
C. decreases with increase in time and decrease in concentration of reactant
D. none

Answer:

13. for a gaseous reaction, the unit of rate of reaction are
A. Latm s^{-1}
B. $\operatorname{atm} s^{-1}$
C. atm $\mathrm{mol}^{-1} \mathrm{~s}^{-1}$
D. mols^{-1}

Answer: B

14. Which statement is correct for $X+2 Y \rightarrow P$?
A. the rate of disappeance of X
$=$ twice the rate of disappearance of Y
B. the rate of disappearance of X
$=\frac{1}{2}$ rate of appearance of products
C. the rate of appearance of products
$=\frac{1}{2}$ the rate of disappearance of Y
D. the rate of appearance of products
$=\frac{1}{2}$ the rate of disappearance of X

Answer:

- View Text Solution

15. Which of the following is true for order of a reaction?
A. It is eqaul to the sum of exponents of the molar concentration of the reactants in the rate equation
B. It is always a whole number
C. It is never zero
D. It can be determined theoretically

Answer:

- View Text Solution

16. Select the intermediate in the following reaction mechanism

$$
O_{3(g)} \rightarrow O_{2(g)}+O_{(g)}+O_{3(g)} \rightarrow 2 O_{2}
$$

A. $O_{3(g)}$
B. $O_{(g)}$
C. $O_{2(g)}$
D. none

- View Text Solution

17. The rate of reaction $A+B+C \rightarrow$ Products is given Rate $=K[A]^{\frac{1}{2}}[B]^{\frac{1}{3}}[C]$. The order of the reaction is
A. 1
B. 3
C. $\frac{5}{6}$
D. $\frac{11}{6}$

Answer: D

18. The rate constant of a reaction depends on
A. temperature
B. initial concentration of the reactants
C. time of reaction
D. extent of reaction

Answer:

D Watch Video Solution

19. What is the order of a reaction which has a rate expression,
i.e. rate $=k[A]^{3 / 2}[B]^{-1}$?
A. $\frac{3}{2}$
B. $\frac{1}{2}$
C. zero
D. none of these

Answer:

- Watch Video Solution

20. The large increase in the rate of the reaction due to rise in temperature is due to
A. increase in the number of collisions
B. decrease in the number of activated molecules
C. lowering os activation energy
D. shortening of the mean free path

D Watch Video Solution

21. Which of the following rate laws has an overall order of 0.5 for reaction involving substances x, y and z ?
A. Rate $=K\left(C_{x}\right)\left(C_{y}\right)\left(C_{z}\right)$
B. Rate $=K\left(C_{x}\right)^{0.5}\left(C_{y}\right)^{0.5}\left(C_{z}\right)^{0.5}$
C. Rate $=K\left(C_{x}\right)^{1.5}\left(C_{y}\right)^{-1}\left(C_{z}\right)^{0}$
D. Rate $=K\left(C_{x}\right)\left(C_{y}\right)^{0.5} /\left(C_{z}\right)^{2}$

Answer:

- Watch Video Solution

22. Rate of a reaction
A. increases with increase in temperature
B. decreases with increase in temperature
C. doesnot depend on temperature
D. does not depend on concentration

Answer:

- View Text Solution

23. A reaction involves two reactants. The rate of reaction is directly proportional to the concentration of one of them and inversely proportional to the concentration of the other. The overall order of reaction will be
A. one
B. two
C. zero
D. none of these

Answer:

- View Text Solution

24. The reaction rate of the reaction
$H_{2}(g)+B r_{2}(g) \rightarrow 2 H B r(g)$ is given by $r=k\left[H_{2}\right]\left[B r_{2}\right]^{1 / 2}$
Which of the following statement/is/are true ?
A. the reaction is of second order
B. molecularity of the reaction is $3 / 2$
C. the unit of k is sec^{-1}
D. molecularity of the reaction is 2

- Watch Video Solution

25. Order of a reaction can be
A. fractional
B. zero
C. integer
D. all the above

Answer:

26. - $\frac{d\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]}{d t}$ represented
A. rate of formation of $\mathrm{H}_{2} \mathrm{O}_{2}$
B. rate of decompotion of $\mathrm{H}_{2} \mathrm{O}_{2}$
C. order of reaction
D. none

Answer:

- View Text Solution

27. Which one of the following statements is incorrect ?
A. Rate law expression connot be written from the stoichiometric equation.
B. Law of mass action expression can be written from the balanced equation
C. Specific reaction rate of a reaction is constant at constant
temperature
D. Rate of reaction and rate constant have same units

Answer:

- View Text Solution

28. Which of the following is a reaction of first order ?
A. $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
B. $2 \mathrm{HI} \rightarrow \mathrm{H}_{2}+\mathrm{I}_{2}$
C. $2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}+\mathrm{O}_{2}$
D. $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$

Answer:

- View Text Solution

29. The sum of the power to which the concentration of substance apears in the rate expression is known as \qquad .
A. rate of reaction
B. molecularity of reaction
C. order of reaction
D. none

Answer:

30. The decomposition of acetaldehyde is a reaction of the order
A. 1
B. 2
C. 1.5
D. 2.5

Answer:

- View Text Solution

31. If concentration of reactant is increased by ' m ' then k becomes:
A. $e^{k / X}$
B. $\frac{k}{X}$
C. k
D. $\frac{X}{k}$

Answer:

- Watch Video Solution

32. The reactions of higher order are rare because
A. many body collisions involve very high activation energy
B. many body collisions have a low probability energy
C. many body collisions are not enegetically favoured
D. many body collisions are take place only in the gaseous phase.

Answer:

- Watch Video Solution

33. The rate of fchemical reaction depends on the nature of chemical reactions, because
A. the threshold energy level differs from one reaction to another
B. some of the reactant are solid at room temperature
C. some of the reactants are coloured
D. all

- View Text Solution

34. Unit of rate constant depends on
A. order of reaction
B. molecularity of the reaction
C. concentration terms
D. number of reactants

Answer:

D View Text Solution

35. Reaction $A \rightarrow B$ follows second order kinetics. Doubling the concentration of A wil increase the rate of formation of B by a factor of:
A. $1 / 4$
B. 2
C. $1 / 2$
D. 4

Answer:

- Watch Video Solution

36. The given reaction
$2 \mathrm{FeCl}_{3}+\mathrm{SnCl}_{2} \rightarrow 2 \mathrm{FeCl}+\mathrm{SnCl}_{4}$
is an example of
A. first order reaction
B. second order reaction
C. third order reaction
D. none of these

Answer:

- View Text Solution

37. For a reaction, $2 A+B \rightarrow C+D,-\frac{d[A]}{d t}=k[A]^{2}[B]$.

The expression for $\frac{-d[B]}{d t}$ will be
A. $k[A]^{2}[B]$
B. $\frac{1}{2} k[A]^{2}[B]$
C. $k[A]^{2}[2 B]$
D. $k[2 A]^{2}[B]$

Answer:

- View Text Solution

38. The rate constant of a reaction changes when
A. a catalyst is added
B. concentrations of the reactant are changed
C. temperature of changed
D. both (a) and (c)

Answer:

39. In many reactions, the reaction proceeds in a sequence of stemps, so the overall rate is determined by
A. order of different steps
B. slowest step
C. molecularity of the stemps
D. fastest step

Answer:

- View Text Solution

40. In which of the following case does the reaction go farthest
A. $k=10^{2}$
B. $k=10^{-2}$
C. $k=10$
D. $k=1$

Answer:

Watch Video Solution

41. Which will lead to a change in the rate constant k of a reaction
A. A change in the pressure
B. change in temperature
C. change in the volume of the reaction vessel
D. all

Answer: B

D View Text Solution

42. The unit of rate constant for zero order reaction is :
A. litre $\sec ^{-1}$
B. litre $\mathrm{mol}^{-1} \mathrm{sec}^{-1}$
C. mollitre ${ }^{-1} \mathrm{sec}^{-1}$
D. $\mathrm{mol} \mathrm{sec}{ }^{-1}$

Answer:

43. The rate of a reaction can be increased in general by all the factors except
A. using a catalyst
B. increasing the temperature
C. invreasing the activation energy
D. increasing the conc. of reactants

Answer:

- View Text Solution

44. The rate constant of a reaction has same dimensions as
rate of reaction The reaction is of
A. zero order
B. first order
C. second order
D. none of these

Answer:

- Watch Video Solution

45. Which is not used in the determination of reaction rates
A. reaction temperature
B. reaction concentration
C. specific rate constant
D. none

Answer:

- View Text Solution

46. The rate constant of a reaction is 2.5×10^{-2} minutes $^{-1}$

The order of the reaction is
A. one
B. zero
C. two
D. three

Answer:

- Watch Video Solution

47. Equation for the half period in first order reaction is
A. $t_{1 / 2}=\frac{0.602}{k}$
B. $t_{1 / 2}=\frac{0.693}{k}$
C. $t_{1 / 2}=\frac{k}{0.693}$
D. $t_{1 / 2}=\frac{k}{0.602}$

Answer:

- View Text Solution

> 48. The rate constant of a reaction is
> $2.1 \times 10^{-2} \mathrm{~mol}^{-2}$ litre ${ }^{3} \mathrm{~min}^{-1}$. The order of reaction is
A. zero order
B. 1
C. 2
D. 3

Answer:

- View Text Solution

49. Which of the following statementsw about the order of a reaction is correct ?
A. the order of reaction must be a positive integer
B. a second order reaction is also bimolecular
C. the order of reaction invereases with increasing temperature
D. the order of reaction can only be determined by experimentally.

Answer:

- Watch Video Solution

50. The correct expression the rate of reaction of elementary reaction, $A+B \rightarrow C$ is
A. $\frac{d[C]}{d t}=k[A]$
B. $\frac{d[C]}{d t}=k[B]$
C. $\frac{-d[A]}{d t}=k[A][B]$
D. $\frac{-d[A]}{d t}=k[A]$

Answer:

- View Text Solution

51. The second order rate constant is usually expressed as
A. mol litre $\sec ^{-1}$
B. mol^{-1} litre $\mathrm{el}^{-1} \mathrm{sec}^{-1}$
C. mollitre $e^{-1} \sec ^{-1}$
D. mol $^{-1}$ litre sec^{-1}

Answer:

D Watch Video Solution

52. Number of mole of a substance present in 1 litre volume is known as
A. activity
B. molar concentration
C. active mass
D. none

Answer:

- View Text Solution

53. If the concentration is expressed in moles per liter, the unit of the rate constant for a first-order reaction is
A. mol litre ${ }^{-1} \mathrm{sec}^{-1}$
B. mollitre ${ }^{-1}$
C. $\sec ^{-1}$
D. mol^{-1}
54. Which statement about molecularity of a reaction is wrong?
A. it is number of molecules of the reactants taking part in a single step of reaction
B. it si calculated from the reaction mechanism
C. it may be either whole number or fractional
D. none

Answer:

- View Text Solution

55. The rate of chemical reaction is directly proportional to
A. active masses of reactants
B. equlilibrium constant
C. active masses of products
D. pressure

Answer:

- View Text Solution

56. The rate of the reaction
$\mathrm{CCl}_{3} \mathrm{CHO}+\mathrm{NO} \rightarrow \mathrm{CHC}_{3}+\mathrm{NO}+\mathrm{CO}$ is given by Rate $=K\left[\mathrm{CCl}_{3} \mathrm{CHO}\right][\mathrm{NO}]$. If concentration is expressed in moles
/ litre, the units of K are
A. litre $^{2} \mathrm{~mol}^{-2} \mathrm{sec}^{-1}$
B. litre $e^{-1} \mathrm{~mol} \mathrm{sec}{ }^{-1}$
C. litremol $^{-1} \mathrm{sec}^{-1}$
D. $\sec ^{-1}$

Answer:

- Watch Video Solution

57. A following mechanism has been proposed for a reaction
$2 A+B \rightarrow D \rightarrow E$
$A+B \rightarrow C+D$ (slow)
$A+C \rightarrow E$ (fast)
The rate law expression for the reaction by RDS methd is:
A. $R=K[A]^{2}[B]$
B. $R=k[A][B]$
C. $R=k[A]^{2}$
D. $R=k[A][B]$

Answer:

D Watch Video Solution

58. The branch of chemistry which with the reaction rates and reaction mechanism is called
A. thermochemistry
B. photochemistry
C. analytical chemistry
D. chemical kinetics

Answer:

59. The rate constant of a reaction is $10.8 \times 10^{-5} \mathrm{~mol}$ $d m^{-3} s^{-1}$. The order of the reaction is
A. zero
B. 1
C. 2
D. 3

Answer:

- View Text Solution

60. Which one of the following represents fastest reaction ?

$$
\text { A. } k=5.5 \times 10^{-5} \mathrm{sec}^{-1}
$$

B. $k=3.3 \times 10^{-3} \mathrm{sec}^{-1}$
C. $k=6.6 \times 10^{-5} \sec ^{-1}$
D. $k=4.4 \times 10^{-5} \sec ^{-1}$

Answer:

- View Text Solution

61. The rate of a reaction is doubled when the concentration of reactant is doubled. What is the order of the reaction?
A. two
B. one
C. half
D. one and a half

- View Text Solution

62. The rate determining step of a reaction is the step
A. which involves the minimum number of molecules
B. which involves the maximum number of molecules
C. which is the slowest
D. which is the fastest

Answer: C

- View Text Solution

63. What is the unit of rate constant k when the order of reaction is 0.5 ?
A. $\sqrt{\sec }^{-1}$
B. $\left[\operatorname{Lmol}^{-1}\right]^{1 / 2} \sec ^{-1}$
C. $\left[\operatorname{mol} L^{-1}\right]^{1 / 2} \sec ^{-1}$
D. $\sec ^{-1}$

Answer:

- View Text Solution

64. In a multistep reaction, the overall rate of reaction is
A. equal to the rate of slowest step
B. equal to the rate of fastest step
C. equal to the average rate of various steps
D. equal to the rate of the last step

Answer:

D View Text Solution

65. In the sequence of reaction,
$L \xrightarrow{k_{1}} M \xrightarrow{k_{2}} N \xrightarrow{k_{3}} O$
$k_{3}>k_{2}>k_{1}$
The rate determining step of the reaction is :
A. $A o t B$
B. $B \rightarrow C$
C. $C o t D$
D. $A o t D$

D Watch Video Solution

66. Which of the follwing statement is not correct for the reaction,
$4 A+B \rightarrow 2 C+2 D ?$
A. the rate disappearance of B is one fourth the rate of disappearane of A
B. the rate of appearance of C is one half the rate of disappearance of B
C. the rate of formation of D is one half the rate of consumption of A
D. the rates of formation of C and D are equal

- Watch Video Solution

67. For a reaction $2 A+B \rightarrow C+D$, the active mass of B is kept constant but tht of A is tripled. The rate of reaction will
A. increases six times
B. increases nine times
C. decreases three times
D. decreases nine times

Answer:

68. A following mechanism has been proposed for a reaction: $2 A+B \rightarrow D+E$
$A+B \rightarrow C+D$ (slow)
$A+C \rightarrow E$ (fast)
The rate law expresison for the reaction is
A. Rate $k[A]^{2}[B]$
B. Rate $=k[A][B]$
C. Rate $=k[A][C]$
D. Rate $=k[A]^{2}[B][C]$

Answer:

(D) Watch Video Solution
69. The specific rate constant of a first order reaction depends on the
A. concentration of the reactant
B. concentration of product
C. time
D. temperature

Answer:

- Watch Video Solution

70. The rate law for the reaction
$\mathrm{RCl}+\mathrm{NaOH}(a q) \rightarrow \mathrm{ROH}+\mathrm{NaCl}$ is given by
Rate $=k[R C l]$. The rate of the reaction will be
A. A
B. B
C. C
D. D

Answer:

- Watch Video Solution

71. A hypothetical reaction $A_{2}+B_{2} \rightarrow 2 A B$ follows the mechanism as given below:
$A_{2} \Leftrightarrow A+A($ fast $)$
$A+B_{2} \rightarrow A B+B$ (slow)
$A+B \rightarrow A B$ (fast)
The order of the overall reaction is
A. 2
B. 1
C. $1 \frac{1}{2}$
D. 0

Answer:

- Watch Video Solution

72. The rate equation for a reaction $3 A+2 B \rightarrow C$ is given by $\frac{d x}{d t}=k[A]^{2}[B]^{1}$
which of the following statements is false
A. the reaction is overall a second order reaction
B. the rate will not be altered by doubling the concentration
C. temerature will have no effect on the rate of reaction
D. all are false

Answer:

D View Text Solution

73. Order of a reaction can not be obtained
A. experimentally
B. from stoichiometry of the reaction
C. if the reactants are gases
D. if the reactants are in different physical states

Answer:

74. For an exothermic chemical process ocuuring in two process occuring in two steps as follows
(i) $A+B \rightarrow X$ (slow)
(ii) $X \rightarrow A B$ (fast)

The progress of reaction can be best described by :
A.
B.
C.
D. All are correct

Answer:

Watch Video Solution

75. Fot the reaction $A+B \rightarrow$ produts, it is found that orders of the reaction in A and B are 1 and 2 respectively. When the conc. of A is halved and that of B is doubled, the rate increases by a factor:
A. 2
B. 8
C. 4
D. 16

Answer:

76. In a reaction $A+2 B \rightarrow$ products, the molecularity of the reaction is
A. 3
B. 2
C. 1
D. zero

Answer:

- View Text Solution

77. For the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$, rate of reaction with respect to hydrogen may be expressed as $\frac{-d\left[H_{2}\right]}{d t}$. In it, the expression as $-\frac{d\left[H_{2}\right]}{d t}$ represents
A. a negative rate of reaction
B. amount of hydrogen left unreated
C. decrease in concentration of H_{2} in unit time
D. decrease in the rate of change in concentration of hydrogen

Answer:

- View Text Solution

78. For the reaction,$A+2 B \rightarrow C$, the rate of reaction at a given instant can be represented by \qquad .
A. $+\frac{d[A]}{d t}=+\frac{1}{2} \frac{d[B]}{d t}=+\frac{d[C]}{d t}$
B. $+\frac{d[A]}{d t}=+\frac{1}{2} \frac{d[B]}{d t}=-\frac{d[C]}{d t}$
C. $-\frac{d[A]}{d t}=-\frac{1}{2} \frac{d[B]}{d t}=+\frac{d[C]}{d t}$
D. $+\frac{1}{2} \frac{d[A]}{d t}=+\frac{1}{2} \frac{d[B]}{d t}=+\frac{d[C]}{d t}$

Answer:

- Watch Video Solution

79. The rate of a gaseous reaction is given by $k[A][B]$. If the volume occupied by the reacting gases is suddenly reduced to half the original volume, the rate of the reaction relation relative to the initial rate will be
A. $1 / 8$
B. $1 / 4$
C. $8 / 1$
D. 4

Answer:

- View Text Solution

80. A reaction proceeds by a two step mechanism
$A_{2} \underset{k_{2}}{\stackrel{k_{1}}{\rightleftarrows}} 2 A$ (fast reaction)
$A+B \rightarrow$ Products (slow reaction)
What is the rate law for the overall reaction?
A. rate $=k\left[A_{2}\right][B]$
B. rate $=k\left[A_{2}\right]^{2}[B]$
C. rate $=k\left[A_{2}\right]^{\frac{1}{2}}$
D. rate $=k\left[A_{2}\right]^{\frac{1}{2}}[B]$

Answer:

81. If the concentration units for the first order reaction is increased by ' m ' times, then the rate constant k will be
A. km
B. $\mathrm{k}+\mathrm{m}$
C. k/m
D. k

Answer:

- View Text Solution

82. The reaction $N O_{2(g)}+O_{(g)} \rightarrow C O_{2(g)}+N O_{(g)}$
proceeds in the following two steps at 500 K
$\mathrm{NO}_{2(\mathrm{~g})}+\mathrm{NO}_{2} \rightarrow \mathrm{NO}+\mathrm{NO}_{3}$ Step-1(slow)
$\mathrm{NO}_{3}+\mathrm{CO} \rightarrow \mathrm{CO}_{2}+\mathrm{NO}_{2}$ Step -2 (fast)
Which of the following rate expressions is correct for the above reaction?
A. Rate $=-\frac{d\left(N O_{2}\right]}{d t}=k\left[N O_{2}\right]$
B. Rate $=-\frac{d[C O]}{d t}=k\left[N O_{2}\right]$
C. Rate $=-\frac{d\left[N O_{2}\right]}{d t}=k\left[N O_{2}\right]^{2}$
D. Rate $=-\frac{d\left[N O_{2}\right]}{d t}=k\left[N O_{2}\right][C O]$

Answer:

- View Text Solution

83. The rate constant for reaction is $10.8 \times 10^{-5} \mathrm{~mol}$ $d m^{-3} \sec ^{-1}$. The reaction obeys
A. first order
B. zero order
C. second order
D. half order

Answer:

84. The unit of rate constant and that of rate of reaction are
same for
A. first order
B. zero order
C. second order
D. all are wrong

Answer:

- View Text Solution

85. The correct expression for the the rate constant for reactions of zero order is
A. $k=\left[A_{0}\right] / 2 t$
B. $k=\frac{1}{t}\left\{\left[A_{0}\right]-[A]\right\}$
C. $k=\frac{1}{t}\left\{[A]-[A]_{0}\right\}$
D. $k=\frac{2.303}{t} \log \left\{\left[A_{0}\right]-[A]\right\}$

Answer:

86. If a is the initial concentration then time required to decompose half of the substance for nth order is inversely proportional to:
A. a^{n}
B. a^{n-1}
C. a^{1-n}
D. a^{n-2}

Answer:

- Watch Video Solution

87. The decomposition of NH_{3} on the surface of finely divided platinum as catalyst
A. is always a zero order rection
B. is zero order at high concentration but 1st order at low concentrations
C. is first order at low concentration but zero order at high concentration
D. is always a first order reaction

Answer:

- View Text Solution

88. For a given reaction half life period was found to be directly proportional to the initial concentration of the reactant. The order is
A. zero
B. 1
C. 2
D. 3

Answer:

- View Text Solution

89. If 'a' is the initial concentration of the reactant, the time taken for completion of the reaction, if it is of zero order, will be
A. $\frac{a}{k}$
B. $\frac{a}{2 k}$
C. $\frac{2 a}{k}$
D. $\frac{k}{a}$

- View Text Solution

90. The reaction, $2 A \rightarrow B+C$ follows zero order kinetics. The differential rate equation for the reaction is
A. $\frac{d x}{d t}=k[A]^{0}$
B. $\frac{d x}{d t}=k[A]^{2}$
C. $\frac{d x}{d t}=k[B][C]$
D. $\frac{d x}{d t}=k[A]$

Answer:

91. Half life period of a zero order reaction is
A. proportional to initial concentration of reactants
B. independent of initial concentration of reactants
C. inversely proportional to initial concentrations of reactants
D. incersely proportional to the square of initial concentration of reactants

Answer:

- View Text Solution

92. If order of reaction $A+B \xrightarrow{h v} A B$ is zero. It means that
A. rate of reaction is dependent of the concentration of the reacting species
B. rate of reaction is independent of the concentration of the reacting species
C. the rate of formation of activated complex is zero
D. rate of decomposition of activated complex is zero

Answer:

- Watch Video Solution

93. The rate of a certain reaction $\left(-\frac{d c}{d t}\right)$ at different times are as follows

Time
Rate (moles litre ${ }^{-1} \mathrm{sec}^{-1}$)
0 2.8×10^{-2}

10
2.78×10^{-2}
20
30 2.81×10^{-2}
2.79×10^{-2}

The reaction is
A. $1^{\text {st }}$ order
B. $2^{\text {nd }}$ order
C. 0 order
D. $3^{\text {rd }}$ order

Answer:

94. A zero order reaction is one whose rate is independent of
A. the temperature of the reaction
B. the concentration of the reactants
C. the concentration of the products
D. the material of the vessel in which the reaction is carried out

Answer:

D Watch Video Solution

95. The rate of a certain reaction at different time intervals are

The order of the reaction is
A. zero
B. first
C. second order
D. third order

Answer:

- View Text Solution

96. Which of the following graphs formed plotted between $t_{1 / 2}$ and initial concentration (a) represents a zero order reaction ?
A.
B.

D.

Answer:

- Watch Video Solution

97. Radioactive decay follows... order kinetics
A. zero
B. I
C. II
D. III

Answer:

98. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ occurs as,
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$, and follows I order kinetics, The true statement is
A. $k=\frac{[A]_{o}-[A]_{t}}{t}$
B. the reaction is unimolecular
C. $t_{1 / 2} \propto[A]_{o}^{o}$
D. $t_{1 / 2} \propto[A]_{o}^{2}$

Answer:

- View Text Solution

99. Which one of the following formulae represents the first order reaction?
A. $k=\frac{2.303}{t} \frac{\log ([A])}{[A]_{0}}$
B. $k=\frac{2.303}{t} \frac{\log (a-x)}{a}$
C. $[A]=\left[A_{0}\right] e^{-k t}$
D. $k=\frac{2.303}{t} \frac{\log (a)}{a+x}$

Answer:

View Text Solution

100. For the first order reaction $A \rightarrow$ Products, which one of the following is the correct plot of $\log [\mathrm{A}]$ versus time?
A.

c.
D.

Answer:

- View Text Solution

101. For the first order gas phase decomposition reaction,
$A(g) \rightarrow B(g)+C(g)$
if P_{0} is the initial pressure of A and P_{t} is total pressure after time t , then
A. $k=\frac{2.303}{t} \frac{\log \left(P_{0}\right)}{P_{t}}$
B. $k=\frac{2.303}{t} \frac{\log \left(P_{0}\right)}{P_{t}-P_{0}}$
C. $k=\frac{2.303}{t} \frac{\log \left(P_{0}\right)}{P_{t}-2 P_{0}}$
D. $k=\frac{2.303}{t} \frac{\log \left(P_{0}\right)}{2 P_{0}-P_{t}}$

- View Text Solution

102. Which of the following is a first order reaction ?
A. $2 \mathrm{H}_{2} \mathrm{O}_{2}(a q) \xrightarrow{p t} 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}(\mathrm{~g})$
B. $2 \mathrm{HI} \rightarrow \mathrm{H}_{2}+\mathrm{I}_{2}$
C. $2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}+\mathrm{O}_{2}$
D. $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$

Answer:

103. The accompanying figure depicts the change in concentration of species x and Y for the reaction $X \rightarrow Y$, as a function of time. The point of intersection of the two curves represents
A. $t_{1 / 2}$
B. $t_{3 / 4}$
C. $t_{2 / 3}$
D. date in sufficient to predict

Answer:

- View Text Solution

104. The half-life for a reaction is of temperature:
A. independent
B. increased with increase
C. decreased with increase
D. dependent

Answer:

D Watch Video Solution

105. The acid hydrolysis of ester is
A. I order reaction
B. bimolecular reaction
C. pseudo unimolecular reaction
D. all

Answer:

- View Text Solution

106. A reaction is a first order when
A. the amount of product formed increases linearly with time
B. the amount of product formed increases linearly with
time
C. the rate is Jinearly related to the concentration of the
D. the concentration of the reactant decreases linearly with

time

Answer:

D View Text Solution

107. The reaction
$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
A. bimolecular reaction
B. Il order reaction
C. both 'a' and 'b'
D. pseudo unimolecular reaction
108. A substance with initial concentration 'a' follows zero order kinetics. In how much time, will the reactions go to completion ?
A. a/k
B. 2/ka
C. k/a
D. $2 \mathrm{k} / \mathrm{a}$

Answer:

109. The hydrolysis of ethyl acetat

$$
\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}^{+}} \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
$$

is a reaction of
A. first order
B. second order
C. third order
D. zero order

Answer:

- View Text Solution

110. Which order of reaction obeys the relation
$t_{1 / 2}=1 / k ?$
A. first
B. second
C. third
D. zero

Answer:

- View Text Solution

111. A plot of $\log (a-x)$ against time ' t ' is a straight line. This indicates that the reaction is of :
A. second order
B. first order
C. third order
D. zero order

Answer:

- Watch Video Solution

112. For the half-life period of a first order reaction, which one of the following statements is generally false?
A. It is independent of initial concentration
B. It is independent of temperature
C. It decreases with the introduction of a catalyst
D. It decreases with increases of temperature

Answer:

113. A graph ploted between concetration of reaction consumed at any time (x) and $t_{1 / 2}$ is found to be a straight line passing throught the origin. Thus reaction is of
A. first order
B. zero order
C. third order
D. second order

Answer:

- View Text Solution

114. The rate of a reaction $2 X+Y \rightarrow$ Products is given by $\frac{d[Y]}{d t}=k[X]^{2}[Y]$
if X is present in large excess, the order of the reaction is
A. zero
B. two
C. one
D. three

Answer:

- View Text Solution

115. The rate constant of a reaction is equal to rate of reaction
A. when oncentrations of reactants do not change with time
B. when concentrations of all reactants and products are
C. at time, $\mathrm{t}=0$
D. when oncentrations of all reactants are unity

Answer:

- View Text Solution

116. The rate of reaction between A and B increases by a factor of 100 when the concentration of A is changed from 0.1 mol L^{-1} to $1 \mathrm{~mol} L^{-1}$. The order of reaction with respect to A is :
A. 10
B. 1
C. 3
D. 2

- View Text Solution

117. For the reaction $A \rightarrow B$, the rate law expression is rate
$=k[A]$. Which of the following statements is incorrect ?
A. The reaction follows first order kinetics
B. The $t_{1 / 2}$ of reaction depends on initial concentration of reactants
C. k is constant for the reaction at a constant temperature
D. The rate law provides a simple way of predicting the cone.
of reactants and products at any time after the start of the reaction.

D Watch Video Solution

118. In the decomposition of $N_{2} O_{5}$, the rate of reaction is
$-\frac{d\left[N_{2} O_{5}\right]}{d t}=k\left[N_{2} O_{5}\right]$.
For determination of the units of k,
A. Units of time are required
B. Units of concentration are required
C. Units of both time and concentration are required
D. None of these

Answer:

119. If the concentration units are reduced by n times, then the value of rate constant of first order will
A. increase by n times
B. decrease by factor of n
C. not change
D. none

Answer:

- View Text Solution

120. Which of the following is a first order reaction ?
A. $\mathrm{NH}_{4} \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
B. $2 \mathrm{HI} \rightarrow \mathrm{H}_{2}+\mathrm{I}_{2}$
C. $2 \mathrm{NO}_{2} \rightarrow \mathrm{NO}+\mathrm{O}_{2}$
D. $2 \mathrm{NO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$

Answer:

- Watch Video Solution

121. The hydrolysis of ethyl acetate,
$R-\mathrm{COOR}^{1}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}^{+}} \mathrm{RCOOH}+R^{1}-\mathrm{OH}$ is
A. first order
B. second order
C. third order
D. zero order

Answer:

D View Text Solution

122. which of the following represents the expression for $3 / 4$ th
life of first order reaction?
A. $\frac{k}{2.303} \log \cdot \frac{4}{3}$
B. $\frac{2.303}{k} \log \cdot \frac{3}{4}$
C. $\frac{2.303}{k} \log .4$
D. $\frac{2.303}{k} \log 3$

Answer:

- Watch Video Solution

123. In the reaction of $\mathrm{aA}+\mathrm{bB}+\mathrm{cC} \rightarrow$ Products,
i) if concentration of A is doubled, keeping cone. of B and C constant, the rate of reaction becomes double
ii) if concentration of Bis halved keeping cone. of A and C constant, the rate of reaction remains unaffected
iii) if concentration of C is made 1.5 times, the rate of reaction becomes 2.25 times. The order of reaction is
A. 1
B. 2.5
C. 3
D. 3.5

Answer:

124. In the presence of acid, the initial concentration of cane sugar was reduced from 0.2 M to 0.1 M in 5 h and to 0.05 M in 10 h . The reaction must be of
A. zero order
B. first order
C. second order
D. fractional order

Answer:

- Watch Video Solution

125. The rate law for the reaction
$\mathrm{RCl}+\mathrm{NaOH}(a q) \rightarrow \mathrm{ROH}+\mathrm{NaCl}$ is given by

Rate $=k[R C l]$. The rate of the reaction will be
A. doubled on doubling the concentration of NaOH
B. halved on reducing the concentration of RCl to half
C. decreased on increasing the tempearature of the reaction
D. unaffected by increasing the temperature of the reaction

Answer:

(D) Watch Video Solution

126. The rate law of the reaction $A+2 B \rightarrow$ Product is given by $\frac{d(\text { Product })}{d t}=k[A]^{2}[B]$. A is taken in large excess, the order of the reqaction will be
A. zero
B. 1
C. 2
D. 3

Answer:

- Watch Video Solution

127. The rate of the elementary reaction,
$2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$, when the volume of the reaction vessel is doubled:
A. will grow eight times of its initial rate
B. reduce to one- eight of ils initial rate
C. will grow four times of its initial rate
D. reduce to one-fourth of its initial rate

- Watch Video Solution

128. The half-life period of a first order reaction is given by
A. $t_{1 / 2}=\frac{0.693}{k}$
B. $t_{1 / 2}=\frac{k}{0.693}$
C. $t_{1 / 2}=2.303 \ln 2$
D. $t_{1 / 2}=2.303\left(\frac{a}{2}\right)$

Answer:

129. When the concentration of a reactant in reaction $A \rightarrow B$ is increased by 8 times but rate increases only 2 times, the order of the reaction would be
A. 2
B. $\frac{1}{3}$
C. 3
D. $\frac{1}{2}$

Answer:

(D) Watch Video Solution

130. For the hydrolysis of esters in alkaline medium rate expression is, $-\frac{d[\text { Ester }]}{d t}=k[$ Ester][Alkali].

Inspace alkali used is in excess, then the overall order of the reaction is
A. zero
B. first
C. same
D. third

Answer:

- View Text Solution

131. The half-life period of a first order reaction is
A. directly proportional to the initial concentration a
B. inversely proportional to a
C. independent of a
D. independent of the rate constant of the reaction

Answer: C

- View Text Solution

132. For the elementary step
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}_{(a q)} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{(a q)}^{+}+\mathrm{Br}_{(a q)}^{-}$
the molecularity is
A. zero
B. 1
C. 2
D. connot ascertained

- View Text Solution

133. Which of the following is an acceptable value of molecularity?
A. $4 / 3$
B. 0
C. $1 / 2$
D. $2 / 2$

Answer:

134. In the reaction $2 \mathrm{~A}+\mathrm{B} \rightarrow$ Products, the order w.r.t. A is found to be one and w.r.t. B equal to 2 . Concentration of A is doubled and that of B is halved, the rate of reaction will be
A. doubled
B. halved
C. remain unaffected
D. four times

Answer:

- View Text Solution

135. The given hypothetical reaction is
$A \xrightarrow{I} B \xrightarrow{I I} C D \xrightarrow{I I I} E$ and date as
rate determining step is
A. Step I
B. Step II
C. Step III
D. Step IV

Answer:

- View Text Solution

136. Which studying the decomposition of gaseous $N_{2} O_{5}$, it is observed that a plot of logarithm of its partial pressure versus time is linear. The kinetic parameter obtained from this observation is
A. specific reaction rate
B. reaction rate
C. energy of activation
D. molecularity

Answer:

- View Text Solution

137. If the rate expresson for a chemical reaction is Rate $=k[A][B]^{n}$ then
A. the order of reaction is 1
B. the order of reaction reaction is n
C. the order of reaction is $(1+n)$
D. k is independent of temearature

Answer:

- View Text Solution

138. If the rate of reaction between A and B is given by rate $=k[A][B]^{2}$, then the reaction is :
A. first order in A
B. second order in B
C. third order overall
D. all are correct

Answer:

139. Diazonium salt decomposes as
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}^{+} \mathrm{Cl}^{-} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{N}_{2}$. At $0^{\circ} \mathrm{C}$, the evolution of N_{2} becomes two times faster when the initial concentration of the
salt is doubled. Therefore, it is
A. a first order reaction
B. a second order reaction
C. independent of the initial concentration of the salt
D. a zero order reaction

Answer:

140. The following equation for the rate constant indicates that the reaction is of
$k=\frac{2.303}{t} \log \cdot \frac{a}{(a-x)}$
A. second order
B. first order
C. third order
D. zero order

Answer:

- View Text Solution

141. For the reaction $A \rightarrow B$, the rate law expression is rate
$=k[A]$. Which of the following statements is incorrect ?
A. The reaction follows first order kinetics
B. the $t_{1 / 2}$ of reaction depends upon initial concentration of reactant
C. k is constant for the reaction at a constan temperature
D. the rate law provides a simple -way of predicting the concentration of reactants and products at any time after the start of the reaction

Answer:

- Watch Video Solution

142. According to the Arrhenius equation a straight line is to be obtained by plotting the logarithm of the rate constant of a chemical reaction $(\log k)$ against
A. $\frac{1}{C}$
B. $\log C$
C. C
D. $\log \cdot \frac{1}{C}$

Answer:

- Watch Video Solution

143. For the reaction
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$
which of the following graph would yield a straight line.
A. $\log p_{N_{2} O_{5}}$ vs time with -ve slope
B. $\log p_{N_{2} O_{5}}$ vs time the +ve slope
C. $\left(p_{N_{2} O_{5}}\right)^{-1}$ vs time
D. $p_{N_{2} O_{5}}$ vs time

Answer:

- View Text Solution

144. The inversion of cane sugar into glucose and frucose is:
A. I order
B. II order
C. III order
D. zero order

Answer:

145. The number of molecules of the reactants taking part in a single step of the reaction tells about. :
A. molecularity of the reaction
B. mechanism of the reaction
C. order of reaction
D. all

Answer:

(D) Watch Video Solution

146. For a reaction $A \rightarrow B$, the rate of reaction quadrupled when the concentration of A is doubled. The rate expression of the reaction is $r=K[A]^{n}$ when the value of n is
A. 1
B. zero
C. 3
D. 2

Answer:

- Watch Video Solution

147. A reaction $A_{2}+B_{2} \rightarrow 2 A B$ occurs by the following mechanism:
$A_{2} \rightarrow A+A$... (slow)
$A+B_{2} \rightarrow A B+B$... (fast)
$A+B \rightarrow A B \ldots$ (fast)
Its order would be
A. $\frac{3}{2}$
B. 1
C. zero
D. 2

Answer:

Watch Video Solution
148. If the first order reaction involves gaseous reactants and gaseous products the units of its rate are
A. atm
B. atm sec
C. $\operatorname{atm~sec}^{-1}$
D. $a t m^{2} \mathrm{sec}^{2}$

Answer:

- Watch Video Solution

149. In the reaction $2 \mathrm{NO}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NOCl}$, it has been found that doubling the concentration of both the reactants increases the rate by a factor of eight but doubling the chlorine concentration alone only doubles the rate. Which of the following statements is incorrect?
A. The reaction is first order in $C l_{2}$
B. The reaction is second order in NO
C. The overall order of reaction is 2
D. The overall order of reaction is 3 .

- View Text Solution

150. Which of the following reactions can be kinetically studied under nomal laboratory conditions?
A. $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{AgNO} 3+\mathrm{HCl} \rightarrow \mathrm{KNO}_{3}+\mathrm{AgCl}$
C. $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
D. all of the above

Answer:

- View Text Solution

151. The differential rate law of a reaction is given by, $\frac{d x}{d t}=k[A]^{1.5}[B]^{-0.5}$. The overall order of the reaction is ?
A. 0.3
B. 1.5
C. 1
D. 2

Answer:

- View Text Solution

152. The half-life of a first order reaction
$\left[k=\frac{2.303}{t} \log \left(\frac{a}{a-x}\right)\right]$ is
A. directly proportional to 'a'
B. inversely proportional to 'a'
C. independent of 'a'
D. proportional to ($\mathrm{a}-\mathrm{x}$)

Answer:

- View Text Solution

153. The incorrect order indicated against the rate of reaction, $a A+b B \xrightarrow{h} C$ then
A. $-\frac{d[A]}{d t}=\frac{a}{b} \times \frac{d[B]}{d t}$
B. $-\frac{d[A]}{d t}=\frac{b}{a} \times \frac{d[B]}{d t}$
C. $-\frac{d[A]}{d t}=-\frac{1}{2} \frac{d[B]}{d t}=+\frac{d[C]}{d t}$
D. $-\frac{d[A]}{d t}=-\frac{b}{a} \times \frac{d[B]}{d t}=-\frac{b}{a} \times \frac{d[B]}{d t}$

Answer:

- View Text Solution

154. For the reaction $H_{2(g)}+B r_{2(g)}$, the rate law is rate, $=K\left[H_{2}\right]\left[B r_{2}\right]^{1 / 2}$. Which of the following statements is true about this rection?
A. the raction is second order one
B. molecularity of the raction is $m+n$
C. both a and b
D. none of corrcet

Answer:

155. For raction : $m A+n B \rightarrow p C+q D$ the rate law given by $\frac{d x}{d t}=K[A]^{x}[B]^{y}$

The correct statement for this raction if
A. the molecularityh of the raction is $m+n$
B. the overall order of the raction is $m+n$
C. both are correct
D. none of corrcet

Answer:

- View Text Solution

156. Flase statement is
A. rate of zero order raction is independent of initial concentration of ration is inversely concentration of the reactant
B. half life of a third order reaction is inversetly proportional
to the square of intial concentration of the reactant
C. for a first order raction $t_{1 / 2}=\frac{0.693}{k}$
D. molecularity of a raction may be zero negative or even

fractional

Answer:

- View Text Solution

157. For first order raction, the concentration of ractant
A. is independent of time
B. varies linearly with time
C. varies exponentially with time
D. none

Answer:

158. The rate constant of raction is $0.2 \mathrm{~min}^{-1}$. The order of the reaction is
A. second
B. first
C. zero
D. third

Answer:

- View Text Solution

159. $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$

If $-\frac{D\left[N_{2} O_{5}\right]}{d t}=k_{1}\left[N_{2} O_{5}\right]$
$\frac{d\left[N O_{2}\right]}{d t}=k_{2}\left[N_{2} O_{5}\right]$
$\frac{\left[O_{2}\right]}{d t}=k_{3}\left[N_{2} O_{5}\right]$
What is the relation between k_{1}, k_{2} and k_{3} ?.
A. $k_{2}=2 k_{1} \operatorname{and} k_{3}=\frac{1}{2} k_{1}$
B. $k_{1}=2 k_{1}$ and $k_{3}=2 k_{1}$
C. $k_{1}=k_{2}=k_{3}$
D. $k_{1}=2 k_{2}=3 k_{2}$

- Watch Video Solution

160. If a is the initial concentration of the reaction and $t_{1 / 2}$ is the half change time. Which of the following in true of the $n^{t h}$ order reaction
A. $t_{1 / 2} \propto a^{n-1}$
B. $t_{1 / 2} \propto a^{n}$
C. $t_{1 / 2} \propto a^{1-n}$
D. $t_{1 / 2} \propto a^{n+1}$

Answer:

161. The rate of the reation is expressed in different way as followed :
$-\frac{1}{m} \cdot \frac{d[A]}{d t}=+\frac{1}{n} \frac{d[B]}{d t}=-\frac{1}{p} \frac{d[C]}{d t}=+\frac{1}{q} \frac{d[D]}{d t}$
The reaction is
A. $n a+m B \rightarrow p C+q D$
B. $p A+q B \rightarrow m C+n D$
C. $p A+m B \rightarrow n C+q D$
D. $m A+p C \rightarrow n B+q D$

Answer:

162. The half -life of a first order reaction

$$
\left[k=\frac{2.303}{t} \log \left(\frac{a}{a-x}\right)\right] \text { is }
$$

A. directly proportional to a
B. inversely proportional to 'a'
C. independent
D. proportional to (a-x)

Answer:

- View Text Solution

163. The reaction, $X+2 Y+Z \rightarrow N$ occurs by the following mechanism
(i) $X+Y \Leftrightarrow M$ (very rapid equilibrium)
(ii) $M+Z \rightarrow O$ (slow)
(iii) $O+Y \rightarrow N$ (very fast)

What is the rate law for this reaction
A. $k[C]$
B. $k[A][B]^{2}[C]$
C. $k[Z]$
D. $k[x][Y][Z]$

Answer:

- Watch Video Solution

164. When a plot of $\log \mathrm{k}$ versus $1 / T$ of chemical reaction is made, the energy of activation is given by the slope of straight line
A. obtained
B. multiplied by $+2.303 R$
C. multipiled by -2.303 R
D. divided by +2.303 R

Answer:

View Text Solution
165. For a first order reaction, the reaction, the plot of $\log C$ against 't' (log C vs 't') gives a straight line with slope equal to:
A. $-\frac{k}{2.303}$
B. $\frac{2.303}{\log k}$
C. $-\frac{2.303}{k}$
D. $+\frac{2.303}{\log k}$

Answer:

D Watch Video Solution

166. For a general chemical change $2 A+3 B \rightarrow$ Products, the rates with respect to A is r_{1} and that with respect to B is r_{2} The rates r_{1} and r_{2} are related as
A. $3 r_{1}=2 r_{2}$
B. $r_{1}=r_{2}$
C. $2 r_{1}=3 r_{2}$
D. $r_{1}^{2}=3 r_{2}$

Answer:

167. A reaction is represented by $A \xrightarrow{k_{1}} B$ (slow) and $A+B \xrightarrow{k_{2}} C$ (fast) where k_{1} and k_{2} are the ratge constants of two steps. The rate of production of C will be given by
A. $k_{1}[A][B]$
B. $k_{1}[A]$
C. $k_{1} k_{2}[A]$
D. $k_{2}[A][B]$

Answer:

168. In several experiments on the kinetics of reaction
$A+B \rightarrow$ Products, it is observed that
i) On doubling the initial concentration of A, the rate was increased by four times and
ii) On doubling the initial concentration of B, the rate was increased by two times. The correct statement is
A. the reaction is first order in and second order in B
B. the reaction is first order in both the reactants
C. the rate equation is $\frac{d x}{d t}=k[A]^{0}[B]$
D. the over all order of the reaction is three

Answer:

169. For the reaction, $A+2 B+C \rightarrow D+2 E$, the rate of formation of D is found to be
i) doubled when $[A]$ is doubled keeping $[B]$ and $[C]$ constant
ii) doubled when $[C]$ is doubled keeping $[A]$ and $[B]$ constant
iii) the same when $[B]$ is doubled keeping [A] adn [C] constant.

Which one is the rate equation for the reaction
A. rate $=k[A][B][C]$
B. rate $=k[A]^{0}[B][C]$
C. rate $=k[A][B]^{0}[C]$
D. rate $=[A][B][C]^{0}$

Answer:

- View Text Solution

170. The hydrolysis of methyl formate in acid solution has rate expression, rete $=k\left[\mathrm{HCOOCH}_{3}\right][\mathrm{H}]^{+}$the balanced equation being,

$$
\mathrm{HCOOCH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCOOH}+\mathrm{CH}_{3} \mathrm{OH}
$$

The rate law contains $\left[H^{+}\right]$though the balanced equation does not ontain $\left[H^{+}\right]$because
A. of convenience to express the rate law
B. H^{+}ion is a catalyst
C. H^{+}is an important constituent of any reaction all acids contains H^{+}ions
D. all acids contains H^{+}ions

Answer:

171. For an endothermic reaction, where ΔH represents the enthalpy of reaction in kJmol^{-1}, the minimum value for the energy of activation will be
A. less than ΔH
B. zero
C. more than ΔH
D. equal to ΔH

Answer:

(D) Watch Video Solution

172. Th Arrhenius equation expressing the effect of temperature on the rate constant of the reaction is
A. $k=\frac{E_{a}}{R T}$
B. $k=A e^{-E_{a} / R T}$
C. $k=A e^{E_{a} / R T}$
D. $k=e^{-E_{a} / R T}$

Answer:

(D) Watch Video Solution

173. The minimum amount of energy required for the reacting molecules to undergo reaction is called :
A. threshold energy
B. activation energy
C. internal energy
D. potential energy

Answer:

- View Text Solution

174. If E_{f} and E_{r} are the activation energies of forward and backward reactions and the reaction is known to be exothermic, then
A. $E_{f}<E_{r}$
B. $E_{f}>E_{r}$
C. $E_{f}=E_{r}$
D. No relation can be given between E_{f} and E_{r} as date are not sufficient .

D Watch Video Solution

175. Two reactions $A \rightarrow$ products and $B \rightarrow$ products have rate constants K_{A} and k_{B} at temperature, T and activation energies E_{A} and E_{B} respectively. If $k_{A}<k_{B}$ and assuming that A for both the reaction is same then
A. at lower temperature k_{A} will be greater than k_{B}
B. at lower temperature k_{A} and k_{B} will differ more and $k_{A}>k_{B}$
C. as temperature rises k_{A} and k_{B} will be close to each other inmagnitude
D. all

- View Text Solution

176. Combustion of carbon is exothermic, but coal stored in coal depots does not burn automatically because of:
A. high threshold energy barrier
B. kinetic stability of coal
C. higher energy of activation needed for burning
D. all

Answer:

177. Increase in the concentration of the reactants leads to the changes in
A. heat of reaction
B. activation energy
C. collision frequency
D. threshold energy

Answer:

- View Text Solution

178. According to collision theory of reaction rates
A. every collision between reactans leads to chemical
B. rate of reaction is proportional to velocity of molecules
C. all reactions which occur in gaseous phase are zero order reactions
D. rate of reaction is directly proportional to collision frequency

Answer: D

D View Text Solution

179. Which statement is not correct?
A. for endothermic reactions, heat of reaction is lesser than
B. for exothermic reactions, heat of reaction is more than energy of activation
C. for exothermic reactions energy of activations is less in
forward reaction than in backward reaction
D. for endothermic reactions energy of activation is more in

forward reaction than in backward reaction

Answer:

- View Text Solution

180. The Activation energy for a chemical reaction mainly depends upon
A. temperature
B. nature of reacting species
C. collision frequency
D. concentration of reactants.

Answer:

- Watch Video Solution

181. For an exothermic reaqction, the energy of activation of the reactants is
A. equal to the ertergy of activation of products
B. less than the energy of activation of products
C. greater than the energy of activation of products
D. sometimes greater and sometimes Jess than that of the products

Answer:

(D) Watch Video Solution

182. The rate of reaction increases with increase of temperature because a
A. activation energy barrier is lowered
B. the average energy of the products increases
C. threshold energy changes
D. activation energy is lowered
183. The enzyme-catalyzed reaction is faster than a metal catalyzed reaction because
A. its activation energy is greater
B. its activation energy is lower
C. enzymes are present in larger amounts
D. none of the above

Answer:

- View Text Solution

184. Which statement is correct?
A. reactions with low activation energy are usually exothermic
B. the rate Jaw soetimes enables to deduce the mechanism of a reaction
C. the rate Jaw for a reaction is an algebric expression relating the forward reaction rate to product concentration
D. increase in the total pressure of a gas phase reaction increases the fraction of collisions effective in producing reactions

Answer:

185. For the reaction, for which the activation energies for forward and backward reactions are same, then:
A. $\Delta H=0$
B. $\Delta S=0$
C. the order is zero
D. there is no catalyst

Answer:

- Watch Video Solution

186. The chemical reactions in which reactants require high amount of activation energy are genera11y
A. slow
B. fast
C. instantaneous
D. spontaneous

Answer:

- View Text Solution

187. The presence of a catalyst
A. increases the heat of reaction
B. decreases the heat of reaction
C. has no effect on the heat of reaction
D. has no effect on the energy of activation

Answer:

- View Text Solution

188. The rate constant K_{1} of a reaction is found to be double that of rate constant K_{2} of another reaction. The relationship between corresponding activation energies of the two reaction at same temperature (E_{1} and E_{2}) can be represented as:
A. $E_{1}>E_{2}$
B. $E_{1}<E_{2}$
C. $E_{1}=E_{2}$
D. none

Answer:

189. Energy of activation of an exothermic reaction reaction is .
A. zero
B. negative
C. positive
D. can't be predicted

Answer:

- Watch Video Solution

190. Which of the following statement about the catalyst is/are true?
A. A catalyst accelerates the rate of reaction by bringing
down the energy of activation
B. A catalyst does not participate in reaction mechanism
C. A catalyst'makes the reaction more feasible by making
ΔG more negative
D. A catalyst makes equilibrium constant more favourable for forward reaction

Answer:

Watch Video Solution

191. Activation energy of the reaction is:
A. the energy released during the reaction
B. the energy evolved when activated complex is formed
C. minimum amount of energy needed to overcome the potentia] barrier ,of reaction
D. the energy needed to form one mole of the product

Answer:

D Watch Video Solution

192. According to collision thery
A. collisions are sufficiently violent
B. all collisions are responsible for reaction
C. all collisions are effective
D. only highly energetic molecules have enough energy to react

Answer:

- View Text Solution

193. Which one of the following statements is incorrect?
A. The temperature coefficient of a reaction is the ratio of
the rate constants at any two temperatures
B. The temperature coefficient of a reaction is the ratio of
the rate constants at 298 K and 308 K
C. The temperature coefficient of most of the reactions lies
D. In an endothermic reaction, activation energy of reactants is more than that of the products

Answer:

- View Text Solution

194. The rate constant $\left(K^{\prime}\right)$ of one reaction is double of the rate constant ($\mathrm{K}^{\prime \prime}$) of another reaction. Then the relationship between the corresponding activation energies of the two reactions (E_{a}^{\prime} and $E_{a}^{\prime \prime}$) will be
A. $E_{a}^{\prime}>e_{a}^{\prime \prime}$
B. $E_{a}{ }^{\prime}<E_{a}{ }^{\prime}{ }^{\prime}$
C. $e_{a}{ }^{\prime}=E_{a}{ }^{\prime \prime}$
D. $E_{a}{ }^{\prime}=4 E_{a}{ }^{\prime \prime}$

- Watch Video Solution

195. An endothermic reaction $A \rightarrow B$ has an activation energy
as $\times \mathrm{kJ} \mathrm{mo} 1^{-1}$ of A . If energy change of the reaction is y kJ , the activation energy of the reverse reaction is :
A. $-x$
B. $x-y$
C. $x+y$
D. $y-x$

Answer:

196. The effect of temperature on reaction rate is given by
A. Arrhenius equation
B. Gibbs Helmholtz equation
C. Kirchhoff's equation
D. none

Answer:

D Watch Video Solution

197. At room temperature, the reaction between NO and O_{2} to give NO_{2} is fast, while that between CO and O_{2} is slow. It is due to:
A. CO is smallar in size than of NO
B. Co is poisonous
C. the activation energy for the reaction,
$2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$ is less then
$2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$
D. none

Answer:

D Watch Video Solution

198. A large increase in the rate of a reaction for a rise in temperature is due to
A. an increase in the number of collisions
B. an increase in the number of activated molecules
C. lowering of threshold energy
D. shortening of mean free path

Answer:

(D) Watch Video Solution

199. The rates of reaction invrease with increase of temperature because
A. activation energy of the reaction molecules decreases
B. kinetic eriergy of the product molecules increases
C. the fraction of the reacting molecules possessing an-
energy equal to the activation energy
D. the collisions between molecules decrease

D View Text Solution

200. The activation energy of reaction is equal to
A. threshold energy for the reaction
B. threshold energy + energy of the reactants
C. threshold energy - energy of the reactants
D. threshold energy+ energy of the products

Answer:

- View Text Solution

201. Collision theory is most satisfactory for
A. first order reaction
B. second order reaction
C. bimolecular reaction
D. any order reaction

Answer:

- View Text Solution

202. The rate of chemical reaction is doubled for every $10^{\circ} \mathrm{C}$ rise in temperature because of
A. decrease in the activation energy
B. decrease in the threshold energy
C. increase in the number of molecular collisions
D. increase in the number of activated molecules

Answer:

- View Text Solution

203. The reactions $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$
$2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$
look to be identical, yet the first is faster than the second. The reason is that
A. the first reaction has lower enthalpy change than the second
B. the first reaction has lower internal energy change than the second
C. the first reaction has lower activation energy than the second
D. the first reaction has lower activation energy than the second.

Answer:

- Watch Video Solution

204. Which of the following expresisons give the effect of temperature on the rate constant?
A. $\ln \mathrm{k}=\ln A-E_{a} / R T$
B. $\ln \mathrm{k}=\ln A+E_{a} / R T$
C. $k=A-E_{a} / R T$
D. $k=\operatorname{In} A+\operatorname{In} E_{a} / R T$

Answer:

(D) Watch Video Solution

205. The rate of reaction is doubled for $10^{\circ} C$ rise in temperature. The increase in the reaction rate as a result of temperature rise from $10^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ is
A. 112
B. 512
C. 400
D. 614

Answer:

206. The minimum energy required for molecules to enter into chemical reaction is called
A. kinetic energy
B. potential energy
C. threshold energy
D. activation energy

Answer:

- View Text Solution

207. According to collision theory, collision rate $=Z$ (reactants),
A. Activation energy
B. Packing frequency
C. Collision frequency
D. Potential energy

Answer:

- Watch Video Solution

208. The correct expression for Arrhenius equation showing the effect of temperature on the rate constant is
A. $\frac{k_{2}}{k_{1}}=\frac{E_{a}}{2.303 R}\left(\frac{T_{2}-T_{1}}{T_{2} T_{2}}\right)$
B. $\operatorname{In} \frac{k_{2}}{k_{1}}=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$
C. $k=A e^{E_{a} / R T}$
D. $\log . \frac{K_{2}}{k_{1}}=\frac{E_{a}}{2.303}\left(\frac{T_{1} T_{2}}{T_{2}-T_{1}}\right)$

Answer:

D Watch Video Solution

209. At a given temperature, the energy of activation of two reaction is same if
A. The specific rate constant for the two reactions is the same
B. the temperature coefficient for the specific rate constant
for the two reactions is the same
C. ΔH from the two reactions is the same but not zero
D. ΔH for the two reactions is zero

D View Text Solution

210. The plot og $\log k$ vs $1 / T$ helps to calculate
A. energy of activation
B. rate constant of the reaction
C. order of the reaction
D. Pnergy of activation as well as the frequency ctor.

Answer:

D Watch Video Solution

211. Point out the incorrect statement
A. rate law is an experimental value
B. law of mass action is a theoretical proposal
C. rate law is more informative than law of mass action for developing mechanism
D. rate law is always different from the e:gt.Itpression of law of mass action

Answer:

D Watch Video Solution

212. The activation energies of the forward and backward reactions in the case of a chemical reaction are 30.5 and 45.5 $\mathrm{KJ} / \mathrm{mol}$, respectively. The reaction is:
A. exothermic
B. endothermic
C. neither exothermic nor endothermic
D. independent of temperature

Answer:

- Watch Video Solution

213. In a certain reaction, 10% of the reactant decomposes in one hour, 20% in two hours, 30% in theee hours, and so on.

The dimenison of the velocity constant (rate constant) are
A. hour $^{-1}$
B. mollitre ${ }^{-1}$ hour $^{-1}$
C. litremol ${ }^{-1} \mathrm{sec}^{-1}$
D. $\mathrm{mol} \mathrm{sec}{ }^{-1}$

- Watch Video Solution

214. For the exothermic reaction, $A+B \rightarrow C+D . \Delta H$ is the heat of reaction and Ea is the activation energy. The activation energy for the formation of $A+B$ will be
A. E_{a}
B. ΔH
C. $E_{a}+\Delta H$
D. $\Delta H-E_{a}$

Answer:

215. While studying the decompoistion of gaseous $\mathrm{N}_{2} \mathrm{O}_{5}$, it is observed that a plot of logarithm of its partial pressure versus time is linear. What kinetic parameters can be obtained form this observation?
A. rate constant
B. initial concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$
C. both
D. energy of activation

Answer:

(D) Watch Video Solution

216. If /is the fraction of collisions withst1ffident K.E. and P is the fraction of collision::, with proper orientations of colloiding molecules then according to Arrhenius equation, rate constant of a chemical reaction is equal to
A. P. $f e^{-E_{a} / R T}$
B. $\frac{P}{f} e^{-E_{a} / R T}$
C. $P . f \times \frac{1}{E_{a} / R T}$
D. $P . A f \times e^{-E_{a}^{2} / R T}$

Answer:

D View Text Solution

217. The following reaction is accompanied by liberation of heat and occurs in two steps as follows
i) $R-X \rightarrow R^{+}+X^{-}$(slow)
ii) $R^{+}+N u^{-} \rightarrow R-N u$ (fast)

The progress of the reaction is best represented by
A.

B.
C.
D.

Answer:

218. An exothermic reaction $A \rightarrow B$ has an activation energy of $X \mathrm{~kJ} \mathrm{~mol}^{-1}$ of A . If the energy change in the reaction is Y kJ , then the activation energy of the backward reaction will be
A. $-X$
B. $Y-Y$
C. $Y-X$
D. $X+Y$

Answer:

- View Text Solution

219. For the reaction, for which the activation energies for forward and backward reactions are same, then:
A. the stoichiometry is the mechanism
B. ΔS (Entropy change)= 0
C. $\Delta H=0$
D. the order is zero

Answer:

- Watch Video Solution

220. The rate constant is numerically the same for three reactions of first, second and third order respectively. Which of the following is correct ?
A. if $[\mathrm{A}]=1$ then $r_{1}=r_{2}=r_{3}$
B. if [A] It 1 then $r_{1}>r_{2}>r_{3}$
C. if [A] gt 1 then $r_{1}<r_{2}<r_{3}$
D. all

Answer:

- View Text Solution

221. Energy profile of the reaction $A+B C \rightarrow A B+C$ is given in the figure

Which of the following statement is true ?
A. threshold energy of the reaction is 100 kJ
B. E_{f} is $60 \mathrm{Kj} \mathrm{mol}^{-1}$ while E_{r} is $40 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. ΔH is $+20 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and the reaction is endothermic
D. all are true

Answer:

- View Text Solution

222. Given the energy profile for the reaction
$A+B \rightarrow C+D$

Pick up the correct statements

1) activation evergy for the reaction $C+D \rightarrow A+B$ is ($\mathrm{x}+\mathrm{y}$)
2) ΔH of the reaction $A+B \rightarrow C+D$ is -y
3) threshold energy of the reaction is $x+y+z$
A. 1 and 2
B. 2 and 3
C. 1 and 3
D. 1,2 and 3

Answer:

D View Text Solution

223. Consider the following statement :

1 The rate of reaction is always proportinal to the concentration of reactants.

2 The order of an elementary chemical reaction step can be determined by examing its stoichimoetry.

3 The first order reactions follows an exponential time course. Of these statements :
A. (i), (ii) and (iii) are correct
B. (i) and (ii) are correct
C. (ii) and (iii) are correct
D. (i) and (iii) are correct

- Watch Video Solution

224. Which one of the following is NOT correct for transition state theory
A. the reactants are first converted to an activated complex.
B. the activated complex remains in equilibrium with the reactants.
C. the activated complex has a transient existence.
D. the activated complex can be isolated.

Answer:

225. The reaction $2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$ is found to follow III order kinetics. Its molecularity is
A. 1
B. 2
C. 3
D. 4

Answer:

- Watch Video Solution

226. Which of the following statements is incorrect?
A. Activation energy for the forward reaction equals that of
B. For a reversible reaction, an increase in temperature increases the reaction rate for both the forward and the backward reaction
C. The larger the initial concentration for a second order reaction, the shorter its half life.
D. When Δt is infinitesimally small, the average rate equals the instantaneous rate

Answer:

- View Text Solution

227. The hydrolysis of methyl formate in acid solution has rate expression :
rate $=k\left[\mathrm{HCOOCH}_{3}\right]\left[\mathrm{H}^{+}\right]$,
the balanced equation being

$\mathrm{HCOOCH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCOOH}+\mathrm{CH}_{3} \mathrm{OH}$

The rate law contains $\left[H^{+}\right]$though the balanced equation does not contain $\left[H^{+}\right]$though the balanced equation does not contain $\left[H^{+}\right]$because
A. more for convenience to express the rate law
B. H^{+}ion is a catalyst
C. H^{+}is an important constituent of any reaction
D. all acids contains H^{+}ions

Answer:

- View Text Solution

228. Which of the following statements is incorrect?
A. The catalyst does not affect the equilibrium of a reaction.
B. Reaction with higher activation energy has higher rate constant.
C. In an exothermic reaction, the activation energy of the reverse reaction is higher than that of the forward reaction
D. Half-life period of a first order reaction is independent of initial concentration.

Answer:

- View Text Solution

229. In a reaction, the rate expression is Rate $=k[A][B]^{2 / 3}$, the order of reaction is
A. 1
B. 2
C. $5 / 3$
D. zero

Answer:

- View Text Solution

230. Which of the foliowing is a fast reaction ?
A. $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow \xrightarrow{h v} 2 \mathrm{HCl}$
B. $\mathrm{NO}_{2}+\mathrm{CO} \rightarrow \mathrm{NO}+\mathrm{CO}_{2}$
C. $\mathrm{CH}_{3} \mathrm{CHO} \rightarrow \mathrm{CH}_{4}+\mathrm{CO}$
D. $6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \xrightarrow{h v} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$

- View Text Solution

231. Which sta.tement is correct?
A. Law of mass action and rate l.aw expressions re same for single step-reactions
B. Order of the slowest elementary reaction of a ~omplex reaction gives the order of 'the complex. reaction
C. Both order artq. molecularity have normally maximum
value of 3
D. All

Answer:

232. Rate expression of a chemical change is $\frac{d x}{d t}=k[A]^{1}[B]^{1 / 2}[C]^{3 / 2}$. The order of the reaction is
A. 2
B. 3
C. 1
D. zero

Answer:

- View Text Solution

233. Therateofthereaction, $A+B+C \rightarrow P$ is given by, $r=-\frac{d[A]}{d t}=k[A]^{1 / 2}[B]^{1 / 2}[C]^{1 / 4}$. The order is
A. 1
B. 2
C. $1 / 2$
D. $5 / 4$

Answer:

- View Text Solution

234. The plot of concentration of the reactant vs time for a reaction is a straight line with a negative slope. This reaction follows
A. first order rate equation
B. zero order rate equation
C. second order rate equation
D. third order rate equation

Answer:

- Watch Video Solution

235. In the formation of sulphur trioxide by contact process, $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$, the rate of reaction was measured as $-\frac{d\left[O_{2}\right]}{d t}=2.5 \times 10^{-4} m o l L^{\&}(-1) s^{-1}$

Rate of reaction expressed in terms of SO_{3} will be
A. $-5.0 \times 10^{-4} \mathrm{~mol} L^{-1} s^{-1}$
B. $-1.25 \times 10^{-4} \mathrm{~mol} L^{-1} \mathrm{~s}^{-1}$
C. $2.5 \times 10^{4} \mathrm{~mol} L^{-1} s^{-1}$
D. $5.00 \times 10^{-4} \mathrm{~mol} L^{-1} s^{-1}$

- View Text Solution

236. On increasin g the tempearture by 10 K in the case of slow reactions
A. number of collisions get doubled
B. value of rate constant increasex
C. energy of activation increases
D. none

Answer:

237. A reaction proceeds in three stages. The first stage is a slow and involves two molecules of reactants. The second and third stage are fast. The overall order of the reaction is
A. first order
B. second order
C. third order
D. zero order

Answer:

- View Text Solution

238. Which statement is correct ?
A. Molecularity of a reaction is same as the order of reaction
B. In some cases order of reacbon may be same as the molecularity of the reaction
C. Both 'a' and 'b' are correct
D. All are incorrect

Answer:

- View Text Solution

239. Which of the following theory is not related to the chemical kinetics?
A. Collision theory
B. Activated complex theory
C. Absolute reaction rate theroy
D. VSEPR theory

Answer:

- Watch Video Solution

240. Burning of coal is represented as $C(s)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$. The rate of this reaction is increased by
A. decrease in the concentration of oxygen
B. powdering the lumps of coal
C. decreasing the temperature
D. proviqing inert atmosphere for burning

Answer:

241. Among the following reaction, the fastest one is
A. burning of coal
B. rusting of iron in moist air
C. conversion of monoclinic sulphur to rhombic sulphur
D. Reaction between sodium nitrate and Hydrogen chloride solutions.

Answer:

D View Text Solution

242. For a reaction k is $2.5 \times 10^{-3} \frac{1}{\mathrm{~mol} \times \mathrm{sec}}$.

The order of reaction is
A. half
B. one
C. two
D. three

Answer:

- View Text Solution

243. The reaction between $H_{2(g)}$ and $I C I_{(g)}$ occurs in the following steps:
i) $\mathrm{H}_{2}+\mathrm{ICl} \rightarrow \mathrm{HI}+\mathrm{HCl}$
ii) $\mathrm{HI}+\mathrm{IC}<\mathrm{oI}_{2}+\mathrm{HCl}$

The reaction intermediate in the reaction is

A. HCl
B. ICl
C. I_{2}
D. HI

Answer:

- View Text Solution

244. Which of the following rate laws has an overall order of 0.5
for reaction involving substances x, y and z ?
A. rate : $k_{C_{x}}^{-0.5}\left(C_{y}\right)^{0.5}\left(C_{z}\right)^{0.5}$
B. rate : $k\left(C_{x}\right)^{0.5}\left(C_{y}\right)^{0.5}\left(C_{z}\right)^{0.5}$
C. rate : $k\left(C_{x}\right)^{1.5}\left(C_{y}\right)^{-1}\left(C_{z}\right)^{0}$
D. rate : $k\left(C_{x}\right)\left(C_{y}\right)^{n}\left(C_{z}\right)^{2}$

Answer:

- Watch Video Solution

245. Reaction between ethyl bromide and aqueous KOH follows which order kinetics
A. zero order
B. seond order
C. first order
D. none

D View Text Solution

246. Pieces of wood burn faster than a log of wood of the same mass because
A. log of wood has larger surfae area and needs more time
to burn
B. wood shavings have larger surface area
C. all pieces of wood burn at the same rate
D. log of wood has higher density than wood shavings

Answer:

247. For the reaction
$\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{I}_{2} \xrightarrow{\mathrm{H}^{+}}$products. The rate equation is, $\frac{d x}{d t}=k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[H^{+}\right]$. The order of the reaction with respect to iodine is
A. one
B. two
C. half
D. zero

Answer:

248. For a chemical reaction $A_{2}+2 B \rightarrow$ Products, the rate con trolling step is $A=\frac{1}{2} B \rightarrow C$. If the cone. of B is tripled, the rate of reaction will
A. remain the same
B. become four times
C. become 1.732 times
D. become double

Answer:

- View Text Solution

249. Which rate expression suggests an over all order of 2.5 for the reaction involving substances $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$?
A. Rate $=k[X][Y][Z]^{2.5}$
B. Rate $=k[X]^{0.5}[Y]^{0.5}[Z]^{0.5}$
C. Rate $=k[X]^{1.5}[Y][Z]^{0}$
D. Rate $=k[X][Y]^{0} /[Z]^{2}$

Answer:

- View Text Solution

250. The rate of reaction becomes 2 times for every $10^{\circ} C$ rise in temperature. How the rate of reaction will increase when temperature is increased from $30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$?
A. 16
B. 32
C. 64
D. 128

Answer:

D View Text Solution

251. In the reaction $A+2 B \rightarrow C+2 O$ the initial rate $\frac{-d[A]}{d t}$ at $t=0$ was found to the $2.6 \times 10^{-2} \mathrm{M} \mathrm{sec}^{-1}$. What is the value of $\frac{-d[B]}{d t}$ at $t=0$ in $m s^{-1}$?
A. 2.6×10^{-2}
B. 5.2×10^{-2}
C. 1.0×10^{-1}
D. 6.5×10^{-3}

Answer:

(D) Watch Video Solution

252. A gaseous $A_{2}(g) \rightarrow B(g)+\frac{1}{2} C(g)$, shows increase in pressure from 100 mm to 120 mm in 5 min . The rate of disappearance of A_{2} is
A. $4 \mathrm{~mm} \mathrm{~min}^{-1}$
B. $8 \mathrm{~mm} \mathrm{~min}^{-1}$
C. $16 \mathrm{~mm} \mathrm{~min}^{-1}$
D. $2 \mathrm{mn} \mathrm{min}^{-1}$

Answer:

- Watch Video Solution

253. A drop of solution (volume $0.05 m L$) contains $3 \times 10^{-6} \mathrm{~mole} H^{\oplus}$ ions. If the rate constant of disappearance of H^{\oplus} ions is $1 \times 10^{7} \mathrm{molL} L^{-1} s^{-1}$, how long would it take for H^{\oplus} ions in the drop of disappear?
A. $6 \times 10^{-8} \mathrm{sec}$
B. $6 \times 10^{-7} \mathrm{sec}$
C. $6 \times 10^{-9} \mathrm{sec}$
D. $6 \times 10^{-10} \mathrm{sec}$

Answer:

- Watch Video Solution

254. For a chemical reaction $Y_{2}+2 Z \rightarrow$ Product, rate conctrolling step is $Y+\frac{1}{2} Z \rightarrow Q$

If the concentration of Z is doubled, the rate of reaction will
A. remain the same
B. become four times
C. become $\sqrt{2}$ times
D. become double.

Answer:

D View Text Solution

255. The rate of the reaction $N_{2(g)}+3 H_{2(g)} \rightarrow 2 \mathrm{NH}_{3(g)}$
$\frac{1}{2} \frac{d}{d t}\left[N H_{3}\right]=2 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{sec}^{-1}$
The rates of the reaction expressed in terms of N_{2} and H_{2} are

Rates in term of N_{2} Rate in terms of H_{2}
A. $\left(m o l L^{-1} \sec ^{-1}\right) \quad\left(m o l L^{-} \sec ^{-1}\right)$
1×10^{-4}
1×10^{-4}
Rates in term of N_{2} Rate in terms of H_{2}
B. $\left(m o l L^{-1} \mathrm{sec}^{-1}\right) \quad\left(m o l L^{-} \mathrm{sec}^{-1}\right)$
$3 \times 10^{-4} \quad 1 \times 10^{-4}$
Rates in term of N_{2} Rate in terms of H_{2}
C. $\left(m o l L^{-1} \mathrm{sec}^{-1}\right) \quad\left(m o l L^{-} \mathrm{sec}^{-1}\right)$
$1 \times 10^{-4} \quad 1 \times 10^{-4}$
Rates in term of N_{2} Rate in terms of H_{2}
D. $\left(m o l L^{-1} \mathrm{sec}^{-1}\right) \quad\left(m o l L^{-} \mathrm{sec}^{-1}\right)$
$2 \times 10^{-4} \quad 2 \times 10^{-4}$

Answer:

- View Text Solution

256. The rate of a gaseous reaction $A+B \rightarrow C+D$ is equal to $k[A][B]$. The volume of the reaction vessel containing these gases is suddenly reduced to one-fourth of the initial volume . The rate of reaction would be
A. $1 / 16$
B. $16 / 1$
C. $1 / 8$
D. $8 / 1$

Answer:

- View Text Solution

257. For a chemical reaction $2 X+Y \rightarrow Z$, the rate of appearance of Z is $0.05 \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$. The rate of diappearance of X will be
A. $0.05 \mathrm{~mol} L^{-1}$ per hour
B. $0.05 \mathrm{~mol} L^{-1}$ per min.
C. $0.1 \mathrm{~mol} L^{-1} \mathrm{~min}^{-1}$
D. $0.25 \mathrm{~mol} L^{-1}$ per min.

Answer:

- Watch Video Solution

258. When ethyl acetate was hydrolysed in pressure of 0.1 N HCl , the rate constant was found to be $5.40 \times 10^{-5} \mathrm{sec}^{-1}$. But
when $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ was used for hydrolysis, the rate constant was found to be $6.25 \mathrm{xx10}{ }^{\wedge}(-5) \sec ^{\wedge}(-1)$. Thus, it may be concluded that :
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is stronger than HCl
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is weaker than HCl
C. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HCl both have the same strength
D. the data are not sufficient to compare the strength of
$\mathrm{H}_{2} \mathrm{SO}_{4}$ and HCl

Answer:

- View Text Solution

259. Ethylene is produced by,

$$
\underset{\text { Cyclobutane }}{C_{4} H_{8}} \stackrel{\Delta}{\longrightarrow} 2 C_{2} H_{4}
$$

The rate constant is $2.48 \times 10^{-4} \mathrm{sec}^{-1}$. In what time will the molar ratio of the ethylene to cyclobutane in reaction mixture attain the value 1 ?
A. 27.25 minute
B. 28.25 minute
C. 25 minute
D. 20 minute

Answer:

D Watch Video Solution

260. For the reaction $A+2 B \rightarrow 2 C+D$, the concentration of
A is kept constant and that of B is tripled, the rate of reaction
A. three times
B. six times
C. eight times
D. nine times

Answer:

261. For the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ the rate of change of concentration for hydrogen is $-0.3 \times 10^{-4} \mathrm{Ms}^{-1}$. The rate of change of concentration of ammonia is
A. -0.2×10^{-4}
B. 0.2×10^{-4}
C. 0.1×10^{-4}
D. 0.3×10^{-4}

Answer:

- View Text Solution

262. In a first order reaction the $a /(a-x)$ was found tu be 8 after

10 minute. The rate constant is
A. $(2.303 \times 3 \log 2) / 10$
B. $(2.303 \times 21 \operatorname{og} 3) / 10$
C. $10 \times 2.303 \times 2 \log 3$
D. $10 \times 2.303 \times 3 \log 2$

Answer:

263. Two gases A and B are filled in a container. The experimental rate law for the reaction between them, has been found to be Rate $=k[A]^{2}[B]$ Predict the effect on the rate of the reaction when pressure is doubled :
A. the rate is doubled
B. the rate becomes four times
C. the rate beomces six times
D. the rate becomes eight times

Answer:

264. For the reaction, $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ the rate $\frac{d\left[\mathrm{NH}_{3}\right]}{d t}=2 \times 10^{-4} M s^{-1}$. Therefore the rate $-\frac{d\left[\mathrm{~N}_{2}\right]}{d t}$ is given as:
A. $10^{-4} M s^{-1}$
B. $10^{4} M s^{-1}$
C. $10^{-2} M s^{-1}$
D. $10^{4} s M^{-1}$

Answer:

D Watch Video Solution

265. The rate of a reaction gets doubled when the temperature changes from $7^{\circ} \mathrm{C}$ to $17^{\circ} \mathrm{C}$. By what factor will it change for
the temperature change from $17^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C}$?
A. 1.81
B. 1.71
C. 1.91
D. 1.76

Answer:

- Watch Video Solution

266. In hydrogenation reaction at $25^{\circ} \mathrm{C}$, it is observed that hydrogen gas pressure falls from 2 atm to 1.2 atm isn 50 min .

Calculate the rate of reaction in molarity per sec. ($\mathrm{R}=0.0821$ litre -atm degree ${ }^{-1} \mathrm{~mol}^{-1}$)

$$
\text { A. } 1.09 \times 10^{-6}
$$

B. 1.09×10^{-5}
C. 1.09×10^{-7}
D. 1.09×10^{-8}

Answer:

- Watch Video Solution

267. A gaseous $A_{2}(g) \rightarrow B(g)+\frac{1}{2} C(g)$, shows increase in pressure from 100 mm to 120 mm in 5 min . The rate of disappearance of A_{2} is
A. 4
B. 8
C. 16
D. 2

Answer:

- Watch Video Solution

268. The rate of reaction between two A and B decreases by factor 4 if the concentration of reactant B is doubled. The order of this reaction with respect to B is
A. -1
B. -2
C. 2
D. 1

Answer:

269. The reaction , $\mathrm{N}_{2} \mathrm{O}_{5}$ in $2 \mathrm{NO}_{2}+(1 / 2) \mathrm{O}_{2}(g)$ is of first order for $N_{2} O_{5}$ with rate constant $6.2 \times 10^{-4} s^{-1}$. What is the value of rate of reaction when $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=1.25 \mathrm{molL}^{-1}$?
A. $5.15 \times 10^{-5} \mathrm{molL} L^{-1} \mathrm{~s}^{-1}$
B. $6.35 \times 10^{-3} \mathrm{molL} L^{-1} \mathrm{~s}^{-1}$
C. $7.75 \times 10^{-4} \mathrm{~mol} L^{-1} \mathrm{~s}^{-1}$
D. $3.85 \times 10^{-3} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$

Answer:

- View Text Solution

270. The rate of disappearance of $C O$ in the reaction, $2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$ is $1.28 \times 10^{-3} \mathrm{~g} / \mathrm{sec}$. Then the rate of
formation of CO_{2} is
A. $0.64 \times 10^{-3} g / \mathrm{sec}$
B. $0.80 \times 10^{-3} g / \mathrm{sec}$
C. $1.28 \times 10^{-1} \mathrm{~g} / \mathrm{sec}$
D. $1.28 \times 10^{-3} g / \mathrm{sec}$

Answer:

- View Text Solution

271. The rate constant of a first order reaction is $3 \times 10^{-5} \sec ^{-1} M$ If initial concentration is 0.10 M , the initial rate is $\left(M s^{-1}\right)$
A. 3×10^{-6}
B. 3×10^{-5}
C. 3×10^{-8}
D. 3×10^{-7}

Answer:

- View Text Solution

272. For the reaction, $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ rate and rate constant are $1.02 \times 10^{-4} M \mathrm{sec}^{-1}$ and $3.4 \times 10^{-5} \mathrm{sec}^{-1}$ respectively, the concentration of $N_{2} O_{5}$, at that time will be
A. 1.732 M
B. 3 M
C. $1.02 \times 10^{-4} \mathrm{M}$
D. $3.5 \times 10^{5} \mathrm{M}$

Answer:

- Watch Video Solution

273. For reaction $a A \rightarrow x P$ when [A] $=2.2 \mathrm{~m} \mathrm{M}$, the rate was found to be $2.4 \mathrm{~m} \mathrm{Ms}{ }^{-1}$. On reducing concentration of A to half, rate changes to $0.06 \mathrm{mMs}^{-1}$. The order of reaction with respect to A is :
A. 1.5
B. 2
C. 2.5
D. 3.0

Answer:

274. The order for the reaction, $\mathrm{H}_{2}+\mathrm{Cl}_{2} \xrightarrow{h v} 2 \mathrm{HCl}$ over water is
A. 0
B. 1
C. 2
D. 3

Answer:

View Text Solution
275. The rate constants k_{1} and k_{2} for two different reactions are $10^{25} e^{-4000 / T}$ and $10^{25} e^{-1000 / T}$, respectively. The
temperature at which $k_{2}=k_{2}$ is
A. $\frac{2000}{2.303} K$
B. 2000 K
C. $\frac{3000}{2.303} K$
D. 1000 K

Answer:

- Watch Video Solution

276. The bromination of acetone that occurs in acid solution is
represented by this equation
$\mathrm{CH}_{3} \mathrm{COCH}_{3}(a q) \rightarrow \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{Br}(a q)+\mathrm{H}^{+}(a q)+\mathrm{Br}^{-}(a q)$

These kinetic data were obtained for given reaction concentrations.

Based on these data, the rate equation is
A. rate $=k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{Br}_{2}\right]$
B. rate $=k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{Br}_{2}\right]\left[\mathrm{H}^{+}\right]^{2}$
C. rate $=k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{Br}_{2}\left[\mathrm{H}^{+}\right]^{2}\right.$
D. rate $=k\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[H^{+}\right]$

Answer:

- View Text Solution

277. For the reaction $N_{2} O_{5} \rightarrow 2 \mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}$, the rate of disappearance of $N_{2} O_{5}$ is $6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} s^{-1}$. The rate of formation of NO_{2} and O_{2} will be respectively.

$$
\text { A. } 6.25 \times 10^{-3} \mathrm{molL}^{-1} \mathrm{~s}^{-1} \& 6.25 \times 10^{-3} \mathrm{molL}^{-1} \mathrm{~s}^{-1}
$$

B. $1.25 \times 10^{-2} \mathrm{molL} L^{-1} \mathrm{~s}^{-1} \& 3.125 \times 10^{-3} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$
C. $6.25 \times 10^{-3} \mathrm{molL} L^{-1} \mathrm{~s}^{-1} \& 3.125 \times 10^{-3} \mathrm{~mol} L^{-1} \mathrm{~s}^{-1}$
D. $1.25 \times 10^{-2} \mathrm{molL} L^{-1} \mathrm{~s}^{-1} \& 3.125 \times 10^{-3} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$

Answer:

- Watch Video Solution

278. During the kinetic study of the reaction $2 A+B \rightarrow C+D$ following results were obtained.

On the basis of above date which one is correct
A. $r=k[A]^{2}[B]$
B. $r=k[A][B]$
C. $r=k[A]^{2}[B]^{2}$
D. $r=k[A][B]^{2}$

Answer:

- View Text Solution

279. In a first order reaction, the concentration of the . reactant is decreased from 1.0 M to 0.25 M in 20 minute. The rate constant of the reaction would
A. $10 \mathrm{~min}^{-1}$
B. $6.93 \mathrm{~min}^{-1}$
C. $0.693 \mathrm{~min}^{-1}$
D. $0.0693 \mathrm{~min}^{-1}$

Answer:

280. The decomposition of NH_{3} on platinum surface is zeroorder with rate constant
$k=2.5 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$. The rate of production of H_{2} will be
A. $2.5 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$
B. $0.83 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
C. $7.5 \times 10^{-4} \mathrm{molL} L^{-1} \mathrm{~s}^{-1}$
D. $5.0 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$

Answer:

281. $\mathrm{SO}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{SO}_{2}+\mathrm{Cl}_{2}$ is a first order gas reaction with $k=2.2 \times 10^{-5} \sec ^{-1}$ at $320^{\circ} \mathrm{C}$ Percentage of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ decomposed on heating for 90 minutes is
A. 0.0887
B. 0.887
C. 0.0113
D. 0.113

Answer:

- View Text Solution

282. The half-life period of a first order reaction is 15 minutes.

The amount of substance left after one hour will be
A. one half
B. one fourth
C. one eighth
D. one sixteenth

Answer:

View Text Solution
283. 99 \% at a first order reaction was completed in 32 min .

When will 99.9% of the reaction complete.
A. 56 min
B. 26 min
C. 19 min
D. 48 min

Answer:

- Watch Video Solution

284. The rate of the first-order reaction $X \rightarrow$ products is $7.5 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~min}^{-1}$. What will be value of rate constant when the concentration of X is $0.5 \mathrm{~mol}^{-1}$?
A. $3.75 \times 10^{-4} \mathrm{sec}^{-1}$
B. $2.5 \times 10^{-5} \mathrm{sec}^{-1}$
C. $1.5 \times 10^{-3} \mathrm{sec}^{-1}$
D. $8 \times 10^{-4} \mathrm{sec}^{-1}$

Answer:

285. For a reation: $A \rightarrow$ Product,
rate law is $-\frac{d[A]}{d t}=K[A]_{0}$.
The concentration of A left after time t when $t=\frac{1}{K}$ is:
A. $\frac{[A]_{0}}{e}$
B. $[A]_{0} \times e$
C. $\frac{[A]_{0}}{e^{2}}$
D. $\frac{1}{[A]_{0}}$

Answer:

D Watch Video Solution
286. A slope of a graph $\ln [A]$ versus ' t ' for a first order is $-5 \times 10^{-4} s^{-1}$. The rate constant for the reaction will be.
A. $10 \times 10^{-3} s^{-1}$
B. $2.5 \times 10^{-3} s^{-1}$
C. $1.086 \times 10^{-3} s^{-1}$
D. $5 \times 10^{-3} s^{-1}$

Answer:

- View Text Solution

287. The decomposition of a substance ' R ' takes place according to fl rst order kinetics, Its initial concentration is reduced to $\frac{1}{8}$ th in 24 s . The rate constant of the reaction si
A. $\frac{1}{24} s^{-1}$
B. $\frac{0.69}{16 s^{-1}}$
C. $\frac{\operatorname{In} 2}{8} s^{-1}$
D. $\frac{1}{8} s^{-1}$

Answer:

- View Text Solution

288. In a zero order reaction, $\mathrm{A} \rightarrow$ Products, starting with 0.5 mol L^{-1}, if $0.4 \mathrm{~mol} L^{-1}$ are present after 10 min ., the rate constant of the reaction will be
A. $0.05 \mathrm{molL}^{-1} \mathrm{~min}^{-1}$
B. $0.04 \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$
C. $10^{-2} \mathrm{~mol} L^{-1} \mathrm{~min}^{-1}$
D. cannot be determined with the given data

Answer:

- View Text Solution

289. The rate of elementary reaction, $A \rightarrow B$, increases by 400 times when the concentration of A is increased twenty folds.

The order of the reaction with respect to A is
A. 1
B. 2
C. 10
D. 100

Answer:

290. The half life for the reaction $N_{2} O_{5} \Leftrightarrow 2 N O_{2}+\frac{1}{2} O_{2}$ in 24 hr at $30^{\circ} \mathrm{C}$. Starting with 10 g of $\mathrm{N}_{2} \mathrm{O}_{5}$ how many grams of $\mathrm{N}_{2} \mathrm{O}_{5}$ will remain after a period of 96 hours ?
A. 1.25 g
B. 0.63 g
C. 1.77 g
D. 0.5 g

Answer:

291. In the first order reaction, the concentration of the reactent is redduced to 25% in one hour. The half life period of the reaction is a) 2 hrb) 4 hr c$) 1 / 2 \mathrm{hr} \mathrm{d}) 1 / 4 \mathrm{hr}$
A. 2 hr
B. 4 hr
C. $1 / 2 \mathrm{hr}$
D. $1 / 4 \mathrm{hr}$.

Answer:

(D) Watch Video Solution

292. During the decomposition of a gas on the surface of a solid catalyst, $A \rightarrow$ Products, which is a zero order reaction,
the initial pressure of 200 atm of ' A ' is reduced to 100 atm in 100 seconds. The rate constant of the reaction is
A. 1 atm s^{-1}
B. $2 \mathrm{~atm} s^{-1}$
C. $4 \mathrm{~atm} \mathrm{~s}^{-1}$
D. $8 \mathrm{~atm} \mathrm{~s}^{-1}$

Answer:

- View Text Solution

293. Half-life perood for a first order reaction is 10 min . How much time is needed to change the concentration of the reactant from 0.08 M to 0.01 M ?
A. 10 min
B. 30 min
C. 20 min
D. 40 min

Answer:

- Watch Video Solution

294. For a first order reaction half life is 14 sec . The time required for the initial concentration to reduce $1 / 8$ of the value is
A. 28 s
B. 42 s
C. $(14)^{3} s$
D. $(14)^{2} s$

- Watch Video Solution

295. For a given reaction, presence of catalyst reduces the energy of activation by 2 kcal at $27^{\wedge}(@) \mathrm{C}^{\prime}$. Thus rate of reaction will be increased by:
A. 20 times
B. 14 times
C. 28 times
D. 2 times

Answer:

296. Rate for a zero order reaction is $2 \times 10^{-2} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$. If the concentration of the reactant after 25 s is $0.5 M$, the initial concentration must have been
A. 0.5 M
B. 1.25 M
C. 12.5 M
D. 1.0 M

Answer:

- Watch Video Solution

297. A first order reaction is carried out with an initial concentration of 10 mol litre and 80% of the reactant changes
into product in 10 sec . Now if the same reaction is carried out with an intial concentration of 5 mol per litre the percentage of the reactant changing to the product in 10 sec is:
A. 40
B. 80
C. 160
D. cannot be calculated

Answer:

- Watch Video Solution

298. What fraction of a reactant showing first order remains after 40 miute if $t_{1 / 2}$ is 20 minute?
A. $1 / 4$
B. $1 / 2$
C. $1 / 8$
D. $1 / 6$

Answer:

- View Text Solution

299. For the reaction $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$, under certain conditions of temperature and partial pressure of the reactants, the rate of formation of NH_{3} is $0.001 \mathrm{kgh}^{-1}$. The same rate of converison of hydrogen under the same condition is................kgh ${ }^{-1}$.
A. $1.5 \times 10^{-3} \mathrm{kghr}^{-1}$
B. $1.76 \times 10^{-4} \mathrm{kghr}^{-1}$
C. $2 \times 10^{-3} k g h r^{-1}$
D. $3 \times 10^{-3} k g h r^{-1}$

Answer:

(D) Watch Video Solution

300. The rate constant for a first order reaction is $6.93 \times 10^{-2} \min ^{-1}$. How long will it take a1M solution to be reduced to 0.5 M ?
A. 600 min
B. 6 hr
C. 600 sec
D. 10 sec

- View Text Solution

301. In a reaction, $2 A \rightarrow$ Products the concentration of A decreases from 0.5 "mol" litre^(-1$) \rightarrow 0.4$ mollitre ${ }^{-1}$ in 10 minutes. Calculate rate during this interval.
A. $0.05 \mathrm{M} \mathrm{min}^{-1}$
B. $0.005 \mathrm{Mmin}^{-1}$
C. $0.5 \mathrm{Mmin}^{-1}$
D. $5 \mathrm{Mmin}^{-1}$

Answer:

302. For a first order reaction with half-life of 150 seconds, the time taken for the, concentration of the reactant to fall from M/10 to $M / 100$ will be approximately
A. 1500 s
B. 500 s
C. 900 s
D. 600 s

Answer:

- View Text Solution

303. A $1^{\text {st }}$ order reaction has specific rate constant of $2 \mathrm{~min}^{-1}$

The half - life of this reaction will be
A. 1.653 min
B. 0.347 min
C. 2 min
D. 0.5 min

Answer:

- Watch Video Solution

304. What will be the order of the reaction if doubling the concentration of a reactant increases the rate by a factor a factor of 4 and tripling the concentration of the reactant by a factor of 9 ?
A. First order
B. Zero order
C. Second order
D. Third order

Answer: C

- View Text Solution

305. For a reaction $A+2 B \rightarrow C+D$, the following data were obtained
were obtained

Initial concentration	Initial Rate of
$\left(\mathrm{mol} \mathrm{litr}^{-1}\right)$	formation of D
	$\left(\mathrm{mol}\right.$ litre $\left.\mathrm{min}^{-1}\right)$

[A] [B]

1. 0.1
0.1
6.0×10^{-3}
2. 0.3
0.2
7.2×10^{-2}
3. 0.3
0.4
2.88×10^{-1}
4. 0.4
0.1
2.4×10^{-2}

The correct rate law expression will be
A. Rate $=k[A][B]$
B. Rate $=k\{A][B]^{2}$
C. Rate $=k[A]^{2}[B]^{2}$
D. Rate $=k[A]^{2}[B]$

Answer:

- View Text Solution

306. The rate of a gaseous phase reaction becomes half if volume of container is doubled. Order of reaction is
A. 0
B. 1
C. 2
D. 3

Answer:

D Watch Video Solution

307. The following date are for the decomposition of ammonium nitrite in aqueous solution

Volume of N_{2} in c.c.	Time (minutes)
6.25	10
9.00	15
11.40	20
13.65	25
35.05	∞

The order of the reaction is
A. zero
B. one
C. two
D. three

Answer:

- View Text Solution

308. The half-life periof for catalystic decompoistion of $A B_{3}$ at

50 mm is found to be 4 hr and at 100 mm it is 2.0 hr . The order of reaction is
A. 3
B. 1
C. 2
D. 0

Answer:

D Watch Video Solution

309. In the following first order reactions:
$A+$ Reagent $\xrightarrow{K_{1}}$ Product
B+ Reagent $\xrightarrow{K_{2}}$ Product

The ratio of K_{1} / K_{2} when only 50% of B reacts in a given time when 94% of A has been reacted is:
A. 4.06
B. 0.246
C. 2.06
D. 0.06

Answer:

Watch Video Solution

310. Mathematical representation for $t_{1 / 4}$ life i.e., when $1 / 4 t h$ reaction is over, is given by:
A. $t_{1 / 4}=\frac{2.303}{k} \log 4$
B. $t_{1 / 4}=\frac{2.303}{k} \log 2$
C. $t_{1 / 4}=\frac{2.303}{k} \log \cdot \frac{4}{3}$
D. $t_{1 / 4}=\frac{2.303}{k} \frac{\log (3)}{4}$

Answer:

- Watch Video Solution

311. In a first order reaction, 75% of the reactants disappeared in 1.386 hr . What is the rate constant ?
A. $3.6 \times 10^{-3} s^{-1}$
B. $2.8 \times 10^{-4} s^{-1}$
C. $17.2 \times 10^{-3} s^{-1}$
D. $1.8 \times 10^{-3} s^{-1} s$

Answer:

- Watch Video Solution

312. The following kinetic data are provided for a reaction between A and B :

The value of the rate constant is

A. $1.15 \times 10^{-4} d m^{3} / \mathrm{mol} \min$
B. $2.30 \times 10^{-4} \mathrm{dm}^{6} / \mathrm{mol}^{-2} \mathrm{~min}$
C. $2.30 \times 10^{-2} \mathrm{dm}^{6} / \mathrm{mol}^{2} \mathrm{~min}$
D. $1.15 \times 10^{-2} \mathrm{dm}^{6} / \mathrm{mol} \mathrm{min}$

Answer:

- View Text Solution

313. From the date given below for the the reaction
$A+B \rightarrow$ Products
0.35 M
1.28 M
$0.032 \mathrm{Ms}^{-1}$
0.35 M
0.64 M
$0.008 \mathrm{Ms}^{-1}$
0.70 M
0.64 M
$0.016 \mathrm{Ms}^{-1}$
the expression for rate law is :
A. rate $=k[A]^{0}[B]$
B. Rate $=k[A][B]$
C. rate $=k[A]^{2}[B]$
D. rate $=k[A][B]^{2}$

Answer:

- View Text Solution

314. For the reaction $A \rightarrow n B$, at the point of intersection fo two curves show, the $[B]$ is can be given by
A. $\frac{n A_{0}}{2}$
B. $\frac{A_{0}}{n-1}$
C. $\frac{n A_{0}}{n+1}$
D. $\left[\frac{n-1}{n+1}\right] A_{0}$

Answer:

- View Text Solution

315. The rate constatnt of a second order reaction is $10^{-2} \mathrm{~mol}^{-1}$ litre sec^{-1}. The rate constant when expressedd in
cm^{3} molecule ${ }^{-1} \min ^{-1}$ is :
A. 9.96×10^{-22}
B. 9.96×10^{-23}
C. 9.96×10^{-21}
D. 1.004×10^{-24}

Answer:

D Watch Video Solution

316. The rate of the first order reaction $X \rightarrow$ Products is $7.5 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~min}^{-1}$ when the concentration of X is 0.5 $\mathrm{mol} L^{-1}$. The rate constant is
A. $3.75 \times 10^{-4} s^{-1}$
B. $2.5 \times 10^{-5} s^{-1}$
C. $1.5 \times 10^{-3} s^{-1}$
D. $3.0 \times 10^{4} s^{-1}$

Answer:

D View Text Solution

317. The inversion of cane sugar proceeds with half life of 500 min at pH 5 for any concentration of sugar. However, if $p H=6$, if the half life changes to 50 min . The rate law expression for the sugar inversion can be written as
A. $r=k[\operatorname{sugar}]^{2}\left[H^{+}\right]^{0}$
B. $r=k[\operatorname{sugar}]^{1}\left[H^{+}\right]^{0}$
C. $r=k[\text { sugar }]^{1}\left[H^{+}\right]^{1}$
D. $r=k[\operatorname{sugar}]^{0}\left[H^{+}\right]^{1}$

Answer:

D Watch Video Solution

318. Two reacants A and B are present such that $\left[A_{0}\right]=4\left[B_{0}\right]$ and $t_{1 / 2}$ of A and B are 5 and 15 mintute respectively. If both decay folliwing I order, how much time later will concentrations of both of them would be equal?
A. 15 minute
B. 10 minute
C. 5 minute
D. 12 minute

Answer:

D Watch Video Solution

319. For decomposition of $\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})}$ dissolved in CCl_{4}
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$,
the following data at 300 K is given :

Concentration
of Reactant
0.170 M
0.340 M
$\overline{0} .680 \mathrm{M}$

Rate of
decomposition
$0.050 \mathrm{M} \mathrm{hr}^{-1}$
$0.100 \mathrm{M} \mathrm{hr}^{-1}$
$0.200 \mathrm{M} \mathrm{hr}^{-1}$

The rate equation for the reaction is
A. rate $=k\left[N_{2} O_{5}\right]^{2}$
B. rate $=k\left[N_{2} O_{5}\right]$
C. rate $=k\left[N_{2} O_{5}\right]^{3}$
D. rate $=k\left[N_{2} O_{5}\right]^{0} \mathrm{~s}$

Answer:

D View Text Solution

320. Decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ was studied by titration against KMnO_{4} solution. It was found that 0.4 mole of $\mathrm{H}_{2} \mathrm{O}_{2}$ was reduced to 0.2 mole in 20 minutes and to 0.1 mole in 40 minutes and to 0.05 mole after one hour. The order of reaction must be
A. 0
B. 1
C. 2
D. 3

- View Text Solution

321. The reaction $L \rightarrow M$ is started with 10.0 of L . After 30 and 90 minutes 5.0 g and 1.25 g of L respecetively are left. The order of the reaction is
A. 0
B. 1
C. 2
D. 3

Answer:

322. The order of a gaseous phase reaction for which rate becomes half if volume of container having same amount of reactant is doubled is
A. 1
B. $1 / 2$
C. 2
D. $1 / 3$

Answer:

- View Text Solution

323. For a non-equilibrium process $A+B \rightarrow$ Produts the rate is first order with respect to A and second order with respect to
B. If 1.0 Mole each of A and B are introduced into a one liter vessel and the intial rate is $1.0 \times 10^{-2} \mathrm{~mol} L^{-1} s^{-1}$, the rate when half of the reaction have been eonsumed is:
A. 1.2×10^{-3}
B. 1.2×10^{-2}
C. 2.5×10^{-4}
D. none of these

Answer:

- Watch Video Solution

324. An elementary reaction is given as $2 P+Q \rightarrow$ products. If concentration of Q is kept constant and concentration of P is doubled then rate of reaction is
A. doubled
B. halved
C. quadrupled
D. remains same

Answer:

325. $2 \mathrm{~A} \rightarrow \mathrm{~B}+\mathrm{C}$ It would be a zero order reaction when :-
A. the rate of reaction is proportional to square of conc. of A
B. the rate reaction remains same at any conc. Of A
C. the rate remains unchanged at any conc. Of B and C
D. the rate of reaction doubles if conc. Of B is increased to double

Answer:

- Watch Video Solution

326. The rate of first-order reaction is $1.5 \times 10^{-2} \mathrm{Mmin}^{-1}$ at $0.5 M$ concentration of reactant. The half-life of reaction is
A. 0.383 min
B. 23.1 min
C. 8.73 min
D. 7.53 min
327. For a l order reaction $A \rightarrow B$ the reaction rate at reactant concentration 0.01 M is found to be $2.5 \times 10^{-5} \mathrm{Ms}^{-1}$. The half life period of the reaction is
A. 30s
B. 300 s
C. 220 s
D. 347 s

Answer:

328. Select the law that corresponds to data shown for the following reaction

Products

A. rate $=k[B]^{3}$
B. rate $=k[B]^{4}$
C. rate $=k[A][B]^{3}$
D. rate $=k[A]^{2}[B]^{2}$

Answer:

- View Text Solution

329. If 60% of a first order reaction was completed in 60 minutes, 50% of the same reaction would be completed in approximately
$[\log =4=0.60, \log 5=0.69]$.
A. 45 minute
B. 60 minute
C. 40 minute
D. 50 minute

Answer:

- Watch Video Solution

330. The reaction $A \rightarrow B$ follows first order kinetics. The time taken for 0.8 mol of A to produce 0.6 mol of B is 1 hr . What is the time taken for the conversion of 9.0 mol of A to Product 0.675 mol of B ?
A. 1 hour
B. 0.5 hour
C. 0.25 hour
D. 2 hour

Answer:

D Watch Video Solution

331. For the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ if
$\frac{\Delta\left[N H_{3}\right]}{\Delta t}=2 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$, the value of $\frac{-\Delta\left[H_{2}\right]}{\Delta t}$ would be
A. $1 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$
B. $3 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$
C. $4 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$
D. $6 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$

Answer:

D Watch Video Solution

332. The activation energy of a reaction is $9.0 \mathrm{kcal} / \mathrm{mol}$.

The increase in the rate consatnt when its temperature is
increased from 298 K to 308 K is
A. 0.1
B. 1
C. 0.5
D. 0.63

Answer:

D Watch Video Solution

333. How much faster would a reaction proceed at $25^{\circ} \mathrm{C}$ than at $0^{\circ} C$ if the activation energy is $65 k J$?
A. 2 times
B. 16 times
C. 11 times
D. 6 times

Answer:

- Watch Video Solution

334. At 373 K , a gaseous reaction $\rightarrow 2 B+C$ is found to be of first order. Starting with pure A, the total pressure at the end of 10 min. was 176 mm and after a long time when A was completely dissociated, it was 270 mm . The pressure of A at the end of 10 minutes was
A. 94 mm
B. 47 mm
C. 43 mm

Answer:

- View Text Solution

335. An endothermic reaction, $A \rightarrow B$ have an activation energy $15 \mathrm{kcal} / \mathrm{mol}$ and the heat of the reaction is $5 \mathrm{kcal} / \mathrm{mol}$.

The activation energy of the reaction, $B \rightarrow A$ is:
A. $20 \mathrm{kcal} / \mathrm{mol}$
B. $15 \mathrm{kcal} / \mathrm{mol}$
C. $10 \mathrm{kcal} / \mathrm{mol}$
D. zero

Answer:

336. For the reaction $2 \mathrm{NH}_{3} \rightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}$, if
$-\frac{d\left[\mathrm{NH}_{3}\right]}{d t}=k_{1}\left[\mathrm{NH}_{3}\right]$,
$\frac{d\left[N_{2}\right]}{d t}=k_{2}\left[N H_{3}\right]$,
$\frac{d\left[H_{2}\right]}{d t}=k_{3}\left[N H_{3}\right]$
then the relation between k_{1}, k_{2} and k_{3} is
A. $k_{1}=k_{2}=k_{3}$
B. $k_{1}=3 k_{2}=2 k_{3}$
C. $1.5 k_{1}=3 k_{2}=k_{3}$
D. $2 k_{1}=k_{2}=3 k_{3}$

Answer:

337. In a second order reaction, first order in each reactant A and B, which one of the following reactant mixtures will provide the highest initial rate?
A. 0.1 mol of $A 0.1 \mathrm{~mol}$ of B in 0.1 litre solvent
B. 0.2 mol of A and 0.2 mol of B in 0.1 litre solvent
C. 1.0 mol of A and 1.0 mol of B in 1 litre solvent
D. 0.1 mol of A and 0.1 mol of B in 0.2 litre solvent

Answer:

(D) Watch Video Solution

338. A first order reaction is 50% complete in 30 minutes at $27^{\circ} \mathrm{C}$ and in 10 minutes at $47^{\circ} \mathrm{C}$. The energy of activation of
the reaction is
A. $43.83 \mathrm{kJmol}^{-1}$
B. $34.84 \mathrm{kJmol}^{-1}$
C. $84.00 \mathrm{kJmol}^{-1}$
D. $30.00 \mathrm{kJmol}^{-1}$

Answer:

- View Text Solution

339. For $A+B \rightarrow C+D, \Delta H=-20 \mathrm{kJmol}^{-1}$, the activation energy of the forward reaction is $85 \mathrm{kJmol}^{-1}$. The activation energy for backward reaction is kJmol^{-1}.
A. 65
B. 105
C. 85
D. 40

Answer:

- Watch Video Solution

340. Given that k is the rate constant for some order of any reaction at temp. T then the value of $\lim _{T \rightarrow \infty} \log k=$ (where A is the Arrhenius constant)
A. A. 2,303
B. A
C. 2.303 A
D. $\log A$

Answer:

- View Text Solution

341. The chemical reaction $2 O_{3} \xrightarrow{k_{1}} 3 O_{2}$ proceeds as follows:
$O_{3} \stackrel{k_{e q}}{\Longleftrightarrow} O_{2}+O$ (fast)
$\mathrm{O}+\mathrm{O}_{3} \xrightarrow{k} 2 \mathrm{O}_{2}$ (slow)
What should be the rate law expresison?
A. $r=k\left[O_{3}\right]^{2}$
B. $r=k\left[O_{3}\right]^{2}\left[O_{2}\right]^{-1}$
C. $r=k\left[O_{3}\right]\left[O_{2}\right]$
D. unpredictable

Answer:

342. The rate of a certain reaction increases by 2.5 times when the temperature is raised from 300 K at 310 K . If k is the rate constant at 300 K then the rate constant at 310 K will be equal to
A. k
B. 2 k
C. 2.5 k
D. 3 k

Answer:

343. A substance ' ' A ' ' decomposes in solution following the first order kinetics. Flask I contains $1 L$ of $1 M$ solution of A and falsk $I I$ contains 100 mL of $0.6 M$ solution. After $8 h r$, the concentration, of A in flask I becomes $0.25 M$. What will be the time for concentration of A in flask $I I$ to become $0.3 M$?
A. 0.4 hr
B. 2.4 hrs
C. 4.0 hrs
D. unpredictable as rate constant is not given

Answer:

- Watch Video Solution

344. In gaseous reaction, important for the understanding of the upper atmosphere $\mathrm{H}_{2} \mathrm{O}$ and O react bimolecularly to from two OH readicals. ΔH for this reaction is 72 kJ at 500 K and E_{a} is $77 \mathrm{~kJ} \mathrm{~mol}^{-1}$, then E_{a} for the bimolecular recombination of two OH readicals to form $\mathrm{H}_{2} \mathrm{O}$ and O is :
A. $3 \mathrm{kJmol}^{-1}$
B. $4 \mathrm{kJmol}^{-1}$
C. $5 \mathrm{kJmol}^{-1}$
D. $7 \mathrm{kJmol}^{-1}$

Answer:

- Watch Video Solution

345. From the following data, the activation energy for the reaction (cal/mol)
$\mathrm{H}_{2}+\mathrm{I}-2 \rightarrow 2 \mathrm{HI}$
$\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}$
T,(K)
$1 / \mathrm{T},\left(\mathrm{K}^{-1}\right)$
$\log _{10} k$
769
1.3×10^{-3}
2.9
667
1.5×10^{-3}
1.1
A. 4×10^{4}
B. 2×10^{4}
C. 8×10^{4}
D. 3×10^{4}

Answer:

346. A substance undergoes first order decomposition. The decomposition follows two parallel first order reactions

The percentage distribution of B and C are
A. 80% B and 20% C
B. $76.83 \% \mathrm{~B}$ and $23.17 \% \mathrm{C}$
C. $90 \% \mathrm{~B}$ and $10 \% \mathrm{C}$
D. $60 \% \mathrm{~B}$ and $40 \% \mathrm{C}$

Answer:

- View Text Solution

347. The concentration of a reactant in a solution falls (i) from 0.2 to 0.1 M in 2 hrs (ii) from 0.2 to 0.05 M in 4 hrs . The order of hydrolysis of the reactant is
A. zero
B. two
C. one
D. half

Answer:

- View Text Solution

348. The rate constant of a reaction increases by 5% when its temperature is raised from $27^{\circ} c$ to $28^{\circ} c$. The activation
energy of the reaction is
A. $36 \mathrm{~kJ} / \mathrm{mol}$
B. $16.6 \mathrm{~kJ} / \mathrm{mol}$
C. $46.6 \mathrm{~kJ} / \mathrm{mol}$
D. $26.6 \mathrm{~kJ} / \mathrm{mol}$

Answer:

D Watch Video Solution

349. Milk turns sour at $40^{\circ} \mathrm{C}$ three times faster as at $0^{\circ} \mathrm{C}$. The energy of activation for souring of milk is:
A. 4.693 kacal
B. 2.6 kcal
C. 66.6 kcal
D. none of these

Answer:

- Watch Video Solution

350. If a reaction $A+B \rightarrow C$ is exothermic to the extent of 30
$\mathrm{kJ} / \mathrm{mol}$ and the forward reaction has an activation energy of 70
$\mathrm{kJ} / \mathrm{mol}$, the activation energy for the reverse reaction is
A. $30 \mathrm{~kJ} / \mathrm{mol}$
B. $40 \mathrm{~kJ} / \mathrm{mol}$
C. $70 \mathrm{~kJ} / \mathrm{mol}$
D. $100 \mathrm{~kJ} / \mathrm{mol}$

- View Text Solution

351. The activation energy of a reaction is $9 \mathrm{kcal} / \mathrm{mol}$. The increase in the rate constant when its temperature is raised from 395 to 300 K is approximately
A. 0.1
B. 0.5
C. 1
D. 0.25

Answer:

