

CHEMISTRY

BOOKS - NIKITA CHEMISTRY (HINGLISH)

CO-ORDINATION COMPOUNDS

Mcqs

- 1. Which of the following ligands is a bidentate?
 - A. EDTA
 - B. Ethylenediamine
 - C. Acetate ion

D. Pyridine

Answer: B

Watch Video Solution

- 2. Which of the following ligands is a bidentate?
 - A. Pyridine
 - B. Ethylenediamine
 - C. Sulphate ion
 - D. Both (b)and (c.)

Answer: D

3. The oxidation state of platinum in

$$NA[PtBrCl(NO_2)(NH_3)]$$
 is

$$A. + 2$$

$$B. + 4$$

$$C. + 6$$

D. 0

Answer: A

4. The oxidation state of oxygen in $O_2[PtF_6]$ is

A. Zero

$$B. + 1/2$$

$$C. + 1$$

D.
$$-1/2$$

Answer: B

Watch Video Solution

5. Which response state gives the correct coordination number (C.N.)and oxidation number (O.N.) of the

transition metal atom in $igl[Co(NH_3)_2(H_2O)_2Cl_2igr]^+$?

A. C.N=3, O.N. = +1

B. C.N.=4, O.N. = +2

C. C.N.=6, O.N. = +1

D. C.N.=6, O.N. = +3

Answer: D

View Text Solution

6. In $K_4Fe(CN)_6$

A. (CN) are linked with primary valency

- B. (CN) are linked with secondary valency
- C. K are linked with secondary valency
- D. K are linked with non-ionic valency

Answer: B

View Text Solution

7. In $K_4igl[Fe(CN)_6igr]$, the number of 3d-electrons in the iron atom is

- **A.** 3
- B. 4
- C. 5

Answer: D

View Text Solution

8. Which one of the following is the correct arrangement of the ligands in terms of the Dq values of their complexes with any particular "hard" metal ion?

A.
$$Cl^- < F^- < NCS^- < NH_3 < CN^-$$

B.
$$NH_3 < F^{\,-} < Cl^{\,-} < NCS^{\,-} < CN^{\,-}$$

C.
$$Cl^- < F^- < NCS^- < CN^- < NH_3$$

D.
$$NH_3 < CN^- < NCS^- < Cl^- < F^-$$

Answer: A

- **9.** The IUPAC name of the complex compounds, $\left[Cr(NH_3)_5(CO_3)\right]Cl$ is
 - A. carbonatopentaamminechromium (III)chloride
 - B. pentaamminecarbonatochromium (III)chloride
 - C. pentaamminecarbonatochomate (III)chloride
 - D. pentaamminetricabonylchromium (III) chloride

Answer: B

View Text Solution

10. The correct IUPAC name of the complex compound,

 $K_3ig[Cr(CN)_6ig]$ is

- A. potassium hexacyanochromate (III)
- B. potassum hexacyanchromium (III)
- C. potassium chromimum (III) hexacyanide
- D. potassium chromine (III)hexacyanide.

Answer: A

11. The correct formula of the complex, tetraaminequathiocyannato-N-cobalt (III)chloride is

A.
$$\left[Co(NCS)(NH_3)_4(H_2O)\right]$$

B.
$$\big[Co(H_2O)(NH_3)_4(NCS)\big]Cl$$

C.
$$\left[Co(NH_3)_4(H_2O)(NCS)
ight]Cl_2$$

D.
$$\left[Co(NCS)(H_2O)(NH_3)_4Cl_3\right]$$

Answer: C

12. NH_3 group in a coordination compound is named
as
A. Ammonium
B. Ammine
C. Arain a
C. Amine
D. Ammonia
Answer: B
Watch Video Solution
Tracer Frace Seration

13. The formula of tetrachlorodiamine platinum (IV) is

A.
$$igl[Pt(NH_3)_2 Cl_2 Cl_2 igr]$$

 $\mathsf{B.}\, K_4 \big[Pt (NH_3)_2 Cl_4 \big]$

C. $\left[Pt(NH_3)_2Cl_4\right]$

D. $\left[Pt(NH_3)_2Cl_4\right]$

Answer: D

14. Match list I with list II and select the correct answer using the codes given below the lines.

A.
$$\cfrac{\operatorname{Codes}}{a} \ \ \stackrel{(a)}{4} \ \ 1 \ \ 5 \ \ 2$$

B.
$$\frac{\mathrm{Codes}}{b} \quad (a) \quad (b) \quad (c) \quad (d)$$
b. $\frac{1}{b} \quad 1 \quad 3 \quad 2 \quad 5$
c. $\frac{\mathrm{Codes}}{c} \quad (a) \quad (b) \quad (c) \quad (d)$
c. $\frac{1}{c} \quad 3 \quad 1 \quad 5 \quad 2$
d. $\frac{\mathrm{Codes}}{d} \quad 1 \quad 3 \quad 5 \quad 2$

Answer: C

- - A. cis-trans isomerism only
 - C. cis-trans isomerism and optical isomerism

B. cis-trans isomerism and linkage isomerism

15. The complex ion $\lceil Co(en)_2 Cl_2 \rceil^+$ exhibits

D. optical isomerism and linkage isomerism.

Answer: C

View Text Solution

16. Which one of the following can show optical isomerism?

A.
$$FeSO_4.7H_2O$$

$$\mathsf{B.}\, K_3 \big[Cr(C_2O_4)_3 \big]$$

C.
$$K_3ig[Fe(CN)_6ig]$$

D.
$$Cr\big[(NH_3)_6\big]Cl_3$$
.

Answer: B

17. The complex salt having the molecular composition,

$$igl[Co(NO_2)(SCN)(en)_2 igr] Br$$
 exhibits

- A. cis-trans isomerism only
- B. linkage isomerism only
- C. ionization isomerism only
- D. all the above.

Answer: D

18. The possible number of isomers for the complex $[MBr_2Cl_2]SO_4$ is

- A. 2
- B. 4
- C. 5
- D. 7

Answer: C

View Text Solution

19. The complexes of nickel (II)can be

- A. square planar, tetrahedral and octahedral
- B. square planar and tetrahedral
- C. tetrahedral and octahedral
- D. square planar only.

Answer: A

View Text Solution

20. The ion $\left[Co(NH_3)_6\right]^+$ is octahedral and high spin.

This complex is

- A. paramagnetic, with 1 unpaired electrons
- B. paramagnetic, with 3 unpaired electrons

C. paramagnetic, with 4 unpaired electrons

D. paramagnetic, with 5 unpaired electrons

Answer: B

View Text Solution

21. The hybridization scheme involved on

 $igl[Cu(NH_3)_4 igr]^{2\,+}$ is

A. sp^3

B. dsp^2

 $\mathsf{C.}\,d^3s$

D. none of the above.

Answer: B

View Text Solution

22. In $K_4ig[Fe(CN)_6ig], Fe$ is in the form of

- A. An atom
- B. An ion
- C. Cationic complex
- D. Aniomic complex

Answer: B

Watch Video Solution

23. The number of neutral molecules or negative groups attached to be central metal atom in a complex ion is called

- A. Atomic number
- B. Effective atomic number
- C. Coordination number
- D. Primary valency

Answer: C

24. Match list I with list II and select the correct answer using the codes given below the lists.

A. $\cfrac{ ext{Codes}}{a} \ (a) \ (b) \ (c) \ (d)$ A. $\cfrac{ ext{a}}{a} \ 1 \ 2 \ 3 \ 4$ B. $\cfrac{ ext{Codes}}{b} \ (a) \ (b) \ (c) \ (d)$ C. $\cfrac{ ext{Codes}}{c} \ (a) \ (b) \ (c) \ (d)$ C. $\cfrac{ ext{Codes}}{c} \ (a) \ (b) \ (c) \ (d)$ D. $\cfrac{ ext{Codes}}{d} \ 1 \ 3 \ 5 \ 4$

Answer: B

25. The ligand $N(CH_2CH_2NH_2)_3$ is

- A. Tridenatate
- B. Pentadentate
- C. Tetradentate
- D. Bidenatate

Answer: C

View Text Solution

26. Which of the following are diamagnetic?

A. $K_4igl[Fe(CN)_6igr]$

B. $K_3ig[Cr(CN)_6ig]$

 $\mathsf{C.}\,K_{3}ig[\mathit{Co(CN)}_{6}ig]$

D. $K_2ig[Ni(CN)_4ig]$

Answer: B

View Text Solution

27. Among the following ions, which one has the highest paramagnetism?

A.
$$\left[Cr(H_2O)_6
ight]^{3+}$$

B. $\left[Zn(H_2O)_6
ight]^{2+}$

C. $\left[Cu(H_2O)_6
ight]^{2+}$

D. $\left\lceil Fe(H_2O)_6 \right\rceil^{3+}$

Answer: D

Watch Video Solution

28. Amongst $Ni(CO)_4$, $\lceil Ni(CN)_4 \rceil^{2-}$ and $NiCl_4^{2-}$:

A. $Ni(CO)_4$ and $NiCl_4^{2-}$ are diamagnetic and

 $\left\lceil Ni(CN)_{_A}
ight
ceil^{2-}$ is paramagnetic.

B. $NiCl_{\scriptscriptstyle A}^{2-}$ and $\left\lceil Ni(CN)_{\scriptscriptstyle A}
ight
ceil^{2-}$ are diamagnetic and

 $Ni(CO)_4$ is paramagnetic.

C. $Ni(CO)_4$ and $igl[Ni(CN)_4igr]^2$ are diamagnetic

and $NiCl_4^{2-}$ is paramagnetic.

D. $Ni(CO)_4$ is diamagnetic and $NiCl_4^{2-}$ and $\left[Ni(CN)_{_A}\right]^{2-}$ are paramagnetic.

Answer: C

Watch Video Solution

29. Which of the following complexes in an inner orbital complex?

A.
$$[CoF_6]^{3-}$$

B.
$$\left[FeF_{6}
ight]^{3}$$
 $^{-}$

C.
$$\left[Cr(NH_3)_6\right]^{3+}$$

D.
$$\left[Co(H_2O)_6
ight]^{3+}$$

Answer: C

30. Coordination compounds are mainly formed by

- A. s-block elements
- B. p-block elements
- C. d-block elements
- D. f-block elements.

Answer: C

31. Which of following is not a double 'salt'?

A.
$$K_2SO_4$$
. $Cr_2(SO_4)_3.24H_2O$

B.
$$(NH_4)_2SO_4$$
. $FeSO_4.6H_2O$

C.
$$KCl.\ MgCl_2.6H_2O$$

D.
$$\left[Fe(CN)_6\right]^{3+}$$

Answer: D

View Text Solution

32. The solution of $K_4 \lceil Fe(CN)_6 \rceil$ in water will

A. give a test of K^+

- B. give a test of Fe^{2+}
- C. give a test of CN^-
- D. give a test of $\left[Fe(CN)_6\right]^{4-}$

Answer: A

- **33.** Which is the correct statement about Ligands are ?
 - A. nrgative ions only
 - B. neutral molecules only capable of donating the electron pairs(s)

C. negative or very rarely positive ions or neutral

molecules

D. never positive ions .

Answer: C

View Text Solution

34. EDTA is a/an

A. monodentate

B. bidentate

C. Hexadentate

D. tetradentate.

Answer: C

Watch Video Solution

35. The donor atoms in EDTA are

- A. two N and two O
- B. two N and four O
- C. four N and two O
- D. three N and three O.

Answer: B

36. The coordination number of Pt in $K_2[PtCl_6]$ is

A. 2

B. 4

C. 6

D. 0

Answer: C

View Text Solution

37. The oxidation state of Co in $\left[Co(CO)_4\right]$ is

A. + 1

B. 0

C. + 2

D. + 4

Answer: B

View Text Solution

38. The oxidation state of Co in $\lceil Co(NH_3)_5Cl \rceil Cl_2$.

A. + 2

B.-2

C. + 5

D. + 3

Answer: D

View Text Solution

39.
$$C_2 O_4^{2-}$$
 is a ligand.

- A. monodentate
- B. didentate
- C. tridentate
- D. polydenate.

Answer: B

40. The brown ring complex compound is formulated as $\big[Fe(H_2O)_5NO\big]SO_4$. The oxidation state of Fe is

- A. + 1
- B. + 2
- C. +3
- D. 0

Answer: A

Watch Video Solution

41. The oxidation state of platinum in $K[PtF_6]$ is

- A. + 8
- B.+5
- $\mathsf{C.}+6$
- D. + 7

Answer: B

- **42.** Which of the following does not form a chelate?
 - A. EDTA
 - B. Oxalate
 - $\mathsf{C.}\,NH_3$

D. Ethylenediamine

Answer: C

View Text Solution

43. If solutions equal concentration are prepared, the one with the highest electrical conductivity will be

- A. $\left[Pt(NH_3)_2Cl_2\right]$
- B. $[Co(H_2O)_6]SO_4$
- $\mathsf{C.}\,K_3ig[\mathit{Co(Cl)}_6ig]$
- D. $\left[Co(NH_3)_4\right]^{2+}$

Answer: C

View Text Solution

44. Which one of the following is a bidenate ligand?

A.
$$CN^-$$

B. NH_3

C. CO

D. $H_2NHCH_2CH_2NH_2$

Answer: D

45. In which compound synergic effect is present?

A.
$$\left\lceil Ni(CO)_4 \right\rceil$$

B.
$$\left[NiCl_4
ight]^2$$
 -

C.
$$\left[CuCl_4
ight]^{2-}$$

D.
$$\left[Mn(H_2O)_6\right]^{2+}$$

Answer: A

Watch Video Solution

46. In the complex ion, $\left[Fe(CN)_6\right]^{4-}$, the oxidation number of Fe is

$$\mathsf{A.}+1$$

$$B.+2$$

$$\mathsf{C.} + 3$$

$$\mathsf{D.}-4$$

Answer: B

View Text Solution

47. In the complex ion, $\left[Co(en)_2Br_2
ight]^+$, the oxidation number of Co is

$$\mathsf{A.} + 1$$

$$B.+2$$

$$C. + 3$$

$$D.-2$$

Answer: C

View Text Solution

48. In the complex ion, $\left[Cr(C_2O_4)_2(H_2O)_2\right]^-$ the oxidation number of Cr is

$$\mathsf{A.}+1$$

$$B.+2$$

$$\mathsf{C.} + 3$$

$$D.-2$$

Answer: C

49. The number of primary and secondary valencies (or linkages) in the complex ion $\left[Cr(C_2O_4)_2(H_2O)_2\right]^-$ are

- A. Primary linkages=2, secondary linkages=2
- B. Primary linkages=1, secondary linkages=4
- C. Primary linkages=3, secondary linkages=6
- D. Primary linkages=2, secondary linkages=6

Answer: C

50. In which of the following complexes oxidation state of metal is zero

A.
$$\left\lceil Pt(NH_3)_2Cl_2 \right
ceil$$

B.
$$\left[Cr(CO)_{6}\right]$$

C.
$$[Cr(H_2O)_6]Cl_3$$

D.
$$\left[Cu(NH_3)_4\right]SO_4$$

Answer: B

Watch Video Solution

51. Pick out the complex compound in which the central metal atom obeys EAN rule strictly

A.
$$K_4 \lceil Fe(CN)_6 \rceil$$

B.
$$K_3 \lceil Fe(CN)_6 \rceil$$

C.
$$\left[Cr(H_2O)_6\right]Cl_3$$

D.
$$\left[Cu(NH_3)_4\right]SO_4$$

Answer: A

Watch Video Solution

52. Which of the following is wrong statement

- A. $Ni(CO)_{{\scriptscriptstyle A}}$ has oxidation number +1 for Ni
- B. $Ni(CO)_4$ has zero oxidation number for Ni
- C. Ni is cationic metal
- D. CO is neutral ligand

Answer: A

View Text Solution

- **53.** Ti^{3+} is purple, while Ti^{4+} is colourless, because
 - A. there is no crystal field effect in Ti^{4+}
 - B. The energy difference between eg and t_{2g}

orbitals of Ti^{4+} is quite high and hence, does

not fall within the visible region

C. Ti^{4+} had $3d^0$ configuration

D. $Ti^{4\,+}$ is a very small cation when combated to $Ti^{3\,+}$ and hence, does not absorb any radiation.

Answer: C

54. The oxidation state of platinum in

 $igl[PtCl(NH_3)_5 igr] Cl_3$ is

A. + 2

B.+3

 $\mathsf{C.}+4$

D. + 6

Answer: C

View Text Solution

55. An ambidentate ligand in one which

A. is linked to the metal atom through two donor atoms

B. has two donor atoms, but only one of them has the capacity to form a coordinate bond [or a sigma (σ) bond]

C. has two donor atoms, but either of two can form

a coordinate bond

D. form chelate rings.

Answer: C

View Text Solution

56. Which of the following is not an ambident ligand?

A. SCN^-

 $\mathsf{B.}\,NO_2^-$

 $\mathsf{C}.\,CN^{\,-}$

D. ethylenediamine.

Answer: D

View Text Solution

57. The correct name for the coordination compound $\left[CrCl_2(H_2O)_4 \right] NO_3$ is

- A. dichlorotetraqueuschromiun (III)nitrate
- B. tetraaquadichlorochromate (III)nitrate
- C. tetraaquadichlorochromium (III)nitrate
- D. tetraaquodichlorochromium (II)nitrate.

Answer: C

58. The correct IUPAC name for the complex ion $\left[CoCl(ONO)(en)_2\right]^+$ is

A. chlorodiethyldiaminenitrocobalt (III)

B. chlorodiethyldiaminenitri-O-cobalt (III)

C. bis(ethylenediamine) chloronitrito-O-cobaltate
(III)

D. bis(ethylenediamine) chlorinitro-O-cobalt (III)

Answer: D

59. In the following coordination compound, $\left[Cr(NH_3)_2(en)Cl_2\right]$ Br, where en=ethylenediamine, the coordination number (C.N.) and oxidation number (O.N.) of the metal atom, respectively are

- A. C.N=6, O.N.=4
- B. C.N.=6, O.N.=3
- C. C.N.=5, O.N.=2
- D. C.N.=5, O.N.=4.

Answer: B

60. In the coordination compound $\begin{bmatrix} Co(en)_2Cl_2 \end{bmatrix}Cl$ (en=ethylenediamine), the coordination number and oxidation number of the central atom are, respectively

- A. 4, +3
- B. 6, +2
- C.4, +2
- D. 6, +3.

Answer: D

61. In the coordination compound $\left[Pt(NH_3)_2Cl_2\right]$ the coordination number and oxidation number of the central atom are, respectively.

- A. 2,0
- B. 4, +4
- C. 6,0
- D. 4, +3

Answer: D

62. A bidentate ligand always

- A. has bonds formed to two metal ions
- B. has a charge of +2 or -2
- C. forms complex ions with a charge of +2 or -2
- D. has two donor atoms forming simultaneously two sigma (σ) bonds.

Answer: D

63. Which one of the following is a monodentate ligand

?

A. CN^-

B. EDTA

C. $C_2 O_4^{2-}$ (oxalate ion)

D. $H_2NCH_2CH_2NH_2$ (ethylenediamine)

Answer: A

View Text Solution

64. The IUPAC name for $K_4igl[FeCl_2(CN)_4igr]$ is

- A. tetrapotassiumdichloridotetracyanoiron (II)
- B. potassiumdichloridotetracyanoiron (II)
- C. potassiumdichloridotetracyanidoferrate (III)
- D. potassiumdichloridotetracyanidoferrate (II)

Answer: D

View Text Solution

65. The IUPAC name for $igl[Ru(NH_3)_2(en)igr](NO_3)_2$ is

A. (ethane-1,2-diamine) diammineruthenium

(III)nitrate

B. diamminebis(ethane-1,2-diamine) ruthenium

(III)nitrate

C. diamminebis(ethine-1,2-diamine) ruthenium

(II)nitrate

D. diammine (ethane-1,2-diamine) nitrato ruthenium (III).

Answer: C

66. Which of the following aquare planar complex ions can have cis-trans isomers ?

A.
$$\left[Pt(NH_3)_4
ight]^{2+}$$

B. $\left[Ni(NH_3)_4
ight]^{2+}$

C. $\left[Pt(NH_3)_2Cl_2\right]$

D. $[Pt(NH_3)Cl_3]^-$

Answer: C

67. Cis-trans isomerism is exhibited by which which one of the following ?

A. $\left[Pd(NH_3)_3Cl
ight]^+$

B. $\left[Co(NH_3)_5Cl
ight]^{2+}$

C.
$$\left[Fe(CN)_6\right]^{3}$$

D. None of these.

Answer: D

View Text Solution

68. The numbers of geometrical and optical isomers of the complex ion,

 $igl[Co(En)_3 igr]^{3\,+}$ (en=ethylenediamine) are respectively

- A. 2 and 2
- B. 1 and 1
- C. 3 and 2

D. 1 and 2.

Answer: D

View Text Solution

69. $K_3[A](C_2O_4)_3$ is called

A. potassiumaluminoxalate

B. potassiumtrioxalatoaluminate (III)

C. potassiumaluminium (III) oxalate

D. potassiumtrioxalatoaluminate (III).

Answer: B

70. The complex $\left[Co(OCN)(NH_3)_5Cl_2
ight]$ and

 $igl[Co(NCO)(NH_3)_5Cl_3$ are the examples of

- A. geometrical isomers
- B. linkage isomers
- C. ionization isomers
- D. coordination isomers.

Answer: B

71. The number of ions per mole of the complex

 $CoCl_3.5NH_3$ in aqueous solution will be

- A. 9
- B. 4
- C. 3
- D. 2

Answer: C

72. The complex $CoCl_3.5NH_3$ is treated with silver nitrate solution. Maximum number of chloride ions that can be precipitated is

- **A.** 9
- B. 4
- C. 3
- D. 2

Answer: D

73. The number of chloride ions which would be precipated when one mole of the complex $PtCl_4.4NH_3$ is treated with silver nitrate is : (here coordination number of platinum is 6).

- A. 2
- B. 3
- C. 4
- D. 1

Answer: A

Watch Video Solution

74. Optical isomerism is not shown by the complex

A.
$$\left[Cr(\mathrm{ox})_3\right]^{3}$$

B. cis-
$$igl[Co(en)_2 Cl_2 igr]^+$$

C. trans-
$$igl[{Co(en)}_2 C l_2 igr]^+$$

D.
$$igl[Co(en)(NH_3)_2Cl_2igr]^+$$

Answer: C

View Text Solution

75. In $\left[Ag(CN)_2
ight]^-$, the number of π bonds is

A. 2

- B. 3
- C. 4
- D. 6

Answer: C

Watch Video Solution

76. Which of the following coordination entities will show geometrical isomerism ?

- A. $\left[PtCl_{3}(NH_{3})
 ight]^{+}$
- B. $\left[PtCl_2(NH_3)_2\right]^0$
- C. $\left[PtCl(NH_3)_5\right]^{3+}$

D.
$$\left[Co(NH_3)_6
ight]^{3+}$$

Answer: B

View Text Solution

77. The complex $CoCl_3,\,3NH_3$ ionizes to give

A. $2Cl^-$ ions

B. $1Cl^-$ ions

C. $3Cl^-$ ions

D. no Cl^- ion.

Answer: D

78. Which of the following is polymeric metal carbonyl.

A.
$$V(CO)_6$$

B.
$$Mn_2(CO)_{10}$$

$$\mathsf{C}.\,Cr(CO)_6$$

D.
$$Ni(CO)_4$$

Answer: B

79. Zeigler-Natta calayst $(R_3Al/TiCl_4)$ is used as a heterogeneous catayst for

A. the synthesis of ethanol

B. polymerization of alkenes

C. the hydrogenation of alkenes

D. cracking of hydrocarbons.

Answer: B

80. Which one of following type of isomerism is shown

by $pCoCl_2(en)(NH_3)_2Cl$?

- A. Geometrical isomerism
- B. Optical isomerism
- C. Linkage isomerism
- D. Coordination isomerism.

Answer: B

View Text Solution

81. Geometrical isomerism is shown by

A.
$$\left[Co(NO_2)(NH_3)_5
ight]^{2+}$$

B. $\left[RhCl_3(CO)_3\right]^0$

C. $\left[CrCl_3(NH_3)_3\right]^0$

D. both b and c.

Answer: D

82. Which one of the following can show optical isomerism?

A. $\left[Cr(en)_3\right]Cl_3$

B. $\left[Cr(NH_3)_6\right]Cl_3$

 $\mathsf{C}.\,FeSO_4.7H_2O$

D. $K_3[Fe(CN)_6]$.

Answer: A

View Text Solution

83. The complex compounds,

 $[Pt(II)(NH_3)_4], [Pt(IV)Cl_6]$

and

 $igl[Pt(IV)Cl_2(NH_3)_4igr], igl[Pt(II)Cl_4$ are called

A. linkage isomers

B. ionization isomers

C. coordination isomers

D. optical isomers.

Answer: C

View Text Solution

84. Which of the following is not optically active?

A. trans- $igl[CoCl_2(en)_2igr]$

B. cis- $\left[CoCl_2(en)_2\right]$

C. $\left[Co(en)_3\right]^{3+}$

D. $\left[Cr(ext{ox})_3
ight]^{3-}$

Answer: A

85. Number of geometrical isomers shown by the octahedral complex of the type $[MX_3Y_3]$ is

- A. 2
- B. 4
- C. 6
- D. 8

Answer: A

86. Number of geometrical isomers shown by the octahedral complex of the type $\left[MX_2Y_4
ight]$ is

- A. 4
- B. 6
- C. 8
- D. 2

Answer: D

View Text Solution

87. The oxidation number of Pt in $\left[Pt(H_2O)Cl_3\right]^-$ is

- A. + 1
- B. + 2
- $\mathsf{C.} + 3$
- D. + 4

Answer: B

View Text Solution

88. Which of the following statement is true?

A. The oxidation number of iron in $igl[Fe(CN)_6igr]^{4-}$ is

+6

B. In transition metal complexes, the ligands act as

Lewis acid

C. The charge on the complex ion in $K_2[PtCl_4]$ is

+2

D. The coordination number of Hg in $\left[Hg(en)_2\right]$ is

'4' (where en ethylanediamine).

Answer: D

View Text Solution

89. Outer orbital complex is

A. $\left[Zn(NH_3)_4
ight]^{2+}$

B.
$$\left[Co(NH_3)_6
ight]^{3+}$$

C.
$$\left[Cr(NH_3)_6\right]^{3+}$$

D.
$$\left[CoF_6
ight]^{3}$$
 $^-$

Answer: D

View Text Solution

90. The number of d-electrons in $\left[Cr(H_2O)_6\right]^{3+}$ [At.

No. of Cr = 24] is

A. 2

B. 3

C. 4

Answer: B

Watch Video Solution

91. Cis-platin used in the treatment of cancer is

A. cis-
$$\left[Pt(NH_3)_2Cl_2\right]$$

B. trans-
$$\left[Pt(NH_3)_2Cl_2\right]$$

C.
$$\left[Pt(NH_3)Cl_3\right]^+$$

D.
$$K_2[PtCl_6]$$
.

Answer: A

92. The geometry of $\left[Ag(NH_3)_2 ight]^+$ ion is

- A. trigonal planar
- B. tetrahedral
- C. linear
- D. square planar.

Answer: C

93. The theory of coordination compounds was put forth by

- A. Pauling
- B. Werner
- C. Bronsted and Lowry
- D. Lewis.

Answer: B

View Text Solution

94. The structure of complex cation $\left[Pt(NH_3)_4\right]^{2+}$ is

A. pyramidal B. tetrahedral C. square planar D. none of these. **Answer: C View Text Solution 95.** The number of unpaired electrons in $\left\lceil Ni(CO)_4 \right\rceil^0$ is A. 2 B. 4 C. 0

Answer: C

View Text Solution

96. Which of the following does not have tetrahedral structure?

A.
$$CrO_4^{2\,-}$$

B.
$$\left\lceil Ni(CN)_4
ight
ceil^{2-}$$

C.
$$\left[Ni(CO)_4\right]^0$$

D.
$$\left[NiCl_4
ight]^{2-}$$

Answer: B

97. The pair of the compounds in which both the metals are in the highest possible oxidation state is

A.
$$\left[Fe(CN)_6
ight]^{3-}, \left[Co(CN_6)
ight]^{3-}$$

$$\mathsf{B.}\, CrO_2Cl_2, MnO_4^-$$

C.
$$TiO_3$$
, MnO_2

D.
$$\left[Co(CN)_6
ight]^{3-}, MnO_3$$

Answer: B

Watch Video Solution

98. In the spectrochemical series which ligand produces strongest field ?

- A. Cl^-
- B. H_2O
- $\mathsf{C}.\,NO_2$
- D. CO

Answer: D

99. IUPAC name of $K_4 \big| Fe(CN)_6 \big|$ is

A. potassiumhexacyanoferrate (III)

B. potassiumhexacyanoferrate (II)

C. potassiumferrcyanide

D. potassiumferricyanide

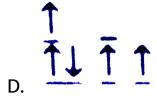
Answer: B

Watch Video Solution

100. Which of the following has highest molar conductivity

- A. Diamminedichloroplatinum (II)
- B. Tetraamminedichlorocobalt (III)chloride
- C. Potassiumhexacyanoferrate (II)
- D. Hexaaquochromiun (III)bromide

Answer: C


Watch Video Solution

101. Which of the following energy diagrams shows the electron distribution according to the crystal field model of the 3d-electrons in $Mn(H_2O)_6^{2+}$?

A. 🖳

C. 📝

Answer: C

View Text Solution

102. Which of the following energy diagrams for 3d-electrons corresponds to the low-spin $Fe(CN)_6^{4-}$ species ?

A. 🖳

- В. 🗾
- C. 📝

$$\begin{array}{ccc} & - & - \\ & \uparrow \downarrow & \uparrow \downarrow & \uparrow \end{array}$$

Answer: A

View Text Solution

103. A complex with the composition $[Ma_2b_2]x_2$ is found to have no geometrical isomers. Both A and B are monodenatate ligands. The structure of the complex is

A. linear

- B. square pyramidal
- C. tetrahedral
- D. octahedral.

Answer: C

View Text Solution

104. In the complex ion ML_6^{n+} , M^{n+} has five delectronns and L is a strong field ligand. According to crystal field theory, the magnetic properties of the complex ion correspond to how many unpaired electrons?

- A. 0
- B. 1
- C. 2
- D. 3

Answer: B

View Text Solution

105. In the complex ion ML_6^{n+} , M^{n+} has five delectrons and L is a weak field ligand. According to crystal field theory, the magnetic properties of the complex ion correspond to how many unpaired electrons?

- A. 0
- B. 5
- C. 2
- D. 3

Answer: B

Watch Video Solution

106. In the complex ion ML_6^{n+} , M^{n+} has four delectrons and L is a strong field ligand. According to crystal field theory, the magnetic properties of the complex ion correspond to how many unpaired electrons?

- A. 4
- B. 1
- C. 2
- D. 3

Answer: C

View Text Solution

107. In the complex ion ML_6^{n+}, M^{n+} has four delectrons and L is a Weak field ligand. According to crystal field theory, the magnetic properties of the complex ion correspond to how many unpaired electrons?

A. 0	
B. 1	
C. 2	
D. 4	
Answer: D	
View Text Solution	

108. For ethylenediaminetetraacetic acid (EDTA) correct statement is

A. not useful as a chelating agent

B. an effective antidote for heavy metal poisoning

(e.g.,
$$Pb^{2\,+}$$
 and $Hg^{2\,+}$)

- C. a monodentate ligand
- D. form unstanle complex ions with $Fe^{3\,+}$

Answer: B

View Text Solution

109. Cis-platinum complexes are

- A. used in the extraction of silver and gold
- B. effective antidotes for heavy metal poisoning

(e.g.,
$$Pb^{2\,+}$$
 and $Hg^{2\,+}$)

- C. used to provide nutrients for plants
- D. effective antitumor agemts.

Answer: D

View Text Solution

110. How many unpaired electrons does the manganese ion have in $\left[Mn(CN)_6\right]^{4-}$?

- A. 1 unpaired electron
- B. 2 unpaired electrons
- C. 3 unpaired electrons
- D. 5 unpaired electrons

Answer: A

111. The metal ion in complex A has EAN identical to the atomic number of krypton. A is (At No. of Cr=24, Fe=26, Pd=46)

- A. $\lceil Pd(NH_3)_6 \rceil Cl_4$
- B. $\left[Cr(NH_3)_5Cl\right]SO_4$
- C. $NA_4igl[Fe(CN)_6igr]$
- D. $K_3igl[Fe(CN)_6igr]$

Answer: C

112. Which of the following energy shows the electron distribution according to the crystal field model of the 3d-electrons in $CoCl_4^{2-}$

- A. 🗾
- В. 📝
- C. 📝
- D. 📝

Answer: D

113. Back bonding is possible in

- A. NH_3
- B. en
- C. CN
- D. CO

Answer: D

View Text Solution

114. The number of chloride ion that can be precipitated when the complex $CoCl_34NH_3$ is treated

with $AgNO_3$ A. 0 B. 1 C. 2 D. 3 **Answer: B View Text Solution** 115. How many ions for moles are present in $[Pt(NH_3)_2Cl_4]$? A. 0

- B. 1
- C. 2
- D. 4

Answer: A

View Text Solution

116. Fac-mer isomerism is possible in

- A. $\left[Co(NH_3)Cl_2\right]^+$
- B. $\left[Fe(CN)_4(NH_3)_2\right]^-$
- C. $[Co(NO_2)_3(NH_3)_3]$
- D. $igl[{Co(en)}_2 C l_2 igr]^+$

Answer: C

View Text Solution

117.
$$\left[Fe(H_2O)_6 \right]^{2+}$$
 is

- A. octahedral outer orbital complex
- B. octahedral inner orbital complex
- C. It is diamagnetic
- D. It hashybridization d^2sp^3

Answer: A

118. Which of the following complex is used in silver plating?

A.
$$K \big[Ag(CN)_2 \big]$$

- $\mathsf{B.}\,AgNO_3$
- $\mathsf{C.}\,K[Ag(H_2O)]$
- D. EDTA

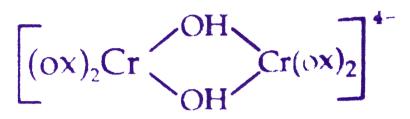
Answer: A

119. Which of the following diapositive cation produces more stable complex ?

- A. $Cd^{2\,+}$
- B. Ni^{2+}
- C. Cu^{2+}
- D. Mn^{2+}

Answer: C

120. The primary and secondary valencies of chromium in the complex ion, dichlotodioxalatochromoium (III), are respectrively


- A. 3,4
- B. 4,3
- C. 3,6
- D. 6,3

Answer: C

Watch Video Solution

121. Oxidation state of chromium in following complex

A. + 2

B. + 3

 $\mathsf{C.}+4$

D.+5

Answer: B

122. The non-existant metal carbonyl among the following is

- A. $Cr(CO)_6$
- $\operatorname{B.}Mn(CO)_{5}$
- $\mathsf{C}.\,Ni(CO)_4$
- $\operatorname{D.} Fe(CO)_5$

Answer: B

123. The pair $\left[Co(NH_3)_5NO_3\right]SO_4$ and

 $igl[Co(NH_3)_5 SO_4 igr] NO_3$ will shows

- A. hydrate isomerism
- B. linkage isomerism
- C. ionization isomerism only
- D. co-ordinate isomerism

Answer: C

124. Which one of the following co-ordination compounds exhibit ionization isomerism?

- A. $\left[Cr(NH_3)_6Cl_3\right]$
- B. $\left[Cr(en)_3Cl_3\right]$
- C. $[Cr(en)_3]Cl_3$
- D. $\left[Co(NH_3)_5Br\right]SO_4$

Answer: D

125. If the Effective Atomic Number (EAN) of $\left[A(NH_3)_6\right]Cl_3$ is 33, is the atomic number of the element (A)will be

- A. 23
- B. 27
- C. 24
- D. 29

Answer: C

126. Tollen's reagent is

- A. $AgNO_3$
- B. AgOH
- C. $\left[Ag(NH_3)_2\right]^+$
- D. $\left[Ag(NO_3)_2
 ight]^+$

Answer: C

Watch Video Solution

127. Which of the following aquated metal ions has the highest paramagnetism?

A.
$$igl[Cr(H_2O)_6 igr]^{3\,+}$$

B.
$$\left[Fe(H_2O)_6
ight]^{2+}$$

C.
$$igl[Cu(H_2O)_6 igr]^{2+}$$

D.
$$igl[Zn(H_2O)_2 igr]^{2+}$$

Answer: B

View Text Solution

128. The hybridization states of the central atom in the complex ions $\left[FeF_6\right]^{3-}, \left[Fe(H_2O)_6\right]^{3+}$ and $\left[Ni(NH_3)_6\right]^{2+}$ are

A. sp^3d^2 and sp^3 respectively

- B. all are dsp^3
- C. all are sp^3d^2
- D. $sp^3d^2,\,dsp^3$ and d^2sp^3 respectively

Answer: C

- **129.** The complex ion $\left[Co(NH_3)_6
 ight]^{3+}$ is formed by sp^3d^2 hybridiration. Hence, the ion should posses
 - A. octahedral geometry
 - B. tetrahedral geometry
 - C. square planar geometry

D. tetragonal geometry

Answer: A

Watch Video Solution

130. Which of the following is strong ligand?

A. OH

B. F

C. Cl

D. NH_3

Answer: D

131. Formula of hexa-aquamanganese (II)phosphate is

A.
$$\lceil Mn(H_2O)_6 \rceil (PO_4)$$

B.
$$\left[Mn(H_2O)_6\right]_3(PO_4)$$

C.
$$[Mn(H_2O)_6]_3(PO_4)_2$$

D.
$$[Mn(H_2O)_6](PO_4)_3$$

Answer: C

132. How many hydrate isomers are possible with the formula $CrCl_3.6H_2O$?

- A. six
- B. four
- C. three
- D. two

Answer: C

133. The neutral molecules or ions which co-ordinate with the central atom or ion in a complex ion are called,

- A. combinants
- B. cryptands
- C. spherands
- D. ligands

Answer: D

134. IUPAC name of $igl[Pt(NH_3)_3(Br)(NO_2)CIigr]CI$ is

A. triamminechlorobromonitroplatinum (IV)

B. triamminebromochloronitroplatinum (IV)chloride

C. triamminetrochlorobromoplatinum (IV)chloride

D. trimminechloronitrobromoplatinum (IV)chloride

Answer: B

135. One mole of complex compound $Co(NH_3)_5Cl_3$ gives 3 moles of ions on dissolution in water. One mole of same complex reacts with two moles of $AgNO_3$ to yield two moles of AgCl(s). The complex is:

- A. $\left[Co(NH_3)_4Cl\right]Cl_2$. NH_3
- B. $\lceil Co(NH_3)_5 Cl \rceil Cl_2$
- C. $\left[Co(NH_3)_3Cl_3\right].2NH_3$
- D. $\left[Co(NH_3)_4Cl_2\right]Cl.\ NH_3$

Answer: B

Watch Video Solution

 $igl[{Co(NH_3)}_3 (H_2O)_2 Cl igr]^+$ is ,

Co

in

Oxidation number of

B. 2

136.

C. 3

D. 4

Answer: B

?

137. Which of the following has square planar structure

A.
$$\left[Ni(CO)_4
ight]$$

B. $\left[NiCl_4
ight]^{2\,-}$

C. $\left[Ni(CN)_4
ight]^2$

D. $\left[Fe(CO)_5
ight]$

Answer: C

138. Which of the following complex will not show colour?

A. $\left[Cr(NH_3)_6Cl_3
ight.$

B. $K[VF_6]$

C. $\left[Sc(H_2O)
ight]^{3+}$

D. $\left[NiCl_4
ight]^{2-}$

Answer: C

View Text Solution

139. Coordination compounds are the compound is which the central metal atom is linked to atoms ions or molecules by

A. Convalent bonds

B. Coordinate bonds

C. Ionic and covalent bonds

D. Both ionic and coordinate bonds

Answer: B

View Text Solution

140. Complex compounds are mainly formed by

A. p-block elements

B. f-block elements

C. d-block elements

D. s-block elements

Answer: C

141. Which of the following statements is incorrect about coordination compounds?

- A. All molecular compounds are not coordination compounds
- B. Complexes always give ions in the solution
- C. Complexes may or may not give ions in the solution
- D. Complex ion does not dissociate into its component parts even in the solution

Answer: B

Watch Video Solution

142. According to Werner's theory, the secondary valencies of the central metal atom correspond to its

- A. Oxidation state
- B. Coordination number
- C. Any of the two a and b
- D. Neither of the two

Answer: B

Watch Video Solution

143. Mohr's salt is a

- A. Simple's salt
- B. Alum
- C. Double salt
- D. Coordinate compound

Answer: C

144. Which of the following is not a coordination compound?

- A. $K_3igl[Fe(CN)_6igr]$
- B. $CoCl_3.6NH_3$
- C. $K_4[Fe(CN)]_6$
- D. Carnallite

Answer: D

145. The number of geometrical isomers of the complex

 $\left[{\it Co(NO_2)}_2 (NH_3)_2
ight]$ is

- A. 2
- B. 3
- C. 4
- D. 0

Answer: A

Watch Video Solution

B. negative ions only C. never positive ions D. negative or positive ions or neutral molecules **Answer: D Watch Video Solution** 147. The number of chlorine atoms acting as ligands in the complex $[Co(en)_2(H_2O)Cl]Cl_2$ is A. 0 B. 1

A. neutral molecules only

C. 2

D. 3

Answer: B

View Text Solution

148. In the complex $\big[Co(NH_3)_5Cl\big]Cl_2$, the coordination sphere is

A. $2Cl^{\,-}$

B. Co^{3+}

C. $(NH_3)_5Cl$

D. $\left[Co(NH_3)_5Cl_3
ight]^{2+}$

Answer: D

View Text Solution

149. Ethylenediamine is

- A. Monodentate
- B. Bidentate
- C. Tridentate
- D. Tetradentate.

Answer: B

150. O^- is an

A. Monodentate

B. Bidentate ligand

C. Tridentate ligand

D. Tetradentate.

Answer: B

View Text Solution

151. SCN^- is a/an

A. Monodentate ligand

- B. Bidentate ligand
- C. Tridentate ligand
- D. Tetradentate ligand

Answer: A

- **152.** Chelating ligand is one which donates to the metal ion
 - A. two lone pair
 - B. three lone pairs
 - C. four lone pairs

D. all are correct

Answer:

View Text Solution

153. Which of the following is a chelate complex?

- A. Potassium ferrocyanide
- B. Potassium tetracyanonickelate (II)
- C. $\left[Co(en)_3
 ight]^{3+}$
- D. $\left[Co(NH,)_4Cl_2\right]Cl$

Answer: C

154. Which one of the following ligands can act as

Hexadentate ligand?

A. Ethylenediamine

B. EDTA

C. CN^-

D. CO

Answer: B

155. Which one of the following acts as a neutral liga	nd
--	----

- A. amine
- B. Oxalato
- C. flurido
- D. Cyano

Answer: A

View Text Solution

156. The number of anionic coordinating sites of EDTA are

A. 2
B. 4
C. 6
D. 8
Answer: B
View Text Solution
157. The most strongest ligand is
A. Cl^{-}
A. Cl^-

	\sim \sim \sim \sim	_
11	/ '/\/	
D.	UII	

Answer: D

View Text Solution

158. An example of non ambidentate ligand is

A. NH_3

B. SCN

C. CN

D. NO_2

Answer: A

159. Chelating ligand among the following is

A. CO

B. CN^-

 $\mathsf{C}.\,OH^{\,-}$

D. en

Answer: D

A. Cl^-
B. OH^{-}
C. CO
D. H_2O
Answer: C
View Text Solution
161. An example of bidenatate ligand is
A. NH_3
B. OH^{-}
$C.\mathrm{ox}^{2}$

D. Cl^-

Answer: C

View Text Solution

162. Consider

EDTA-Hexadentate ligand

Ethylene diamine-Bidentate ligand

Diethylene triamine-Tridentate ligand

Chloride-Tridentate ligand

A. 1 and 2

B. 3 and 4

- C. Only 4
- D. 1,2 and 3

Answer: C

View Text Solution

163. Which one of the following ligands form a chelate complex ?

- A. Water
- B. Oxalate
- C. Ammonia
- D. Cyanide

Answer: B

View Text Solution

164. Which ligand is expected to be bidenate?

A.
$$C_2 O_4^{2\,-}$$

B.
$$CH_3NH_2$$

C.
$$Br^-$$

D.
$$CH_3C\equiv N$$

Answer: A

165. Pick out from the following complex compounds, a poor electrolytic conductor in solution

- A. $K_2[PtCl_6]$
- $\mathsf{B.}\left[Co(NH_3)_3(NO_2)_3\right]$
- C. $K_4[Fe(CN)_6]$
- D. $\left[Cu(NH_3)_4\right]SO_4$

Answer: B

View Text Solution

166. Magnetic moment of $\left[Cu(NH_3)_4\right]^{2+}$ ion is

A. 0
B. 1.73
C. 1.44
D. 2.99
Answer: B
View Text Solution
167. In the compound lithium tetrahydridoaluminate,
the ligand is
A L1
A. H
B. H^{+}

C. $H^{\,-}$

D. Al

Answer: C

Watch Video Solution

168. Which one of the following is NOT a ligand?

A. PH_3

B. NO^+

C. Na^+

D. $F^{\,-}$

Answer: C

169. In a coordination complex the negative groups or neutral molecules attached to the central atoms are termed as .

- A. charge of metal ion
- B. ligands
- C. coordination number
- D. EAN

Answer: B

170. The coordination number of a central ion may be obtained from

A. the number of coordinate bonds formed with surrounding atoms

- B. the number of ionic bonds formed with the surrounding ions
- C. the number of ions of opposite charge immediately surrounding the specific ion

D. none of the above.

Answer: A

Watch Video Solution

- 171. The coordination number of Cr in $ig[\mathit{Cr}(NH_3)_3 (H_2O)_3 ig] \mathit{Cl}$ is
 - A. 2
 - B. 3
 - C. 4
 - D. 6

Answer: D

172. The oxidation number of Fe in $K_4ig[Fe(ext{ox})_3$ is

- **A.** 1
- B. 2
- C. 3
- D. 4

Answer: C

173. The oxidation number of manganese in

 $ig[Mn_2(CO)_{10}ig]$ is

- A. 0
- $\mathsf{B.}+1$
- $\mathsf{C.} + 2$
- D.+5

Answer: A

174. Which one of the following has oxidation number of transition metal atom four ?

- A. $KMnO_4$
- $\operatorname{B.}K_3[PtCl_4]$
- C. K_2MnO_4
- $\mathsf{D.}\, K_2[PtCl_6].$

Answer: D

175. Out of the following which one has transition metal atom in the oxidation state $+\,2$?

- A. $K_4igl[Fe(CN)_6igr]$
- $\mathsf{B.}\,K_2\big[Pt(CN)_6\big]$
- C. $K_3ig[Fe(CN)_6ig]$
- D. $\left[Co(NH_3)_5Br\right]SO_4$

Answer: A

176. The coordination number of Al is potassium trioxalato aluminate (III) is

- A. 3
- B. 4
- C. 5
- D. 6

Answer: D

View Text Solution

177. The oxidation state of Al in $LiAH_4$ is

A. 0			
B. 1			
C. 2			
D. 3			
Answer: D			
View Text Solution			
178. The oxidation state of Co in $\left[Co(en) ight]^{3+}$ is			
A.+3			
B.-3			
C. + 1			

$$D. + 2$$

Answer: A

View Text Solution

179. The donor site of CN can be

A. C

B. S

C. N

D. Both a and c

Answer: D

180. The oxidation state of iron in haemoglobin is

A. 0

B. + 1

 $\mathsf{C.} + 2$

D. + 3

Answer: C

181. The coordination number of Ni in the complex

 $ig[Ni(CO)_4ig]$ is

- **A.** 1
- B. 2
- C. 3
- D. 4

Answer: D

View Text Solution

182. The oxidation state of Zn in $K_2ig[Zn(CNS)_4ig]$ is

A. 0

B. + 1

 $\mathsf{C.} + 2$

D. +3

Answer: C

View Text Solution

183. The oxidation state of nickel in the complex $\left[Ni(CO)_2(H_2O)_2
ight]$ is

A. 0

B.+1

$$C. + 2$$

$$D. + 4$$

Answer: A

View Text Solution

184. What is true for $\left[Fe(CN)_6
ight]^{3-}$ and $\left[FeF_6
ight]^{3-}$

- A. Both are paramagnetic
- B. Only $\left[Fe(CN)_6\right]^{3-}$ is paramagnetic
- C. Only $\left[FeF_6\right]^{3-}$ is paramagnetic
- D. Both are diamagnetic

Answer: A

185. Choose the correct statement.

- A. Coordination number has nothing to do with the number of groups or molecules attached to the central atom
- B. Coordination number is the number of coordination sites of all the ligands connected to the central atom or the number of coordinate bonds formed by the metal atom with ligands

C. Werner's coordination theory postulates only one type of valency

D. All are correct

Answer: B

View Text Solution

186. Following compound shows Type of isomerism

$$\left[Cu^{II}(NH_3)_4
ight]\left[Pt^{II}Cl_4
ight]$$

- A. solvate
- B. linkage
- C. ionisation

D. coordinate

Answer: D

View Text Solution

 $igl[Fe(H_2O)_5(NH_3)igr]SO_4$ is

187. The oxidation state of Fe

in

A. + 1

B.+2

 $\mathsf{C.}+4$

D. +3

Answer: B

View Text Solution

188. Coordination number of cobalt in $\left[Co(\mathrm{ox})_3\right]^{3-}$ is

- A. 2
- B. 6
- C. 5
- D. 4

Answer: B

189. Oxidation number of CO in

 $igl[{Co(NH_3)}_3 {(H_2O)}_2 Cl igr]^+$ is ,

- **A.** 1
- B. 2
- C. 3
- D. 4

Answer: B

190. The solution of the complex $\left[Cu(NH_3)_4SO_4\right]$ in water will

- A. give the test SO_4^{2-} ions
- B. give the test Cu^{2+} ions
- C. give the test of NH_3
- D. not give the test of any of the above

Answer: A

191. Metal ions which form the most stable complexes have each of the following properties except

- A. empty orbitals
- B. at least one lone pair of electrons
- C. high nuclear charge
- D. small size

Answer: B

192. Which of the following will not give tests for free transition metal ion is solution?

A.
$$K_2[Ni(CN)_4]$$

- $\operatorname{B.}FeSO_4.\ K_2SO_4.24H_2O$
- C. $KCl.\ MgCl_2.6H_2O$
- D. $FeSO_4$. $(NH_4)_2SO_46H_2O$

Answer: A

View Text Solution

193. The complex $CoCl_3.4NH_3$ ionizes to give

A.	one	Cl^-	ion
,	0	$\sim v$	

B. two Cl^- ions

C. three Cl^- ions

D. no Cl^- ion.

Answer: A

View Text Solution

194. The number of ions produced from one molecule of $\left[Pt(NH_3)_5Cl_3\right]$ is the aqueous solution will be

A. 3

B. 5

- C. 4
- D. 6

Answer: C

View Text Solution

195. Which one has the highest paramagnetism?

- A. $Ni(CO)_4$
- B. $\left(Ni(NH_3)_4\right]Cl_2$
- C. $\left[Ni(NH_3)_6Cl_2
 ight]$
- D. $\left[Cu(NH_3)_4\right]Cl_2$

Answer: C

View Text Solution

- **196.** The number of ions furnished by

 $\left\lceil Co(NH_3)_5Cl \right\rceil Cl_2$ in solution are,

- A. zero
- B. 1
- C. 2
- D. 3

Answer: D

197. Complex forming tendency is more for the metal ion

A.
$$Ca^{2\,+}$$

B.
$$Co^{2+}$$

C.
$$Ce^{2+}$$

D.
$$Li^+$$

Answer: B

198. Which of the following does not have optical isomer?

- A. $\left[Co(NH_3)_3Cl_3\right]$
- B. $[Co(en)_3Cl_3]$
- C. $[Co(en)_2Cl_2Cl$
- D. $\left[Co(en)(NH_3)_2Cl_2 \right]Cl$

Answer: A

Watch Video Solution

199. Change in composition of coordination sphere yields which types of isomers

- A. Optical
- B. Geometrical
- C. Ionisation
- D. None of the these.

Answer: C

200. Which of the following will not give a precipitate with $AgNO_3$?

A.
$$\left[Co(NH_3)_3Cl_3\right]$$

B.
$$\left[Co(NH_3)_4Cl_2\right]Cl$$

C.
$$\left[Co(NH_3)_5Cl\right]Cl_2$$

D.
$$\left[{Co(NH_3)_6} \right] Cl_3$$

Answer: A

201. The number of ions formed when

 $\left[Cu(NH_3)_4SO_4
ight]$ is dissolved in water is

- A. 0
- B. 2
- C. 4
- D. 3

Answer: A

202. The total number of ions furshied by

 $K_4ig[Fe(CN)_6ig]$ in solution is

- A. 3
- B. 4
- C. 5
- D. 6

Answer: C

203. The number of groups acting only as secondary valencles in the complex $\left[CoCl_2(NH_3)_4\right]Cl$ are

- A. 4
- B. 2
- C. 6
- D. 1

Answer: C

204. Primary and secondary valency of platinum in the complex $\left[Pt(en)_2Cl_2\right]$ are

- A. 6,6
- B. 2,6
- C. 4,4
- D. 6,2

Answer: B

- A. 35
 - B. 36
 - C. 38
- D. 40

Answer: B

View Text Solution

206. EAN of Pt in $\left[Pt(NH_3)_4 ight]^{2+}$

- A. 35
- B. 40
- C. 80

D. 84

Answer: D

View Text Solution

207. The EAN of Pt in $\left[Pt(NH_3)_4 ight]^{2+}$

A. 33

B. 34

C. 35

D. 36

Answer: C

208. Consider (At.No. Cr=24, Ni=28, Pt=78, Pd=46). Which of the following has correct EAN?

A.
$$\frac{ ext{Complex}}{\left[Cr(CN)_6
ight]^{3-}} \quad 52$$

B. $\frac{\text{Complex}}{\left[Ni(CO)_4\right]} \frac{EAN}{86}$

Complex EAN $\left[Pt(NH_3)_6
ight]^{4+}$ 86

D. $\frac{ ext{Complex} \quad EAN}{\left[PdCl_4
ight]^2 - \quad 33}$

Answer: C

209. Suffix-o or ido is added to the name of a ligand when the ligand is

A. positively charged

B. neutral (except water)

C. negatively charged

D. all of the above

Answer: C

View Text Solution

210. The IUPAC name of $K_3 \lceil Fe(\otimes)_3 \rceil$ is

- A. Potassiumferroxalate
- B. Potassiumferrioxalate
- C. Potassiumtrioxateferrate (II)
- D. Potassiumtrisoxalatoferrate (III)

Answer: D

View Text Solution

211. Diammine silver (I)ion is

- A. $\left[Ag(NH_3)_2
 ight]^+$
 - B. $\left[Ag(NH_3)
 ight]^{3+}NH_3$
 - C. $\left[Ag(NH_3)_2\right]^{3+}NH_3$

D. None of these.

Answer: A

View Text Solution

212. The correct name of the compound $\lceil Cu(NH_3)_4 \rceil (NO_3)_2$, according to IUPAC system is

- A. Cuprammoniumnitrate
- B. Tetraamminecopper (I)nitrate
- C. Tetraamminecopper (III)nitrate
- D. Tetraamminecopper (III)nitrate

Answer: C

Watch Video Solution

213. The IUPAC name of $\left\lceil CoCl(NH_3)(en)_2 \right\rceil Cl$ is

- A. Chloroammine bis (ethylenediamine) cobalt

 (II)chloride
- B. Amminechlorobis(ethylenediamine) cobalt

 (II)chloride
- C. Amminechlorobis (ethylenediamine) cobalt

 (III)chloride

D. Amminechlorobis(ethylenediamine)

cobalt

(IV)chloride

Answer: C

View Text Solution

214. The complex ions $\left[Co(NH_3)_5(NO_2)^{2+}\right]$ and $\left[Co(NH_3)_5(ONO)\right]^{2+}$ are called

- A. Geometrical isomers
- B. Linkage isomers
- C. Ionization isomers
- D. Coordination isomers.

Answer: B

- **215.** Geometrical isomerism in complex compounds is exhibited by
 - A. square planar, tetrahedral and complexes
 - B. square planar and octahedral complexes
 - C. tetrahedral and octahedral complexes
 - D. square planar, tetrahedral and octahedral complexes

Answer: B

216. Which of the following compound would exhibit co-ordination isomerism?

A.
$$\left[Cr(H_2O)_6
ight]Cl_3$$

B.
$$\left[Cr(NH_3)_6\right]\left[Co(CN)_6\right]$$

C.
$$[Cr(en)_3]NO_2$$

D.
$$K_4 \lceil Fe(CN)_6 \rceil$$

Answer: B

Watch Video Solution

 $[Pt(NH_3)_4][PtCl_6]$ and $[Pt(NH_3)_4Cl_2][PtCl_4]$ are

:

- A. Linkage isomerism
- B. Ionisation isomerism
- C. Coordination isomerism
- D. Hydrate isomerism

Answer: C

Watch Video Solution

218. OF the following complexes which one will show coordination isomerism?

A.
$$\left[Co(en)_2Cl_2\right]^+$$

B.
$$\left[Co(en)_2Cl_2\right]Cl$$

C.
$$\left[Cr(NH_3)_6 \right] \left[Co(en)_2 \right]$$

D.
$$\left[Cr(NH_3)_6\right]Cl_2$$

Answer: C

View Text Solution

219. The octehedral complex $[M(aa)x_2y_2]Cl_2$ gives

- A. two geometrical isomers
- B. two optical isomers
- C. three optical isomers
- D. three geometrical isomers

Answer: D

View Text Solution

220. Which of the following complexes can form d and

L isomers?

- A. $\left[Co(NH_3)_3Cl_3\right]$
- B. $igl[Co(NH_3)_4igr]^{+2}$

C. $Cisigl[{Co(en)}_2Cl_2igr]^+$

D. Trans $[Co(en)Cl_2]$

Answer: C

Niew Text Solution

221. Out of the following which will not show geometrical isomerism?

A. $\left[Co(NH_3)_5NO_2\right]Cl_2$

B. $\left[Pt(NH_3)_2Cl_2\right]$

C. $\left[Co(en)_2Cl_2\right]Cl$

D. $\left[Cr(NH_3)_4Cl_2\right]Cl$

Answer: A

View Text Solution

222. $K_3 \left[Fe(C_2O_4)_3 \right]$ exhibits

- A. Ionization isomerism
- B. Geometrical isomerism
- C. Optical isomerism
- D. Coordination isomerism.

Answer: C

223. $\lceil Co(NH_3)_4 Cl_2 \rceil Cl$ exhibits

- A. Ionization isomerism
- B. Linkage isomerism
- C. Geometrical isomerism
- D. Optical isomerism

Answer: C

View Text Solution

224. The number of hydrate isomers of $CrCl_36H_2O$ are

A. 1 B. 2 C. 3 D. 4

Answer: D

View Text Solution

225. Geometrical isomerism is shown by

A. Tetrahedral

B. Octahedral

C. Square planer

D. Both b and C.

Answer: D

View Text Solution

226. Which of the following has metal-metal bond?

A. $Ni(CO)_4$

 $\operatorname{B.} Fe(CO)_5$

 $\operatorname{C.}\operatorname{Cr}(CO)_6$

D. $Mn_2(CO)_{10}$

Answer: D

227. Cis-trans isomerism is exhibited by which one of the following ?

A.
$$\left\lceil Pd(NH_3)_3Cl
ight
ceil^+$$

B.
$$\left[Co(NH_3)_5Cl\right]^{2+}$$

C.
$$\left[Fe(CN)_6\right]^{3}$$

D.
$$\left[Pt(en)_2Cl_2\right]^{2+}$$

Answer: D

228. Optical isomerism can be shown by the complex

A.
$$\left[Cu(NH_3)_4
ight]^{2\,+}$$

B.
$$igl[Ni(H_2O)_4igr]^{2\,+}$$

D. Neither (a) or (b)

Answer: D

View Text Solution

229. Square planar complex which shows geometrical isomerism is

- A. Ma_3x
- B. Ma_4
- C. M abcd
- D. Ma_3b

Answer: C

View Text Solution

230. Which of the following types of octahedral complexes does not show optical isomerism?

- A. $M(aa)_2 xy$
- B. $\left[M(aa)_3\right]$

C. $\left[M(aa)_2x_2
ight]^{n+}$

D. $[Ma_5b]$

Answer: D

View Text Solution

231. A complex with the composition $[Ma_2b_2]X_2$ is found to have no geometrical isomers. Both A and B are monodentate weak ligands. The structure of the complex is

A. Linear

B. Tetrahedral

- C. Square planar
- D. Octahedral.

Answer: B

View Text Solution

232. The complex ion $\left[Co(en)_2Cl_2 ight]^+$ exhibits

- A. cis-trans isomerism only
- B. cis-trans isomerism and optical isomerism
- C. cis-trans isomerism and linkage isomerism
- D. optical isomerism and linkage isomerism.

Answer: B

View Text Solution

233. The complex ion $\left[Cu(NH_3)_4\right]^{2+}$ is

- A. Tetrahedral
- B. Square planar
- C. Both
- D. None of these.

Answer: B

234. The number of precipitable halide ions in the sample $[Pt(NH_3)Cl_2Br]$ CI will be

- A. 2
- B. 3
- C. 4
- D. 1

Answer: D

View Text Solution

235. Back bonding involves the formation of

- A. σ bond
- B. Coordinate bond
- C. π bond
- D. None of these.

Answer: C

View Text Solution

236. Hexafluoroferrate (III)ion is an outer orbital complex. The number of unpaired electrons present in it

A. 1

- B. 4
- C. 5
- D. 0

Answer: C

View Text Solution

237. A complex involving dsp^2 hybridization has

- A. Square planar geometry
- B. A tetrahedral geometry
- C. An octahedral geometry
- D. Trigonal planar geometry

Answer: A

View Text Solution

238. Which of the following complex species involves d^2sp^3 hybridisation?

A.
$$\left[Fe(CN)_6
ight]^{3}$$

B.
$$\left[Co(F)_6\right]^{3-}$$

C.
$$\left[Co(H_2O)_6\right]^{3+}$$

D.
$$\left[Fe(F)_6\right]^{3}$$

Answer: A

Watch Video Solution

239. The ion which has a high spin d^6 configuration is

A.
$$\left[Co(NH_3)_6
ight]^{2+}$$

B.
$$[CoF_{6}]^{4-}$$

C.
$$\left[Fe(CN)_6\right]^{4-}$$

D.
$$igl[Co(H_2O)_6 igr]^{3\,+}$$

Answer: D

240. Which among the following complex has square pyramidal geometry?

- A. Tetracarbonylnickel (0)
- B. Pentacarbonyliron (0)
- C. Hexamminecobalt (II)nitrate
- D. Tetraaminecopper (II)sulphate

Answer: D

241. An octahedral complex is formed when hybrid orbitals of the following type are involved

- A. sp^3
- ${\rm B.}\, dsp^3$
- $\mathsf{C}.\,sp^3d$
- D. sp^3d^2

Answer: D

A. $\left[Ag(NH_3)_2
ight]^+$ Diagonal

B. $\left[Cr(CO)_6\right]^o$ Tetrahedral

C. $\left[Fe(CN)_6
ight]^{3-}$ Square planar

D. $\left[Ni(CN)_4
ight]^{2-}$ Octahedral

Answer: C

View Text Solution

243. In coordination compound $igl[Co(en)_2Cl_2igr]Cl$ which is false

A. Show geometrical Isomerism

B. Show optical Isomerism

C. Show ionic Isomerism

D. A octahedral complex

Answer: C

View Text Solution

244. K_3CoF_6 is high spin complex. What is the hybrid state of Co atom in the complex?

A. d^2sp^3

 $\mathsf{B.}\, dsp^2$

 $\mathsf{C}.\,sp^3d$

D. sp^3d^2

Answer: D

Watch Video Solution

245. Which of the following has square planar structure

?

A.
$$\left\lceil Ni(CO)_4
ight
ceil^2$$

B.
$$\left[NiCl_4
ight]^{2}$$
 -

C.
$$\left[Ni(CN)_4\right]^{2-}$$

D.
$$\left[Fe(CO)_5\right]$$

Answer: C

Watch Video Solution

246. The paramagnetic ion among the following is

A.
$$\left[Ni(CN)_4
ight]^{2-}$$

B.
$$\left[Mn(CN)_6\right]^{4-}$$

C.
$$\left[Zn(NH_3)_{\scriptscriptstyle A}\right]^{2+}$$

D. All the above.

Answer: B

Watch Video Solution

- A. Square planar and diamagnetic
- B. Square planar and paramagnetic
- C. Tetrahedral and diamagnetic
- D. Tetrahedral and paramagnetic

Answer: B

View Text Solution

248. Which of the following are diamagnetic?

- A. $K_4igl[Fe(CN)_6igr]$
 - B. $K_3ig[Cr(CN)_6ig]$
 - $\mathsf{C.}\,K_3\big[Co(CN)_6\big]$

D.
$$K_2ig[Ni(CN)_4ig]$$

Answer: B

View Text Solution

249. Select the correct answer using the codes given below:

A. 1,2 and 4

B. 1,3 and 4

C. 2 and 3

D. 1 and 4.

Answer: A

View Text Solution

250. t_{2g} orbitals are proposed in

- A. Crystal field theory
- B. Pauling theory
- C. Lewis theory
- D. Sidwick theory

Answer: A

251. e_g orbitals consist of

A.
$$dx^2y^2$$
, dz^2

- B. dxy, dxz, dyz
- C. dxy, dxz, dz^2
- D. dz^2

Answer: C

View Text Solution

252. Which of the following atomic orbital of the metal cation are considered in CFT ?

A. s B. p C. d D. f **Answer: B View Text Solution** 253. Which of the following cannot be explained by CFT? A. Electrovalency B. Covalency

- C. Secondary valency
- D. Oxidation number

Answer: B

Watch Video Solution

254. Which is colourless of the following?

- A. Unhydrous $CuSO_4$
- B. $CuSO_4.5H_2O$
- $C. Cu_2(CH_3COO)_4. H_2O$
- D. $\left[Cu(NH_3)_4SO_4.4H_2O\right]$

Answer: A

255. The d electron congfiguration of Cr^{2+} , Mn^{2+} , Fe^{2+} and Ni^{2+} are $3d^4$, $3d^5$, $3d^6$ and $3d^8$ respectively. Which one of the following aqua complexes will exhibit the minimum paramagnetic behaviour?

$$(At.\ No.\ Cr=24, Mn=25, Fe=26, Ni=28)$$

- A. $\left[Mn(H_2O)_6\right]^{2+}$
- B. $\left[Fe(H_2O)_6\right]^{2+}$
- C. $\left[Ni(H_2O)_6
 ight]^{2+}$

D.
$$\left[Cr(H_2O)_6
ight]^{2+}$$

Answer: C

Watch Video Solution

256. Which of the following complex will not show colour?

- A. $\left[Cr(NH_3)_6\right]Cl_3$
- B. $[K_3[VF_6]$
- C. $\left[Sc(H_2O)_6
 ight]^{3+}$
- D. $\left[NiCl_4
 ight]^{2-}$

Answer: C

257. Ligand(s) with lone pair of elecftron(s) with vacant orbital to receive back the electrons donated to the metal is/are

- A. CO
- B. H_2O
- $\mathsf{C}.\,NH_3$
- D. $F^{\,-}$

258. The more stable complex among the following is

A.
$$\left[Fe(H_2O)_6
ight]^{2\,+}$$

B.
$$\left[Mn(H_2O)_6\right]^{2+}$$

C.
$$\left[Fe(H_2O)_6\right]^{3+}$$

D. None of these.

Answer: C

View Text Solution

259. The value of stability constant depends upon

- A. the charge on the central metal ion
- B. nature of the ligand
- C. chelation
- D. all of the above

Answer: D

View Text Solution

260. Which one of the following statements is incorrect

?

- A. Greater the stability constant of a complex ion, greater is its stability
- B. Greater the charge on the central metal ion, greater is the stability of the complex
- C. Greater the basic character of the ligand, the greater is the stability of the complex
- D. Complexes have low stability constants

Answer: D

View Text Solution

261. From the stability constants (hypothetical values), given below, predit which one is the strongest ligand?

 $Cu^{2+}+44H_2O\Leftrightarrow igl[Cu(H_2O)_4igr]^{2+}, K=9.5 imes 10^8$ B.

C.

 $Cu^{2+} + 4NH_3 \Leftrightarrow \left\lceil Cu(NH_3)_4
ight
ceil^{2+}, K = 4.5 imes 10^{11}$

 $Cu^{3+}+4CN^-\Leftrightarrow igl[Cu(CN)_4igr]^{2-}, K=2.0 imes 10^{27}$ D. $Cu^{2+}+2en\Leftrightarrow igl[Cu(en)_2igr]^{2+}, K=3.0 imes 10^{15}$

Answer: C

262. The stability constants of the complexes formed by a metal ion M^{2+} with $NH_3,\,CH^-,\,H_2O$ and en are of the order of $10^{11},\,10^{27},\,10^{15}$ and 10^{18} respectively.Then,

A. $CN^{\,-}$ is the strongest ligand

B. en is the strongest ligand

C. these values cannot predict the strength of the ligand

D. all the ligands are equally strong

Answer: A

View lext Solution

263. Cyanide process is used for the extraction of

A. Sodium

B. Copper

C. Gold

D. Calcium

Answer: C

View Text Solution

264. Which of the following complex will give a white precipitate on treatment with $BaCl_2$.solution ?

A.
$$\left[Cr(NH_3)_4SO_4\right]Cl$$

B.
$$\left[Co(NH_3)_4Cl_2\right]NO_2$$

C.
$$\left[Cr(NH_3)_4Cl_2\right]SO_4$$

D. Both a and b

Answer: C

View Text Solution

265. Complexometric titrations involve use of

B. $K_2Cr_2O_7$

C. $KMnO_4$

D. NaCl

Answer: A

View Text Solution

A. Linkage isomerism

B. Geometrical isomerism

266. $\left[Fe(NO_2)_3Cl_3
ight]$ and $\left[Fe(O-NO)_3Cl_3
ight]$ show

C. Optical isomerism

D. None of the above.

Answer: A

Watch Video Solution

267. The pair in which both species have same magnetic moment (spin only value) is .

A.
$$\left[Cr(H_2O)_6
ight]^{2+}\left[CoCl_4
ight]^{2-}$$

B.
$$[Cr(H_2O)_6]^{2+}, [Fe(H_2O)_6]^{2+}$$

C.
$$\left[Mn(H_2O)_6\right]^{2+}, \left[Cr(H_2O)_6\right]^{2+}$$

D.
$$\left[CoCl_4
ight]^{2-}, \left[Fe(H_2O)_6
ight]^{3+}$$

Answer: B

Watch Video Solution

268. Which of the following can participate in linkage isomerism?

A.
$$NO_2^-$$

 $\mathsf{B.}\,H_2NCH_2CH_2NH_2$

 $\mathsf{C}.\,H_2O$

D. NH_3

Answer: A

View Text Solution

269. The hardness of water is measured by

- A. Titration method
- B. Conductivity method
- C. EDTA method
- D. Distillation method

Answer: C

Watch Video Solution

270. When ammonia is added to AgCl, the following is

/are correct observations / statements ?

- A. AgCl dissolves
- B. AgCl becomes black
- C. A complex $\left[Ag(NH_3)_2
 ight]Cl$ is formed
- D. Both a and c

Answer: D

View Text Solution

271. Wht will be the theoretical value of magnetic moment (μ) when CN^- ligands join Fe^{3+} ion to yield complex

- $\mathsf{A.}\ 2.83\ \mathsf{BM}$
- $B.\,3.87~BM$
- $\mathsf{C.}\ 5.92\ \mathsf{BM}$
- $D.\,1.73\,BM$

Answer: D

Watch Video Solution

272. Which of the following complex ions is expected to absorb visible light?

A.
$$\left[Sc(H_2O)_3(NH_3)_3\right]^{3+}$$

B.
$$[Ti(en)_2(NH_3)_2]^{4+}$$

C.
$$\left[Cr(NH_3)_6\right]^{3+}$$

D.
$$\left[Zn(NH_3)_6\right]^{2+}$$

Answer: C

Watch Video Solution

273. The reaction $\left[Fe(CNS)_6\right]^{3-} o \left[FeF_6\right]^{3-}$ takes place with:

- A. Decrease in magnetic moment
- B. Increase in magnetic moment
- C. Decrease in co-ordination number
- D. Increase in co-ordination number

Answer: B

Watch Video Solution

274. An example for a double salt is

- A. Mohr's salt
- B. Potassium ferricyanide
- C. Cuprammonium sulphate
- D. Cobalthexammine chloride

Answer: A

Watch Video Solution

- **275.** Which of the following facts about the complex
- $\left[\mathit{Cr}(\mathit{NH}_3)_6 \right] \mathit{Cl}_3$ is wrong ?
 - A. The complex involves d^2sp^3 hybridisation and is
 - octahedral in shape

- B. The complex is paramagnetic
- C. The complex is an outer orbital complex
- D. The complex gives while precipitate with silver nitrate

Answer: C

Watch Video Solution

276. $K_{4}[Fe(CN)_{6}]$ is a

- A. Complex compound
- B. Double salt
- C. Neutral molecule

D. None of these.

Answer: A

Watch Video Solution

277. Some salts although containing two different metallic elements give test for one of them in solution. Such salts are:

- A. Normal salts
- B. Complex
- C. Double salt
- D. None of these.

Answer: B

Watch Video Solution

278. The EAN of iron in $\left[Fe(CN)_6\right]^{3-}$ is

A. 34

B. 35

C. 36

D. 37

Answer: B

Watch Video Solution

279. Coordination number of Ni in $\left[Ni(C_2O_4)_3
ight]^{4-}$ is:

A. 3

B. 5

C. 4

D. 6

Answer: D

Watch Video Solution

280. According to Lewis, the ligands are

A. Acidic in nature

- B. Basic nature
- C. Neither acidic nor basic
- D. Some are acidic and others are basic

Answer: B

View Text Solution

- **281.** According to the postulates of Werner for cooedination compounds
 - A. Primary valency is ionizable
 - B. Secondary valency is ionzable
 - C. Primary and secondary valency are nonionizable

D. Only pramary is non-ionizable

Answer: A

Watch Video Solution

282. In $igl[Co(NH_3)_6igr]Cl_3$,the number of covalent bonds is

A. 18

B. 6

C. 9

D. 3

Answer: B

Watch Video Solution

283. Chemical formula for iron (III) hexacyanoferrate (II) is

A.
$$Feig[Fe(CN)_6$$

B.
$$Fe_3igl[Fe(CN)_6igr]$$

$$\mathsf{C}.\,Fe_2ig[Fe(CN)_6ig]_4$$

D.
$$Fe_4igl[Fe(CN)_6igr]_3$$

Answer: D

View Text Solution

284. IUPAC name of $Na_3 \left[Co(NO_2)_6 \right]$ is

- A. Sodiumcobaltinitrate
- B. Sodiumhexanitritocobaltate (III)
- C. Sodiumhexanitrocobalt (III)
- D. Hexanitrosodium cobaltate (III)

Answer: B

Watch Video Solution

- A. anions linked by coordinate bonds to a central metal atom or ion
- B. cations linked by co-ordinate bonds to a central or ion
- C. ions or molecules linked by coordinate bonds to a central atom or ion
- D. only neutral molecules linked by coordinate bonds to a central metal or iron

Answer: C

286. The IUPAC name of $K_3 \left[Ir(C_2O_4)_3 \right]$ is

- A. Potassiumtrioxalatoiridium (III)
- B. Postassiumtrioxalatoiridate (II)
- C. Potassiumtris (oxalato) iridium (III)
- D. Potassiumtris (oxalato) iridate (III)

Answer: D

Watch Video Solution

287. In $\left[Cr(C_2O_4)_3\right]^{3-}$ the isomerism shown is

A. Optical

- B. Geometrical
- C. Linkage
- D. Ionization

Answer: A

View Text Solution

288. Which of the following complex will show geometrical as well as optical isomerism?

- A. $[Pt(NH_3)Cl_4]$
- $\mathsf{B.}\,Pt(NH_3)_2Cl_2$
- C. $\left[PT(en)_3\right]^{4+}$

D. $\left\lceil Pt(en)_2Cl_2 \right
ceil$

Answer: D

View Text Solution

289. A coordination compound of cobalt has the molecular, formula containing five ammonia molecules, one nitro group and two chlorine atoms for onew cobalt atom. One mole of this compounds three ions in an aqueous solution. On reacting this solution with excess of $AgNO_3$ solution, we get two moles of AgCI precipitate. The ionic formula for this complex would be

A.
$$\left \lceil Co(NH_3)_4 NO_2 Cl
ight
ceil \left \lceil (NH_3) Cl
ight
ceil$$

B. $\left[Co(NH_3)_5(NO_2)\right]Cl_2$

C. $\left[Co(NH_3)_5
ight]\left[\left(NO_2\right)_2Cl_2
ight]$

D. $\left[Co(NH_3)_5Cl
ight]\left[C1(NO)_2
ight]$

Answer: B

290. The number of isomers exhibited by

 $ig[Cr(NH_3)_3 Cl_3 ig]$ is

A. 5

B. 4

C. 3

D. 2

Answer: D

Watch Video Solution

291. The compounds $igl[PtCl_2(CH_3)_4igr]Br_2$ and

 $igl[PtBr_2(NH_3)_4igr]Cl_2$ constitutes a pair of

A. Linkage isomers

B. Ionization isomers

C. Co-ordination isomers

D. Optical isomers.

Answer: B

- **292.** A similarity between optical and geometrical isomerism is that
 - A. each gives equal number of isomers for a given compound
 - B. it in a compound one is present then so is the other
 - C. both are included in stereoisomerism
 - D. they have no similarity

Answer: C

Watch Video Solution

293. The type of isomerism present in intro pentaamine-chromium (III) chloride is:

- A. Ionization
- B. Optical
- C. Linkage
- D. Polymerization

Answer: C

294. The unpaired electrons in $Ni(CO)_4$ are

- A. Zero
- B. One
- C. Three
- D. Four

Answer: A

295. Which of the following species represent the example of d^2sp^3 hybridisation ?

A.
$$\left[Fe(CN)_6\right]^{3}$$

B.
$$\left[Ni(CN)_4
ight]^{2-}$$

C.
$$[FeF_6]^{3-}$$

D.
$$\left[Zn(NH_3)_{\scriptscriptstyle A}\right]^{2+}$$

Answer: A

View Text Solution

296. The correct structure of $Ni(CN)_5$ is

- A. Square pyramidal
- B. Square planer
 - C. Octahedral
- D. Tetrahedral

- **297.** Which one of the following is an example of octahedral complex?
 - A. $\left[Zn(NH_3)_4
 ight]^{2\,+}$
 - B. $\left[Cu(NH_3)_4
 ight]^{2+}$

C. $\left[MnCl_{6}
ight]^{4-}$

D. $\left\lceil Ni(CN)_4
ight
ceil^2$

Answer: C

View Text Solution

298. Which of the following is paramagnetic?

A. $\left[Ni(CO)_4\right]$

B. $\left[Fe(CN)_6\right]^{4-}$

C. $\left[Ni(CN)_4
ight]^{2-}$

D. $\left[Fe(H_2O)_6
ight]^{3+}$

Answer: D

View Text Solution

299. Which statement is incorrect?

- A. $\left[Zn(NH_3)_4
 ight]^{3+}$ Tetradral,paramagnetic
- B. $\left\lceil Ni(CN)_4 \right\rceil^{2-}$ Square planar, diamagnetic
- C. $\left[Ni(CO)_4\right]$ Tetrahedral, diamagnetic
- D. $\left[FeCl_4
 ight]^2$ Tetrahedral, paramagnetic

Answer: A

300. Consider the following complex $\left[Cu(CN)_4
ight]^{3-}$

.The co-ordination number and oxidation number of metal are respectively

- A. 4,1
- B. 1,4
- C. 4,2
- D. 4,4

Answer: A

301. Which of the following will exhibit maximum ionic conductivity?

- A. $[CoCl_33NH_3]$
- B. $[CoCl_34NH_3]$
- C. $[CoCl_35NH_3]$
- D. $[CoCl_36NH_3]$

Answer: D

View Text Solution

302. Which of the following complex is diamagnetic?

A.
$$igl[{Co(CN)}_6 igr]^{3\,-}$$

B.
$$igl[Mn(H_2O)_6igr]^{2+}$$

C.
$$\left[Fe(\ _(2)O)_6
ight]^{2+}$$

D.
$$\left[Fe(H_2O)_6
ight]^{3+}$$

View Text Solution

303. In the silver plating of copper, $K\big[Ag(CN)_2\big]$ is used instead of $AgNO_3$. The reason is

A. More voltage is requred

B. $Ag^{\,+}$ ions are completely removed from solution

C. A thin layer of Ag is formed on Cu

D. Less availability of Ag^+ ions,as Cu cannot displace from $\left[Ag(CN)_2
ight]^-$ ion

Answer: D

304. Cu^{2+} and Cd^{2+} are separated by

A. NH_3 ligand

B. CN ligand

C. H_2O ligand

D. Cl ligand

Answer: B

View Text Solution

305. Molar conductance of complex $M(NH_3)_5Br_4$ is

390 $ohm^{-1}mol^{-1}$. What is the structure of complex ?

- A. $\left[M(NH_3)_5Br\right]Br_3$
- B. $\left[M(NH_3)_5Br\right]Br_3$
- C. $\left[M(NH_3)_5Br_3\right]Br$
- D. $\left[M(NH_3)_5Br_4
 ight]$

Answer: A

306. Molar conductance of complex $Pt6NH_3Cl_4$ is zero ohm mol^{-1} . How many total ions are present in solution ?

- A. 0
- B. 2
- C. 4
- D. 5

Answer: A

307. Electronic configuration of Co in $\left[Co(\text{ox})_3\right]^{3-}$ is

A.
$$t_2g^4,\,eg^2$$

B.
$$t_2g^0$$
, eg^6

C.
$$t_2g^3$$
, eg^3

D.
$$t_2g^3$$
, eg^3

Answer: A

View Text Solution

308. How many unpaired electrons are present in octahedral complexes of d^9 ion when $\Delta_0>P.$

- A. 0
- B. 1
- C. 2
- D. 3

Answer: B

View Text Solution

309. How many unpaired electrons are present in tetrahedral complexes of d^5 ion when $\Delta t < P$

- **A.** 1
- B. 3

C. 4

D. 5

Answer: D

View Text Solution

310. On the basis of CFT, what is the electronic configuration of Co^{3+} ion in an octahedral complex for which $\Delta_0>P$?

A.
$$t_{\,{\scriptscriptstyle \circ}}\,g^4,\,eg^1$$

B.
$$t_2g^6$$
, eg^0

C.
$$t_2g^5eg^2$$

D. $t_2g^1,\,eg^6$

Answer: B

View Text Solution

311. Which of the following complex has large value of

$$\Delta_0$$

A.
$$\left[Co(CN)_6
ight]^{3}$$

B.
$$\left[Co(NH_3)_6\right]^{3+}$$

C.
$$\left[Co(F)_6\right]^{3-}$$

D.
$$\left[Co(Cl)_6\right]^{3-}$$

View Text Solution

312. Which of the following complex give precipitate with barium nitrate?

A.
$$\left[Co(NH_3)_5SO_4\right]NO_2$$

B.
$$\left[Co(NH_3)_5SO_4\right]Br$$

C.
$$\left[Pt(NH_3)_4Cl_2\right]Br_2$$

D.
$$\left[Co(NH_3)_5NO_2\right]SO_4$$

Answer: D

313. Complex of formula $CrCl_36H_2O$ when heated with conc. H_2SO_4 three moles of water are lost. The structure of the complex is

A.
$$\left[Cr(H_2O)_6\right]Cl_3$$

B.
$$[Cr(H_2O)_5Cl]Cl_2H_2O$$

C.
$$\left[Cr(H_2O)_4Cl_2\right]Cl2H_2O$$

D.
$$\left[Cr(H_2O)_3\right]Cl_33H_2O$$

Answer: D

314. How many geometrical isomers of the compound

 $[Pt(NH_3)(Br)(Cl)(Py)]$ will show optical isomerism?

- A. 1
- B. 2
- C. 3
- D. 4

Answer: C

Watch Video Solution

315. Which of the following complex does not show linkage isomerism?

A. $\left[Co(en)_3\right]Cl_3$

B. $\left[Co(NH_3)_5NO_2\right]Cl_2$

C. $[Pt(NH_3)_3SCN]$

D. $\left[Co(NH_3)_5 OCN
ight]^{2+}$

Answer: A

View Text Solution

316. Cobalt (III) chloride forms several octahedral complexes with amonia. Which of the following will not give test for chloride ions with silver nitrate at 25° C?

A. $CoCl_33NH_3$

- B. $CoCl_34NH_3$
- C. $CoCl_35NH_3$
- D. $CoCl_36NH_3$

Watch Video Solution

317. Which of these statements about $\left[Co(CN)_6\right]^{3-}$ is true?

A. $\left[Co(CN)_6
ight]^{3-}$ has no unpaired electrons and will be in a low spin configuration

- B. $\left[Co(CN)_6\right]^{3-}$ has four unpaired electrons and will be in low spin configuration.
- C. $\left[Co(CN)_6\right]^{3-}$ has four unpaired electrons and will be in high spin configuration.
- D. $\left[Co(CN)_6\right]^{3-}$ has no unpaired electrons and will be in high spin configuration.

