©゙doubtnut

CHEMISTRY

BOOKS - NIKITA CHEMISTRY (HINGLISH)

Chemical Thermodynamics \& Energetics

MULTIPLE CHOICE QUESTIONS

1. Which one is not a state function ?
A. Internal energy
B. Volume
C. Heat (q)
D. Enthalpy

Answer: C

2. Thermodynamics is concerned with
A. total energy of a system
B. energy changes in a system
C. rate or chemical change
D. mass changes in nuclear reactions

Answer: B

- Watch Video Solution

3. When no heat energy is allowed to enter or leave the system, it is called
A. Isothermal process
B. Reversible process
C. Adiabatic process
D. Irreversible process

Answer: C

- Watch Video Solution

4. The information not conveyed by thermodynamics is about
A. spontaneity of a reaction
B. yields of the products formed
C. rates of reactions
D. all the three above

Answer: C

5. Warming ammonium chloride with sodium hydroxide in a test tube is an example of :
A. closed system
B. isolated system
C. open system
D. none of these

Answer: C

- Watch Video Solution

6. Which is the intensive property
A. Temperature
B. Viscosity
C. Viscosity
D. All

Answer: D

- Watch Video Solution

7. A system which can exchange energy with the surroundings but no matter is called
A. a heterogeneous system
B. an open system
C. closed system
D. an isolated system.

Answer: C

D Watch Video Solution

8. An adiabatic process is one is which
A. the system is not closed to energy transfer
B. the system is not closed to heat transfer
C. there is no enthalpy change
D. there is no change in mass of the system

Answer: C

- Watch Video Solution

9. When an ideal gas is compressed adiabatically and reversibly, the final temperature is:
A. higher than the initial
B. lower than the initial temperature
C. the same as the initial temperature
D. dependent on the rate of compression

Answer: A

10. An intensive property in thermodynamics means a property which depends
A. 'on the amount of the substance only
B. on the nature of the substance only
C. both on the amount as well as nature of the substance
D. neither on the amount nor on the nature.

Answer: B

- View Text Solution

11. The final temperature in an adiabatic expansion is
A. greater than the initial temperature
B. same as the initial temperature
C. half of the initial temperature
D. less than the initial temperature

Answer: D

- View Text Solution

12. In an adiabatic process
A. the system exchanges heat with surroundings
B. pressure is maintained constant
C. there is perfect heat insulation
D. the gas is isothermally expanded

Answer: C

13. Which of the following statements is correct ?
A. Internal energy is a state function but work is not
B. Work is a state function but internal energy is not
C. Both internal energy and work are state functions
D. Neither internal energy nor work is a state function.

Answer: A

- Watch Video Solution

14. In which of the following sets, all properties belong to same category (all extensive or all intensive) ?
A. mass, volume, pressure
B. temperature, pressure, volume
C. heat capacity, density, entropy
D. enthalpy, internal energy, volume.

Answer: D

- Watch Video Solution

15. An endothermic reaction is one in which:
A. heat is liberated
B. heat is absorbed
C. temperature remains constant
D. none

Answer: B

- Watch Video Solution

16. Which among the following is not a state function?
A. Internal energy
B. Entropy
C. Work
D. Enthalpy

Answer: C

D Watch Video Solution

17. The temperature of the system decreases in an
A. adiabatic expansion
B. isothermal compression
C. isothermal expansion
D. adiabatic compression

Answer: A

18. Whicn one is true ?
A. 1 cal or ie $>1 \mathrm{erg}>1 j$ oe
B. 1 erg >1 cal or $i e>1 j o \underline{e}$
C. 1 caloriegt 1 joulegt 1 erg
D. 1 joule gt 1 calorie gt 1 erg

Answer: C

- View Text Solution

19. An adiabatic process in which
A. $q=+W$
B. $q=0$
C. $\Delta U=q$
D. $P \Delta V=0$

Answer: B

D Watch Video Solution

20. which among the following is intensive quantity ?
A. Freezing point
B. Temperature
C. Refractive index
D. All

Answer: D

- Watch Video Solution

21. Which is an extensive property of the system?
A. Temperature
B. Mass
C. Refractive index
D. Normality

Answer: B

- View Text Solution

22. An open system is that system in which
A. there is not exchange of energy with the msurroundings
B. there is exchange of mass and energy with the surroundings
C. there is no exchange of mass or energy with the surroundings
D. there is exchange of mass with the surroundings

Answer: B

23. Which among the following state functions is an extensive property of the system?
A. Temperature
B. Mass/density
C. Refractive index
D. Viscosity

Answer: B

Watch Video Solution
24. A living system is an example of
A. Closed system
B. Open system
C. Isolated system
D. None

Answer: B

D View Text Solution

25. Which of the following have same units?
(i) Work
(ii) Heat
(iii) Energy
(iv) Entropy
A. i), ii) and iii)
B. i), ii) and iv)
C. ii), iii) and iv)
D. iii) and iv)

Answer: A

26. When a gas is subjected to adiabatic expansion, it gets cooled due to :
A. fall in temperature
B. loss of kinetic energy
C. decrease in velocity
D. loss of potential energy

Answer: A

- Watch Video Solution

27. A gas expands isothermally and reversibly. The work done by the gas is
A. Zero
B. Maximum
C. Minimum
D. Cannot be determined

Answer: B

D Watch Video Solution

28. The process in which pressure remains constant throughout a change is
A. adiabatic
B. isochoric
C. isobaric
D. isothermal

Answer: C

D View Text Solution

29. A thermodynamic quantity is that
A. which is used in thermochemistry
B. which obeys all the Jaws of thermodynamica
C. quantity which depends only on the state of system
D. quantity which is used in measuring thermal

Answer: B

- Watch Video Solution

30. The temperature of the system increases during an
A. isothermal expansion
B. adiabatic compression
C. adiabatic expansion
D. isothermal compression

Answer: B

31. Which one is extensive property ?
A. Mass
B. Mole
C. Volume
D. All

Answer: D

- View Text Solution

32. Which one of the following systems is an example of a closed system ?
A. hot water present in an open beaker
B. some amount of water present in equilibrium with its vapour in a closed and insulated breaker
C. some amount of hot water enclosed in a closed container which is not insulated
D. none

Answer: C

- Watch Video Solution

33. During isothermal expansion of an ideal gas, its internal energy
A. decreases
B. increases
C. may increase or decrease
D. remains unchanged.

Answer: D

34. An example of closed system is
A. hot liquid in an open beaker
B. water in heater
C. hot liquid in a sealed insulated beaker
D. none

Answer: B

- View Text Solution

35. In an isothermal expansion of an ideal gas
A. $q=0$
B. $\Delta V=0$
C. $\mathrm{W}=0$
D. $\Delta U=0$

Answer: D

- View Text Solution

36. A gass expands in vacuum. The work done by the gas 1 s
A. zero
B. minimum
C. maximum
D. equal to work done

Answer: A

View Text Solution

37. Temperature and heat are
A. extensive properties
B. intensive properties
C. intensive and extensiv properties respectively
D. extensive and intensive properties respectively

Answer: C

- View Text Solution

38. A well stoppered thermos flask contains tea. This is an example of a
A. closed system
B. `open system
C. isolated system
D. non-thermodynamic system.

Answer: C

39. An isolated system is that system in which
A. there is no exchange of energy with the surroundings
B. there is exchange of mass and energy with the surroundings
C. there is no exchange of mass and energy with the surroundings
D. there is exchange of mass with surroundings.

Answer: C

- Watch Video Solution

40. If temperature remains constant during a reaction the process is called
A. isothermal
B. isochoric
C. isobaric
D. adiabatic

D View Text Solution

41. Which is not a spontaneous process
A. expansion of a gas into vacuum
B. water flowing down hill
C. heat flowing from colder body to a hotter body
D. evaporation of water from clothes during drying

Answer: C

- View Text Solution

42. Universe is an example of
A. open system
B. closed system
C. isolated system
D. none

Answer: C

- View Text Solution

43. Which of the following is a closed system ?
A. Jet engine
B. Coffee placed in a steel kettle
C. Pressure cooker
D. Rocket engine during propulsion.

Answer: B

44. A gaseous system changes from state $A\left(P_{1}, V_{1}, T_{1}\right)$ to $B\left(P_{2}, V_{2}, T_{2}\right)$, B to $C\left(P_{3}, V_{3}, T_{3}\right)$ and finally from C to A. The whole process may be called
A. Reversible process
B. Cyclic process
C. Isoba ri c process
D. Spontaneous process

Answer: B

- Watch Video Solution

45. An example of ex tensive property is
A. Temperature
B. Int ernal energy
C. Viscosity
D. Molar hea I capacity

Answer: B

- View Text Solution

46. Which of following is co rrect mat ch as far as the thermodynami c processes are involved ?
Curve Thermodynamic process
$1 \quad i \quad$ Adiabatic

2 ii Isochoric
3 iii Isobaric
4 iv Isohtermal
A. $\begin{array}{llll}1 & 2 & 3 & 4 \\ i & i i & i i i & i v\end{array}$
B. $\begin{array}{llll}1 & 2 & 3 & 4 \\ { }_{i i i} & i v & i & i i\end{array}$
C. $\begin{array}{llll}1 & 2 & 3 & 4 \\ i i & i & i v & i i i\end{array}$
D. $\begin{array}{llll}1 & 2 & 3 & 4 \\ i i i & i v & i i & i\end{array}$

Answer: B

47. Cooling of a gas in an adiabatic expansion is due to
A. fall in temperature
B. energy spent in doing work
C. energy is not spent in doing the work
D. loss of energy to the surroundings

Answer: B

- View Text Solution

48. When two atoms of a diatomic gas combine to form a molecule of the gas, the energy of molecule is
A. equal to that of two separate atoms
B. greater than that of two separate atoms
C. lower than that of two separate atoms
D. double the energy of the atom

Answer: C

- View Text Solution

49. All irreversible processes are
A. non spontaneous
B. in equilibrium
C. isothermal
D. spontaneous

Answer: D

50. If $q=\Delta U-$ by first law of thermodynamics then for an adiabatic process
A. $W=\Delta U$
B. $\Delta U=0$
C. $q=\Delta U$
D. $W=0$

Answer: A

- View Text Solution

51. First law of thermodynamics introduces concept of
A. temperature
B. pressure
C. change of direction of reaction
D. conservation of energy

Answer: D

- View Text Solution

52. Δ Ufor a system that does 1000 cals of work on the surroundings when 200 cals of heat are absorbed by the system is
A. -1200 cals
B. +1200 cals
C. +800 cals
D. -800 cals

Answer: D

- View Text Solution

53. According to latest sign conventions, the correct expression representing the first la of thermodynamics is
A. $\Delta U=q+W$
B. $\Delta U=\Delta H+P V$
C. $q=\Delta U$
D. $W=0$

Answer: A

- Watch Video Solution

54. The mathematical form of the first law of thermodynamics when heat
(q) is supplied and W is work done by the system is
A. $q=\Delta U-W$
B. $\Delta U=q-W$
C. $\Delta U=-q+W$
D. $\Delta U=-q-W$
55. Identify the state quantiy among the following
A. q
B. $q-W$
C. q / w
D. $q+W$

Answer: D

- Watch Video Solution

56. Work done equivalent to 1 J and $1 \mathrm{cal}, 1 \mathrm{~L}$ atm are in order
A. $1 \mathrm{~L} . \operatorname{atm} \mathrm{gt} 1 \mathrm{~J}$ gt Ical
B. 1 L. atm gt 1 calgt 1 J
C. 1 cal gt 1 J gt 1 L . atm
D. 1 J gt 1 cal gt 1 L. atm

Answer: B

- Watch Video Solution

57. The work done by a weightless piston in causing an expansing ΔV (at constant temperature), when the opposing pressure P is variable, is given by :
A. $W=-\int P \Delta V$
B. $W=0$
c. $W=-P \Delta V$
D. None

Answer: A

- Watch Video Solution

58. Work done in a reversible expansion is
A. $\Delta P \cdot \Delta V$
B. $P \cdot \Delta V$
C. $q-\Delta V$
D. $\int_{V_{2}}^{V_{1}}$

Answer: D

- View Text Solution

59. The work done by a system in an expansion against a constant external pressure is
A. $\Delta P \cdot \Delta V$
B. $-P \cdot \Delta V$
C. $V \cdot \Delta P$
D. q

Answer: B

D View Text Solution

60. Which of the following units represent the largest amount of energy?
A. calorie
B. joule
C. erg
D. electron volt

Answer: A

Watch Video Solution

61. Work done by the system on surroundings is :
A. Positive
B. Negative
C. Zero
D. None

Answer: B

- View Text Solution

62. Work done in reversible isothermal process is given by
A. $-2.303 \mathrm{nRT} \log \frac{V_{2}}{V_{1}}$
B. $\frac{n R}{y-1}\left(T_{2}-T_{1}\right)$
C. -2.303 nRt $\log \frac{V_{2}}{V_{1}}$
D. $+2.303 \mathrm{nRt} \log \frac{V_{2}}{V_{1}}$

Answer: A

63. If a refrigerator door is kept open, then we get
A. room cooled
B. room heated
C. more heat is passed out
D. no effect on room

Answer: B

D View Text Solution

64. W grams of a gas expands isothermally and 'bly at a given temperature T from a volume The order of amount of work will be V_{1} to V_{2} ing these gases as ideal gases) (assum
A. $N_{2}>O_{2}>\mathrm{CO}_{2}>\mathrm{CH}_{4}$
B. $\mathrm{O}_{2}>\mathrm{CH}_{4}>\mathrm{N}_{2}>\mathrm{CO}_{2}$
C. $\mathrm{CO}_{2}>\mathrm{N}_{2}>\mathrm{O}_{2}>\mathrm{CH}_{4}$
D. $\mathrm{CO}_{2}<\mathrm{O}_{2}<\mathrm{N}_{2}<\mathrm{CH}_{4}$

Answer: D

- View Text Solution

65. When heat is released during the reaction, it is denoted as \qquad and
when work is done on system by the surroundings, it is denoted as \qquad
A. Positive : positive
B. negative, negative
C. ositive , negative
D. negative ' positive

Answer: D

- Watch Video Solution

66. If one mole of a gas occupying $y \mathrm{~L}$ volume is expanded against a constant external pressure of one atmosphere to a volume of $x L$, the work done by the system is \qquad .
A. $-p(x+y)$
B. $-p(x-y)$
C. $-p\left(\frac{x}{y}\right)$
D. $=-\frac{p}{x-y}$

Answer: B

D Watch Video Solution

67. Five joule equals
i) $5 \mathrm{~N} \times \mathrm{m}$
ii) $5 x 10_{7}$ ergs
iii) 1.195 cals
A. i) and ii) only
B. i) and iii) only
C. ii) and iii) only
D. i), ii) and iii)

Answer: D

- View Text Solution

68. A gas expands in vacuum, the work done by the gas is
A. zero
B. minimum
C. maximum
D. equal to the work done on the gas

Answer: A

69. 10 moles of an ideal gas are compressed isothermally and reversibly at $200^{\circ} \mathrm{C}$ from a pressure of 1 atm to a pressure of S atm. Then
A. $\Delta U=0, \Delta H=0$
B. $\Delta U \neq 0, \Delta H=0$
C. $\Delta U=0, \Delta H \neq 0$
D. $\Delta U \neq 0, \Delta H \neq 0$

Answer: C

- View Text Solution

70. In a reversible isothermal expansion of ideal gas, the work done is given by the expression
A. $n R T \frac{\ln \left(V_{1}\right)}{V_{2}}$
B. $-n R T \frac{\ln \left(P_{1}\right)}{P_{2}}$
C. Both a and b
D. $P \Delta V$

Answer: C

- View Text Solution

71. The neon gas always possesses
A. rotational energy only
B. vibrational energy
C. translational energy
D. none of these

Answer: D

- View Text Solution

72. Internal energy does NOT include
A. vibrational energy
B. rotational energy
C. gravitational energy
D. nuclear energy

Answer: C

- View Text Solution

73. In internal energy, the kinetic energy component consist of which of the following ?
i) translational energy
ii) vibrational energy
iii)rotational energy
iv) gravitational energy force
A. iii) and iv)
B. i), ii) and iii)
C. i), ii) and iv)
D. i), ii), iii) and iv)

Answer: B

- View Text Solution

74. Which of the following statements is incorrect about internal energy?
A. The absolute value of internal energy cannot be determined
B. The internal energy of one mole of a substance is same at any
temperature or pressure
C. The measurement of heat change during a reaction by bomb calorimeter is equal to the internal energy change
D. Internal energy is an extensive property.

Answer: B

75. During isothermal expansion of an ideal gas its
A. internal energy increases
B. enthalpy decreases
C. enthalpy remains unaffected
D. enthalpy reduces to zero.

Answer: C

- Watch Video Solution

76. At constant T and P , which one of the following statements is correct for the reaction ice \qquad water
A. $\Delta H<\Delta U$
B. $\Delta h=\Delta U$
C. $\Delta H>\Delta U$
D. ΔH is independent of the physical state of the reactants.

Answer: B

- View Text Solution

77. In a reaction, if $\Delta U<0$, then the heat
A. change is zero
B. is absorbed
C. is evolved
D. change is abnormal

Answer: C

78. A liquid is in equilibrium with its vapour at its boiling point. On an average the molecules in the two phases have equal :
A. Internal molecular forces
B. Potential energy
C. total energy
D. Kinetic energy

Answer: D

- Watch Video Solution

79. Internal energy of an ideal gas depends on :-
A. Pressure
B. Temperature
C. Volume
D. None

D Watch Video Solution

80. The apparatus generally used for measuring heat changes is
A. Voltameter
B. Voltmeter
C. Calorimeter
D. Coulometer

Answer: C

(D)
 View Text Solution

81. It is a general principle that the less energy of a system then it is
A. more stable
B. less stable
C. unstable
D. more unstable

Answer: A

- View Text Solution

82. The mode of energy constituting both kinetics energy and potential energy is
A. Nuclear energy
B. Translational energy
C. Rotational energy
D. Vibrational energy

Answer: D

83. Vibrational energy is not shown by
A. Inert gases
B. Halogens
C. both
D. none

Answer: A

View Text Solution
84. A reaction take place with absorption of energyis
A. Burning of a candle
B. Electrolysis of water
C. Digestion of food
D. Rusting of iron

Answer: B

- View Text Solution

85. All the naturally occuring processes proceed spontaneously in a direction which leads to
A. Decrease of free energy (ΔG)
B. Increase of free energy (ΔG)
C. Decrease of entropy (ΔS)
D. Increase of enthalpy (ΔH)

Answer: A

- View Text Solution

86. For which process energy will be absorbed
A. separation of an electron from an electron
B. separation of proton from a proton
C. separation of a neutron from neutron
D. separation of an electron from a neutral atom

Answer: D

- View Text Solution

87. Two atoms of hydrogen combine to form a molecule of hydrogen gas, the energy of the H_{2} molecule is :
A. greater than that of separate atoms
B. equal to that of separate atoms
C. lower than that of separate atoms
D. sometimes lower and sometimes higher

Answer: C

88. Internal energy of a system containing molecules is reported as
A. kinetic energy
B. vibrational energy
C. rotational energy
D. all kinds of energy associated with it

Answer: D

- View Text Solution

89. A system is changed from state A to state B by one path and from B to A by another path. If ΔE_{1} and ΔE_{2} are the corresponding changes in internal energy, then

$$
\text { A. } U_{1}+U_{2}=+v e
$$

B. $U_{1}+U_{2}=-v e$
C. $U_{2}-U_{1}=0$
D. $U_{2}+U_{1}=0$

Answer: C

- Watch Video Solution

90. During isothermal transformation of an ideal gas, internal energy
A. increases as the pressure increases
B. decreases as the volume decreases
C. decreases as the pressure decreases
D. remains fixed

Answer: D

91. During an isothermal expansion of an ideal gas its
A. enthalpy decreases
B. internal energy decreases
C. internal energy increases
D. internal energy remains constant

Answer: D

- View Text Solution

92. In a reversible isothermal process, the change in internal energy is :
A. zero
B. positive
C. negative
D. none

- Watch Video Solution

93. The internal energy of one mole of a gas is
A. $\frac{3}{2} R T$
B. $\frac{K T}{2}$
C. $\frac{R T}{2}$
D. $\frac{3 K T}{2}$

Answer: A

- Watch Video Solution

94. A thermally isolated gaseous system can exchange energy with the surroundings. What is the mode of transference of energy?
A. heat
B. work
C. heat and radiation
D. none of these

Answer: B

- Watch Video Solution

95. A reaction accompanied with the liberation of energy is
A. urea + water
B. $\mathrm{NH}_{2} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$
C. electrolysis of water
D. digestion of food

Answer: D

96. When a liquid boils, there is an increase in
A. free energy
B. kinetic energy
C. potential energy
D. heat of vaporisation

Answer: B

- View Text Solution

97. The process of evaporation of a liquid is accompanied by
A. increase in enthalpy
B. decrease in enthalpy
C. no change in enthalpy
D. a) orb)

Answer: A

- View Text Solution

98. Enthalpy is same
A. heat content
B. entropy
C. heat
D. volume

Answer: A

99. The enthalpy change for the process $C(s) \Rightarrow C(g)$ corresponds to enthalpy of
A. fusion
B. vaporisation
C. combustion
D. sublimation

Answer: D

- View Text Solution

100. During the evaporation of a liquid,
A. the enthalpy decreases
B. the enthalpy increases
C. the enthalpy remains unchanged
D. the internal energy decreases

D View Text Solution

101. For the process, melting of ice at 260 K , the ΔH is
A. negative
B. positive
C. zero
D. cannot be predicted

Answer: B

D View Text Solution

102. Which statements are correct :

$$
\text { A. } \Delta H=\Delta U+\Delta n R T
$$

B. $\Delta H=\Delta U+P \Delta V$
C. $\Delta H^{\circ}=\Sigma \Delta_{f} H_{(P)}^{\circ}-\Sigma \Delta_{f} H_{(R)}^{\circ}$
D. All

Answer: D

- Watch Video Solution

103. Which of the following is not correct about enthalpy?
A. It is an extensive property
B. It is not a state function
C. Its absolute value cannot be determined
D. Enthalpy of a compound= Enthalpy of formation of that compound.

Answer: B

104. An ideal gas undergoing expansion in vacuum shows:
A. $\Delta U=0$
B. $W=0$
C. $q=0$
D. All

Answer: D

- Watch Video Solution

105. Which of the following state function is not zero at standard state :-
A. enthalpy
B. entropy
C. free energy
D. entropy and enthalp

D Watch Video Solution

106. A system absorbs 10 kJ of heat and does 4 kJ of work the internal energy
A. decreases
B. increases
C. same
D. none

Answer: B

D Watch Video Solution

107. In which one of the following cases, ΔH and ΔU are not equal to each other?
A. The reaction involves no gaseous reactant or product
B. The number of moles of gaseous reactants and gaseous products is not equal to each other
C. The number of moles of gaseous reactants and gaseous products is equal to each other
D. The process is carried out in a closed vessel.

Answer: B

- Watch Video Solution

108. The heat measured for a reaction in a bomb calorimeter is
A. ΔG
B. ΔH
C. ΔU
D. $P \Delta V$

Answer: C

D View Text Solution

109. The heat change in a chemical reaction at constant pressure is
A. ΔU
B. $P \Delta V$
C. ΔH
D. ΔV

Answer: C

- View Text Solution

110. In the balanced equation for the combustion of 1 mole of benzoic acid, $\mathrm{C} 6 \mathrm{H} 5 \mathrm{COOH}(\mathrm{s})$ at temp. T, the difference between enthalpy change and internal energy change is equal to
A. $-\frac{R T}{2}$
B. $\frac{-3}{2} R T$
C. $\frac{5}{2} R T$
D. $\frac{R T}{2}$

Answer: A

- Watch Video Solution

111. If ΔH is the enthalpy change and ΔU the change in internal energy accompanying a gaseous reaction, then
A. ΔH is always grater than ΔH
B. $\Delta H<\Delta U$ only if the number of moles of the products is grater than the number of moles of the reactants
C. ΔH is always less than ΔU
D. $\Delta H<\Delta U$ only if the number of moles of products is less than the number of moles of the reactants.

Answer: D

- Watch Video Solution

112. For the reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g), \Delta H=?$
A. $\Delta U+2 R T$
B. $\Delta U-2 R T$
C. $\Delta+R T$
D. $\Delta U-R T$

Answer: B

113. If ΔH is the enthalpy change and ΔU the change in internal energy accompanying a gaseous reaction, then
A. $\Delta H=\Delta U$
B. $\Delta H<\Delta U$
C. ΔH is always less than ΔU
D. $\Delta H<\Delta U$ only if the number of moles of solid products is less than gaseous reactants

Answer: A

- Watch Video Solution

114. ΔH is ΔU for those reactions which take place with increase in volume
A. greater than
B. lesser than
C. equal to
D. information insufficient

Answer: D

- View Text Solution

115. A mixture of two moles of CO and mole of O_{2} in a closed vessel is ignited to convert CO into CO_{2} Then,
A. $\Delta H-\Delta U=0$
B. $\Delta H-\Delta U>0$
C. $\Delta H-\Delta H<0$
D. the relationship depends upon the capacity of the vessel

Answer: C

116. At constant temperature and pressure, which one of the following statement is TRUE for the reaction given below?

$$
C_{S}+O_{2(g)} \rightarrow C O_{2(g)}
$$

A. $\Delta H=\Delta U$
B. $\Delta H-\Delta U>0$
C. $\Delta H-\Delta U<0$
D. $\Delta H=0, \Delta U \neq 0$

Answer: A

- Watch Video Solution

117. Which unit represents smallest amount of energy
A. calorie
B. joule
C. erg
D. electron-volt

Answer: D

- Watch Video Solution

118. For which change $\Delta H \neq \Delta E$:-
A. $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
B. $\mathrm{HCl}_{(l)}+\mathrm{NaOH}_{(l)} \rightarrow \mathrm{NaCl}_{(l)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
C. $C(s)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
D. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$

Answer: D

- Watch Video Solution

119. Which of the following statements is true?
A. ΔH is positive for exothermic reactions
B. ΔH is negative for endothermic reactionsThe enthalpy of fusion is negative
C. The enthalpy of fusion is negative
D. The enthalpy of neutralization of strong acid with strong base is always the same

Answer: D

- View Text Solution

120. The Enthalpy of formation is the change in enthalpy accompanying the formation of a substance from its elements at 298 K and 1 atm pressure. Since the enthalpies of elements in their most stable state are taken to be zero, the enthalpy of formation of compunds is

[^0]B. always positive
C. standard heat enthalpy of that compound
D. zero

Answer: C

- View Text Solution

121. Enthalpy of element is equal to the
A. $\Delta_{c} H^{\circ}$
B. $\Delta_{r} H^{\circ}$
c. $\Delta_{f} H^{\circ}$
D. All

Answer: C

122. Heat exchanged in a chemical reaction at constant temperature and pressure is called
A. free energy
B. internal energy
C. enthalpy
D. bond energy

Answer: C

- Watch Video Solution

123. Enthalpy change during a reaction does not depend upon
A. conditions of a reaction
B. initial and final concentration
C. physical state of reactants and products
D. number of steps in the reaction

Answer: D

- Watch Video Solution

124. At constant P and T which statement is correct for the reaction,

$$
\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}(g)
$$

A. $\Delta H=\Delta U$
B. $\Delta H<\Delta U$
C. $\Delta H>\Delta U$
D. ΔH is independent for physical state of reactant

Answer: A

- Watch Video Solution

125. The difference between ΔH and ΔU is equal to
A. R
B. $P \Delta V$
C. $V \Delta P$
D. $\frac{3}{2} R$

Answer: B

- Watch Video Solution

126. Standard molar enthalpy of formation of CO_{2} is equal to :
A. zero
B. the standard molar enthalpy of combustion of gaseous carbon
C. the sum of standard molar enthalpies of formation of CO and O_{2}
D. the standard molar enthalpy fo combustion of carbon (graphite)

Answer: D

127. Enthalpy of a reactant is given by
A. $H=U+P V$
B. $H=U-P V$
C. $\Delta H=\Delta U+P \Delta V$
D. $\Delta H=\Delta U-P \Delta V$

Answer: A

- View Text Solution

128. The enthalpies of the elements in their standard states are arbitrarily assumed to be
A. zero at 298 K and 1 atm
B. unity aat 298 and 1 atm
C. zero at all temperature
D. zero at 273 K and 1 atm

Answer: A

- Watch Video Solution

129. ΔH for transition of carbon in the diamond form to carbon in the graphite form , is -1897 J. This suggest that
A. graphite is chmemically different form diamond
B. graphite is as stables as diamond
C. graphite is more stable than graphite
D. diamond is more stable than graphite.

Answer: C

- View Text Solution

130. For an ideal gas, the relation between the enthalpy and internal energy change at constant temperature is given by.
A. $H=U+P V$
B. $\Delta H=\Delta U+\Delta n R T$
C. $\Delta U=\Delta H+P \Delta V$
D. $\Delta H=\Delta G+T \Delta S$

Answer: B

- Watch Video Solution

131. The enthalpy changes is negative for
A. $C l^{-}(g)+a q \rightarrow C l^{-}(a q)$
B. $C l(g) \rightarrow C l^{+}(g)+e^{-}$
C. $\frac{1}{2} C l_{2}(g) \rightarrow C l(g)$
D. $C l_{2}(l) \rightarrow C l_{2}(g)$

D View Text Solution

132. For which of the following substances, the standard heat enthalpy is zero.
A. $C_{\text {graphite }}$
B. $C_{\text {diamond }}$
C. CO_{2}
D. O_{3}

Answer: A

- View Text Solution

133. ΔH for thermal decomposition process is
A. positive
B. negative
C. zero
D. positive or negative

Answer: A

- View Text Solution

134. Δn, the change in a chemical reaction at constant volume is given reaction.
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})+12 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+11 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $25^{\circ} \mathrm{Cis}$
A. Zero
B. -1
C. 2
D. 4

D View Text Solution

135. The Energy change. in a chemical reaction at constant volume is given by
A. ΔH
B. ΔU
C. ΔT
D. ΔV

Answer: A

D View Text Solution

136. Δn volue of the reaction,
$P C l_{5}(g) \rightarrow \mathrm{PCl}_{3}(g)+C l_{2}(g) i s$
A. Zero
B. +1
C. -1
D. Infinite

Answer: B

D Watch Video Solution

137. Δn values in $\Delta H=\Delta U+\Delta n R T$ may have
A. integer nature
B. fractional value
C. positive of negative
D. all

Answer: B

138. The entalphy change for the reaction, $\mathrm{H}_{2} \mathrm{O}_{s} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}$ is called enthalpy of
A. vapourization
B. fusion
C. combustion
D. transition

Answer: D

- View Text Solution

139. You are given the following two reactions.

$$
\begin{aligned}
& \mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}_{(g)} \Delta \mathrm{H}=-890.4 k j \\
& 2 \mathrm{H}_{g} \mathrm{O}_{(s)} \rightarrow 2 \mathrm{Hg}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})-181.6 \mathrm{~kJ}
\end{aligned}
$$

Which one of the following stat~ments is correct?
A. Both reactions are exothermic
B. Both reactions are endothermic
C. Reaction (i) is endothermic and (ii) exothermic.
D. Reaction (i) is exothermic and (ii) is endothremic

Answer: B

- View Text Solution

140. Which of the following reaction represents enthalpy of formation of AgCl ?
A. $\mathrm{Ag}_{(a q)}^{+}+\mathrm{Cl}_{(a q)}^{-} \rightarrow \mathrm{AgCl}(s)$
B. $\mathrm{AgCl}(s) \rightarrow \mathrm{Ag}(S)+\frac{1}{2} C l_{2(g)}$
C. $A g(s)+A u C l(s) \rightarrow A g C l(s)+A u(s)$
D. $\mathrm{Ag}(\mathrm{s})+\frac{1}{2} \mathrm{Cl}_{2(g)} \rightarrow \mathrm{AgCl}(\mathrm{s})$
141. The Enthalpy of formation of $\mathrm{Mg}(\mathrm{OH})_{2}$ and HBr are- 145800 and 6400 calories, respectively .This would indicate that
A. $\mathrm{Mg}(\mathrm{OH})_{2}$ melts at a low temperature
B. $\mathrm{Mg}(\mathrm{OH})_{2}$ solute in acids
C. HBr is a weak acid
D. HBr is unstable

Answer: D

- View Text Solution

142. Which of the following reaction do you think will result in the absorption of heat ?
A. Carbon burning in air
B. Iron reacting with sulphur to form iron sulphide
C. Formation of water gas from steam and coke
D. Formation of producer gas.

Answer: C

- View Text Solution

143. An exothermic reaction is one in which the reacting substances:
A. have more energy than the products
B. have less energy than the products
C. have as much energy as the products
D. have as much energy as the products

Answer: A

144. The change in the enthalpy of $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ is called :
A. Enthalpy of reaction
B. Enthalpy of neutralisation
C. Enthalpy of formation
D. Enthapy of liquefaction.

Answer: B

- Watch Video Solution

145. An endothermic reaction is allowed to take place very rapidly in the air. The temperature of the surrounding air
A. increases as the pressure increases
B. decreases
C. remains same
D. cannot be predicted.

Answer: B

- Watch Video Solution

146. When and exothermic reactions is reversed, it
A. becomes another exothermic reaction
B. becomes and endothermic reaction
C. shows no change at all
D. attains equilibrium

Answer: B

- View Text Solution

147. Of the reactions stated, the endothermic reaction is
A. burring of sulphur to form sulphur to dioxide
B. conversion of monoclinic sulphur to rhombic sulphur
C. formation of carbon dioxide from carbon and oxydgen
D. melting of sulphur.

Answer: D

- View Text Solution

148. From the reaction $\mathrm{P}($ White $) \rightarrow \mathrm{P}(\mathrm{Red}) \Delta H=-18.4 K J$, it follows that :-
A. Red P is readily formed from white P
B. White P is readily formed from red P
C. White P cannot be canverted into red P and red P is more stable.
D. White P can be converted into red P and red P is more stable.

Answer: D

149. Look at the following diagram.

The enthalpy change for the reaction $A \rightarrow B$ will be
A. $-25 k J$
B. -40 kJ
C. $+25 K J$
D. +65 KJ

Answer: A

- View Text Solution

150. Enthalpy of soultion is defined as
A. heat required to dissolved one mole solute isn excess of water
B. heat evolved, when one mole is dissolved in excess of water.
C. Change in enthalpy of the system when one mole of the solute is
disolved in excess of water, so that further dillution of solution does not bring any heat change.
D. Enthalpy change when one mole of the solute is dissolved in limited quantity of water.

Answer: D

- View Text Solution

151. Enthalpy of formation of a compound is equal in magnitude to
A. Enthalpy of that reaction
B. Enthalpy of dissociation
C. Enthalpy of combustion
D. Enthalpy of solution

D View Text Solution

152. For which iof the following process will energy absorbed
A. Coversion of vapours of water into water (I)
B. Gain of e^{-}by netural gaseous atom
C. Conversion of water in to ice
D. Conversion of ice in to water

Answer: D

- View Text Solution

153. Which is and endothermic reaction

$$
\text { A. } 2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

B. $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$
C. $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

Answer: B

- View Text Solution

154. Which of the following reaction is endothermic?
A. $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
B. $\mathrm{Fe}+\mathrm{S} \rightarrow \mathrm{Fe} S$
C. $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow r \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Answer: A

155. If, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g}), \Delta \mathrm{H}^{\circ}=-44 \mathrm{Kcal}$
$2 \mathrm{Na}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{g}) \rightarrow 2 \mathrm{NaCl}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-152$ Kcal Then, $N a(s)+0.5 \mathrm{Cl}_{2}(g) \rightarrow N a C l(s), \Delta H^{\circ}=?$
A. -180 kcal
B. -196 kcal
C. -98 kcal
D. 54kcal.

Answer: C

- Watch Video Solution

156. Vapourisation is accompained by
A. increase in enthalpy
B. decarease in enthalpy
C. no change in internal energy
D. a or b

Answer: A

- View Text Solution

157. Which is incorrect about the enthalpy of cambusion ?
A. The enthalpy of combustion in negative
B. Heat of combusion is always exothermic
C. Its value changes with temperature
D. It is always endothermic

Answer: D

- View Text Solution

158. Which represents the enthalpy of formation $\mathrm{CO}_{2}(g)$
A. $C_{\text {graphite }}+O_{2}(g) \rightarrow r \mathrm{CO}_{2}(g)$
B. $\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}(l)$
C. $\mathrm{CO}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
D. $\mathrm{C}_{6} \mathrm{H}_{6}(l) 7.5 \mathrm{O}_{2}(g) \rightarrow 6 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)$

Answer: A

- View Text Solution

159. The enthalpy combustion of a substance
A. always postive
B. always negative
C. numericaUy equal to the heat of formation
D. zero

Answer: B

160. All reactions with chemical dissociation are
A. reversible
B. reversible and endothermic
C. exothermic
D. reversible or irreversible and endothermic or exothermic.

Answer: B

- View Text Solution

161. The formation of water from $H_{2}(g)$ and $O_{2}(g)$ is an exothermic process because :
A. the chemical energy of $H_{2}(g)$ and $0_{2}(g)$ is more than that of water
B. the chemical energy of $H_{2}(g)$ and $O_{2}(g)$ is less than that of water
C. no dependent on energy
D. the temperature of $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ is more than that of water

Answer: A

- Watch Video Solution

162. ΔH for the reaction given below represents, $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} 0(\mathrm{~g}), \Delta H=40 \mathrm{~kJ}$
A. Enthalpy of formation
B. Enthalpy of combustion
C. Enthalpy of neutralisation
D. Enthalpy of reaction

Answer: D

163. The heat change in a reaction does not depend upon the
A. conditions of P or V under which reaction is carried
B. initial and final enthalpies of the reactants and products
C. state of reactants and products
D. number of intermediate stages involved

Answer: D

- View Text Solution

164. In the combustion of hydrocarbons, ΔH
A. negative
B. zero
C. positive
D. undeterminate

D View Text Solution

165. For an endothermic reaction, where ΔH represents the enthalpy of reaction in kJmol^{-1}, the minimum value for the energy of activation will be
A. less than ΔH
B. zero
C. more than ΔH
D. equal to ΔH

Answer: C

166. Which value of standard enthalpy of formation indicates that the product is the least stable
A. -94 kcal
B. 231.6 kcal
C. +21 . 4 kcal
D. +64.8 kcal

Answer: B

- View Text Solution

167. The enthalpies of formation of organic substances are conveniently determined from
A. Enthalpies of combustion data
B. boiling point
C. melting point
D. Enthalpies of neutrahsahon

Answer: A

- Watch Video Solution

168. $C_{\text {graphite }}+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g),+95.450 \mathrm{cal}$.
A. an exothermic reaction.
B. an endtheromic reaction.
C. a chain reaction
D. a catalytic reaction

Answer: A

- View Text Solution

169. It is a general principle that the less energy of a system contain. it is
A. more stable
B. less stable
C. unstable
D. more unstable

Answer: A

- View Text Solution

170. ΔH for the reaction $C l_{g}+C l_{g} \rightarrow C l_{2(g)}$ will be .
A. zero
B. $=+v e$
C. $=-v e$
D. ∞

Answer: C

171. ΔH for the reaction $H_{2}(H) \rightarrow H(g)+H(g)$ will be .
A. zero
B. $=+v e$
C. $=-v e$
D. ∞

Answer: C

- View Text Solution

172. Which plot represents for an exothermic reaction ?

Answer: A

- Watch Video Solution

173. Change in enthalpy is defined as
A. the change in heat content
B. the total energy change at constant pressure and temperature
C. the heat change at constant volume if $\Delta n=0$
D. all are correct

Answer: D

- View Text Solution

174. The word 'standard' in standard molar enthalpy change implies
A. Temperature 298 K
B. Pressure 1 a tm
C. Temperature 298 K and pressure 1 atm
D. All temperatures and all pressures

Answer: C

- Watch Video Solution

175. The heat change for the reaction
$C(s)+2 S(s) \rightarrow C S_{2}(l)$ is called the heat of
A. Enthalpy of solution of CS_{2}
B. Enthalpy of fusion of $C S_{2}$
C. Enthalpy of formation of CS_{2}
D. Enthalpy of combustion of carbon

Answer: C

- Watch Video Solution

176. The enthalpy change for the process,
$C(s) \rightarrow C(g)$ is known as enthalpy of
A. Fusion
B. Vaporisation
C. Combustion
D. Sublimation

Answer: D

- View Text Solution

177. Bond energy of a molecule :
A. is always negative
B. is always positive
C. either positive or negative
D. depends upon the physical state of the system

Answer: B

- Watch Video Solution

178. Thermochemistry is the study of relationship between heat energy and
A. chemical energy
B. activation energy
C. frictional energy
D. electrical energy

Answer: A

- View Text Solution

179. For the reaction, $3 \mathrm{O}_{2} \rightarrow 2 \mathrm{O}_{3}, \Delta H=+v e$. We can say that :
A. ozone is more stable than oxygen
B. ozone is less stable than oxygen and ozone decomposes forming oxygen readily
C. oxygen is less stable than ozone and oxygen readily forms ozone
D. none

Answer: B

- Watch Video Solution

180. Standard enthalpy of formation of compound is defined as
A. Heat change to form one mole of the compound from its elements
B. Heat required to form one molecule of a compound
C. Change in heat content of the system when one molecule of a compound is formed
D. None

Answer: A

181. The enthalpy changes of formation of the gaseous oxides of nitrogen ($\mathrm{N}_{2} \mathrm{O}$ and NO) are positive because of :
A. the high bond energy of the nitrogen molecule
B. the high electron affinity of oxygen atoms
C. the high electron affinity of nitrogen atoms
D. the tendency of oxygen to form $0^{2}-$

Answer: A

- Watch Video Solution

182. A gaseous reaction was carried out, first keeping the volume constant and next keeping the pressure constant. In the second experiment, there was an increase in volume. The heats of reaction were different, because
A. in the first case the energy was spent to keep the volume constant
B. in the second case energy was spent to expand the gases
C. specific heats of compressed gases is more
D. specific heats of rarefied gases is more

Answer: B

- View Text Solution

183. The enthalpy of formation of water is given by
A. $\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta H=-68.3 \mathrm{kcal}$
B. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta H=-136.6 \mathrm{kcal}$
C. $\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l), \Delta H=-86 \mathrm{kcal}$
D. $\mathrm{H}_{2}(g) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-68.3 \mathrm{kcal}$

Answer: A

184. The enthalpy of formation HI is 30.4 kJ . Which statement is false according to this observation
A. HI is an endothermic compound
B. For the reaction

$$
H_{2}(g)+L_{2}(g) \rightarrow 2 H I(g), \Delta H=60.8 k J
$$

C. HJ is a stable compound
D. HI is an unstable compound

Answer: A:C

- View Text Solution

185. Which is NOT characteristic of thermochemical equation
A. it indicates physical state of reactants and products
B. it indicates whether the reaction is exothermic or endothermic
C. it indicates allotrope of reactants if present
D. it indicates whether reaction would occur or not

Answer: D

- View Text Solution

186. The magnitude of heat of solution On addition of solvent to solution
A. decreases
B. increases
C. remains constant
D. increases or decreases

Answer: D
187. The enthalpy of formation of water is exothermic in nature because
A. $H_{2} \& 0_{2}$ have higher temperature than water
B. $H_{2} \& 0_{2}$ have lower temperature than water
C. $\mathrm{H}_{2} \& \mathrm{O}_{2}$ have higher internal energy than water
D. None

Answer: C

- View Text Solution

188. Two atoms of hydrogen combine to form a molecule of hydrogen gas, the energy of the H_{2} molecule is :
A. greater than that of separate atoms
B. equal to that of separate atoms
C. lower than that of separate atoms
D. sometimes lower and sometimes higher

Answer: C

- Watch Video Solution

189. Standard enthalpy of one mole of graphite is
A. $1 \mathrm{cal}_{\mathrm{mol}}{ }^{-1}$
B. equivalent to charcoal
C. more than diamond
D. assumed as zero

Answer: D

- View Text Solution

190. Which represents unit of R ?
A. Latm $K^{-1} \mathrm{~mol}^{-1}$
B. $J K^{-1} m o^{l}-1$
C. cal $\mathrm{deg}^{-1} m o 1^{-1}$
D. all

Answer: D

- View Text Solution

191. In a reaction, all products and reactants are liquids, hence \qquad .
A. $\Delta H>\Delta U$
B. $\Delta H<\Delta U$
C. $\Delta H \Delta U$
D. None

Answer: C

192. The law of Lavoisier and Laplace illustrates
A. the principle of conservation of energy
B. equivalence of mechanical and thermal energies
C. the principle of conservation of matter
D. equivalence of mechanical and chemical energies

Answer: A

D Watch Video Solution

193. The standard enthalpy formation of $\mathrm{H}_{2} \mathrm{O}(l)$ is -68.0 kcal , the heat of formation of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is likely to be
A. -68.0 kcal
B. -69.4 kcal
C. 80.0 kcal
D. -58.3 kcal

D View Text Solution

194. At con s tant P and T which of the following statement is correct for process.

$$
C(s)+O_{2}(g) \rightarrow C O_{2}(g) \operatorname{ItBRgt}
$$

A. $\Delta H>\Delta U$
B. $\Delta H<\Delta U$
C. $\Delta H=\Delta U$
D. $\Delta U=O$

Answer: D

- View Text Solution

195. The equation $\Delta H=\Delta H_{1}+\Delta H_{2} \Delta H_{3}$
A. Kirchoff s equation
B. vant't Hoff isotherm
C. van 't Hoff isochore
D. Hess's law

Answer: D

- View Text Solution

196. Calorific value of carbohydrates is approximately
A. $4.0 \mathrm{kcal} / \mathrm{g}$
B. $16.0 \mathrm{kcal} / \mathrm{g}$
C. $20 \mathrm{kcal} / \mathrm{g}$
D. $9.0 \mathrm{kcal} / \mathrm{g}$

Answer: A

197. Enthalpy of combustion of . d a reaction does not epend on
A. Physical state of the substance
B. Temperature at which combustion is carried out
C. amount of oxygen present
D. Whether the combustion is carried out in an open vessel or a closed vessel

Answer: C

D View Text Solution

198. The enthalpy of formation of ammonia is $-46.0 \mathrm{kJmol}^{-1}$. The enthalpy change for the reaction
$2 \mathrm{NH}_{3 g} \rightarrow 2 \mathrm{~N}_{2(g)}+3 \mathrm{H}_{g}$ is
A. $46.0 \mathrm{~kJ} \mathrm{mo1}{ }^{-1}$
B. $92.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $-23.0 \mathrm{kJmol}^{-1}$
D. $-92.0 \mathrm{kJmol}^{-1}$

Answer: B

- View Text Solution

199. The compound with positive enthalpy of formation is known as
A. endothermic
B. exothermic
C. either of these
D. none

Answer: A

200. The decreasing order of calorific values is
A. $C_{2} H_{2}>C_{4} H_{10}>C_{3} H_{8}>C_{2} H_{4}$
B. $\mathrm{C}_{4} \mathrm{H}_{10}>\mathrm{C}_{3} \mathrm{H}_{8}>\mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{C}_{2} \mathrm{H}_{2}$
C. $C_{2} H_{4}>C_{3} H_{4}>C_{4} H_{10}>C_{2} H_{2}$
D. $C_{2} H_{2}>C_{2} H_{4}>C_{3} H_{8}>C_{4} H_{10}$

Answer: D

- View Text Solution

201. If $\Delta H_{f}(X), \Delta H_{f}(Y), \Delta H_{f}(R)$ and $\Delta H_{f}(S)$ denote the enthalpies of formation of X, Y, R and S respectively, the enthalpy of the reaction $X+Y \rightarrow R+S$ is given by
A. $\Delta_{f} H(X)+\Delta_{f} H(Y)$
B. $\Delta_{f} H(R)+\Delta_{f} H(S)$
C. $\Delta_{f} H(X)+\Delta_{f} H(Y)-\Delta_{f} H(R)-\Delta_{f} H(S)$
D. $\Delta_{f} H(S)+\Delta_{f} H(R)-\Delta_{f} H(X)-\Delta_{f} H(Y)$

Answer: B

- Watch Video Solution

202. During isothermal expansion , real gas shows
A. $\Delta H=0$
B. $\Delta H \neq 0$
C. both
D. none

Answer: C

- View Text Solution

203. When water is added to quick lime, the reaction is
A. explosive
B. endothermic
C. exothemic
D. none

Answer: A

- Watch Video Solution

204. A hypothetical reaction, $A \rightarrow 2 B$ proceeds through following sequence of steps
$A \rightarrow C, \Delta H=a$
$C \rightarrow D, \Delta H=b$
$\frac{1}{2} D \rightarrow B: \Delta H=c$
The heat of reaction is :
A. $a-b+2 c 1$
B. $a+b-2 c$
C. $a+b+2 c$
D. $a+2 b+2 c$

Answer: C

- View Text Solution

205. In a flask, colourless $\mathrm{N}_{2} \mathrm{O}_{4}$ is in equilibrium with brown-coloured NO_{2}. At equilibrium, when the flask is heated to $100^{\circ} \mathrm{C}$ the brown colour deepens and on cooling, the brown colour became less coloured. The change in enthalpy ΔH for the ayatem is
A. negative
B. positive
C. zero
D. undefined

Answer: B

206. Efficiency of fuel is
$\left(\Delta G=700.3 \mathrm{kJmol}^{-1} \& \Delta H=726 \mathrm{kJmol}^{-1}\right)$
A. 66.2%
B. 96.7%
C. 41.3%
D. 85.1%

Answer: B

- View Text Solution

207. The bond energy of an $O-H$ bond is 109 K . cal mole ${ }^{-1}$. When a mole of water is formed
A. 218 kcal is released
B. 109 kcal is released
C. 218 kcal is absorbed
D. 109 kcal is absorbed

Answer: B

- Watch Video Solution

208. The enthalpy of formation $\left(\Delta H_{f}\right)$ of $H_{O}(l)$ is equal to
A. zero
B. molar enthalpy of combustion of $\mathrm{H}_{2}(l)$
C. molar enthalpy of combustion of $\mathrm{H}_{2}(\mathrm{~g})$
D. sum of enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ and $\mathrm{O}_{2}(\mathrm{~g})$

Answer: A

209. Which of the following values of enthalpy of formation indicates that the product is least stable?
A. $-94 k \mathrm{cal}$
B. -231.6 kcal
C. +21.4 kcal
D. +64.8 kcal

Answer: D

- View Text Solution

210. Which of the following equations correctly represents the standard enthalpy of formation $\left(\Delta_{f} H^{\circ}\right)$ of ethane?
A. $2 C$ (dimond) $+3 H_{2(g)}=C_{2} H_{6(g)}$
B. $2 C$ (graphite $)+3 H_{2(g)}=C_{2} H_{6}(l)$
C. $2 C$ (graphite $)+3 H_{2(g)}=C_{2} H_{6(g)}$
D. $2 C$ (graphite $)+6 H=C_{2} H_{6(g)}$

Answer: C

- View Text Solution

211. At a constant volume the epuation holds good
A. $\Delta H=\Delta U+P \Delta V$
B. $\Delta H=\Delta H=\Delta U+V \Delta P$
C. $\Delta H=\Delta U-P \Delta V$
D. $\Delta H=\Delta U-V \Delta P$

Answer: B

- View Text Solution

212. Since the enthalpy of elements in their natural state is taken to be zero, the heat of formation $\left(\Delta_{f} H\right)$ of compounds
A. Is always negative
B. Is always positive
C. May be negative or positive
D. Is zero

Answer: C

- Watch Video Solution

213. Hess's law is related to
A. change in heat during a reaction
B. a reaction
C. equilibrium constant
D. influence of pressure on volume of a gas

Answer: A

- View Text Solution

214. Standard enthalpies of formation of $\mathrm{O}_{3}, \mathrm{CO}_{3}, \mathrm{NH}_{3}$ and HI are $142.2,-383.2,-46.2$ and $+25.9 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$ respectively. The order of their increasing stabilities will be:
A. $\mathrm{O}_{3}, \mathrm{CO}_{2} \mathrm{NH}_{3}, \mathrm{HI}$
B. $\mathrm{CO}_{2}, \mathrm{NH}_{3} \mathrm{HI}, \mathrm{O}_{3}$
C. $\mathrm{O}_{3}, \mathrm{HI}, \mathrm{NH}_{3} \mathrm{CO}_{2}$
D. $\mathrm{NH}_{3}, \mathrm{HI}, \mathrm{CO}_{2}, \mathrm{O}_{3}$

Answer: C

Watch Video Solution

215. The stability of an ionic compound depends principally on
A. high electron affinity of anion forming species
B. the lattice energy of crystal c
C. low ionization energy of the cation forming species
D. low heat of sublimation of cation forming solid

Answer: B

- View Text Solution

216. Born-Haber cycle is used to determine
A. Electronegativity
B. Lattice energy
C. Both
D. None

Answer: B

217. The approximate enthalpy of fusion of ice and the enthalpy of vaporisation of water per mole respectively are
A. $18 \mathrm{~kJ}, 80 \mathrm{~kJ}$
B. $6 \mathrm{~kJ}, 40.6 \mathrm{~kJ}$
C. $1.80 \mathrm{~kJ}, 540 \mathrm{~kJ}$
D. $8 \mathrm{~kJ}, 80 \mathrm{~kJ}$.

Answer: B

- View Text Solution

218. $S+\frac{3}{2} O_{2} \rightarrow S O_{3}+2 \mathrm{x} \mathrm{kcal}$
$\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}+\mathrm{y}$ kcal
Find out the deat for formation of SO_{2}
A. $(y-2 x)$
B. $(2 x+y)$
C. $(x+y)$
D. $2 x / y$

Answer: A

- View Text Solution

219. The standard heats of formation of $\mathrm{NO}_{2}(\mathrm{~g})$ and $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ are 8.0 and $2.0 \mathrm{Kcal} \mathrm{mol}^{-1}$ respectively the heat of dimerization of NO_{2} in Kcal is
A. 10
B. -6.0
C. -12.0
D. -14.0

Answer: D

220. The bond energy of H_{2} is $436-4 \mathrm{~kJ}$. This means that
A. 436.4 kJ of heat is required to b reak one bond in H_{2} molecule of give two atoms of hydrogen
B. 436.4 kJ of heat is required to dissociate 6.02×10^{23} molecules of H_{2} of form H -atoms.
C. 436.4 kJ of heat is required to dissociate 3.01×10^{23} molecules of H_{2} to give 6.02×10^{23} atoms of hydrogen
D. 436.4 kJ of electrical energy is erquired to dissociate 6.02×210^{23} molecules of H_{2} of form H^{+}and H^{+}ions.

Answer: B

- View Text Solution

221. The enthalpy changes at 298 K in successive breaking of $O-H$ bonds of water, are
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}(\mathrm{g})+\mathrm{OH}(\mathrm{g}), \Delta H=498 \mathrm{kJmol}^{-1}$
$O H(g) \rightarrow H(g)+O(g), \Delta H=428 \mathrm{kJmol}^{-1}$
The bond energy of the $\mathrm{O}-\mathrm{H}$ bond is
A. $498 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$
B. $463 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $428 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $70 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: B

- Watch Video Solution

222. In the dissociation of $\mathrm{CH}_{4(\mathrm{~g})} \mathrm{q}$
A. bond energies of all the C-H bonds are equal
B. no two bonds have same bond energy
C. two bonds have equal energy
D. three bonds have equal energy

Answer: B

- View Text Solution

223. $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}, \Delta H=-194 \mathrm{~kJ}$.

In this reaction, heat of formation of HCl in KJ is
A. $+194 k J$
B. $+97 k J$
C. $-97 k J$
D. -194 kJ .

Answer: C

224. Which one of the following processes is non- spontaneous ?
A. Burning of coal
B. Flow of heat from a hot.end to cold end
C. Lifting of water by an electric pump into the reservoir at the top of the house
D. Reaction between hydrogen and oxygen to form water

Answer: C

- View Text Solution

225. Entropy change of a system and its surroundings in equilibrium
A. increases
B. decreases
C. remains constant
D. either increases or decreases

Answer: C

- View Text Solution

226. For the reaction $\mathrm{CaCO}_{3(s)} \rightarrow \mathrm{CaO}_{(S)}+\mathrm{CO}_{2(g)}$ the entropy
A. increases
B. decreases
C. remains unchanged
D. change cannot be predicted

Answer: A

- View Text Solution

227. A reaction has both ΔH and ΔS positive.The rate of reaction.
A. increase with increase of temperature.
B. increases with decrease of temperature
C. remains unaffected by change of temperature
D. cannot be prcdicted for change in temperature

Answer: A

- View Text Solution

228. For and endothemic reaction of be spontaneos,
A. ΔS must be positive
B. ΔS must be negative
C. ΔG must be zero
D. ΔG must be poisitive

Answer: A

229. $\Delta S=\Delta H / T$ holds good for
A. adiabatic process
B. isothermal reversible phase change
C. a process at constant pressure
D. a process under any conditions

Answer: B

- Watch Video Solution

230. In a reversible process,
$\Delta S_{\text {sys }}+\Delta S_{\text {surr }}$ is
A. >0
B. <0
C. maximum
D. 0

Answer: D

- Watch Video Solution

231. Which of the following expression defines the physical significance of free energy change?
A. $\Delta G=w_{\text {non } \exp }$
B. $-\Delta G=w_{\text {non } \exp }$
C. $\Delta G=-W_{\exp }$
D. $\Delta G=W_{\exp }$

Answer: B

- Watch Video Solution

232. Which one of the following is correct?
A. $-\Delta G=\Delta H-T \Delta S$
B. $\Delta H=\Delta G-T \Delta S$
C. $\Delta S=\frac{1}{T}[\Delta G-\Delta H]$
D. $\Delta S=\frac{1}{T}[\Delta H-\Delta G]$

Answer: D

- View Text Solution

233. Which of the following describes the criterion of spontaneity?
A. $\Delta H_{T}, P>0$
B. $\Delta S_{\text {total }}>0$
C. $\Delta G_{T}, P>0$
D. All of these

D Watch Video Solution

234. For the percipitation reaction of $A g^{\oplus}$ ions with $N a C I$, which of the following statements is true?
A. ΔH for the reacti on is zero
B. ΔG for the reaction is zero
C. ΔG for the reaction is zero
D. $\Delta G=\Delta H$

Answer: C

- Watch Video Solution

235. Which of the following relationship is correct ?
A. $\Delta G^{\circ}=-R T \ln \mathrm{~K}$
B. $K=e^{-} \Delta G^{\circ} / R T$
C. All a re correct
D. all are correct

Answer: D

- View Text Solution

236. For a reaction $R_{1}, \Delta G=x k J / m o l$. For a reaction $R_{2}, \Delta G=y K J / m o l$. Reaction R_{1}, is non-spontaneous but along with R_{2} it is spontaneous. This means that
A. x is $-v e, y$ is + ve but in magnitude x gt y^{\prime}
B. x is $+\mathrm{ve}, \mathrm{y}$ is -vc but in magnitude ygt x
C. both x and y are -ve but not equril
D. both x and y are + ve but not equal

Answer: B

- Watch Video Solution

237. A spontaneous change is one in which a system under goes
A. An increase in internal energy
B. A lowering of entropy
C. lowering of free energy
D. No energy change

Answer: C

- Watch Video Solution

238. A catalyst
A. increases the froe energy change of the reaction
B. decreases the free energy change of the reaction
C. docs not increase or decrease the free energy change of the reaction
D. can either increase or decrease the free energy change depending
upon what catalyst we use

Answer: C

- Watch Video Solution

239. For which one of the following reactions will there be a more - ve ΔS
?
A. $\mathrm{H}_{2} \mathrm{O}_{g} \rightarrow \mathrm{H}_{2} \mathrm{O}_{l}$
B. $H_{2(g)}+I_{2(g)} \rightarrow 2 H I_{(g)}$
C. $\mathrm{CaCO}_{3(g)} \rightarrow \mathrm{CaO}_{(s)}+\mathrm{CO}_{2(g)}$
D. $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(g)}$

Answer: D

D View Text Solution

240. ΔG for the reaction $\mathrm{Ag}_{2} \mathrm{O} \rightarrow 2 \mathrm{Ag}+1 / 2 \mathrm{O}_{2}$, at a certain temperature is found to b-e $-10.0 \mathrm{kJmol}^{-1}$ Which one of the fol low ing statemEcgtnts is correct at this temperature ? '
A. Silver oxide d ecom poses to give silver and oxygen
B. Silver and oxygen combine to fonn silver oxide
C. The reaction is in equilibrium
D. The reacti on can neither occur in the fo n Yard direction nor in the backward d irection

Answer: A

- View Text Solution

241. In which of the following change entropy decreases?
A. Crystallisation of sucrose from solution
B. Rusting of iron
C. Melting of ice
D. Vapori zation of camphor

Answer: A

- Watch Video Solution

242. For the process $\mathrm{CO}_{2(s)} \rightarrow \mathrm{CO}_{2(g)}$
A. both ΔH and ΔS are positive
B. ΔH is negative and ΔS is positive .
C. ΔH is positive and ΔS is negative
D. Both ΔH and ΔS are negative.

D View Text Solution

243. Enthalpy of a reaction at $27^{\circ} \mathrm{C}$ is $15 \mathrm{~kJ} \mathrm{~mol}^{-1}$ The reaction will be feasible if entropy is
A. $15 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
B. $-50 J \mathrm{~mol}{ }^{-1} K^{-1}$
C. greater than $50 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
D. less than $50 \mathrm{~J} \mathrm{~mol}^{-1} K^{-1}$

Answer: C

D View Text Solution

244. A system changes its state form A to B. The resulting change of entropy will be a definite quantity
A. When the change is a reversible one
B. When the change is an irreversible one
C. when the change is an isothermal one
D. always , irrespective of the manner of the manner In which the change is brought about,

Answer: D

- View Text Solution

245. A particular reaction has a negative value for the free energy change.

Then at ordinary temperature
A. it has a large -ve value for the entrop ch Y ange
B. it has a large +ve value for enthalpy change
C. it has a small +ve value for enthalpy change
D. it has a +ve value for the entropy change and a -ve value for the enthalpy change

Answer: D

- Watch Video Solution

246. Which of the following is true for $\Delta \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{l} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}_{g} 100^{\circ} \mathrm{C}$
A. $\Delta S=0$
B. $\Delta H=0$
C. $\Delta H=\Delta U$
D. $\Delta H=T \Delta S$

Answer: D

247. A boiled egg show a / $a n$...... in entropy.
A. increases
B. decreases
C. no change
D. none of these

Answer: A

- Watch Video Solution

248. Entropy change of vapourisation at constant pressure is given by :
A. $\Delta S_{(v)}=\frac{\Delta H_{v}}{T}$
B. $\Delta S_{(v)}=\frac{\Delta U_{v}}{T}$
C. $\Delta S_{(v)}=-\frac{\Delta H_{v}}{T}$
D. none of these

D View Text Solution

249. ΔS is positive for the change :
A. mixing of two gases
B. boiling of liquid
C. melting of solid
D. all of these

Answer: D

D View Text Solution

250. Entropy change of fusion at constant pressure is, given by L
A. $\Delta S_{(f)}=\frac{\Delta H_{f}}{T}$
B. $\Delta S_{(f)}=\frac{\Delta G_{f}}{T}$
C. $\Delta S_{(f)}=-\frac{\Delta H_{f}}{T}$
D. none of these

Answer: A

- View Text Solution

251. Which has the least entropy :
A. Graphite
B. Diamond
C. $N_{2(g)}$
D. $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$

Answer: B

252. The unit of entropy is
A. $J K^{-1} \mathrm{~mol}^{-1}$
B. $K J^{-1} \mathrm{~mol}^{-1}$

D. $J^{-1} K^{-1} \mathrm{~mol}^{-1}$

Answer: A

- Watch Video Solution

253. Identify the correct statement regarding entropy:
A. At absolute zero of temperature, the entropy of perfectly crystalline substance is +ve .
B. At absolute zero of temperature entropy of perfectly crystalline substance is zero.
C. At $0^{\circ} \mathrm{C}$ the entropy of a perfectly crystalline substance is taken to be zero.
D. At absolute zero of temperature, the entropy of all crystalline substance is taken to be zero.

Answer: B

- View Text Solution

254. Equilibrium constant of a reaction is related to :
A. standard Gibbs energy change, ΔG°
B. Gibbs energy change, ΔG
C. neat enthalpy
D. none of these

Answer: A

255. For a system in equilibrium, $\Delta G=0$, under conditions of constant
A. temperah1re and pressure
B. temperature and volume
C. energy and volume
D. pressure and volume.

Answer: A

- Watch Video Solution

256. The total entropy change for a system and its surroundings increases, if the process is
A. reversible
B. irreversible
C. exothermic
D. endothermic

Answer: B

- Watch Video Solution

257. The combustion reaction occuring in an automobile is $2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2}(g) \rightarrow 16 \mathrm{CO}_{2}(g)+18 \mathrm{H}_{2} \mathrm{O}(g)$ This reaction is accompanied with:
A.,,+-+
B.,,-+-
C. -,+,+
D.,,++-

Answer: B

D Watch Video Solution

258. When one mole of an ideal gas is compressed to half of its initial volume then ΔS is
A. Zero
B. Positive
C. Maximum
D. Negative

Answer: D

D View Text Solution

259. The standard Gibb's free energy change, ΔG° is related to equilibrium constant, kp as
A. $K_{p}=-R T \operatorname{In} \Delta G^{o}$
B. $K_{p}=\left[\frac{e}{R T}\right]^{\Delta G^{o}}$
C. $K_{p}=-\frac{\Delta G}{R T}$
D. $K_{p}=e^{-\Delta G^{o} / R T}$

Answer: D

- Watch Video Solution

260. For which of the following processes is ΔS negative?
A. $H_{2 g} \rightarrow 2 H_{(g)}$
B. $N_{2(g, 1 a t m)} \rightarrow N_{2(g, 8 a t m)}$
C. $2 \mathrm{SO}_{3(g)} \rightarrow 2 \mathrm{SO}_{2(g)}+O_{2(g)}$
D. $C_{\text {(diamond) }} \rightarrow C_{(\text {graphite })}$

Answer: B

- Watch Video Solution

261. Which law of thermodynamics introduces the concept of entropy ?
A. First law
B. Zeroth law
C. Third law
D. Second law.

Answer: D

- View Text Solution

262. In any natural process
A. The entropy of universe remains constant
B. The entropy of universe tends towards maximum
C. The entropy of universe tends towards minimum
D. Any of the above can happen

Answer: B

263. Which one is incorrect statement of the second law of thermodynamics
A. It is impossible for a cyclic process to transfer heat from a system at
a lower temperature to one at a higher temperahire without convertin some work to heat
B. It is impossible to convert heat completely into equivalent amount of work with producing changes elsewhere
C. Every perfect machine working reversibly between the same temperatures of source an smk have the same efficiency whatever be the nature of the substance used
D. Heat engines can be made 1000% sufficient.

Answer: D

- View Text Solution

264. Identify the correct statement regarding entropy
A. At absolute zero of temperature, entropy of a perfectly crystalline substance is taken to be zero
B. At absolute zero of temperature, the entropy of a perfectly crystalline substance is positive
C. Absolute entropy of a substance cannot be determined
D. At $0^{\circ} \mathrm{C}$, the entropy of a perfectly crystalline substance is taken to be zero.

Answer: A

- Watch Video Solution

265. The heat required to decompose a compound into its elements is equal to the heat evolved when the compound is formed from its elements. This is in accordance with
A. Hess's law
B. First law of thermodynamics
C. Joule-Thomson law
D. Kirchoff s law.

Answer: B

- View Text Solution

266. A monoatomic helium molecule possesses
A. only potential energy
B. potential as well as vibrational energy
C. vibrational as well as translational energy
D. translational as well as potential energy.

Answer: D

267. Pumping of air in rubber tube is an
A. adiabatic expansion
B. adiabatic compression
C. isothermal expansion
D. isothermal compression

Answer: B

- View Text Solution

268. Maximum entropy will be in which of the following?
A. Ice
B. Liquid water
C. Snow
D. Water vapour

Answer: D

- Watch Video Solution

269. It a gas has 2 atm and 5 atm pressure at $30^{\circ} \mathrm{c}$ and $27^{\circ} \mathrm{C}$ respectively Then it will
A. cool on expansion
B. warm on expansion
C. no change on expansion
D. None of the above

Answer: B

- View Text Solution

270. For an isolated system, $\Delta U=0$, what will be ΔS ?
A. 0
B. >0
C. <0
D. ≥ 0

Answer: B

- Watch Video Solution

271. For amorphous substance at 273K entropy is
A. is always positive
B. is always negative
C. is always zero
D. other than zero

Answer: D

- Watch Video Solution

272. The standard molar entropy of $\mathrm{H}_{2} \mathrm{O}_{l}$ is $70 \mathrm{JK}^{-1} \mathrm{moJ}^{-1}$ Standard molar entropy of $\mathrm{H}_{2} \mathrm{O}(s)$ is
A. more than $70 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
B. less than $70 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
C. equal to $70 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
D. None of the above

Answer: B

D View Text Solution

273. Which of the following has ΔS° greater than zero
A. $\mathrm{CaO}(s)+\mathrm{CO}_{2}(g) \rightarrow \mathrm{CaCO}_{3}(s)$
B. $\mathrm{NaCl}(a q) \rightarrow \mathrm{NaCl}(s)$
C. $\mathrm{NaNO}_{3}(s) \rightarrow \mathrm{Na}(a q)+\mathrm{NO}_{3}^{-}(a q)$
D. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

Answer: C

- Watch Video Solution

274. A gas is allowed to expand reversibly under adiabatic conditions. What is zero for such a process ?
A. ΔG
B. ΔT
C. ΔS
D. none of these.

Answer: C

275. Mark the correct statement
A. For a chemical reaction to be feasible, ΔG should be zero.
B. Entropy is measure of order in a system.
C. For a chemical reaction to be feasible, ΔG should be positive.
D. The total energy of an isolated system is constant

Answer: D

- View Text Solution

276. All the natural processes tend to occur in a direction that will lead to equilibrium. This is a statement of
A. Third law of themodynamics
B. Zeroth law of thermodynamics
C. First law of thermodynamics
D. Second law of thermodynamics.

Answer: D

- View Text Solution

277. 5 litre-atmosphere is approximately equal to
A. 5.05 j
B. 506.5 J
C. 41.55 J
D. 4155 J

Answer: B

- Watch Video Solution

278. The maximum work done in expanding 1.6×10^{-2} oxygen at 300 k and occupying a volume of $10 \mathrm{~cm}^{3}$ isothermally until the volume of $10 \mathrm{dm}{ }^{3}$ isothermally unti the volume becomes

$$
50 \mathrm{dm}^{2} i s\left(R=8.314 \mathrm{JK6}^{-1} \mathrm{~mol}^{-1}\right)
$$

A. $-2.0 \times 10^{3} \mathrm{~J}$
B. $-2.81 \times 10^{3} \mathrm{~J}$
C. $2.0 \times 10^{-3} J$
D. $-2.0 \times 10^{-6} \mathrm{~J}$

Answer: A

- Watch Video Solution

279. The work done in joules when two moles of an ideal gas are compressed at 300 K from $1 \mathrm{dm}^{3}$ to $100 \mathrm{~cm}^{3}$ against a constant pressure of $3.2 \times 10^{5} \mathrm{Nm}^{2}$ is
A. $+14.4 \times 10^{2} J$
B. $+2.88 \times 10^{2} J$
C. $+28.8 \times 10^{2} J$
D. $+28.8 \times 10^{2} J$

Answer: B

- Watch Video Solution

280. A system absorbs 920 J of heat and does work. The change in internal energy (ΔU) for the process is 460 J . The work done by the system is
A. 250 J
B. $-250 J$
C. -460 J
D. $+460 J$

Answer: C

281. The work done when 5 moles of an ideal gas expands isothermally from $45 \mathrm{~m}^{3}$ to $55 \mathrm{~m}^{3}$ against a constant pressure of 100 pascal in $\mathrm{J} / \mathrm{mol}$ is
A. -500
B. -1000
C. -5000
D. -200

Answer: D

- Watch Video Solution

282. The work done in ergs for a reversible expansion of n mole of an ideal gas from a volume of 20 litres to 40 litres at $25^{\circ} \mathrm{C}$ is a
A. $-2.303 \times 8.314 \times 298 \times \log _{10} 2 \times n$
B. $-2.303 \times 0.0821 \times 298 \log _{10} 2 \times n$
C. $-2.303 \times 0.0821 \times 298 \log _{10} 0.5 \times n$
D. $-2.303 \times 8.314 \times 10^{7} \times 298 \log _{10} 2 \times n$

Answer: D

- Watch Video Solution

283. One mole of an ideal gas expands isothermally at 300 K from 1 litre to 101 litres at constant pressure of 1 atmosphere. The work done during this change is (1 lit atrn $=24.2$ cals)
A. $-242 k c a l s$
B. -24.2 kcals
C. $-2 k c a l s$
D. -2.42 kcals

Answer: D

- Watch Video Solution

284. The maximum work obtained by an isothermal reversible expansion of 1 mol of an ideal gas at $27^{\circ} C$ from 2.24 to 22.4 L is ($\mathrm{R}=2$ cal)
A. -1381.8 ncal
B. -600 ncal
C. $-690.9 n c a l$
D. -6000 ncal

Answer: A

- Watch Video Solution

285. Two moles of an ideal gas expand spontaneouly into vacuum. The work done is :-
A. zero
B. 2 J
C. 4 J
D. 8 j

Answer: A

- Watch Video Solution

286. 10 kg of four different gases $\left(\mathrm{Cl}_{2}, \mathrm{CH}_{4}, \mathrm{O}_{2}, \mathrm{~N}_{2}\right)$ expand isothermally and reversibly from 20 atm to 10 atm. The order of amount of work will be
A. $\mathrm{Cl}_{2}>\mathrm{CH}_{4}>\mathrm{O}_{2}>\mathrm{N}_{2}$
B. $\mathrm{CH}_{4}<\mathrm{N}_{2}<\mathrm{O}_{2}<\mathrm{Cl}_{2}$
C. $\mathrm{O}_{2}>\mathrm{N}_{2}>\mathrm{CH}_{4}>\mathrm{Cl}_{2}$
D. $\mathrm{CH}_{4}>\mathrm{N}_{2}>\mathrm{O}_{2} \mathrm{Cl}_{2}$

Answer: D

- View Text Solution

287. The consstant external pressure required to compress 1 mole of an ideal gas form $23 \times 10^{-3} \mathrm{~m}^{3}$ to $8 \times 10^{-3} \mathrm{~m}^{3}$ when work obtained is 9.09 kJ at $27^{\circ} C$ is
A. $6.06 \times 10^{5} \mathrm{Nm}^{2}$
B. $6.60 \times 10^{5} \mathrm{Nm}^{2}$
C. $0.606 \times 10^{7} \mathrm{Nm}^{-2}$
D. $6.06 \times 10^{4} \mathrm{Nm}^{-2}$

Answer: A

288. The work done when $1.6 \times 10^{-2} \mathrm{~kg}$ of oxygen at 300 K are expended isothermally and reversibly, till its volume is tripled is $\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$
A. $-0.646 K J$
B. -1.370 kJ
C. $-864.5 k J$
D. $-645.4 k J$

Answer: B

- Watch Video Solution

289. The work done in ergs for the reversible expansion of one mole of an ideal gas from a volume of 10 litres to 20 litres at $25^{\circ} \mathrm{C}$ is
A. $-2.303 \times 298 \times 0.082 \log 2$
B. $-298 \times 10^{5} \times 831 \times 2.303 \log 2$
C. $2.303 \times 298 \times 0.082 \log 0.5$
D. $2.303 \times 298 \times 2 \log 2$

Answer: B

- Watch Video Solution

290. If 2500 cal. of heat is added to a system while the system does work equivalent to 3500 cal by expanding against the surrounding atmosphere, the value of ΔU for the system is
A. 4000 cal
B. -4000 cal
C. 1000 cal
D. -1000 cal

Answer: D

291.2 moles of H_{2} at 5 atm expands isothermally and reversibly at $57^{\circ} \mathrm{C}$ to 1 atm. Work done is
A. $-2.302 \times 8.314 \times 330 \times \log 5 J$
B. $-2.303 \times 8.314 \times 660 \times \log 5 J$
C. $-2.303 \times 8.314 \times 660 \times \frac{\log 1}{5} J$
D. $-2.303 \times 8.314 \times 330 \times \frac{\log 1}{5} J$

Answer: B

- Watch Video Solution

292. An ideal gas expands from $10^{-3} \mathrm{~m}^{3}$ to $10^{-2} \mathrm{~m}^{3}$ at 300 K against a constant pressure of $10^{5} \mathrm{Nm}^{-2}$. The workdone is
A. $-10^{3} \mathrm{~kJ}$
B. $10^{2} k J$
C. -0.9 kJ
D. -900 kJ

Answer: C

- Watch Video Solution

293. Two liters of N_{2} at $0^{\circ} C$ and 5 atm pressure is expanded isothermally against a constant external pressure of 1 atm untill the pressure of gas reaches 1 atm. Assuming gas to be ideal, claculate the work of expansion.
A. -202.6 J
B. -202.6 J
C. -810.4 J
D. -303.9 J

Answer: D

294. A gas present in a cylinder fitted with a frictionless pistion expands against a constant pressure of 1 atm form a volume of $2 L$ to a volume of $6 L$. In doing so, it absorbs $800 J$ heat form the surroundings. Determine the increases in internal enegry of process.
A. 698.7 J
B. 1205.2J
C. 394.8 J
D. 597.4 J

Answer: C

- Watch Video Solution

295. Work done in expansion of an ideal gas from 6 litre to 10 litre against a constant external pressure of 2.5 atm was
A. $-1013 k J$
B. -1013 J
C. +1013 kJ
D. $+1013 J$

Answer: B

- View Text Solution

296. Work done on 3 moles of a perfect gas at $27^{\circ} \mathrm{C}$, if it is compressed reversibly and isothermally from a pressure of $1.01 \times 10^{5} \mathrm{Nm}^{-2}$ to $5.05 \times 10^{6} \mathrm{Nm}^{-2}$ is
A. $1.95 \times 10^{4} J$
B. -1.95×10^{4} J
C. $2.9277 \times 10^{4} J$
D. $-9375 \times 10^{3} J$

Answer: C

297. The work done during expansion is used to heat 10 mole of water of temperature of 290 K .
A. 24.11 J
B. $11.24 k J$
C. $-24.11 k J$
D. $-11.24 k J$

Answer: C

- Watch Video Solution

298. 1 mole of gas occupying 3 litre volume is expanded against a constant external pressure of 5 atm to a volume of 15 litre. The work done by the system is
A. -1.2 litre atm n
B. $-6.07 \times 10^{2} J$
C. $-1.215 \times 10^{3} \mathrm{~J}$
D. $-6.078 \times 10^{3} \mathrm{~J}$

Answer: D

- View Text Solution

299. Calculate the work done when 1.0 mol of water at 373 K vaporises against an atmosheric pressure of 1.0 atm . Assume ideal gas behaviour.
A. $-6200 J$
B. -306 J
C. $-3100 J$
D. $-1550 J$

Answer: C

300. A gas absorbs 250 J of heat and expands from 1 litre to 10 litres against the pressure 0.5 atmosphere at constant temperature. The values of q, w and ΔE are respectively
A. $250 \mathrm{~J}, 455 \mathrm{~J}, 710 \mathrm{~J}$
B. $250 \mathrm{~J},-455 \mathrm{~J},-205 \mathrm{~J}$
C. $+250 \mathrm{~J},-455,-205 \mathrm{~J}$
D. $-250 \mathrm{~J}, 455 \mathrm{~J},-205 \mathrm{~J}$

Answer: B

- Watch Video Solution

301. The work done in an open vessel at 300 K , when 224 g iron reacts
with dil. HCl is $(\mathrm{Fe}=56)$
A. 1.2 k cal
B. 2.4 k cal
C. 2.4 cal
D. 1.2 cal

Answer: B

- View Text Solution

302.3 moles of an ideal gas is compressed from $30 \mathrm{dm}^{3}$ to $20 \mathrm{dm}^{3}$ against a constant pressure of $3.039 \times 10^{5} \mathrm{Nm}^{-2}$.The work done in calories is $(1 J=0.239 c a l)$
A. +30.39 kcal
B. +72.63 kcal
C. +726.3 kcal
D. +303.9 kcal

Answer: C

- Watch Video Solution

303. Isothermally and reversibly one mole of neon expand from $2 \mathrm{~cm}^{3}$ to $20 \mathrm{~m}^{3}$ and produce 831.4 J of work. The temperature at which expansion takes place $\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$
A. 43.42 K
B. 300 K
C. 100 K
D. 434.2 K

Answer: A

304. 2 moles of an ideal gas expanded isothermally from $2.5 \times 10^{-3} \mathrm{~m}^{3}$ to $7.55 \times 10^{-3} \mathrm{~m}^{3}$ against a constant external pressure of $5 \times 10^{5} \mathrm{Nm}^{-2}$ The work done in the process is
A. $-2.525 k J$
B. $-0.2525 k J$
C. $-0.2525 k J$
D. -2.525 J

Answer: A

- View Text Solution

305. A system is provided 50 J of heat and work can be done on the system is 10 J . The change in internal energy during the process is:
A. 40 J
B. 60 J
C. 80 J
D. 50 J

Answer: B

- Watch Video Solution

306. The work done by 100 calorie of heat in isothermal expansion of ideal gas is :-
A. -418.4 J
B. 4.184 J
C. +418.4 J
D. -4.184 J

Answer: C

307. The work done by a system is 8 J , when 40 J heat is supplied to it. The change in internal of the system during the process
A. 48 J
B. 40 J
C. 32 J
D. 44 J

Answer: C

- Watch Video Solution

308. Calculate the work done during the process, when one mole of gas is allowed to expand freely into vacuum.
A. Zero
B. $+v e$
C. $-v e$
D. Either of these

Answer: A

- Watch Video Solution

309. Calculate the maximum work done in expanding $16 g$ of oxygen at $300 K$ occupying volume of $5 d m^{3}$ and isothermally untill the volume become $25 d m^{3}$?
A. $-2.01 \times 10^{3} \mathrm{~J}$
B. $+2.81 \times 10^{3} J$
C. $2.01 \times 10^{-3} J$
D. $+2.01 \times 10^{-6} J$

Answer: A

- Watch Video Solution

310. 1 mole of gas occupying 3 litre volume is expanded against a constant external pressure of 1 atm to a volume of 15 litre. The work done by the system is:
A. $-1.216 \times 10^{3} \mathrm{~J}$
B. $-12.16 \times 10^{3} \mathrm{~J}$
C. $-121.6 \times 10^{3} \mathrm{~J}$
D. $-12.16 \times 10^{3} \mathrm{~J}$

Answer: A

- Watch Video Solution

311. One mole of a gas occupying $3 d m^{3}$ expands against a constant external pressure of 1 atm to a volume of 13 lit . The workdone is :-
A. -10 atm dm ${ }^{3}$
B. $-20 \mathrm{~atm} \mathrm{dm}^{3}$
C. $-39 \mathrm{~atm} \mathrm{dm}{ }^{3}$
D. $-48 \mathrm{~atm} \mathrm{dm}{ }^{3}$

Answer: A

- Watch Video Solution

312. If 50 calories are added to a system and system does work of 30 calories on surroundings, the change in internal energy of system is
A. 20 cal
B. 50 cal
C. 40 cal
D. 30 cal

Answer: A

313. $\Delta U=+200 \mathrm{~J}$ for a system that gives off 200 J of heat and
A. does 200 J of work
B. has 400 J of work done on it
C. does no work
D. has 100 J of work done on it

Answer: B

Watch Video Solution

314. A system absorbs 10 kJ of heat and does 4 kJ of work the internal energy
A. decrease by 6 kJ
B. increase by 6 kJ
C. decrease by 14 kJ
D. increase by 14 kJ .

D Watch Video Solution

315. A gas sample is compressed to pressure of 5 atomispheres in order to show a decrease in volume from 6 litre to 4 litres. The process gives out 6 cal. Of heat to surroundings. The system during the operatoin is
A. -24.8
B. 248
C. -248
D. 24.8

Answer: B

316. A gas expands isothermally from 1 litre to 10 litre at constant in internal energy of the system durin the opetation is
A. 256 J
B. 456 J
C. $-184 J$
D. -256 J

Answer: B

- Watch Video Solution

317. In a process a system does 238 J of work on its surrondings by absorbing 54 J heat. What is the change is internal energy of system during the operation ?
A. 54 J
B. 222 J
C. $-184 J$
D. -192 J

Answer: C

- Watch Video Solution

318. A gas placed in a cylinder fitted with a frictionless piston expands against a constant external pressure of 1 atm from a volume of 10 litre to 15 litre by absorbing 400 J heat. The change in internal energy is
A. -106.325 J
B. 106.325 J
C. $-906.325 J$
D. -192 J

Answer: A

319. A gas occupies 3 litres at STP. It is provided with 300 J heat so that its volume becomes 3.5 litre at 2 atm. Calculate change in its internal energy
A. 249.35 J
B. 46.75 J
C. 198.7 J
D. -350.65 J

Answer: C

- View Text Solution

320. Calculate the work done when 1.0 mol of water at 373 K vaporises against an atmosheric pressure of 1.0atm. Assume ideal gas behaviour.
A. -6200 J
B. -306 J
C. $-3100 J$
D. -1550 J

Answer: C

- Watch Video Solution

321. 28 g of N_{2} gas at 300 K and 20 atm was allowed to expand isothermally against a constant external pressure of 1 atm , q for the gas is ($R=0.082$).
A. 2495 J
B. 7473 J
C. 2367 J
D. 2570 J

Answer: C

322. Latent heat of vaporisation of a liquid at 500 K and 1 atm pressure is $10.0 \mathrm{kcal} / \mathrm{mol}$. What will be the change in internal energy (ΔE) of 3 mol of liquid at same temperature?
A. 13.0 kcal
B. -13.0 kcal
C. 27.0 kcal
D. -27.0 kcal

Answer: C

- Watch Video Solution

323. The latent heat of vapurization of liquid at 500 K and 1 atm pressure is $10 \mathrm{kcal} / \mathrm{mol}$. The change in internal energy of 2 moles of liquid at same temperature will be (assume that molecule undergoes no changes and R $=2 \mathrm{cal} / \mathrm{K} / \mathrm{mol}$)
A. -7 kcal
B. +7 kcal
C. -8 kcal
D. 18 kcal

Answer: D

- View Text Solution

324. The Enthalpy of combusion off carbon is $-94 k c a l$ at 1 atm pressure, the itrinsic energy of CO_{2} is
A. +94 kcal
B. -94 kcal
C. +47 kcal
D. -47 kcal

Answer: B

325. The difference between between ΔH and ΔU for the formation of $C_{6} H_{12} O_{6}(S)$ from its elements at $27^{\circ} C$ is __cal. (R=2 cal $/ \mathrm{K} / \mathrm{mol}$)
A. -5400
B. -9000
C. -4800
D. -6400

Answer: A

- Watch Video Solution

326. The difference between the heats of reaction at constant pressure and a constant volume for the reaction $2 C_{6} H_{6}(l)+15 O_{2}(g) \rightarrow 12 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $25^{\circ} \mathrm{C}$ in $k J$ is
A. -7.43
B. +3.72
C. -3.72
D. +7.43

Answer: A

- Watch Video Solution

327. The enthalpy of formation of methane $C_{(S)}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$ at constant pressure is 18500 cal at $25^{\circ} \mathrm{C}$. The enthalpy of reaction at constant volume would be
A. 19096 cal
B. 18789 cal
C. 18202 cal
D. 17904 cal

- Watch Video Solution

328. For the homogeneous gaseous phase reaction, $C_{2} H_{6(g)}+\frac{15}{2} O_{2(g)} \rightarrow 6 \mathrm{CO}_{2(g)}+3 \mathrm{H}_{2} \mathrm{O}(g)$, the change in the number of moles of gaseous products is
A. 1.5
B. -1.5
C. 0.5
D. 3

Answer: C

329. For a gaseous reaction, $A(g)+3 B(g) \rightarrow 3 C(g)+3 D(g), \Delta U$ is 17 kcal at $27^{\circ} \mathrm{C}$. Assuming $R=2 \mathrm{cal} \quad \mathrm{K}^{-1} \mathrm{~mol}^{-1}$, the value of ΔH for the above reaction is:
A. 15.8 kcal
B. 16.4 kcal
C. 18.2 kcal
D. 20.0 kcal

Answer: C

- Watch Video Solution

330. Given the reaction at $967^{\circ} \mathrm{C}$ and 1 atm .
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
$\Delta H=176 \mathrm{kJmol}^{-1}$, then ΔE equals
A. 160.0 kJ
B. 165.6 kJ
C. 186.4 kJ
D. 180.0 kJ .

Answer: B

- Watch Video Solution

331. The heat of combustion of ethanol determinal in a bomb calorimeter is - 670.48 K . Cals mole ${ }^{-1}$ at $25^{\circ} \mathrm{C}$. What is ΔH at $25^{\circ} \mathrm{C}$ for the reaction :-
A. -335.24 kcal
B. 669.58 kcal
C. -670.48 kcal
D. +670.48 kcal

Answer: B

332. The difference in ΔH and ΔU for the combustion of methane forming water in liquid state at $25^{\circ} \mathrm{C}$ would be
A. Zero
B. $2 x 298 x(-2) \mathrm{cal}$
C. $2 x 298 x(-3)$ cal
D. $2 x 25 x(-3) c a l$

Answer: B

- View Text Solution

333. For a reaction $2 X(s)+2 Y(s) \rightarrow 2 C(l)+D(g)$ the $\Delta H 25^{\circ} C$ is $-25 \mathrm{Kcalmol}^{-1}$. The ΔU is Kcal mol^{-1}.
A. -27.4
B. +27.4
C. -28.6
D. 28.4

Answer: C

- View Text Solution

334. Δn the change in the number of moles for the reaction, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})+12 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{O}_{2(\mathrm{~g})}+11 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $25^{\circ} \mathrm{C}$
A. Zero
B. -1
C. 2
D. 4

Answer: A

335. Latent heat of vaporisation of a liquid at 500 K and 1 atm pressure is $10.0 \mathrm{kcal} / \mathrm{mol}$. What will be the change in internal energy (ΔE) of 3 mol of liquid at same temperature?
A. 27.0 kcal
B. 13.0 kcal
C. -27.0 kcal
D. -13.0 kcal

Answer: A

- Watch Video Solution

336. The heat of combustion of solid benzoic acid at constant volume is -321.30 kJ at $27^{\circ} \mathrm{C}$. The heat of combustion at constant pressure is
A. $-321.30-300 R$
B. $-321.30+300 R$
C. $-321.30-150 R$
D. $-321.30+900 R$

Answer: C

- Watch Video Solution

337. Equal volume of $\mathrm{C}_{2} \mathrm{H}_{2}$ and H_{2} are combusted under identical condition, The ratio of their enthalpy of comabution is
$H_{2}(g)+(1 / 2) O_{2(g)}=H_{2} O(g), \Delta H=-241.8 \mathrm{KJ}$
$\mathrm{C}_{2} \mathrm{H}_{2(g)}+(5 / 2) \mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Delta \mathrm{H}=-1300 \mathrm{KJ}$
A. $5.37 / 1$
B. 1/5.37
C. $\frac{1}{1}$
D. None of these

Answer: B

338. When 0.2 g of butanol was burnt in a suitable apparatus, the heat evolved was sufficient to raise the temperature of 200 g of water by $5^{\circ} \mathrm{C}$ The enthalpy of combustion of butanol in $\mathrm{Kcal} / \mathrm{mol}$ will be (molar mass of butanol $=74$)
A. 14.8
B. 74
C. 37
D. 370

Answer: D

- View Text Solution

339. The heat of combustion of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ is $1350 \mathrm{kcal} / \mathrm{mol}$. How much of heat will be liberated when 17.1 g of sucrose is burnt ?
A. 67.5 kcal
B. 13.5 kcal
C. 40.5 kcal
D. 25.5 kcal

Answer: A

- Watch Video Solution

340. If $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+9 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta \mathrm{H}=-680$ Kcal The weight of $\mathrm{CO}_{2}(\mathrm{~g})$ produced when 170 Kcal of heat is evolved in the combustion of glucose is :-
A. 264 g
B. 66 g
C. 11 g
D. 44 g

- Watch Video Solution

341. When 12.0 g of carbon reacted with limited quantity of oxygen, 57.5 kcal of heat was produced, calculate the number of moles of CO produced $\left(\Delta_{f} H\left(C O_{2}\right)=-94.5 \mathrm{cal}, \Delta_{f} H(C O)=-21.41 k c a l\right.$.
A. 0.54 mol
B. 0.50 mol
C. 0.64 mol
D. 0.74 mol

Answer: B

$C_{6} H_{6}(l)+15 / 2 \mathrm{O}_{2}(g) \rightarrow 6 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-3264.4 \mathrm{KJ} \mathrm{mol}^{-1}$ the energy evolved when 7.8 g benzene is burnt in air will be -
A. $-326.4 \mathrm{~kJ} / \mathrm{mol}$
B. $326.4 \mathrm{~kJ} / / \mathrm{mol}$
C. $32.64 \mathrm{~kJ} / / \mathrm{mol}$
D. $3.264 \mathrm{~kJ} / / \mathrm{mol}$

Answer: B

- Watch Video Solution

343. Given
$C+2 S \rightarrow C S_{2}, \Delta H f^{\circ}=+117.0 \mathrm{kJmol}^{-1}$
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}, \Delta H f^{\circ}=-393.0 \mathrm{kJmol}^{-1}$
$S+O_{2} \rightarrow S O_{2}, \Delta H f^{\circ}=-297.0 \mathrm{kJmol}^{-1}$

The heat of combustion of

$$
\mathrm{CS}_{2}+3 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{SO}_{2} \text { is }
$$

A. $-807 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $-1104 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $+1104 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $+807 \mathrm{~kJ} \mathrm{~mol}-1$

Answer: B

- Watch Video Solution

344. One mole of methanol, when burnt in oxygen, gives out 723 kJ mol^{-1} heat. If one mole of oxygen is used, what will be the amount of heat evolved ?
A. 723 kJ
B. 964 kJ
C. 482 kJ
D. 241 kJ .

Answer: C

- View Text Solution

345. The heat of combustion of methane is $-880 \mathrm{~K} \mathrm{Jmol}^{-1}$. The quantity of heat liberated in the combustion of 3.2 g methane is
A. 176 kJ of heat is evolved
B. -176 kJ of heat is evolved
C. 88 kJ of heat is evolved
D. -88 kJ of heat is evolved

Answer: A

- Watch Video Solution

346. The enthalpy of formation for $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}), \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $25^{\circ} \mathrm{C}$ and 1 atm . Pressure be $52,-394$ and $-286 \mathrm{kJmol}^{-1}$ respectively. The enthalpy of combustion of $C_{2} H_{4}(g)$ will be
A. $+1412 \mathrm{kJmol}^{-1}$
B. $-1412 \mathrm{kJmo} 1^{-1}$
C. $+141.2 \mathrm{kJmo}^{-1}$
D. $-141.2 \mathrm{kJmol}^{-1}$

Answer: B

- Watch Video Solution

347. If, combustion of $4 g$ of CH_{4} liberates 2.5 kcal of heat, the heat of combustion of CH_{4} is :
A. -20 kcal
B. -10.3 kcal
C. 2.5 kcal
D. -5 kcal

Answer: B

- Watch Video Solution

348. On combustion carbon forms two oxides CO and CO_{2}, heat of formation of CO_{2} is -94.3 kcal and that of CO is -26 . kcal. Heat of combustion of carbon is:
A. 26.0 kcal
B. -94.3 kcal
C. 68.3 kcal
D. -120.3 kcal

Answer: B

349. For the reaction

$$
\mathrm{C}_{2} \mathrm{H}_{4}(g)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l), \Delta E=-1415 k J . \text { The } \Delta H
$$ at $27^{\circ} \mathrm{C}$ is

A. $-1410 k J$
B. $-1420 k J$
C. $+1420 k J$
D. $+1410 k J$

Answer: B

(Watch Video Solution

350. Given that -
$2 \mathrm{C}(\mathrm{s})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g}) \Delta \mathrm{H}=-787 \mathrm{KJ}$
$\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta=-286 \mathrm{KJ}$
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{5}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta \mathrm{H}=-1310 \mathrm{KJ}$
Heat of formation of acetylene is :-
A. -1802 KJ
B. +1802 KJ
C. -800 kJ
D. +228 KJ

Answer: D

- Watch Video Solution

351. $C_{\text {diamond }}+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g), \Delta H=-395 k J$
$C_{\text {graphite }}+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g), \Delta H=-393.5 K J$
The ΔH, when diamond is formed from graphite, is
A. -1.5 kJ
B. +1.5 kJ
C. +3.0 kJ
D. -3.0 kJ

Answer: B

- Watch Video Solution

352. The heats of combustion for $\mathrm{C}, \mathrm{H}_{2}$ and CH_{4} are $-349,-241.8$ and $-906.7 k J$ respectively. The heat of formation of CH_{4} is
A. 174.1 kJ
B. 274 kJ
C. 374.1 kJ
D. 74.1 kJ

Answer: D
353. $\mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{O}_{2(g)} \rightarrow 2 \mathrm{NO}_{2}+\mathrm{XkJ}$
$2 \mathrm{NO}_{(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{NO}_{2(g)}+Y k J$
The enthalpy of formation of $N O$ is
A. ($2 \mathrm{X}-2 \mathrm{Y}$)
B. X-Y
C. $\frac{1}{2}(Y-X)$
D. $\frac{1}{2}(X-Y)$

Answer: C

- Watch Video Solution

354. The enthalpy of formaion of ammonia gas at 298 K is $-46.11 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The equaiton to which this value realtes is
A. $\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$
B. $\mathrm{N}_{2}(g)+3 H(g) \rightarrow r \mathrm{NH}_{3}(g)$
C. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D. $\frac{1}{2} \mathrm{~N}_{2}(g)+\frac{3}{2} \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(l)$

Answer: A

- Watch Video Solution

355. The enthalpy change at 298 K of the reaction
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$ is $-23.5 \mathrm{kcalmol}^{-1}$ and enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l})$ is $-44.8 \mathrm{kcalmol}^{-1}$. The enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}(l)$ is
A. -68 . $\mathrm{kcal} / \mathrm{mol}$
B. 68.3 " kcal " / mol
C. $-91.8 \mathrm{kcal} / \mathrm{mol}$
D. $91.8 \mathrm{kcal} / \mathrm{mol}$

Answer: A

356. From the following data, the heat of formation of $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$ at $18^{\circ} C$ is Kcal.
(i) $\mathrm{CaO}(s)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})=\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}), \Delta \mathrm{H} 18^{\circ} \mathrm{C}=-15.26 \mathrm{Kcal} . . .$. .
(ii) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})=\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}), \Delta \mathrm{H} 18^{\circ} \mathrm{C}=68.37 \mathrm{Kcal}$....
(iii) $\mathrm{Ca}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(g)=\mathrm{CaO}(s), \Delta H 18^{\circ} \mathrm{C}=-151.80 \mathrm{Kcal} . . .$.
A. -98.69
B. -235.43
C. 194.91
D. 98.69

Answer: B

- Watch Video Solution

357. If $\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}, \Delta=-68.39 \mathrm{Kcal}$
$\mathrm{K}+\mathrm{H}_{2} \mathrm{O}+$ water $\rightarrow \mathrm{KOH}(a q)+1 / 2 \mathrm{H}_{2}, \Delta H=-48.0 \mathrm{Kcal}$
$K O H+$ water $\rightarrow K O H(a q) \Delta H=-14.0$ Kcal the heat of formation of KOH is -
A. $-68+48-14$
B. $-68-48+14$
C. $68-48+14$
D. $68+48+14$

Answer: B

- Watch Video Solution

358. Given :
(i) $\mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{NCl}_{3}(\mathrm{~g})+3 \mathrm{HCl}(\mathrm{g}), \Delta \mathrm{H}_{1}$
(ii) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}), \Delta H_{2}$
(iii) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g}), \Delta \mathrm{H}_{3}$

Express the enthalpy of formation of $N C l_{3}(g)\left(\Delta H_{f}\right)$ in terms of $\Delta H_{1}, \Delta H_{2}$ and $\Delta H_{3}:$
A. $\Delta H_{f}=-\Delta H_{1}+\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
B. $\Delta H_{f}=\Delta H_{f}+\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
C. $\Delta H_{f}=\Delta H_{f}-\frac{\Delta H_{2}}{2}-\frac{3}{2}\left(\Delta H_{3}\right)$
D. None

Answer: A

- Watch Video Solution

359. The heat liberated at 298 K and 1 atm 'for the formation of 365 gms .
of HCl is 920 kJ . All the reactions and products are in gaseous state.
Atomic mass of Cl is 35.5 , enthalpy of formation of HCl is
A. $-92 k J$
B. 920 kJ
C. -420 kJ
D. 460 kJ

Answer: A

- View Text Solution

360. If the heat fo dissolution of anhydrous $\mathrm{CuSO} \mathrm{O}_{4}$ and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is
-15.89 kcal and 2.80 kcal , respectively, then the heat of hydration of CuSO_{4} to form $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is
A. -13.09 kcal
B. -18.69 kcal
C. +13.09 kcal
D. +18.69 kcal

Answer: B

- Watch Video Solution

361. The enthalpy of dissolution of $\mathrm{BaCl}_{2}(s)$ and $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ are -20.6 and $8.8 \mathrm{KJ} \mathrm{mol}^{-1}$ respectively. Calculate enthalpy of hydration forgiven reaction:
$\mathrm{BaCl}_{2}(s)+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(s)$
A. 29.4 kJ
B. $-29.4 k J$
C. -11.8 kJ
D. 38.2 kJ

Answer: B

- Watch Video Solution

362. $S_{R}+O_{2}(g) \rightarrow S O_{2}(g), \Delta H=-71.1 \mathrm{kcalm}$
$S_{M}+O_{2}(g) \rightarrow O_{2}(g), \Delta H=-71.7 \mathrm{kcal}$
Thus ΔH for the consversion of $S_{R} \rightarrow S_{M}$ is
A. 0.6 kcal
B. -0.6 kcal
C. +142.8 kcal
D. -142.8 kcal

Answer: A

- Watch Video Solution

363. For the change C (diamond) $\rightarrow \mathrm{C}$ (graphite) , $\Delta H=-1.89 \mathrm{KJ}$, if 6 g of diamond and 6 g of graphite are seperately burnt to yield CO_{2} the heat liberated in first case is :
A. less than in the second case by 1.89 kJ
B. less than in the second case by 11.34 kJ
C. less than in the second case by 14.34 kJ
D. more than in the second case by 0.945 kJ

Answer: D

364. The heat of combustion of yellow phosphorus and red phosphorus are $-9.91 \mathrm{~kJ} / \mathrm{mol}$ and $-8.78 \mathrm{~kJ} / \mathrm{mol}$ respectively. Then the heat of transition of yellow phosphorus to red phosphorus is
A. $-18.69 k J$
B. $+1.13 k J$
C. +18.69 kJ
D. -1.13 kJ

Answer: D

- Watch Video Solution

365. The enthalpy of formation of ammonia is $-46.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The enthalpy for reaction $2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NH}_{3}(\mathrm{~g})$ is equal to
A. $-46.0 k J$
B. 46.0 KJ
C. 184.0 kJ
D. $-184.0 k J$

Answer: D

- Watch Video Solution

366. Given ehthapy of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{CaO}(\mathrm{s})$ are -94.0 kJ and -152 kJ respectively and the enthalpy of formation $\mathrm{CaCO}_{3}(\mathrm{~s})$ is

$$
\text { A. }-42 k J
$$

B. $-202 k J$
C. $+202 k J$
D. -288 kJ
367. The standard heats of formation of $\mathrm{NO}_{2}(\mathrm{~g})$ and $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ are 8.0 and $2.0 \mathrm{Kcal} \mathrm{mol}^{-1}$ respectively the heat of dimerization of NO_{2} in Kcal is
A. 10.2
B. -6.0
C. -12.0
D. -14.0

Answer: D

- Watch Video Solution

368. Values of heats of formation for SiO_{2} and MgO are -48.4 and -34.7 kJ respectively. The heat of the reaction $2 \mathrm{Mg}+\mathrm{SiO}_{2} \rightarrow 2 \mathrm{MgO}+\mathrm{Si}$ is
A. 21.0 kJ
B. -21.0 kJ
C. 13.7 kJ
D. 13.7 kJ .

Answer: B

- Watch Video Solution

369. The enthapies of formation of $\mathrm{N}_{2} \mathrm{O}$ and NO are 28 and $90 \mathrm{kj} \mathrm{mol}^{-1}$ respectively. The enthalpy of the reaction, $2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})$ is equal to
A. 8 kJ
B. 88 kJ
C. -16 kJ
D. $304 k J$

- Watch Video Solution

370. The ehthalpy change taking place during the reaction $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \mathrm{is}$,
$\Delta H_{f}=H_{2} O(g)=-57 k c a l, \Delta H_{f}=H_{2} O(l)=-68.3 k c a l$
A. +11.3 kcal
B. -11.3 kcal
C. 115.3 kcal
D. +115.3 kcal

Answer: A

371. $\Delta_{f} H^{\circ}$ ofCO2 $(g), \mathrm{CO}(g), \mathrm{N}_{2} \mathrm{O}(\mathrm{g})$ and $\mathrm{NO}_{2}(g)$ in $\mathrm{KJ} / \mathrm{mol}$ are respectively -393-110,81 and 34.Calculate the ΔH in kj of the following reaction:
$2 \mathrm{NO}_{2}(g)+3 \mathrm{CO}(g) \rightarrow r \mathrm{~N}_{2} \mathrm{O}(g)+3 \mathrm{CO}_{2}(g)$
A. 836
B. 1460
C. -836
D. -1460

Answer: C

- Watch Video Solution

372. If $H_{2}(g)+I_{2}(g) \rightarrow 2 H I(g), \Delta H=12.40 \mathrm{kcal}$. The enthalpy of formation of HI is
A. 12.4 kcal
B. -12.4 kcal
C. -6.20 kcal
D. 6.20 kcal

Answer: D

- Watch Video Solution

373. The enthalpy of combustion of H_{2}, cyclohexene $\left(C_{6} H_{10}\right)$ and cyclohexane $\left(C_{6} H_{12}\right)$ are $-241,-3800$ and $-3920 K J$ per mol respectively. Heat of hydrogenation of cyclohexene is
A. $-121 \mathrm{~kJ} / \mathrm{mol}$
B. $+121 \mathrm{~kJ} / \mathrm{mol}$
C. $-242 \mathrm{~kJ} / \mathrm{mol}$
D. $+242 \mathrm{~kJ} / \mathrm{mol}$.
374. Considering the following reactions,
$C+(1 / 2) O_{2} \rightarrow C O, \Delta H=-26.4 k c a l$
$\mathrm{H}_{2}+(1 / 2) \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}, \Delta H=-57.8 \mathrm{kcal}$
ΔH for the reaction.
$\mathrm{H}_{2} \mathrm{O}+\mathrm{C} \rightarrow \mathrm{H}_{2}+\mathrm{CO}$ is
A. 62.8 kcal
B. 31.4 kcal
C. -31.4 kcal
D. -84.2 kcal

Answer: B

- Watch Video Solution

375. The enthalpies of formation of $\mathrm{N}_{2} \mathrm{O}$ and NO are respectively 82 and $90 \mathrm{kJmol}^{-1}$. The enthalpy of reaction
$2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})$ is
A. 8 kJ
B. 88 kJ
C. $-16 k J$
D. 196 kJ .

Answer: D

- Watch Video Solution

376. Based on the following thermochemical equations,
$\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{C}(\mathrm{s}) \rightarrow \mathrm{CO}(g)+\mathrm{H}_{2}, \Delta H=131 K J$
$\mathrm{CO}(g)=(1 / 2) \mathrm{O}_{2}(g) \operatorname{rarCO} \mathrm{O}_{2}(g), \Delta H=-282 k J$
$H_{2}(g)+(1 / 2) O_{2}(g) \rightarrow H_{2} O(g), \Delta H=-242 k J$
$C(s)+O_{2}(g) \rightarrow C O_{2}, \Delta H=X k J$ the value of X will be
A. $-393 k J$
B. -655 kJ
C. $+393 k J$
D. +655 kJ

Answer: A

- View Text Solution

377. The enthalpy of vapourisation of liquid water using the data :
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta=-285.77 \mathrm{KJmol}^{-1}$
$\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(g), \Delta H=-241.84 \mathrm{KJmol}^{-1}$
A. $+43.93 \mathrm{kj} / \mathrm{mo}$
B. $-43.93 \mathrm{~kJ} / \mathrm{mol}$
C. $+527.61 \mathrm{~kJ} / \mathrm{mol}$
D. $-527.61 \mathrm{~kJ} / \mathrm{mol}$

- Watch Video Solution

378. If, $S+O_{2} \rightarrow S O_{2}, \Delta H=-298.2 k j$
$\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}, \Delta H=-98.7 \mathrm{~kJ}$
$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow r \mathrm{H}_{2} \mathrm{SO}_{4}, \Delta \mathrm{H}=-130.2 \mathrm{~kJ}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=-227.3 \mathrm{~kJ}$
Find ΔH for formation of $\mathrm{H}_{2} \mathrm{SO}_{4}$ at 298 K .
A. $-754.4 k J$
B. $+320.5 k J$
C. 650.3 kJ
D. -433.7 kJ

Answer: A

379. If heat of combustion of enthylene is 1411 KJ when a certain amount of ethylene was burnt 6226 KJ heat was evolved. Then the volume of O_{2} (at NTP) that entered into the reaction is :-
A. 296.5 mL
B. 296.5 litre
C. 6226×22.4 litre
D. 22.4 litre

Answer: B

- Watch Video Solution

380. The combution of 5.0 g of coke reaised the temperatre of 1 kg of water from $10^{\circ} \mathrm{C}$ to $47^{\circ} \mathrm{C}$ Calcuate the fuel value of coke in kcal $/ \mathrm{g}$.
A. 7.4 kcal
B. $8.4 \mathrm{kcal} / \mathrm{g}$
C. $9.4 \mathrm{kcal} / \mathrm{g}$
D. $6.4 \mathrm{kcal} /$

Answer: A

- View Text Solution

381. $\Delta_{f} \mathrm{H}$ value for $\mathrm{H}_{2} \mathrm{O}$ is $-69 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$. Then that of formation of $O H^{-}$ion $\left(\Delta_{n} H=-13.7 \mathrm{kcal}\right)$
A. $-68 \mathrm{kcal} \mathrm{mol}{ }^{-1}$
B. $-54.3 \mathrm{kcal} \mathrm{mol}^{-1}$
C. $81.7 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$
D. zero

Answer: B

382. Find out the heat evolved in combustion if 112 litre (at 1 atm, 273 K) of water gas (mixture of equal volume of $H_{2}(g)$ and $\mathrm{CO}(\mathrm{g})$) is combusted with excess oxygen.
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta=-241.8 \mathrm{~kJ}$
$\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta=-283 \mathrm{~kJ}$
A. 241.8 kJ
B. 283 KJ
C. 1312 kJ
D. $-1312 k J$

Answer: C

- Watch Video Solution

383.2.1g of Fe combines with S evolving 3.77 KJ . The heat of formation of FeS in $\mathrm{KJ} / \mathrm{mol}$ is
A. -3.77
B. -1.79
C. -100.5
D. -20.10

Answer: C

- Watch Video Solution

384. Given that ,
$A(s) \rightarrow A(l) \Delta H=x$
$A(l) \rightarrow A(g), \Delta H=y$
The heat of sublimation of A will be :
A. $x-y$
B. $x+y$
C. x or y
D. $-(x+y)$

Answer: B

- Watch Video Solution

385. A person requires 2870 kcal of energy to lead normal daily life. If heat of combustion of cane sugar is -1349 kcal , then his daily comsumption of sugar is :
A. 728 g
B. 0.728 g
C. 342 g
D. 0.342 g

Answer: A

386. Enthalpy change for the reaction given below at constant volume is 200 kJ . The heat change at constant pressure for the same reaction at the same temperature would be.
$2 P_{2} O_{(s)}+4 R_{(g)} \rightarrow 4 P R_{(g)}+Q_{2(l)}$
A. 600 kJ
B. 100 KJ
C. 800 KJ
D. 200 KJ

Answer: D

- View Text Solution

387. One moles of anhydrous $A B$ dissolves in water and liberates 21.0 Jmol^{-1} of heat. The valueof ΔH^{Θ} (hydration) of $A B$ is $-29.4 \mathrm{Jmol}^{-1}$. The heat of dissolution of hydrated salt $\mathrm{AB} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ is
A. $50.4 \mathrm{Jmol}^{-1}$
B. $8.4 \mathrm{Jmol}^{-1}$
C. $-50.4 \mathrm{Jmol}^{-1}$
D. $-8.4 \mathrm{Jmol}^{-1}$

Answer: B

- Watch Video Solution

388. The molar heat of vapourisation for water is $9.72 \mathrm{kcal} \mathrm{mol}^{-1}$. The amount of heat change when 36 gms of steam condense is
A. 293 kcal
B. 19.45 kcal
C. 22.4 kcal
D. 9.72 kcal

Answer: B

389. An athlete is given glucose of energy equivalent to 880 kJ . He utilise 50% of this gain energy in the event.the order to avoid storage would need to perspire is (enthalpy of evaporation of water is $44 \mathrm{~kJ} \mathrm{~mole}{ }^{-1}$
A. 18 g
B. 1.8 g
C. 1800 g
D. 180 g

Answer: D

- View Text Solution

390. Combustion of glucose takes place as
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 6 \mathrm{CO}_{2(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
$\Delta H=-72 \mathrm{kcal} /$ mole

The energy needed for the production of 1.8 g of glucose by photosynthesis will be 0.82 k cal
A. 0.82 k cal
B. 0.72 k cal
C. 8.2 k cal
D. 7.2 kcal

Answer: B

D View Text Solution

391. The ethalpy of combustion of sucrose $\left(C_{12} H_{22} O_{11}\right)$ is 1350 kcal . Amount of heat liberated when 342 gm of sucrose is burnt is
A. 13.5 k cal
B. $13.5 \times 10^{2} k c a l$
C. $1.35 \times 10^{4} \mathrm{kcal}$
D. 1.35 kcal

Answer: B

- View Text Solution

392. $H_{2}(g)+C l_{2}(g)=2 H I(g), \Delta H_{298 K}=-92.01 k J$,

For this reaction, ΔU is equal to
A. 12.4
B. -12.40
C. 6.2
D. -6.20

Answer: C

393. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}=2 \mathrm{HCl}(\mathrm{g}), \Delta H(298 \mathrm{~K})=-92.01 \mathrm{~kJ}$.

For this reaction ΔU is equal to
A. $-92.06+2 \times 10^{-3} \times 298 \times 2 J$
B. $-92.06+2 \times 298 k J$
C. $-92.06-2 \times 298 \times 4 k J$
D. -92.06 kJ

Answer: D

- View Text Solution

394. For the reaction
$\mathrm{C}_{6} \mathrm{H}_{12}(\mathrm{l})+9 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+6 \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-936.9 \mathrm{kcal}$
Which of the following is true ?
A. $-936.9=\Delta U-\left(2 \times 10^{-3} \times 298 \times 3\right) \mathrm{kcal}$
B. $+936.9=\Delta U+\left(2 \times 10^{-3} \times 298 \times 3\right) \mathrm{kcal}$
C. $-936.9=\Delta U-\left(2 \times 10^{-3} \times 298 \times 2\right) \mathrm{kcal}$
D. $-936.9=\Delta U+\left(2 \times 10^{-3} \times 298 \times 2\right) \mathrm{kcal}$

Answer: A

- Watch Video Solution

395. Which compound will absorb the maximum amount of heat when dissolved in the same amout of heat water? (Internal heats of solution at $25^{\circ} \mathrm{C}$ in kcal/ mol of eaxh solute are given in brackets).
A. $\operatorname{HCl}(\Delta H=-17.74)$
B. $H N O_{3}(\Delta H=-7.85)$
C. $\mathrm{NH}_{4} \mathrm{NO}_{3}(\Delta H=+16.08)$
D. $\operatorname{NaCl}(\Delta H=+1.02)$

Answer: C

396. Given that standard heat enthalpy of $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{3} \mathrm{H}_{8}$ are -17.9, 12.5, $-24.8 \mathrm{Kcal} / \mathrm{mol}$. The ΔH for $\mathrm{CH}_{4}+\mathrm{C}_{2} H \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}$ is :
A. -55.2 kcal
B. -30.2 kcal
C. 55.2 kcal
D. -19.4 kcal

Answer: D

- Watch Video Solution

397. The bond dissociation energy of gaseous $\mathrm{H}_{2}, \mathrm{Cl}_{2}$ and HCl are 104,58 and $103 \mathrm{kcalmol}^{-1}$ respecitvely. Calculate the enthalpy of formation for HCl gas.
A. -44 kcal
B. -88 kcal
C. -22 kcal
D. -11 kcal

Answer: C

- Watch Video Solution

398. If enthalpy of formation of $\mathbb{C} l_{4}$ is $316 \mathrm{kcal} \mathrm{mol}^{-1}$ the dissociation energy of $C-C l$ is
A. $79 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$
B. $316 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$
C. $97 \mathrm{kcal} \mathrm{mol}^{-1}$
D. $158 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$

Answer: A

399. Energy required to dissociate $4 g$ of gaseous hydrogen into free gaseous atoms is 208 Kcal at $25^{\circ} \mathrm{C}$

The bond energy of $H-H$ bond will be
A. 104 kcal
B. 10.4 kca
C. 1040 kcal
D. 104 kcal

Answer: A

- Watch Video Solution

400. Heat evolved in the reaction.
$\frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}$ is 46 kJ . Bond energies of
$\mathrm{H}-\mathrm{H}$ and $\mathrm{N}=\mathrm{N}$ are 436 and $712 \mathrm{~kJ} /$ mol respectively. The avrage $\mathrm{N}-\mathrm{H}$ bond energy is
A. $352 \mathrm{~kJ} \mathrm{mo1}{ }^{-1}$
B. q
C. $336 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $154 \mathrm{~kJ} \mathrm{mo1}{ }^{-1}$

Answer: A

- View Text Solution

401. Heat evolved in the reaction
$\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$ is 182 kJ Bond energies $\mathrm{H}-\mathrm{H}=430 \mathrm{~kJ} / \mathrm{mole}$,
$C l-C l=242 k J / m o l e$. The $\mathrm{H}-\mathrm{Cl}$ bond energy is
A. $763 \mathrm{~kJ} / \mathrm{mol}$
B. $427 \mathrm{~kJ} / \mathrm{mol}$
C. $336 \mathrm{~kJ} / \mathrm{mol}$
D. $154 \mathrm{~kJ} / \mathrm{mol}$

Answer: B

- Watch Video Solution

402. The dissociation energy of $C H_{40}$ and $C_{2} H_{6}$ are respectively 360 and $620 \mathrm{kcal} / \mathrm{mol}$. The bond energy of $C-C$ bond is :
A. $260 \mathrm{kcal} / \mathrm{mol}$
B. $180 \mathrm{kcal} / \mathrm{mol}$
C. $130 \mathrm{kcal} / \mathrm{mol}$
D. $80 \mathrm{kcal} / \mathrm{mol}$

Answer: D

- Watch Video Solution

403. The bond energies of $\mathrm{C}-\mathrm{C}, \mathrm{C}=\mathrm{C}, \mathrm{H}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ linkages are 350,600 , 400 and 410 kJ per mol respectively. The enthalpy of hydrogenation of
ethylene is
A. $-170 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $-260 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $-400 \mathrm{~kJ} \mathrm{mo1}{ }^{-1}$
D. $-450 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: A

- View Text Solution

404. The bond dissociation energy of $\mathrm{C}-\mathrm{H}$ in CH_{4} from the equation
$C(g)+4 H(g) \rightarrow C H_{4}(g), \quad \Delta H=-397.8 k c a l$
is:
A. +397.8 kJ
B. $+198.9 k J$
C. +99.45 kJ
D. $-99.45 k J$

Answer: D

- Watch Video Solution

405. Given the following data :
$\Delta H_{f}\left(C_{2} H_{4}\right)=12.5 \mathrm{kcal}$
Enthalpy of atomisation of $\mathrm{C}=171 \mathrm{kcal}$

Enthalpy of atomisation of $\mathrm{H}=53.1 \mathrm{kcal}$

Bond energy of C-H bond $=99.3 \mathrm{kcal}$

What is C = C bond energy ?
A. 140.7 kcal
B. 36 kcal
C. 40 kcal
D. 76 kcal

Answer: A

- View Text Solution

406. The enthalpy of formation of water from hydrogen and oxygen is _ $286 \mathrm{~kJ} \mathrm{~mol}^{-1}$ The enthalpy of decomposition of water into hydrogen and oxygen is
A. $-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $-141 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $+286 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $+143 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: C

- View Text Solution

407. Given the bond energies $N-N, N-H$ and $H-H$ bond are 945,436 and $391 \mathrm{KJmol}^{-1}$ respectively, the enthalpy change of the

reaction

$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$ is
A. $-93 k J$
B. 102 kJ
C. 90 kJ
D. 105 kJ .

Answer: A

- Watch Video Solution

408. The table given below lists the bond dissociation energy $\left(E_{\text {diss }}\right)$ for single covalent bonds formed between C and atoms A, B, D, E.

Bond $E_{\text {diss }}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$
$C-A$ 240
$C-B$ 382
$C-D$
276
$C-E$
486
Which of the atoms has smallest size ?
A. D
B. E
C. A
D. B

Answer: B

- Watch Video Solution

409. The enthalpy of formation of HBr, H atom and Br atoms are $-36.2,215$ and $94 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. The bond energy of HBr bond would be
A. $272.8 k J$ mole ${ }^{-1}$
B. $345.2 \mathrm{kJmol}^{-1}$
C. $581.8 \mathrm{kJmol}^{-1}$
D. $618 . \mathrm{kJ} \mathrm{mol}$

Answer: B

410. $H_{2}(g)=2 H(g), \Delta H=104.2 \mathrm{kcal}$. The bond energy of H -Hbond is
A. 104.2 kcal
B. 208.4 kcal
C. 52.1 kcal
D. Zero

Answer: A

- View Text Solution

411. The enthalpy of vaporisation of a substance is $840 \mathrm{Jmo1} 1^{-1}$ and its boiling point is $-173^{\circ} \mathrm{C}$. Its entropy of vaporisation is
A. $8.4 \mathrm{Jmol}^{-l} K^{-1}$
B. $21 \mathrm{JK}^{-1} \mathrm{~mol}^{-l}$
C. $49 \mathrm{Jmol}^{-l} K^{-1}$
D. $12 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Answer: A

- View Text Solution

412. For the reduction of lead oxide by coke $(\mathrm{PbO}+C \rightarrow \mathrm{~Pb}+\mathrm{CO}), \Delta H$ and ΔS are found to be $108.8 \mathrm{kJmol}^{-1}$ and $190 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. The minimum temperature above which the reaction will be spontaneous will be
A. $100^{\circ} \mathrm{C}$
B. $200^{\circ} \mathrm{C}$
C. $300^{\circ} \mathrm{C}$
D. $400^{\circ} \mathrm{C}$

Answer: C

413. Calculate the temperature at which $\Delta G=-5.2 \mathrm{kJmol}^{-1}$,DeltaH $=145.6 \mathrm{k} \mathrm{Jmol}^{\wedge}-1$ and DeltaS $=216 \mathrm{JK}^{\wedge}-1 \mathrm{~mol}^{\wedge}{ }^{\wedge} 1^{`}$ for a chemical reaction
A. $698^{\circ} \mathrm{C}$
B. $425^{\circ} \mathrm{C}$
C. 650°
D. $550^{\circ} \mathrm{C}$

Answer: B

- Watch Video Solution

414.1 g ice absorbs 335 J of heat to melt at $0^{\circ} \mathrm{C}$. The entropy change will be

$$
\text { A. } 1.2 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}
$$

B. $335 \mathrm{JK}^{-1} \mathrm{~mol}^{-l}$
C. $22.1 \mathrm{JK}^{-1} \mathrm{~mol}^{-l}$
D. $8.0 \mathrm{JK}^{-1} \mathrm{mo}^{-l}$

Answer: C

- View Text Solution

415. Calculate the free energy change for the following reaction at 300 K . $2 \mathrm{CuO}_{(s)} \rightarrow \mathrm{Cu}_{2} \mathrm{O}_{(\mathrm{s})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})}$ Given $\Delta H=145.6 \mathrm{kJmol}^{-1}$ and $\Delta S=116 . \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
A. $110.8 \mathrm{kmol}^{-1}$
B. $221.5 \mathrm{kmol}^{-1}$
C. $55.4 \mathrm{kJmo} 1^{-1}$
D. $145.6 \mathrm{kJmo}^{-1}$
416. One mole of ice is converted into water at 273 K . The entropies of $\mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are 38.20 and $60.01 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ respectively. Calculate the enthalpy change for this conversion a?
A. $59.59 \mathrm{~J} / \mathrm{mol}$
B. $595.95 \mathrm{~J} / \mathrm{mol}$
C. $5959.5 \mathrm{~J} / \mathrm{rnol}$
D. $595959.0 \mathrm{~J} / \mathrm{mol}$

Answer: D

- Watch Video Solution

417. Given the following entropy values (in $J K^{-1} \mathrm{~mol}^{-1}$) at $298 \mathrm{~K} \mathrm{~atm} \mathrm{:}$ $H_{2}(g): 130.6 . l_{2}(g): 223.0$ and $\mathrm{HCl}(\mathrm{g}): 186.7$. The entropy change (in
$J K^{-1} \mathrm{~mol}^{-1}$) for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$ is
A. +540.3
B. +727.0
C. -166.9
D. 19.8

Answer: A

- Watch Video Solution

418. If the enthalpy of vaporisation of water is $186.5 \mathrm{Jmol}^{-1}$, then entropy of its vaporisation will be
A. $0.5 \mathrm{JK}^{-1} \mathrm{mo1} 1^{-1}$
B. $1.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
C. $1.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
D. $2.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Answer: B

- Watch Video Solution

419. The standard state Gibbs's energy change for the isomerisation reaction \quad cis -2 - pentence \Leftrightarrow trans - 2 - pentence is $-3.67 \mathrm{kJmol}^{-1}$ at 400 K . If more trans $-2-$ pentence is added to the reaction vessel, then:
A. additional trans-2-pentene is formed
B. more cis-2-pentene is formed
C. equilibrium is shifted in the forward direction
D. equilibrium remains unaffected.

Answer: B

420. For the given reaction:
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}^{+}(a q)+2 \mathrm{Cl}^{-}(a q)$
$\Delta G^{\circ}=-262.4 k J$
The value of Gibbs free energy of formation (ΔG_{r}°) for the ion $\mathrm{Cl}^{-}(a q)$
is:
A. $-131.2 \mathrm{kJmol}^{-1}$
B. $+131.2 \mathrm{kJmol}^{-1}$
C. $-262.4 \mathrm{kJmol}^{-1}$
D. $+262.4 \mathrm{kJmol}^{-1}$

Answer: A

- Watch Video Solution

1. For an endothermic reaction where ΔH represent the enthalpy of reaction in $\mathrm{kj} / \mathrm{mol}$, the minimum value for the energy of activation will be:
A. less than ΔH
B. equal to ΔH
C. more than ΔH
D. equal to zero

Answer: C

- Watch Video Solution

2. Standard entropy of X_{2}, Y_{2} and $X Y_{3}$ are 60,40 and $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively. For the reaction, $\frac{1}{2} X_{2}+\frac{3}{2} Y_{2} \rightarrow X Y_{3}, \Delta H=-30 K J$, to be at equilibrium, the temperature will be:
A. 750 K
B. 1000 K
C. 1250 K
D. 500 K

Answer: A

- Watch Video Solution

3. Match List I (Equations) with List II (Type of processes) and select the correct option.

List I Equations	List II Type of process
A) $K_{P}>\mathrm{Q}$	i) Non - spontaneous
B) $\Delta \mathrm{G}^{\circ}<\mathrm{RT} \ln \mathrm{Q}$	ii) Equilibrium
C) $\mathrm{K}_{\mathrm{P}}=\mathrm{Q}$	iii) Spontaneous and endothermic
D) $T \Delta S>\Delta H$	iv) Spontaneous

A. A- (i), B - (ii), C - (iii), D - (iv)
B. A - (iii), B - (iv), C - (ii), D - (i)
C. A - (iv), B-(i), C - (ii), D - (iii)
D. A - (ii), B - (i), C - (iv), D - (iii)

Answer: C

- View Text Solution

4. Three moles of an ideal gas expanded spontaneously into vacuum. The work done will be
A. Infinite
B. 3 Joules
C. 9 Joules
D. Zero

Answer: D

5. For vaporization of water at 1 atmospheric pressure the values of ΔH and ΔS are $40.63 \mathrm{KJmol}^{-1}$ and $108 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively. The temperature when Gibbs energy change (ΔG) for this transformation will be zero is
A. 273.4 K
B. 393.4 K
C. 373.4 K
D. 293.4 K

Answer: C

- Watch Video Solution

6. The following two reactionas are known
$\mathrm{FeO}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}):$
$\Delta H=-26.8 K J$
$\mathrm{FeO}(s)+\mathrm{CO}(g) \rightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}): \Delta H=-16.5 \mathrm{KJ}$
The value of ΔH for the following reaction

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \rightarrow 2 \mathrm{FeO}_{2}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \text { is }
$$

A. +10.3 kJ
B. $-43.3 k J$
C. $-10.3 k J$
D. +6.2 kJ

Answer: D

- Watch Video Solution

7. If the enthaply change for the transition of liquid water to steam is 30 $\mathrm{KJ} \mathrm{mol}{ }^{-1}$ at $27^{\circ} \mathrm{C}$. The entropy change for the process would be
A. $10 \mathrm{Jmo} 1^{-1} K^{-1}$
B. 1.0Jmo $1^{-1} K^{-1}$
C. $0.1 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
D. $100 \mathrm{Jmo}^{-1} \mathrm{~K}^{-1}$

Answer: D

- Watch Video Solution

8. Enthalpy change for the reaction, $4 H_{(g)} \rightarrow 2 H_{2(g)}$ is -869.6 kJ The dissociation energy of $\mathrm{H}-\mathrm{H}$ bond is :
A. $-434.8 k J$
B. $-869.6 k J$
C. $+434.5 k J$
D. $+217.4 k J$

Answer: C

9. Consider the following processes :-

$$
\Delta H(k J / m o l)
$$

$\frac{1}{2} A \rightarrow B$
$+150$
$3 B \rightarrow 2 C+D$
-125
$E+A \rightarrow 2 D$
$+350$
For $B+D \rightarrow E+2 C, \Delta H$ will be
A. $525 \mathrm{~kJ} / \mathrm{mol}$
B. $-275 k \frac{J}{m} o l$
C. $-325 k \frac{\mathrm{~J}}{\mathrm{~m}} \mathrm{ol}$
D. $325 \mathrm{~kJ} / \mathrm{mol}$

Answer: B

- Watch Video Solution

10. In view of the signs of $\Delta_{r} G^{0}$ for the following reactions
$\mathrm{PbO}_{2}+\mathrm{Pb} \rightarrow 2 \mathrm{PbO}, \Delta_{r} G^{0}<0$
$S n O_{2}+S n \rightarrow 2 \mathrm{SnO}, \Delta_{r} G^{0}>0$
Which oxidation state are more characteristic for lead and tin?
A. For lead +4 , for tin +2
B. For lead +2 , for tin +2
C. For lead +4 , for tin +4
D. For lead +2 , for tin +4

Answer: D

- Watch Video Solution

11. The value of enthalpy change (ΔH) for the reaction
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)$ at $27^{\circ} \mathrm{C}$ is $-1366.5 \mathrm{kJmol}^{-1}$.

The value of internal energy change for the above reactio at this temperature will be
A. $-1371.5 k J$
B. $-1369.0 k J$
C. $-1364.0 k J$
D. -1361.5 kJ

Answer: C

- Watch Video Solution

12. Consider the reaction,
$4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}), \Delta_{r} H=-111 k J . \quad$ If $\quad \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~s})$ is formed instead of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ in the above reaction, the $\Delta_{r} H$ value will be (Given, ΔH of sublimation for $\mathrm{N}_{2} \mathrm{O}_{5}$ is $54 \mathrm{kJmol}^{-1}$)
A. $-165 k J$
B. $+54 k J$
C. $+219 k J$
D. $-219 k J$

Answer: A

13. Match the transformation in colums I with appropriate options in column II.

Column I
$(\mathrm{A}) \mathrm{CO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$(\mathrm{B}) \mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
(C) $2 \mathrm{H} . \rightarrow \mathrm{H}_{2}(\mathrm{~g})$
(D) $P_{(\text {white, solid })} \rightarrow P_{(\text {red,solid })}$

Column II
(p) phase transition
(q)allotropic change
(r) ΔH is positive
(s) ΔS is positive
($t) \Delta S$ is negative
A. A-r
B. B-s
C. C-p
D. D-q

Answer: D

- Watch Video Solution

14. The entropy change involved in the isothermal reversible expansion of 2 moles of an ideal gas from a volume of $10 \mathrm{dm}^{3}$ to a volume of $100 \mathrm{dm}^{3}$
at $27^{\circ} \mathrm{C}$ is
A. $35.8 \mathrm{~J} \mathrm{~mol}^{-1} K^{-1}$
B. $32.3 \mathrm{~J} \mathrm{~mol}^{-1} K^{-1}$
C. $42.3 \mathrm{~J} \mathrm{~mol}^{-1} K^{-1}$
D. $38.3 \mathrm{~J} \mathrm{~mol}^{-1} K^{-1}$

Answer: D

- Watch Video Solution

15. Which of the following is correct option for the free expansion of an ideal gas under adiabatic condition?
A. $q=0, \Delta T \neq 0, W=0$
B. $q \neq 0, \Delta T=0, W=0$
C. $q=0, \Delta T=0, W=0$
D. $q=0, \Delta T<0, W=0$

Answer: C

- Watch Video Solution

16. The Gibbs energy for the decomposition of $A l_{2} O_{3}$ at $500^{\circ} \mathrm{C}$ is as follow :
$\frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \frac{4}{3} \mathrm{Al}+\mathrm{O}_{2}, \Delta_{r} G=+960 \mathrm{kJmol}^{-1}$
The potential difference needed for the electrolytic reduction of aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ at $500^{\circ} \mathrm{C}$ is
A. -4.5 V
B. 3.0
C. -2.5 V
D. 5.0 V

Answer: C

17. The entropy change involved in the isothermal reversible expansion of 2 moles of an ideal gas from a volume of $10 \mathrm{dm}^{3}$ to a volume of $100 \mathrm{dm}^{3}$ at $27^{\circ} \mathrm{C}$ is
A. -35.8 kJ
B. -11.49 kJ
C. $-32.3 k J$
D. -38.29 kJ

Answer: B

- Watch Video Solution

18. The incorrect expression among the following is
A. $\frac{\Delta G_{\text {system }}}{\Delta S_{\text {total }}}=-T$
B. In isothermal process

$$
W_{\text {rev }}=-n R T \ln \frac{V_{r}}{V_{r}}=-T
$$

C. $\ln K=\frac{T \Delta S^{o}-\Delta H}{R T}$
D. $K=e^{-\Delta G^{o}} / R T$

Answer: C

- Watch Video Solution

19. In which of the following reactions,standard reaction entropy change (ΔS°) is positive and standard Gibb,s energy change $\left(\Delta G^{\circ}\right)$ decreases sharply with increasing temperature?
A. $C_{(\text {graphite })}+(1 / 2) O_{2(g)} \rightarrow C O_{(g)}$
B. $\mathrm{CO}_{g}+(1 / 2) \mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{2(g)}$
C. $\left.M g_{s}+(1 / 2)\right) O_{2(g)} \rightarrow M g O_{s}$
D. $(1 / 2) C($ graphite $)+(1 / 2) O_{2}(g) \rightarrow(1 / 2) \mathrm{CO}_{2(g)}$

Answer: A

20. The enthalpy of fusion of water is $1.435 \mathrm{kcal} / \mathrm{mole}$. The molar entropy change for melting of ice at $0^{\circ} C$ is
A. $10.52 \mathrm{cal} /(\mathrm{mol} \mathrm{K})$
B. $21.04 \mathrm{cal} /(\mathrm{mol} \mathrm{K})$
C. $5.260 \mathrm{cal} /(\mathrm{mol} \mathrm{K})$
D. $0.526 \mathrm{cal} /(\mathrm{mol} \mathrm{K})$

Answer: D

- Watch Video Solution

21. Standard enthalpy of vaporisation $\Delta V_{v a p} . H^{\Theta}$ for water at $100^{\circ} C$ is $40.66 \mathrm{kJmol}^{-1}$.The internal energy of Vaporization of water at $100^{\circ} C\left(\mathrm{in} \mathrm{kJ} \mathrm{mol}^{-1}\right)$ is
A. 37.56
B. -43.736
C. +43.76
D. +40.56

Answer: A

- Watch Video Solution

22. A piston filled with 0.04 mol of an ideal gas expands reversibly from 50.0 mL to 375 mL at a constant temperature of $37.0^{\circ} \mathrm{C}$. As it does so, it absorbs $208 J$ of heat. The value of q and w for the process will be: $(R=8.314 J / m o l K)(\ln 7.5=2.01)$
A. $q=+208 \mathrm{~J}, \mathrm{~W}=+208 \mathrm{~J}$
B. $q=+208 \mathrm{~J}, \mathrm{~W}=-208 \mathrm{~J}$
C. $q=-208 \mathrm{~J}, \mathrm{~W}=-208 \mathrm{~J}$
D. $q=-208 \mathrm{~J}, \mathrm{~W}=+208 \mathrm{~J}$

Answer: B

- Watch Video Solution

23. At $27^{\circ} \mathrm{C}$, one mole of an ideal gas is compressed isothermally and reversibly from a pressure of 2 atm to 10 atm. Calculate ΔU and q.
A. $0,-965.84 \mathrm{cal}$
B. $-965.84 \mathrm{cal},-865.58 \mathrm{cal}$
C. $+865.58 \mathrm{cal}, \quad-865.58 \mathrm{cal}$
D. $+965.84 \mathrm{cal},+865.58 \mathrm{cal}$

Answer: A

- Watch Video Solution

24. A piston filled with 0.04 mol of an ideal gas compress reversibly from 50.0 mL to 375 mL at a constant temperature of $37.0^{\circ} \mathrm{C}$. As it does so, it
evolve 200 J of heat. The values of q and w for the process will be
A. $q=-200 \mathrm{~J}, \mathrm{~W}=+200 \mathrm{~J}$
B. $q=-200 \mathrm{~J}, \mathrm{~W}=-200 \mathrm{~J}$
C. $q=+200 \mathrm{~J}, \mathrm{~W}=-200 \mathrm{~J}$
D. $q=+200 \mathrm{~J}, \mathrm{~W}=+200 \mathrm{~J}$

Answer: A

- View Text Solution

25. Pressure-volume (PV) work done by an ideal gaseous system at constant volume is (where U is internal energy of the system)
A. $\Delta P / P$
B. zero
C. $-V \Delta P$
D. $-\Delta U$

Answer: B

D View Text Solution

26. The change of entropy is defined as
A. $d s=s q / T$
B. $d s=d H / T$
C. $d s=q_{\text {eqv }} / T$
D. $\mathrm{ds}=(\mathrm{dH}-\mathrm{dG}) / \mathrm{T}$

Answer: C

27. The condition of spontanity of process is
A. Lowering of entropy of constant temperature and pressure
B. Lowering of Gibbs free energy of system at constant temperature and pressure
C. Increase of Entropy of system at constant temperature and pressure
D. Increase of Gibbs free Energy of the universe at constant tempearture and pressure

Answer: B

- View Text Solution

28. Mixing of two different ideal gass under isothermal reversible condition will lead to
A. Increase of Gibbs free energy of system
B. No change of enetropy of the system
C. Increase of entropy of the system
D. Increase of entralpy of the system

Answer: C

- View Text Solution

29. For the complete combustion of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ the amount of heat produced as measured in bomb calorimeter is $1364.47 \mathrm{KJmol}^{-1}$ at $25^{\circ} \mathrm{C}$. Assuming ideality, the enthalpy of combustion, ΔH_{C}, for the reaction will be

$$
\left[R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]
$$

A. $-1366.95 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $-1361.95 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $-1460.50 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $-1350.50 \mathrm{~kJ} \mathrm{~mol}^{-1}$

- Watch Video Solution

30. When 5 litres of a gas mixture of methane and propane is perfectly com busted at $0^{\circ} \mathrm{C}$ and 1 atmosphere, 16 liters of oxygen at the same temprature and pressure is consumed. The amount of heat released from this combustion m kJ.
$\left.\left[\Delta H_{c o m b}\left(C H_{4}\right)=-890 \mathrm{kJmol}^{-1}, \Delta H_{c o m b}\left(C_{3} H_{8}\right)=-2220 \mathrm{kJmol}^{-1}\right)\right]$
A. 38
B. 317
C. 477
D. 32

Answer: B

D View Text Solution

31. Three thermochemical $e q^{n s}$ are given below
1) $C_{\text {graphite }}+O_{2(g)} \rightarrow C O_{2(g)}, \Delta H^{o}=x \mathrm{~kJ} \mathrm{~mol}^{-1}$
2) $C_{\text {graphite }}+1 / 2 O_{2(g)} \rightarrow C O_{2(g)}, \Delta H^{o}=y \mathrm{~kJ} \mathrm{~mol}^{-1}$
3) $\mathrm{CO}_{(g)}+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2(g)}, \Delta H^{o}=z \mathrm{~kJ} \mathrm{~mol}^{-1}$

Base on the above $e q^{n s}$ find out which of the relationship given below is correct
A. $z=x+y$
B. $x=y+z$
C. $y=2 z-x$
D. $x=y-z$

Answer: B

- View Text Solution

32. The standard Gibbs free energy change $\left(\Delta G^{0}\right) 25^{\circ} \mathrm{C}$ for the dissocitation of $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ to $\mathrm{NO}_{2(\mathrm{~g})}$ (given equilibrium constant $=0.15, \mathrm{R}=$
8.314 $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
A. 1.1 kJ
B. 4.7 kJ
C. 8.1 kJ
D. 38.2 kJ

Answer: B

- View Text Solution

33. Using the Gibbs energy change, $\Delta G^{\circ}=+63.3 k J$, for the following reaction,
$\mathrm{Ag}_{2} \mathrm{CO}_{3} \Leftrightarrow 2 \mathrm{Ag}^{+}(a q)+\mathrm{CO}_{3}^{2-}$
the $K_{s p}$ of $A g_{2} C O_{3}(s)$ in water at $25^{\circ} C$ is
$\left(R=8.314 J K^{-1} \mathrm{~mol}^{-1}\right)$
A. 2.9×10^{-3}
B. 2.9×10^{-3}
C. $3.2 x 10^{-26}$
D. 8.0×10^{-12}

Answer: D

- Watch Video Solution

34. For the reaction,
$\mathrm{X}_{2} \mathrm{O}_{4}(\mathrm{l}) \rightarrow 2 \mathrm{XO}_{2}(\mathrm{~g}), \Delta E=2.1 \mathrm{Kcal}$,
$\Delta S=20 \mathrm{cal} / \mathrm{K}$ at 300 K . Hence ΔG is
A. 9.3 kcal
B. -9.3 kcal
C. 2.7 kcal
D. 2.7 kcal

Answer: D
35. For the process $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at $t=100^{\circ} \mathrm{C}$ and 1 atmosphere pressure, the correct choice is:
A. $\Delta S_{\text {system }}>0$ and $\Delta S_{\text {surrounding }}>0$
B. $\Delta S_{\text {system }}>0$ and $\Delta S_{\text {surrounding }}<0$
C. $\Delta S_{\text {system }}<0$ and $\Delta S_{\text {surrounding }}>0$
D. $\Delta S_{\text {system }}<0$ and $\Delta S_{\text {surrounding }}<0$

Answer: B

- Watch Video Solution

[^0]: A. always negative

