©゙doubtnut

CHEMISTRY

BOOKS - NIKITA CHEMISTRY (HINGLISH)

SOLUTION \& COLLIGATIVE PROPERTIES

Multiple Choice Questions

1. A solution is
A. a mixture of two compounds
B. a homogeneous mixture of two compounds
C. a homogeneous mixture of two compounds
D. all the above
2. Which of the following statements is incorrect about a solution ?
A. A solution is always a homogeneous mixture.
B. The solute particles in a solution have size less than 10 A .
C. Brass connot be called a solution.
D. An ionic compound dissolves in water if the hydration energy is greater than lattice energy.

Answer: C

- View Text Solution

3. Consider the following statements :
4. An alloy is a mixture of two or more metals
5. An alloy is a mixture of a metal or metals with a non metal

Which of the statement given above is/are correct ?
A. a metal and a non-metal
B. two non-metals
C. two metals
D. two or more metals

Answer: D

D Watch Video Solution

4. Out of moalrity (M), molality (m), formality (F) and mole fraction (x) those independent of temperature are:
A. M, m
B. F, X
C. m, x
D. M,F.

Answer: D

5. Ionic compounds are readily soluble is polar solvents because
A. they have high solubility in water
B. water molecules is polar in nature
C. ionic crystals are easily broken down in the polar solvents
D. of strong electrostatic forces of attraction between ions of crystals and the polar solvent molecules

Answer: D

- Watch Video Solution

6. Solubility curve of $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ in water with temperature is given

A. Solution process is exothermic
B. Solution proscess is exothermic til $34^{\circ} \mathrm{C}$ and endothermic after 34°
C. Solution process is endothermic till $34^{\circ} \mathrm{C}$ and exothermic thereafter
D. Solution process is endothermic.

Answer: C

- View Text Solution

7. Two solutions A and B have same mole fractions of the solute. If $1 d m^{3}$ of A is mixed with $2 d m^{3}$ of B , the mole fraction of the solute in the mixture would
A. decrease
B. increase
C. ramain unchanged
D. change

Answer: C

- View Text Solution

8. $\mathrm{CuSo} \mathrm{C}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ is a
A. solution of a solid in a liquid.
B. solution of liquid in a solid
C. salt only and cannot be called a solution
D. coordination compound of copper with water molecules as the ligands.

Answer: B

- View Text Solution

9. Which one of the following statements is true for a solution ?
A. Molarity is always equal to molality
B. Molarity is always less than molality
C. Molarity is always greater than molality
D. none of these

Answer: D

D View Text Solution

10. The plot of partial vapour vapour pressure of solvent verses its mole fraction in the solution of a constant temp.is
A. a straight line
B. a straight line parallel to one axis
C. a straight line passing through origin
D. none of the above

Answer: C

- View Text Solution

11. The sum of mole fractions of A, B and C in a solution containing 0.1 mole each of A, B and C is:
A. 0.1
B. 0.3
C. 1
D. $1 / 3$.

Answer: C

- View Text Solution

12. Which of the following stsrement is corrent about steel (S) and tungsten carbide (WC)?
A. S is a substitutional solid while WC is an interstitial solid solition
B. S is an interstitial solid while WC is an substitutional solid solution
C. Both are interstitial solid solutions
D. Both are substitutional solid solutions

Answer: B

- View Text Solution

13. The vapour pressuress of pure solvent and solution are 120 mm and 108 mm respectively. The mole fraction of the solvent in the solution is
A. 0.1
B. 0.9
C. $120 / 108$
D. 1.08

Answer: B

- View Text Solution

14. The vapour pressure of solution and pure solvent P and P_{0} resp. If $\frac{P}{P_{0}}$ is 0.15 . Then the mole fraction of the solute in the solution is
A. 0.85
B. 0.15
C. $1 / 0.15$
D. $1 / 0.85$

Answer: A

- View Text Solution

15. Increasing the temperature of an aqueous solution wil case
A. decrease in molality
B. decrease in molarity
C. decrease in mole fraction
D. decrease in \% w/w

Answer: B

- Watch Video Solution

16. Which of the following represents a metastable system?
A. A dilute solution
B. An unsaturated solution
C. A saturated solution
D. A supersaturated solution

Answer: D

- Watch Video Solution

17. In which of the following colloidal solution dispersed phase is liquid while dispersion medium is gas?
A. dry air
B. aerated water
C. amalgam
D. moist air

Answer: D

- Watch Video Solution

18. Out of molarity (M), molality (m), normality (N) and mole fraction (x), those independent of temperature are
A. M.m
B. M, N
C. m, x
D. N, x

Answer: C

- Watch Video Solution

19. Which of the following statement is not correct ?
A. 1 ppm of fluoride ions in water pravents tooth decay
B. 1.5ppm of fluoride ions in water causes teeth to become mottled
C. Higgher concentration of fluoride ions acts as a poison for rats
D. Intravenous injectins should have lower ionic conentration than that of our blood plasma

Answer: D

- View Text Solution

20. A solid dissolves in water if
A. lattice energy is greater than hydration energy
B. lattice energy is lass than hydration energy
C. lattice energy is equal to hydration energy
D. dissolution is exothermic.

Answer: B

21. Which one of the following statements is incorrect ?
A. Normality of a solution depends on temperature
B. Molality of a solution depends on temperature
C. Molarity of a solution depends on temeprature
D. Molality of a solution relates to mass of solvent and moles of solute

Answer: B

- View Text Solution

22. The factor $\left(\Delta T_{f} / K_{f}\right)$ represents
A. Molarity
B. Formality
C. Normality
D. Molality

Answer: D

- Watch Video Solution

23. lodine is more soluble in alcohol than in carbon tetrachloride because
A. iodine and alcohol both are non-polar
B. randomness factor is greater in alcohol than in CCl_{4}
C. dissolution of iodine in alcohol is exothermic whereas it is endothermic
D. dissolution of both is endothermic but heat of dissolution in alcohol is less than in CCI_{4}

Answer: D

24. An example of a solution having liquid in solid is :
A. Moist air
B. Dry air
C. Au-Hg
D. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}$

Answer: C

- View Text Solution

25. Two solutions of KNO_{3} and $\mathrm{CH}_{3} \mathrm{COOH}$ are prepared separately. The molarity of both is $0.1 M$ and osmotic pressure is P_{1} and P_{2}, respectively.

The correct relationship between the osmotic pressure is
A. $P_{2}<P_{1}$
B. $P_{1}=P_{2}$
C. $P_{1}>P_{2}$
D. $\frac{P_{1}}{P_{1}+P_{2}}=\frac{P_{2}}{P_{1}+P_{2}}$

Answer: C

- Watch Video Solution

26. For an aqueous solution of the same solute, in terms of concentration,
A. $1 \mathrm{M}=1 \mathrm{~m}$
B. 1 Mgt 1 m
C. 1 mgt 1 M
D. Any of these is possible

Answer: B

- View Text Solution

27. If p° and p_{a} are the vapour pressures of the solvent and solution respectively and n_{1} and n_{2} are the mole fractions of solvent and solute respectively. Then,
A. $P=P_{0} n_{1}$
B. $P=P_{0} n_{2}$
C. $P_{0}=P n_{2}$
D. $P=P_{0}\left(\frac{n_{1}}{n_{2}}\right)$

Answer: A

- Watch Video Solution

28. Solubility of a gas in a liquid solvent increases with
A. increase of pressure and increase of temperature
B. decrease of pressure and increase of temperature
C. increase of pressure and decrease of temperature
D. decrease of pressure and decrease of temperature

Answer: C

- Watch Video Solution

29. Suger is soluble in water due to
A. High solvation energy
B. Lonic character of sugar
C. High dipole moment of water
D. Hydrogen bond formation with water.

Answer: D

- View Text Solution

30. An example of solid solution is :
A. Amalgem
B. Steel
C. Na in NH_{3}
D. Dust in are

Answer: B

D View Text Solution

31. If mole fraction of the solvent in a solution decreases than:
A. vapour pressure of solution increases
B. boiling point decreases
C. osmotic point decreases
D. all are correct

Answer: C

32. Which of the following is incorrect?
A. Mass of the gas dissolved is inversely proportional to its pressure
B. Mass of the gas dissolved is inversely proportional to temperature
C. A soda-water bottle contains oxygen gas dissolved under pressure
D. permanent gases are less soluble than temperature gasses.

Answer: C

- View Text Solution

33. Which one of the following is not a colligative property?
A. Refractive index
B. Osmotic pressure
C. Lowering of vapour pressure
D. Elevation in boiling point

Answer: A

- Watch Video Solution

34. HENRY'S LAW

A. $m=K_{H} P_{A}$
B. $x_{A}=K_{H} P_{A}$
C. $P_{A}=K_{H} x_{A}$
D. All of these

Answer: D
35. The use of common salts, e.g., NaCl or CaCl_{2} anhydrous, is made to clear snow on the rods. This causes:
A. a lowering in f. pt.of water
B. a lowering in m. pt. of ice
C. ice melts at the temperature of atmosphere present at that time
D. all

Answer: A

- Watch Video Solution

36. Which of the following is correct for a solution showing positive deviations from Raoult's law?
A. $\Delta V=+v e, \Delta H=+v e$
B. $\Delta V=-v e, \Delta H=-v e$
C. $\Delta V=+v e, \Delta H=-v e$
D. $\Delta V=-v e, \Delta H=+v e$.

Answer: A

- Watch Video Solution

37. A liquid is kept in a closed vessel. If a glass plate (negligible mass) with a small hole is kept of top the liquid surface, then the vapour pressure of the liquid in the vessel is :
A. more than what would be if the glass plate were removed
B. same as what would be if the glass plate were removed
C. lass than what would be if the glass plate were removed
D. cannot be predicted

Answer: D

38.5 mL of acetone is mixed with 100 mL of $\mathrm{H}_{2} \mathrm{O}$. The vapour pressure of water above the solution is
A. equal to the vapour pressure of pure water
B. equal to the vapour pressure of the solution
C. less than the vapour prssure of pure water
D. more than tha vapour pressure of pure water

Answer: C

D View Text Solution

39. In which of the following molecular weight determination methods, sensitivity of the measurements decreases as the molecular weight of the solute increases?
A. elevation of boiling point /depression in f. pt.
B. viscosity
C. osmotic pressure
D. none

Answer: A

D Watch Video Solution

40. When a crystal of the solute is introduced into a super saturated solution of the solute
A. the solute dissolves
B. the excess solute crystallises out
C. the solution becomes unsaturated
D. the solution remains super saturated

Answer: B

D View Text Solution

41. For an ideal binary liquid solution with $p_{A}^{\circ}>p_{B}^{\circ}$ which of the following relations between x_{A} (mole fraction of A in liquid phase) and y_{A} (mole fraction of A in vapour phase) is correctly represented?
A. $x_{A}=y_{A}$
B. $x_{A}>y_{A}$
C. x_{A} It y_{A}
D. x_{A} and y_{A} cannot be correlated with each other

Answer: C

- Watch Video Solution

42. V.P. of a solution containing non-volatile solute is
A. more than the vapour pressure of a solvent
B. lass that the vapour pressure of solvent
C. equal to the vapour pressure of solvent
D. none

Answer: B

D View Text Solution

43. The relative lowering of vapour pressure is equal to the mole fraction of the non-volatile solute. This statement was given by
A. Raoult
B. Henry
C. Joule
D. Dalton

Answer: A

44. An aqueous solution of methanol in water has vapour pressure:
A. equal to that of water
B. equal to that of methanol
C. more than that of water
D. less than that of water

Answer: C

- Watch Video Solution

45. When a substance is dissolved in a solvent the vapour pressure of solvent decreases. This brings:
A. an increase in b.bt. Of the solution
B. a decrease in b.pt. of a solution
C. an increase in f.pt. of the solvent
D. none

Answer: A

D Watch Video Solution

46. By adding water to the solution, its
A. concentration remains same
B. concentration increases
C. ionisation decreases
D. concentration decreases

Answer: D

- View Text Solution

47. The lowering of vapour pressure of the solvent takes place
A. only when the solute is non-volatile
B. only when the solute is volatile
C. only when the solute is a non-electrolyte
D. in all the above three cases.

Answer: D

- View Text Solution

48. Two solutions have different osmotic pressures. The solution of higher osmotic pressure is called:
A. Isotonic solution
B. Hypertonic solution
C. Hypotonic solution
D. None

Answer: C

- Watch Video Solution

49. Which one of the following is an expression of Raoult's law if P_{A} is the partial pressure of the solvent in a solution, P_{A}^{0} is the partial pressure of the pure solvent and if x_{A} and x_{B} are the mole fraction of the solute and the solvent repectively?
A. $P_{A}=P_{A}^{\circ} X_{A}$
B. $P_{A}=P_{A}^{\circ} X_{A}\left(1 / X_{B}\right)$
C. $P_{A}=P_{A}^{\circ} X_{B}$
D. $P_{A}^{\circ}=P\left(X_{A} / X_{B}\right)$

Answer: C

- View Text Solution

50. The pressure under which liquid and vapour can co-exist at equilibrium is called the
A. normal vapour pressure
B. saturated vapour pressure
C. real vapour pressure
D. limiting of vapour pressure

Answer: B

- Watch Video Solution

51. The relative lowering of vapour pressure in case of dilute solution is directly proportional to:
A. molality
B. molarity
C. mole fraction
D. all

Answer: D

52. Existance of equatic life is an application of
A. Henry's law
B. Raoult's law
C. Dalton's law
D. Boyle's law

Answer: A

- View Text Solution

53. Two solutions have different osmotic pressures. The solution of higher osmotic pressure is called:
A. Isotonic solution
B. Hypertonic solution
C. Hypotonic solution
D. None

Answer: B

- Watch Video Solution

54. When an ideal binary solution is in equilibrium with its vapour, molar ratio of the two components in the solution and in the vapur phase is:
A. same
B. different
C. may or may not be same depending upon volatile nature of the two components
D. all

Answer: C

55. If Raoult's law is obeyed, the vapour pressure of the solvent in a solution is directly proportional to
A. (1-mole fraction of solute)
B. mole fraction of the solvent and solute
C. the volume of the solution
D. the volume of the solution

Answer: A

- Watch Video Solution

56. The relative lowering of vapour pressure is equal to the ratio between the number of
A. solute molecules to the solvent molecules
B. solute molecules to the total molecules in the solution
C. solvent molecules to the total molecules in the solution
D. solvent molecules to the total molecules ions of the solute.

Answer: B

- Watch Video Solution

57. For determination of molecular mass, Raoult's law is applicable only to
A. dilute solutions of electrolytes
B. concentration solutions of electrolytes
C. dilute solutions of non-electrolytes
D. concentration dolutions of non-electrolytes

Answer: C

- Watch Video Solution

58. 12 g of urea is dissolved in 1 litre of water a 68.4 g of sucrose is dissolved in 1 litre of water The lowering of vapour pressure of first case is
A. equal to second
B. greater than second
C. less than second
D. double that of second

Answer: A

- View Text Solution

59. The solubility of a gas in liquid at a temperature is directly proportional to its
A. Density
B. Melting point
C. Boiling point
D. pressure

Answer: D

- View Text Solution

60. The vapour pressure of water depends upon:
A. surface area of container
B. volume of container
C. temperature
D. all

Answer: C

61. Dust is an example of-
A. solid solution
B. liquid solution
C. gas solution
D. none

Answer: C

- View Text Solution

62. The molal elevation/depression constant depends on
A. nature of solvent
B. nature of solute
C. temperature
D. Delta H solution

- View Text Solution

63. Which of the following statement is correct?
A. Lowering of vapour pressure takes place only in ideal solutions.
B. Lowering of vapour pressure does not depend upon the solvent at a given concentration of the solute.
C. Lowering of vapour pressure depends upon the nature of the solute.
D. Relative lowering of vapour pressure does not depend upon the solvent at a given concentration of solute.

Answer: D

D View Text Solution

64. For a dilute solution, Raoult's law states that
A. the lowering of vapour pressure is equal to the mole fraction of solute
B. the relative lowering of vapour pressure is equal to the mole fraction of solute
C. the relative lowering of vapour pressure is proportional to the amount of solute in solution
D. the vapour pressure of the solution is equal to the mole fraction of solvent

Answer: B

- Watch Video Solution

65. Which is not a colligative property?
A. A tmospheric pressure
B. Lowering of vapour pressure
C. osmotic pressure
D. Elevation of freezing point.

Answer: A

- Watch Video Solution

66. An example of colligative property is
A. Freezing point
B. Boiling point
C. Vapour pressure
D. Osmotic point

Answer: D

67. The colligative properties of a solution depend on
A. number of solute particles present in it
B. chemical nature of the solute particles present in it
C. nature of the solvent used
D. none

Answer: A

- Watch Video Solution

68. Which method cannot be used to find out the molecular mass of nonvolatile solute
A. Victor Mayer's method
B. Osmotic pressure method
C. Cryoscopic method
D. Ebullioscopic method

D View Text Solution

69. The vapour pressure of a dilute solution of a solute is NOT influenced by
A. temperature of solution
B. melting point of solute
C. mole fraction of solute
D. degree of dissociation of solute

Answer: B

- View Text Solution

70. The vapour pressure ($V P$) of a dilute solution of non-volatile solute is P and the $V P$ of a pure solvent is P°. The lowering of the $V P$ is
A. $+v e$
B. $-v e$
C. $\frac{P}{P_{0}}$
D. $\frac{P_{0}}{P}$

Answer: A

D Watch Video Solution

71. Alcohol has....vapour pressure than water at the same temperature
A. more
B. less
C. same
D. none

Answer: A

72. V.P. of pure solvent water is Than 2 M CuSO 44 solution.
A. lower
B. higher
C. same
D. can not be said

Answer: B

- View Text Solution

73. Which solution will show the maximum vapour pressure at 300 K
A. 1 M NaCl
B. $1 \mathrm{MCaCl}_{2}$
C. $1 \mathrm{MCH}_{3} \mathrm{COOH}$
D. $1 M C_{12} H_{22} O_{11}$

Answer: D

- View Text Solution

74. If P° and P_{s}, the V.P. of solvent and solution respectively and N_{1} and N_{2} are the mole fraction
A. $\frac{P_{o}-p_{s}}{P_{o}}=\frac{N_{1}}{\left(N_{1}+N_{2}\right)}$
B. $\frac{\left(P_{o-} P_{s}\right)}{P_{s}}=\frac{N_{1}}{N_{2}}$
C. $\frac{\left(P_{o-} P_{s}\right)}{P_{s}}=\frac{N_{1}}{N_{2}}$
D. All

Answer: D

75. Which of the following will have the highest F.P. at one atm pressure?
A. 0.1 M NaCl solution
B. 0.1 M sugar solution
C. $0.1 \mathrm{MBaCl} l_{2}$ solution
D. $0.1 \mathrm{MFeCl}_{3}$ solution.

Answer: B

- View Text Solution

76. A liquid is in equilibrium with its vapour at its boiling point. On an average the molecules in the two phases have equal :
A. potential energy
B. total energy
C. kinetic energy
D. intermolecular forces

Answer: C

- Watch Video Solution

77. If the temperature increases from $0^{\circ} C$ to $50^{\circ} \mathrm{C}$ at atmospheric pressure, which of the following processes is expected to take place more in case of liquids
A. fusion
B. vaporisation
C. solubilization
D. none

Answer: B

78. The lubricating action of an oil is more if it possess:
A. High vapour pressure
B. low vapour pressure
C. high surface tension
D. high density

Answer: B

- Watch Video Solution

79. In a solution if the amount of solvent is doubled, keeping the amount of solutes same, the share of solute in the solution
A. become half
B. would decrease but not a half
C. remain unchanged
D. change unpredictably

Answer: B

D View Text Solution

80. Which of the following plots does not represent the behaviour of an ideal binary liquid solution?
A. Plot of P_{A} versus x_{A}) (mole fraction of A in liquid phase) is linear
B. Plot of P_{B} versus x_{B} is linear
C. Plot of $P_{\text {total }}$ versus $x_{A}\left(\right.$ or $\left.x_{B}\right)$ is linear
D. Plot of $P_{\text {total }}$ versus x_{A} is non -linear.

Answer: D

- Watch Video Solution

81. In very dilute solution the no. of moles of solvent are 10 time more than that of the solute. The V.P. of the solution would be (V.P. of pure
solvent $=80 \mathrm{~mm}$)
A. 80 mm
B. 88 mm
C. 72 mm
D. 92 mm

Answer: C

- View Text Solution

82. When a liquid is heated its vapour pressure
A. continuously increases
B. continuously decreases
C. increase and becomes constant at b.pt of liquid
D. records no predictable change

Answer: C

- View Text Solution

83. 0.1 M NaCl and $0.1 \mathrm{~m} \mathrm{CH} \mathrm{C}_{3} \mathrm{COOH}$ are found to have osmotic pressures of P_{1} and P_{2} respectively then what is the correct ststement ?
A. $P_{1}>P_{2}$
B. P_{1} if P_{2}
C. $P_{1} \operatorname{lt} P_{2}$
D. $P_{1}=P_{2}=0 \mathrm{~atm}$.

Answer: A

- View Text Solution

84. Among (P) water (Q) ethanol and (R) mercury the correct order of vapour pressure at room temp is
B. QgtPgtR
C. RgtQgtP
D. QgtRgtP

Answer: B

- View Text Solution

85. In a solution of the miscible volatile liquids A and B, the plots of their partical V.P. V_{s} their mole fractions is given by (Assume, V.P. of pure Agt V.P. of pure B)

$x_{\mathrm{A}}=1$ (Mole $x_{\mathrm{A}}=0$
A. $x_{B}=0$ (fraction $x_{\mathrm{B}}=1$

d)

D. $x_{\mathrm{B}}=0$ fraction $x_{\mathrm{B}}=1$

Answer: A

- View Text Solution

86. Which aqueous will have the highest boiling point?
A. 1\% glucose
B. $1 \% \mathrm{~N}_{a} \mathrm{Cl}$
C. 1\% sucrose
D. $1 \% C_{a} C l_{2}$
87. At a boiling point of pure solvent, solution will not boil because
A. V.P. of solvent is less than that of solution
B. V.P. of solvent is equal to that of solution
C. V.P. of solution is less than that of solution
D. all

Answer: C

- View Text Solution

88. The molal elevation constant is the ratio of the elevation in boiling point to :
A. molarity
B. molality
C. mole fraction of solute
D. mole fraction of solvent.

Answer: B

- Watch Video Solution

89. The elevation in boiling point for one molal solution of a solute in a solvent is called
A. Cryoscopic constant
B. Boiling point constant
C. Molal Ebullioscopic constant
D. None

Answer: C

90. Boiling point of a solution is independent of
A. amount of solution
B. pressure
C. nature of solvent
D. concentration of solution

Answer: A

- View Text Solution

91. Which solution will show maximum elevation in b.pt:
A. 0.1 M KCl
B. $0.1 \mathrm{M} B a C I_{2}$
C. $0.1 \mathrm{M} \mathrm{FeCl}_{3}$
D. $0.1 \mathrm{MFe} e_{2}\left(\mathrm{SO}_{4}\right)_{3}$

D Watch Video Solution

92. Define molal elevation constant or ebullioscopic constant.
A. ${ }^{\circ} C / m$
B. K / m
C. $\mathrm{Kkg} \mathrm{mol}{ }^{-1}$
D. $\mathrm{K} \mathrm{mol} \mathrm{kg}^{-1}$

Answer: D

- Watch Video Solution

93. At the higher altitudes the boiling point of water lowers because
A. atmospheric pressure is low
B. temperature is low
C. atmospheric pressure is high
D. none

Answer: A

- Watch Video Solution

94. A teacher one day pointed out to his students the peculiar fact that water is a unique liquid which freezes exactly at $0^{\circ} C$.and boils exactly at $100^{\circ} \mathrm{C}$. He asked the students to find the correct statement based on this fact.
A. water dissolves anything however sparingly the dissolution may be
B. water is a polar molecule
C. boiling and freezing temperatures of water were used to define a temperature scale
D. liquid water is denser than ice

Answer: C

- Watch Video Solution

95. Boiling point of water is defined as the temperature at which:
A. vapour pressure of water is equal to that of one atmospheric pressure
B. bubbles are formed
C. steam comes out
D. none

Answer: A

D Watch Video Solution

96. If the mass of a nonvolatile, nonelectrolyte dissolved in a solvent is doubled but that of solvent is quadrupled, the elevation in boiling point
of the solvent will be
A. doubled
B. halved
C. four times
D. unchanged

Answer: B

- Watch Video Solution

97. The melting point of most of the solid substances increases with an increase of pressure acting on them . However, ice melts at a temperature lower than its usual melting point when the pressure increases. This is because :
A. ice is lass denser than water
B. pressure generates heat
C. the bonds break under pressure
D. ice is not a true solid

Answer: A

- Watch Video Solution

98. The correct relationship between the boiling points of very dilute solutions of $\mathrm{AlCl}_{3}\left(t_{1}\right)$ and $\mathrm{CaCl}_{2}\left(t_{2}\right)$, having the same molar concentration, is
A. $t_{1}=t_{2}$
B. $t_{1}>t_{2}$
C. $t_{2}>t_{1}$
D. $t_{2} \geq t_{1}$

Answer: B
99. The highest temperature at which vapour pressure of a liquid can be measured is
A. boiling point of liquid
B. critical temperature $\left(T_{c}\right)$
C. critical solution temperature
D. inversion temperature

Answer: B

- View Text Solution

100. The elevation of boiling point method is used for the determination of molecular mass of
A. non-volatile and soluble solute
B. non-volatile and insoluble solute
C. volatile and soluble solute
D. volatile and insoluble solute

Answer: A

- View Text Solution

101. Molal elevation constant.
A. the elevation in b.pt. which would be produced by dissolving one mole of solute in 100 g of solvent
B. the elevation of b.pt. which would be produced by dissolving 1 mole solute in 10 g of solvent
C. elevation in b.pt. which would be produced by dissolving 1 mole of solute in 1000 g of solvent
D. none

Answer: C

102.

The
boiling
point
$\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ are $80^{\circ} \mathrm{C}, 65^{\circ} \mathrm{C}, 184^{\circ} \mathrm{C}$ and $212^{\circ} \mathrm{C}$
respectively. Which will show highest vapour pressure at room temperature :
A. $C_{6} H_{6}$
B. $\mathrm{CH}_{3} \mathrm{OH}$
C. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
D. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$

Answer: B

- Watch Video Solution

103. A pressure cooker reduces cooking time because
A. heat is more evenly distributed
B. b.pt. of water inside the cooker is increased
C. the high pressure tenderiese the food
D. all

Answer: B

- Watch Video Solution

104. Water will boil at $101.5^{\circ} \mathrm{C}$ at which of the following pressure:
A. 76 cm of Hg
B. 76 mm of Hg
C. $\mathrm{gt76} \mathrm{~cm}$ of Hg
D. It76 cm of Hg
105. Which characterises the weak intermolecular forces of attraction in a liquid?
A. high boiling point
B. high vapour pressure
C. high critical temperature
D. high heat of vaporisation

Answer: B

- Watch Video Solution

106. Addition of common salt to a sample of water will
A. increase its freezing point and increase the boiling point
B. decrease its freezing point and increase the boiling point
C. increase both the boiling and the freezing point
D. decrease both the boiling and the freezing point.

D View Text Solution

107. Equimolal solutions will have the same boiling point, provided they do not show
A. electrolysis
B. association
C. dissociation
D. association or dissociation

Answer: D

- View Text Solution

108. An aqueous solution is heated until it begins to boil. The atmospheric pressure is 760 mm of Hg . The boiling temperature will be
A. $100^{\circ} \mathrm{C}$
B. $>100^{\circ} \mathrm{C}$
C. $<100^{\circ} \mathrm{C}$
D. None

Answer: B

- View Text Solution

109. When a substance is dissolved in a solvent the vapour pressure of solvent decreases. This brings:
A. an increase in the b.p. of the solution
B. a decrease in the b.p. of the solvent
C. The solution having a higher freezing point than the solvent
D. the solution having a lower osmotic pressure than the solvent.

- Watch Video Solution

110. On the basic intermolecular force predict the correct order of decreasing bolling point of the compound ?
A. $\mathrm{CH}_{3} \mathrm{OH}>\mathrm{H}_{2}>\mathrm{CH}_{4}$
B. $\mathrm{CH}_{3} \mathrm{OH}>\mathrm{CH}_{4}>\mathrm{H}_{2}$
C. $\mathrm{CH}_{4}>\mathrm{CH}_{3} \mathrm{OH}>\mathrm{H}_{2}$
D. $\mathrm{H}_{2}>\mathrm{CH}_{4}>\mathrm{CH}_{3} \mathrm{OH}$

Answer: B

- Watch Video Solution

111. Elevation of boiling point is directly proportional to
A. molality of the solution
B. depression of freezing point in the same solution
C. both of these
D. none of these

Answer: C

- View Text Solution

112. To determine the elevation of boiling point more accurately. The solvent area should take
A. higher value of K_{b}
B. lower value of K_{b}
C. high molar mass
D. low molar mass

Answer: A

- View Text Solution

113. The molecular mass of a solute cannot be calculated by one of the following relations
A. $M_{2}=\frac{K_{b} \times 1000 \times w_{2}}{\Delta T_{b} \times w_{1}}$
B. $M_{2}=\frac{w_{2} \times R T}{\pi V}$
C. $M_{2}=\frac{P_{0}^{1} \times W_{2} \times M_{1}}{\left(P_{0}^{1}-P\right) \times W_{1}}$
D. $M_{2}=\frac{\Delta T_{b}}{K_{b}} \times 1000 \frac{W_{2}}{W_{1}}$

Answer: D

- Watch Video Solution

114. Assuming complete ionization, which one of the following aqueous solutions will have maxmum boiling point ?
A. $0.2 m N a C I$
B. $0.2 m C a C l_{2}$
C. $0.1 \mathrm{mBaCl}{ }_{2}$
D. 0.1 mFeCI 3

Answer: B

- View Text Solution

115. Some statements are given below
for the same solution $\Delta T_{b}=\Delta T_{f}$
5% solution of urea will have more osmotic pressure than 10% solution of glucose
elevation of B. pt. is due to increase in vapour pressure of solution on adding solute
depression of F.pt. is due to decrease in vapoure pressure of solution on adding solute. Among the above
A. B and D are true
B. $A, B \& D$ are false
C. B and C are false
D. only D is true

Answer: D

- View Text Solution

116. Ebullioscopy is concerned with
A. osmotic pressure
B. lowering of vapour pressure
C. elevation of B. pt
D. depression of F.pt

Answer: C

117. The temperature at which the vapour pressure of a liquid becomes equals to the external (atmospheric) pressure is its
A. b.pt.
B. f.pt.
C. sublimation point
D. none

Answer: B

- Watch Video Solution

118. To from a supersaturated solution of salt one must:
A. cool slowly
B. cool rapidly
C. add some salt to cold solution
D. use a clear vessel

Answer: B

D Watch Video Solution

119. The freezing point of 1% aqueous solution of calcuim nitrate will be
A. $0^{\circ} C$
B. Above $0^{\circ} C$
C. $1^{\circ} C$
D. $B e l o w 0^{\circ} C$

Answer: D

D Watch Video Solution

120. The molal depression constant depends upon
A. nature of the solute]
B. nature of the solvent
C. heat of solution of the solute in the solvent
D. vapour pressure of the solution.

Answer: B

D Watch Video Solution

121. n moles of a non volatile solute are dissolved in wg of water. If K_{f} is the molal depression constant of water, the freezing point of the solution will be
A. $\frac{1000 K_{f} W_{2}}{W_{1}}$
B. $\frac{-1000 K_{f} n}{W_{1}}$
C. $\frac{1000 K_{f} W_{1}}{n}$
D. $\frac{-1000 K_{f} W_{1}}{n}$

D Watch Video Solution

122. The depression in freezing point is maximum if the solvent used is
A. camphor
B. naphthalene
C. benzene
D. water

Answer: A

- Watch Video Solution

123. During depression of freezing point in a solution, the following are in equilibrium:
A. liquid solvent-solid solvent
B. liquid solvent - solid solute
C. liquid solute - solid solute
D. liquid solid - solid solvent

Answer: A

D Watch Video Solution

124. What will be the molecular weight of NaCl determined experimentally following elevation in the boiling point or depression in freezing point method?
A. It 58.5
B. gt58.5
C. 58.5
D. None

D Watch Video Solution

125. On freezing an aqueous solution of sodium chloride, the solid that starts separating out is
A. sugar
B. ice
C. solution with the same composition
D. solution with a different composition.

Answer: B

- Watch Video Solution

126. The value of K_{f} for water is 1.86°, calculated from glucose solution, The value of K_{f} for water calculated for NaCl solution will be,
A. 1.86
B. It 1.86
C. gt1.86
D. Zero

Answer: A

- Watch Video Solution

127. The depression of freezing point is directly proportional to
A. Normality
B. Molality
C. molarity
D. None

Answer: B

128. Which one of the following ststement is incorrect?
A. Greater the lowering nof vapour pressure, greater is the boiling point of the solution
B. Greater the lowering of vapour pressure, greater is the freezing point of the solution.
C. At the freezing point, the solute and the solvent have same vapour pressure
D. The units of molal depression constant are Km^{-1}.

Answer: B

- View Text Solution

129. Which of the following $0.1 M$ aqueous solutions will have the lowest freezing point?
A. Potassium sulphate
B. Sodium chloride
C. Urea
D. Glucose

Answer: A

D Watch Video Solution

130. The molal cryoscopic constant for water is
A. 1.86 Kmolality $^{-1}$
B. $5.26 \mathrm{~K}_{\text {molality }}^{-1} 1$
C. 55.5 Kmolality $^{-1}$
D. $0.52 K$ molality ${ }^{1}$

Answer: A

131. When mercuric iodide is added to the aqueous solution of potassium iodide, then:
A. f.pt. is raised
B. f. pt. is lowered
C. f.pt. does not change
D. b.pt. does not change

Answer: A

- Watch Video Solution

132. Molal elevation constant and molal depresion constant for water respectively(in (\circ) C / m) are
A. 0.52,1.86
B. 1.86,0.52
C. 1.52,0.86
D. $0.86,1.52$

Answer: A

- View Text Solution

133. At a suitable pressure near the freezing point of ice, there exists
A. only ice
B. ice and water
C. ice and steam
D. ice, water and steam ,all existing side by side

Answer: D

- View Text Solution

134. The reverse of fusion is freezing and it is
A. endothermic
B. exothermic
C. neither exothermic nor endothermic
D. may be exothermic or endothermic

Answer: B

- View Text Solution

135. In cold countries, ethylene glycol is added to water in the radiators of cars during winters. It results in:
A. lowering in boiling point
B. reducing viscosity
C. reducing specific heat
D. lowering in freezing point

Answer: D

- Watch Video Solution

136. Equimolal solutions A and B show depression in freezing point in the ratio $2: 1$. A remains in the normal state in solution. B will be
A. normal vapour pressure
B. dissociated
C. associated
D. hydrolysed

Answer: C

- Watch Video Solution

137. The molecular weight of benzoic acid in benzene as determined by depression in the freezing point method corresponds to
A. ionization of benzoic acid
B. dimerization of benzoic acid
C. trimerization of benzoic acid
D. solvation of benzoic acid

Answer: B

- Watch Video Solution

138. At constant temp. the osmotic pressure (pi) and the molarity (M) of the solution are related as
A. $\pi \propto M$
B. $\pi \propto \frac{1}{M}$
C. $\pi \propto \sqrt{M}$
D. $\pi \propto \frac{1}{\sqrt{M}}$

Answer: A

- View Text Solution

139. A solution contains non-volatile solute of molecular mass M_{2}. Which of the following can be used to calculate the molecular mass of solute in terms of osmotic pressure?

Here $n_{2}=$ mass of solute, $\mathrm{V}=$ volume of solution, $\pi=$ osmotic pressure.
A. $\pi=w R T / m$
B. $m=\pi R T / w$
C. $\pi=w m R / T$
D. $m=w R \pi / T$

Answer: A

140. Which one of the following ststement is false about osmotic pressure?
A. It is the pressure of the hydrostatic column set up due to osmosis.
B. It is the pressure applied on the solution to prevent the entry of the solvent into it through the semi- permeable membrane.
C. During osmosis, the flow of solvent is only from dilute solution to concentrated solution.
D. Osmotic pressure is directly proportional to the temperature of the solution.

Answer: C

- View Text Solution

141. Assuming the degree of ionization to be equal, the ratio of osmatic pressures of equimolar solution of
$\mathrm{A1}_{2}\left(\mathrm{SO}_{4}\right)_{3}, \mathrm{Na}_{3} \mathrm{PO}_{4}$ and $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is
A. 5:04:05
B. 4:05:06
C. 1:0.8:1
D. $0.8: 1: 1$

Answer: C

- View Text Solution

142. The relationship between osmotic pressure at 273 K when $10 g$ glucose $\left(P_{1}\right), 10 g$ urea $\left(P_{2}\right)$ and $10 g$ sucrose $\left(P_{3}\right)$ are dissolved in 250 mL of water is:
A. $P_{1}>P_{2}>P_{3}$
B. $P_{3}>P_{1}>P_{2}$
C. $P_{2}>P_{1}>P_{3}$
D. $P_{3}>P_{2}>P_{1}$

Answer: D

- Watch Video Solution

143. If $0.1 M$ solution of glucose and $0.1 M$ solution of urea are placed on two sides of the semipermeable membrane to equal heights, then it will be be correct to say that
A. there will be no net movement across the membrane
B. glucose will flow towards urea solution
C. urea will flow towards glucose solution
D. water will flow from urea solution to glucose solution .
144. A solution which has lower osmotic pressure compared to that of other solution is called \qquad
A. Hypotonic
B. Hypertonic
C. Isotonic
D. none of the above

Answer: A

- Watch Video Solution

145. Two solutions A and B are separated by a semi -permeable membrane. As a result to osmosis, the level of solution A is found to rise.

It implies thar
A. solution A is more concentrated than solution B
B. solution B is more concentrated than solution A
C. the solute molecules of A are smaller than those of B
D. the solute molecules of B are smaller than those of A.

Answer: A

D View Text Solution

146. Who was awarded Nobel prize for chemistry in 1901 for discovering laws of osmotic pressure for solutions
A. van't Hoff
B. Pauling
C. Berkeley
D. Seaberg

- View Text Solution

147. Assuming each salt to be 90% dissociated which of the following will have highest osmotic pressure ?
A. decinormal $A l_{2}\left(\mathrm{SO}_{4}\right)_{3}$
B. decinormal BaCl_{2}
C. decinormal $\mathrm{Na}_{2} \mathrm{SO}_{4}$
D. a solution obtained by mixing equal volumes of (b) and (c) and filtering

Answer: A

- Watch Video Solution

148. When a solution is separated from a solvent by a semi-permeable membrane, then the phenomenon taking place is called as
A. osmosis
B. diffusion
C. solubility
D. none

Answer: A

D Watch Video Solution

149. The osmotic pressure of a solution increases if
A. temperture is decreased
B. solution constant is increased
C. number of solute particles in increased
D. volume is increased.

Answer: C

150. A 0.6% solution of urea (molecular mass $=60$) would be isotonic with
A. 0.1 M glucose
B. 0.1 M KCl
C. 0.6% glucose
D. $0.6 \% \mathrm{KCl}$

Answer: A

- View Text Solution

151. Which of the following colligative property can provide molar mass of proteins (or polymers or colloids) with greatest precision?
A. Relative lowering of vapour pressure
B. Elevation of boiling point
C. Depression in freezing point
D. Osmotic pressure.

Answer: D

- Watch Video Solution

152. The outer shell of an egg was dissolved in hydrochloric acid and than placed in concentrated NaCl solution. Which one of the following will happen?
A. The egg will swell
B. The egg will shrink
C. Nothing will happen to the egg
D. The inside of the egg will become saltish .

Answer: B

153. If a thin slice of sugar beet is placed in concentrated solution of NaCl , then
A. sugar beet will lose water from its cells
B. sugar beet will absorb water from solution
C. sugar beet will neither absorb nor lose water
D. sugar beet will dissolve in solution

Answer: A

- Watch Video Solution

154. As a result of osmosis the volume of the concentrated solution:
A. gradually decreases
B. gradually increases
C. suddenly increases
D. none

D Watch Video Solution

155. As a result of osmosis the volume of the concentrated solution:
A. gradually decreases
B. gradually increases
C. is not affected
D. any of the three.

Answer: B

D Watch Video Solution

156. Which inorganic precipitate acts as a semipermeable membrane ?
A. Calcium phosphate
B. Nickel phosphate
C. Calcium sulphate
D. Copper ferrocyanide.

Answer: D

- View Text Solution

157. The value of osmotic pressure does no depend on:
A. concentration of the solution
B. temperature of the solution
C. number of particles of the solute present
D. structure of the solute particles.

Answer: D

158. A plant cell shrinks when it is kept in
A. hypotonic solution
B. a hypertonic solution
C. a solution is isotonic with cell sap
D. water.

Answer: B

- Watch Video Solution

159. Dissolution of a solute is an exothermic process if
A. Hydration energy gt Lattice energy
B. Hydration energy It Lattice energy
C. Hydration energy = Lattice energy
D. None

D View Text Solution

160. The phenomenon is which cells are swelled up and then burst if placed in hypotonic solutions is called
A. plasmolysis
B. Haemolysis
C. Exosmosis
D. None

Answer: B

- View Text Solution

161. Two aqueous solutions S_{1} and S_{2} are separated by a semipermeable membrane. S_{2} has lower vapour pressure than S_{1}. Then
A. more solvent will flow from $S_{1} \rightarrow S_{2}$
B. more solvent will flow from $S_{2} \rightarrow S_{1}$
C. solvent from S_{1} and S_{2} will flow at equal rates
D. no flow will take place.

Answer: A

- View Text Solution

162. The solution which has higher osmotic pressure than some other solution is known as
A. Hypotonic
B. Hyperonic
C. Isotonic
D. Normal.

Answer: B

163. At low concentrations, the statement that equimolal solutions under a given set of experimental conditions have equal osmotic pressure is true for
A. all solutions
B. solutions of non-electrolytes only
C. solutions of electrolytes only
D. none of these.

Answer: B

- View Text Solution

164. The phenomenon in which cells are shrinked down if placed in hypertonic solution is called
A. plasmolysis
B. Haemolysis
C. Endosmosis
D. none

Answer: A

D View Text Solution

165. Which salt shows maximum osmotic pressure in its $1 m$ solution.
A. AgNO_{3}
B. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
C. $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
D. $M g C l_{2}$

Answer: C

166. The natural semipermeable membrane is:
A. Gelatinous $\mathrm{Cu}_{2} \mathrm{Fe}(\mathrm{CN})_{6}$
B. Gelatious $\mathrm{Ca}_{3}(\mathrm{PO})_{4-}$ (2)
C. plant cell
D. Phenol laver

Answer: C

- Watch Video Solution

167. An aqueous solution of sucrose, $\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{O}_{11}$ containing $34.2 \mathrm{~g} / \mathrm{L}$ has an osmotic pressure of 2.38 atmospheres at $70^{\circ} \mathrm{C}$. for an aquesous solution of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ to be istonic with this solution it would have :
A. $34.2 \mathrm{~g} / \mathrm{L}$
B. $17.1 \mathrm{~g} / \mathrm{L}$
C. $18.0 \mathrm{~g} / \mathrm{L}$
D. $36.0 \mathrm{~g} / \mathrm{L}$ of glucose

Answer: C

- View Text Solution

168. Which involves osmosis
A. Crenation
B. Plasmolysis
C. Heamolysis
D. All

Answer: D

View Text Solution
169. The plant cell shrink when placed in a
A. water
B. a hypotonic solution
C. a hypertonic solution
D. an isotonic solution

Answer: C

- Watch Video Solution

170. The process of getting fresh water from sea water is known as
A. osmosis
B. Fillration
C. Diffusion
D. Reverse osmosis

- Watch Video Solution

171. The osmotic pressure of a dilute solution is directly proportional to the
A. diffusion rate of the solute
B. ionic concentration
C. boiling point
D. flow of solvent from a concentrated solution

Answer: B

- Watch Video Solution

172. The molecules which diffuse through a cell membrane are of
A. Fructose
B. Glycogen
C. Haemoglobin
D. Catalase

Answer: A

D View Text Solution

173. A perfectly semi-permeable membrane when used to separate a solution from its solvent permits through it the passage of
A. solute only
B. solvent only
C. both (a) and (b)
D. none

Answer: B

174. At low concentrations, the statement that equimolal solutions under a given set of experimental conditions have equal osmotic pressures is true for
A. all solutions
B.solutions of non-electrolytes which neither dissociates nor associates
C. solutions of electrolytes only
D. none

Answer: B

- View Text Solution

175. Blood cells retain their normal shape in solution which are
A. isotonic to blood
B. hypotonic to blood
C. hypertonic to bood
D. equinormal to bood

Answer: A

- Watch Video Solution

176. As a result of osmosis the volume of the concentrated solution:
A. remains constant
B. increases
C. decreases
D. increases or decreases

Answer: D

177. The osmotic pressure (pi) of a solution is given by reation
A. $\pi=\frac{R T}{C}$
B. $\pi=\frac{C T}{R}$
C. $\pi=\frac{R C}{T}$
D. $\frac{\pi}{C}=R T$

Answer: D

- View Text Solution

178. The natural semipermeable membrane is:
A. Calcium phosphate (gelatinous)
B. Phenol layer
C. Copper ferrocyanide (gelatinous)

Answer: D

D Watch Video Solution

179. Which statement is incorrect about osmotic pressure (P), volume (V) and temperature (T)
A. $P \propto \frac{1}{V}$, if T is constant
B. $P \propto T$, if Vis constant
C. $P \propto V$, if T is constant
D. PV is constant, if T is constant

Answer: C

- View Text Solution

180. Solute when dissolved in water:
A. decreases the vapour pressure of water
B. increases the boiling point of water
C. decreases the freezing point of water
D. all of the above

Answer: D

- Watch Video Solution

181. The osmotic pressure of a dilute solution is given by
A. $P=P_{0}^{1} \times N_{1}$
B. $\pi V=n R T$
C. $\Delta P=P_{0}^{1} N_{2}$
D. $\frac{\Delta P}{P_{0}}=\frac{P_{0}^{1}-P}{P_{0}^{1}}$

D Watch Video Solution

182. Blood has been found to be isotonic with
A. normal saline solution
B. saturated NaCl solution
C. saturated KCI solution
D. saturated solution of a 1:1 mixture of NaCl and KCl

Answer: A

D Watch Video Solution

183. Isotonic solutions are those which have
A. same osmotic pressure
B. same molarity
C. same density
D. same normality

Answer: A

- Watch Video Solution

184. Osmosis is the spontaneous flow through a semi-permeable membrane of
A. a lass conentrated solution into more concentrated solution
B. the solvent from a solution of lower concentrated solution
C. the solvent from a solution of lower concentration to one of higher concentration
D. solute particles from a solution of higher concentration to one of

- Watch Video Solution

185. Two solutions A and B are separated by semipermeable membrane. If liquid flows from A to B then
A. A is more concentrated than B
B. A is less concentrated than B
C. both solutions have same concentration
D. none

Answer: B

- View Text Solution

186. One mole each of urea, glucose and sodium chloride were dissolved in one litre of water. Equal osmotic pressure will be produced by

solutions of

A. Urea and glucose
B. Sodium chloride and urea
C. Glucose and sodium chloride
D. None

Answer: A

- View Text Solution

187. Who proposed the concept, that solute particles in solution behaves
like gaseous molecules
A. Boyle
B. van't Hoff
C. Nollet
D. Charles

D View Text Solution

188. Which of the following solutions will have the highest boiling point?
A. 0.1 MFeCI 3
B. $0.1 M B a C I_{2}$
C. $0.1 M N a C I$
D. 0.1 M urea

Answer: A

D Watch Video Solution

189. Which aqueous solution has minimum freezing point?
A. 0.01 m NaCl
B. $0.005 \mathrm{~m} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
C. $0.005 m M g I_{2}$
D. 0.005 mMgS$)_{4}$.

Answer: A

- Watch Video Solution

190. Benzoic acid undergoes dimerisation in benzene solution, the vat't Hoff factor 'l' is related to the degree of association 'x' of the acid as
A. $i=(1-x)$
B. $i=(1+x)$
C. $i=(1-x / 2)$
D. $i=(1+x / 2)$

Answer: C

191. van't Hoff factor (i)

A. Is less than one in case of dissociation
B. is more than one in case of association
C. i=normal molecular mass /oberved molecular mass
D. i=observed molecular mass/normal molecular mass

Answer: C

D View Text Solution

192. Acetic acid on dissolution in benzene will show
A. half of its normal molecular mass
B. its normal molecular mass
C. two time of its normal molecular mass
D. none

Answer: C

D View Text Solution

193. On mixing 10 mL of acetone with 40 mL of chloroform,the total volume of the solution is
A. It 50 mL
B. $g t 50 \mathrm{~mL}$
C. $=50 \mathrm{~mL}$
D. cannot be predicted

Answer: A

- Watch Video Solution

194. The substance A when dissolved in solvent B shows the molecular mass corresponding to A_{3}. The vant Hoffs factor will be:
A. 1
B. $\frac{1}{2}$
C. 3
D. $\frac{1}{3}$

Answer: D

D Watch Video Solution

195. Benzoic acid dissolved in benzene shows
A. its normal molecular mass
B. Double of its normal molecular mass
C. Half of its normal molecular mass
D. Not definite.

Answer: B

196. Solutions A, B, C and D are respectively $0.1 M$ glucose, $0.05 \mathrm{MNaCI}, 0.05 \mathrm{MBaCI}_{2}$ and $0.1 \mathrm{MAICI}_{3}$. Which one of the following pairs is isotonic?
A. A and B
B. B and C
C. A and D
D. A and C

Answer: A

- Watch Video Solution

197. Which of the following solutions will have highest boiling point:
A. 1% solution of glucose in water
B. 1% solution of sucrose in water
C. 1% solution of sodium chloride in water.
D. 1% solution of calcium chloride in water.

Answer: C

- Watch Video Solution

198. On mixing 10 mL of carbon tetrachloride with 10 mL of benzene the total volume of the solution is:
A. gt 20 mL
B. It 20 mL
C. $=20 m L$
D. cannot be predicted

Answer: C

199. Which of the following is incorrect?
A. Molecular mass of NaCl found by osmotic pressure measurements is half of the theoretical value
B. Molecular mass of $\mathrm{CH}_{3} \mathrm{COOH}$ in benzene found by cryoscopic methods is double of the theoretical value
C. Osmotic pressure of 0.1 M glucose solution is half of the of 0.1 M NaCl solution
D. Molecular mass of HCl found by any colligative property will be same in the aqueous solution and benzene solution.

Answer: D

- View Text Solution

200. Relation between degree of dissociation (alpha) and vant Hoff's factor for $B a C I_{2}$ is
A. $I=1+\alpha$
B. $I=1+2 \alpha$
C. $i=1-\alpha$
D. $I=1-2 \alpha$

Answer: B

D View Text Solution

201. The van't Hoff factor of NaCl assuming 100% dissociation is:
A. $\frac{1}{2}$
B. 2
C. 1
D. 3

Answer: B

202. The depression in freezing point of $0.1 M$ aqueous solution of $\mathrm{HCL}, \mathrm{CuSO}_{4}$ and $\mathrm{K}_{2} \mathrm{SO}_{4}$ are in the ratio.
A. 1:1:1
B. 1:2:3
C. 1:1:1.5
D. 2:4:3

Answer: C

- Watch Video Solution

203. Which compound corresponds vant Hoff factor (i) to be equal to 2 in dilute solution:
A. $\mathrm{K}_{2} \mathrm{SO}_{4}$
B. NaHSO_{4}
C. Sugar
D. MgSO_{4}

Answer: D

- Watch Video Solution

204. The van't Hoff 's factor (i) for a 0.2 molal aqueous solution of urea is
A. 0.2
B. 0.1
C. 1.2
D. 1.0

Answer: D
205. The van't Hoff factor (i) for a dilute aqueous solution of glucose is:
A. Zero
B. 1.0
C. 1.5
D. 2.0

Answer: B

- Watch Video Solution

206. van't Hoff factor more than unity indicates that the solute in solution has
A. dissociated
B. associated
C. both
D. cannot say anything.

Answer: A

- Watch Video Solution

207. What is expected value of van't Hoff factor for $K_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ in the dilute solution?
A. 10
B. 4
C. 5
D. 0.25

Answer: B

208. vant Hoff factor for 0.1 M ideal solution is
A. 0.1
B. 1
C. 0.01
D. none of these

Answer: B

- View Text Solution

209. Which salt may show the same value of vant Hoff factor (i)as that of $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$ in very dilute solution state?
A. $A l_{2}\left(\mathrm{SO}_{4}\right)_{3}$
B. NaCl
C. $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
D. $\mathrm{Na}_{2} \mathrm{SO}_{4}$

Answer: A

- Watch Video Solution

210. The experimental molecular weight of an electrolyte will always be less than its calculated value because the value of Van't Hoff factor. ' i, is:
A. less than 1
B. greater than 1
C. equivalent to 1
D. zero

Answer: B

Watch Video Solution
211. The ratio of the value of any colligative property of KCl solution to that of sugar solution is
A. 1
B. 0.5
C. 2
D. 4

Answer: B

- Watch Video Solution

Multiple Choice Questions Numericals

1. A solution has an osmotic pressure of 8.314 pa at 300 K . It's concentration would be:
B. 0.56 M
C. 0.0034 M
D. 0.034 M

Answer: C

- View Text Solution

2. In a solution of 7.8 g benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ and 46.0 g toluene $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right)$ the mole fraction of benzene is :
A. $1 / 6$
B. $1 / 5$
C. $1 / 2$
D. $1 / 3$

Answer: A

3. An aqueous solution of urea containing 18 g urea in $1500 \mathrm{~cm}^{3}$ of solution has a density of $1.5 \mathrm{~g} / \mathrm{cm}^{3}$. If the molecular weight of urea is 60 . Then the molality of solution is:
A. 0.200
B. 0.192
C. 0.100
D. 1.200

Answer: B

- Watch Video Solution

4. The mole fraction of water in a solution containing 50 g of water and

50 g of ethyl alcohol is :
A. $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right)$
B. $\frac{18}{18+46}$
C. $\frac{1.09}{1.09+2.78}$
D. $\frac{2.78}{1.09+2.78}$

Answer: D

- View Text Solution

5. The molarity of an aqueous solution of NaOH containing 8 g in 2 L of solution is
A. 0.1 M
B. $0.2 m$
C. $0.25 M$
D. 0.15 M

Answer: A

6. A solution containing $3.01 \times 10^{23} \mathrm{HCl}$ molecules is diluted to a volume of 4 litres. The molar concentration of the solution is
A. 1 M
B. 2 M
C. 0.125 M
D. 0.25 M

Answer: C

- View Text Solution

7. 100 mL of 0.1 M solution of solute A are mixed with 200 mL of 0.1 M solution of solute B. If A and B are non-reacting substances, the molarity of the final solution will be
B. 0.4 M
C. 0.1M
D. 0.15 M

Answer: C

- View Text Solution

8. An aqueous solution of glucose is 10% in strength ,The volume in which 1 g mole of it dissolved will be
A. 18 litres
B. 9 litres
C. 0.9 litres
D. 1.8 litres.

Answer: D

9. Mole fraction of glucose in 18% (wt./wt.) solution of glucose is
A. 0.18
B. 0.1
C. 0.017
D. 0.021

Answer: D

D View Text Solution

10. Calculate the molality of the solution prepared by dissolving 18 g of glucose (mol mass $=180$) in 500 g of water
A. 1 m
B. 0.5 m
C. 0.2 m
D. 2 m

Answer: C

- Watch Video Solution

11. At $40^{\circ} C$, the vapour pressure in torr of methyl and ethyl alcohol solutions is represented by $P=119 X_{A}+135$, where X_{A} is mole fraction of methyl alcohol. The value of $\frac{P_{B}^{\circ}}{X_{B}}$ at $\lim X_{A} \rightarrow 0$), and $\frac{P_{A}^{\circ}}{X_{A}}$ at $\lim X_{B} \rightarrow 0$ are:
A. 254 torr
B. 135 torr
C. 119 torr
D. 140 torr

Answer: A

12. 150 mL of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (density $=0.78 \mathrm{~g} \mathrm{~mL}^{-1}$ is diluted to one litre by adding water, molality of the solution is
A. 2.54
B. 11.7
C. 2.99
D. 29.9

Answer: C

- View Text Solution

13. 50 g . Of a solute is dissolved in 0.95 kg . of the solvent. The mass percent of the solution is
A. 5
B. 0.9
C. 0.52
D. 0.090

Answer: A

- View Text Solution

14. A solution is 0.25% by mass. The weight of solvent containing 1.25 g . Of solutes would be
A. 506 g
B. 498.75 g
C. 580.25 g
D. 581.25 g

Answer: B

- View Text Solution

15. The mole fraction of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (Molar mass $=46$) in 5 molal aqueous ethyl elchol solution is
A. 0.0826
B. 0.826
C. 5
D. $5 / 55.55$

Answer: A

- View Text Solution

16. A sugar syrup of weight $214.2 g$ contains $34.2 g$ of sugar $\left(C_{12} H_{22} O_{11}\right)$.

Calculate

a. the molal concentration.
b. the mole fraction of the sugar in the syrup.
B. 5.5
C. 55
D. 0.1.

Answer: A

- Watch Video Solution

17. To a 4L of 0.2 M solution of $\mathrm{NaOH}, 2 \mathrm{~L}$ of 0.5 MNaOH are added. The molarity of resulting solution is
A. 0.9 M
B. 0.3 M
C. 1.8 M
D. 0.18 M

Answer: B

18. If the mole fraction of solute is 0.5 and molar mass of solvent is 50 than molality of solution will be
A. 20 m
B. 0.20 m
C. 2 m
D. 0.02 m

Answer: A

- View Text Solution

19. 200 g . Of 5% solution (by mass) of the solute A is mixed with 300 g . of a 10% solution (by mass) of solute B. The mass percent of A and B in the mixtures are respectively
A. 3 and 5
B. 5 and 10
C. 2 and 6
D. 6 and 12

Answer: C

- View Text Solution

20. Equal volumes of 10% solution (by wt) of the solute A and 15% solution (by wt) of the solute B are mixed. The mass percent of A and B in the mixture would be respectively
A. 5 and 7.5
B. 10 and 25
C. 5 and 10
D. 20 and 30
21. $400 \mathrm{~cm}^{3}$ of water is added to 6% of 600 g (molar mass $=36$) of a solute. The molarity contain 20 millimoles of the solute is
A. 3
B. 1.5
C. 0.25
D. 1

Answer: C

- View Text Solution

22. Volume of $0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}$ solution contain 20 millimoles of the solute is
A. $10 \mathrm{~cm}^{3}$
B. $100 \mathrm{~cm}^{3}$
C. $20 \mathrm{~cm}^{3}$
D. $200 \mathrm{~cm}^{3}$

Answer: B

- View Text Solution

23. What volume of $95 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by weight $\left(d=1.85 \mathrm{gmL}^{-1}\right)$ and what mass of water must be taken to prepare 100 mL of 15% solution of $\mathrm{H}_{2} \mathrm{SO}_{4}\left(d=1.10 \mathrm{gmL} L^{-1}\right)$
A. 5 cc
B. 7.5 cc
C. 9.4 cc
D. 12.4 cc .
24. Concentrated sulphuric acid is approximately 18 molar. 5 cc of it are added to make 500 cc of the solution. The approxi mately normality of the solution will be
A. 0.18
B. 0.09
C. 0.36
D. 0.27

Answer: C

- View Text Solution

25. 2 mole of ethanol is dissolved in 8 mole of water. The mole fraction of water in the solution is
A. 0.2
B. 0.8
C. 0.4
D. 0.1

Answer: B

D View Text Solution

26. 92 g . of ethanol is dissolved in 108 g . Of water. The mole fraction of water in the solution is
A. 0.25
B. 0.75
C. 0.5
D. 0.35
27. dm^{3} of water contains 90 g of glucose. The mole fraction of glucose in the solution is
A. 0.33
B. 0.66
C. $0.5 / 56.05$
D. $0.5 / 55.55$

Answer: C

- View Text Solution

28. The number of moles of hydroxide $\left(\mathrm{HO}^{-}\right)$ion in 0.3 litre of 0.005 M solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is
A. 0.0075
B. 0.0015
C. 0.003
D. 0.005

Answer: C

- View Text Solution

29. Rectified spirit contains 95% ethanol by mass. The mole fraction of ethanol will be
A. 0.881
B. 0.99
C. 0.118
D. 0.81

Answer: A
30. The molarity of pure water is
A. 55.6
B. 50
C. 100
D. 18

Answer: A

- Watch Video Solution

31. If 18 g of glucose $\left(C_{6} H_{12} O_{6}\right)$ is present in 1018 g of an aqueous solution of glucose, it is said to be
A. 1 molal
B. 1.1 molal
C. 0.5 molal
D. 0.1 molal

Answer: D

- View Text Solution

32. The number of iodine atoms (N) present in $1 \mathrm{~cm}^{3}$ of its 0.1 M solution is
A. 6.02×10^{23}
B. 6.02×10^{2}
C. 6.02×10^{19}
D. 1.204×10^{20}

Answer: D

View Text Solution
33. The mole fraction of a solute in its solution in acetic acid is 0.2 . The mass of solute (molar mass $=40$) in 120g. Of acetic acid would be
A. 2 g
B. 8 g
C. 10 g
D. 20 g

Answer: D

- View Text Solution

34.4.9 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is present in $500 \mathrm{~cm}^{3}$ of the solution has molarity.
A. 0.2
B. 0.1
C. 0.01
D. 0.02

Answer: B

- View Text Solution

35. A centi- molar solution is diluted 10 times. The molaruity would become
A. $\frac{1}{10}$
B. 1/100
C. 1/1000
D. $\frac{1}{1}$

Answer: C

- View Text Solution

36. What is the molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution that has a density $1.84 \mathrm{~g} / \mathrm{c} \mathrm{c}$ at $35^{\circ} \mathrm{C}$ and contains 98% by weight?
A. 4.18 M
B. 8.14 M
C. 18.4 M
D. 18 M

Answer: C

- Watch Video Solution

37. A 1 L of water sample has 0.1 g fluoride concentration. What is the concentration of fluoring in terms of ppm level ?
A. 250
B. 100
C. 400
D. 1000

Answer: B

- View Text Solution

38. If 20 g . of sodium hydroxide is dissolved in $1 d m^{3}$ of water, the molarity of the solution will be
A. 0.5
B. 0.25
C. 0.1
D. 0.2

Answer: A

View Text Solution
39. The volume of water of be added to $50 \mathrm{~cm}^{3}$ of a decimolar solution to convert it to a centimolar solution will be
A. $500 \mathrm{~cm}^{3}$
B. $450 \mathrm{~cm}^{3}$
C. $400 \mathrm{~cm}^{3}$
D. $100 \mathrm{~cm}^{3}$

Answer: B

- View Text Solution

40. 30 g . of acetic acid is dissolved in $1 d m^{3}$ of a solvent. The molality of the solution will be (Givent, density of solvent $=1.25 \mathrm{~g} \mathrm{~cm}^{-3}$
A. 0.40
B. 0.35
C. 0.55
D. 0.25

Answer: A

- View Text Solution

41. If the density of a solvent is greater than $1 \mathrm{~kg} . d m^{-3}$ then the molarity (M) and molality (m) are related as
A. M gt m
B. mgt M
C. $m=M$
D. none of these

Answer: A

View Text Solution
42. For a solution of dibasic acid the molarity (M) and normality (N) are related as
A. $N=M / 2$
B. $2 \mathrm{M}=\mathrm{N}$
C. $M=N$
D. M gt N

Answer: B

- View Text Solution

43. The molality of a 1 molar solution will be (Given, density of solvent = $1.5 \mathrm{~kg} . d m^{-3}$
A. 1.5
B. 1
C. 0.66
D. 10.72

Answer: C

- View Text Solution

44. If the density of the solvent is $2.5 \mathrm{~kg} \mathrm{dm}{ }^{-3}$. The 2 molal solution of a solute in this solvent will be molal solution of a solution of a solute in this solvent will be
A. 5 M
B. 2.5 M
C. 4 M
D. 1.25 M

Answer: A

45. The m olality of solution is 10 m and molar mass of solvent is 100 g mol^{-1} then mole fraction of solute will be
A. 0.5
B. 5
C. 0.005
D. 0.05

Answer: A

- View Text Solution

46. A solution of CaCl_{2} is $\mathrm{mol} / \mathrm{litre}$, then the moles of chloride ions in 500 mL will be
A. 0.25
B. 0.5
C. 0.75
D. 1

Answer: B

- View Text Solution

47. A molal solution is one that contains one mole of a solute in:
A. 1000 g of solution
B. 1000 g of solvent
C. 1 litre of solution
D. 1 mL of solution

Answer: B
48. Mole fraction of $C_{3} H_{5}(\mathrm{OH})_{3}$ in a solution of 36 g of water and 46 g of glycerine is :
A. 0.2
B. 0.8
C. 0.46
D. 0.36

Answer: A

- Watch Video Solution

49. A x molal solution of a compound in benzene has mole fraction of solute equals to 0.2 . The value of x is
A. 1.4
B. 3.2
C. 1.4
D. 2

Answer: B

Watch Video Solution
50. To 100 ml of a 0.5 M solution, 400 ml of water is added, the final molarity would be
A. 0.125
B. 0.1
C. 0.25
D. 0.15

Answer: B

51. 800 ml of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ is mixed with 200 ml of $0.8 \mathrm{MH}_{2} \mathrm{SO}_{4}$ The molarity of the mixture is
A. 0.32
B. 0.24
C. 0.12
D. 0.48

Answer: B

- View Text Solution

52. How many grams of methanol would have to be added to water to prepare 150 mL of solution which is $2 \mathrm{MCH}_{3} \mathrm{OH}$?
A. 9.6
B. 2.4
C. 9.6×10^{3}
D. 4.3×10^{2}

Answer: A

- Watch Video Solution

53. If the density of pure water is $0.999 \mathrm{gcm}^{3}$. The molarity of prue water will be
A. more than 55.5
B. less than 55.5
C. equal to 55.5
D. equal to 1

Answer: C

54. The wt. of unhydrous sodium carbonate needed to prepare 500 ml of a decinormal solution would be
A. 5.3 g
B. 10.6 g
C. 1.06 g
D. 2.65 g

Answer: D

- View Text Solution

55. The molarity of a $10 \% \mathrm{NaOH}$ solution is
A. 2.5
B. 0.5
C. 0.25
D. 0.05

Answer: A

- View Text Solution

56. The mole fraction of oxalic acid (Molar mass 63) required to prepare 0.10 m solution in water is
A. 1
B. 0.0018
C. 6.3
D. 0.0992

Answer: B

- View Text Solution

57. 120 g of urea is present in 5 L of solution, the active mass of urea is
A. 0.2
B. 0.06
C. 0.4
D. 0.88

Answer: C

- Watch Video Solution

58. The number of moles present in 2 litre of 0.5 MNaOH is:
A. 2
B. 1
C. 0.5
D. 0.25

- Watch Video Solution

59. The mole of fraction of nitrogen, in a mixture of 7 g of N_{2} and 16 g of O_{2} is
A. 0.5
B. 0.75
C. 0.66
D. 0.33

Answer: D

- View Text Solution

60. The wt. percent of NO_{3}^{-}in the solute in a solution is 20 . The volume of solvent containing 60 g of solute ($\mathrm{d}=1.2 \mathrm{~g} / \mathrm{cc}$)
A. $0.24 d m^{3}$
B. $0.12 d m^{3}$
C. $1.2 d m^{3}$
D. $0.2 d m^{3}$

Answer: D

- View Text Solution

61. Calculate the molarity of each ion in solution after 2.0 litre of 3.0 M AgNO_{3} is mixed with 3.0 litre of $1.0 \mathrm{M} \mathrm{BaCl}_{2}$.
A. 1.2 M
B. 1.8 M
C. 0.5 M
D. 0.4 M

- Watch Video Solution

62. 0.2 mole of $H C I$ and 0.2 mole of barium chloride were dissolved in water to produce a 500 mL solution. The molarity of the CI^{-}ions is:
A. .04 M
B. 0.8 M
C. 0.4 M
D. 0.08 M

Answer: B

- Watch Video Solution

63. What is the concentration of dissolved oxygen at $25^{\circ} \mathrm{C}$ at 1 atm pressure if partial pressure of oxygen in 0.22 atm? $\left(K_{H}=1.3 \times 10^{-3} \mathrm{~mol} \mathrm{dm} \mathrm{m}^{-3} \mathrm{~atm}^{-1}\right)$
A. $2.86 \times 10^{-4} M$
B. $5,9 \times 10^{-3} \mathrm{M}$
C. 1.7×10^{-4}
D. zero

Answer: A

- View Text Solution

64. Partial pressure of N_{2} gas at 298 K is 0.987 bar If is bubbled through water at 298 K , how many millimoles of N_{2} gas would be dissolved in 1 litre of water ? (Given : K_{H} for N_{2} at $298 \mathrm{~K}=76.48$ bar).
A. 0.85
B. 0.693
C. 0.981
D. 0.453

- Watch Video Solution

65. The mole fraction of saturated solution is 1.2×10^{-6}. The pressure of the above the solution is $-\left(K_{H}=1.44 .97^{-}\right)$
A. 0.174 bar
B. 17.4 bar
C. 27.4 bar
D. 0.274 bar

Answer: A

- View Text Solution

66. N_{2} exerts a pressure of 0.987 bar. The mole fraction of N_{2} ia $\left(K_{H}=74.48 \mathrm{kbar}\right)$
A. 7.648×10^{-3}
B. 9.87×10^{-5}
C. 1.3×10^{-5}
D. 2.6×10^{-5}

Answer: C

- View Text Solution

67. K_{H} value for $\operatorname{Ar}(\mathrm{g}), \mathrm{CO}(\mathrm{g}), \mathrm{HCHO}(\mathrm{g})$ and $\mathrm{CH}_{4}(\mathrm{~g})$ are $40.39,1.67$, 1.83×10^{-5} and 0.413 respectively. Arrange these gases in the order of their increastively solubility.
A. $\mathrm{HCHO}<\mathrm{CH}_{4}<\mathrm{CO}_{2}<\mathrm{Ar}$
B. $\mathrm{HCHO}<\mathrm{CO}_{2}<\mathrm{CH}_{4}<\mathrm{Ar}$
C. $\mathrm{Ar}<\mathrm{CO}_{2}<\mathrm{CH}_{4}<\mathrm{HCHO}$
D. $\mathrm{Ar}<\mathrm{CH}_{4}<\mathrm{CO}_{2}<\mathrm{HCHO}$

Answer: C

D Watch Video Solution

68. Henry's law constant for the molality of methane in benzene at 298 K is $4.27 \times 10^{5} \mathrm{mmHg}$. Calculate the solubility of methane in benzene at 298 K under 760 mmHg.
A. 1.78×10^{-4}
B. 1.78×10^{-5}
C. 17.8×10^{-4}
D. 1.78×10^{-6}

Answer: C

69. Air contain O_{2} and N_{2} in the ration of 1:4 The Henry constant for O_{2} and N_{2} are 3.30×10^{7} torr and 6.60×10^{7} torr respectively. Ration of solubility of O_{2} and O_{2} dissolved in water at atomspheric pressure and room temperature is
A. 1: 4
B. $4: 1$
C. 1:2
D. 2:1

Answer: C

- View Text Solution

70. The vapour pressure of a solvent decreased by 10 mm of Hg when a non-volatile solute was added to the solvent. The mole fraction of solute in solution is 0.2 , what would be the mole fraction of solvent if the decrease in vapour pressure is 20 mm of Hg ?
A. 0.2
B. 0.4
C. 0.6
D. 0.8

Answer: C

D Watch Video Solution

71. The vapour pressure of pure benzene at a certain temperature is 640 mm of Hg . A non-volatile non-electrolyte solid weighing 2.175 g added 39.0 g of benzene. The vapour pressure of the solution is 600 mm of Hg . What is the molecular weight of solid substance?
A. 6.96
B. 65.3
C. 63.8
D. none of the above

- Watch Video Solution

72. Liquid A and B from an ideal solution. If vapour pressure of pure A and B are $500 \mathrm{Nm}^{-2}$ and $200 \mathrm{Nm}^{-2}$ respectively, the vapour pressure of a solution of A in B containint 0.2 mole fraction of A would be
A. $700 \mathrm{Nm}^{-2}$
B. $300 \mathrm{Nm}^{-2}$
C. $260 \mathrm{Nm}^{-2}$
D. $140 \mathrm{Nm}^{-2}$

Answer: C

73. The vapour pressure of pure benzene and toluene are 160 and 60 torr respctively. The mole fraction of touene in vapour phase in contact with equimolar solution of benzene and toluene is
A. 0.5
B. 0.6
C. 0.27
D. 0.73

Answer: C

- View Text Solution

74. The ratio of the value of any colligative property of KCl solution to that for sugar is nearly ' x ' times for water as solvent and same molality. What will be the value of ' x ' ?
A. 1
B. 0.5
C. 2
D. 2.5

Answer: C

- Watch Video Solution

75.6 g of urea is dissolved in 90 g of water. The relative lowering of vapour pressure is equal to
A. 0.0196
B. 0.5
C. 0.1
D. 0.0202

Answer: A

76. Vapour pressure of CCl_{4} at $25^{\circ} \mathrm{C}$ is 143 mm Hg .0 .5 g of a nonvolatile solute $\left(\right.$ molar mass $\left.=65 \mathrm{~mol}^{-1}\right)$ is dissolved in 100 mL of CCl_{4} (density $=1.538 \mathrm{~g} m L^{-1}$) Vapour pressure of solution is :
A. 141.93 mm
B. 94.39 mm
C. 199.34 mm
D. 143.99 mm

Answer: A

- Watch Video Solution

77. The vapour pressure of benzene at $90^{\circ} C$ is 1020 torr. A solution of $5 g$ of a solute in $58.5 g$ benzene has vapour pressure 990 torr. The molecualr weight of the solute is:
A. 78.2
B. 178.2
C. 206.2
D. 220

Answer: D

D Watch Video Solution

78. The vapour pressure of ethanol and methanol are 44.0 mmHg and 88.0 mmHg , respectively. An ideal solution is formed at the same temperature by mixing $60 g$ of ethanol with $40 g$ of methanol. Calculate the total vapour pressure of the solution and the mole fraction of methanol in the vapour.
A. 0.467
B. 0.502
C. 0.513

Answer: C

- Watch Video Solution

79. One molar solution of sodium chloride will have the relative lowering of vapour pressure closest to :
A. 5.8% (wt./vol) urea solution (M.M. $=60$)
B. 5.8 \% (wt./vol) glucose solution (M.M. $=180$)
C. 1.0 M glucose solution (M.M. $=180$)
D. 2.0 M urea solution (M.M. $=60$)

Answer: D

- View Text Solution

80.34.2 g of cansugar is dissolved in 180 g of water. The relative lowering of vapour pressure will be
A. 0.0099
B. 1.597
C. 0.84
D. 0.9901

Answer: A

- View Text Solution

81. The vapour pressure of a pure liquid A is 70 torr at 300 K . It forms an ideal solution with another liquid B. The mole fration of B in the solution is 0.2 and total pressure of solution is 84 torr at 300 K . The vapour pressure of pure liquid B at $26^{\circ} \mathrm{C}$ is
A. 14
B. 56
C. 140
D. 70

Answer: C

- Watch Video Solution

82. At $88^{\circ} \mathrm{C}$ benzene has a vapour pressure of 900 torr and toluene has a vapour pressure of 360 torr. What is the mole fraction fo benzene in the mixture with toluene that will boil at $88^{\circ} \mathrm{C}$ at 1 atm pressure, benzenetoluene from an ideal solution ? (P of mixture = 760 torr)
A. 0.416
B. 0.588
C. 0.68
D. 0.74

D View Text Solution

83. The relative lowering of vapour pressure produced by dissolving 71.5 g of substance in 1000 g of water is 0.0173 . The molecular mass of the substance will be:
A. 74.39
B. 18
C. 342
D. 60

Answer: A

84. The vapour pressure of water at room temperature is 23.8 mm Hg .

The vapour pressure of an aqueous solution of sucrose with mole fraction 0.1 is equal to
A. 23.9 mm Hg
B. 24.2 Hg
C. 21.42 mm Hg
D. 21.44 mm Hg .

Answer: C

- Watch Video Solution

85. The vspour preesure of two pure liquids A and B are 5 and 10 torr respectively. Calculte the total pressure of the solution (in torr) obtainrd by mixing 2 mole of A and 3 mole of B.
A. 120 toor
B. 36 toor
C. 88 torr
D. 180 toor

Answer: C

- Watch Video Solution

86. Vapour pressure of CCl_{4} at $25^{\circ} \mathrm{C}$ is 143 mm Hg .0 .5 g of a nonvolatile solute $\left(\right.$ molar mass $\left.=65 \mathrm{~mol}^{-1}\right)$ is dissolved in 100 mL of CCl_{4} (density $=1.538 \mathrm{~g} m L^{-1}$) Vapour pressure of solution is :
A. 141.93 mm
B. 94.39 mm
C. 199.34 mm
D. 143.99 mm .
87. A mixture of ethyl alcohol and propyl alcohol has a vapour pressure of 290 mm at 300 K . The vapour pressure of propyl alcohol is 200 mm . if the mole fraction of ethyl alcohol is 0.6 , its vapour pressure (in mm) at the same temperature will be
A. 350
B. 300
C. 360
D. 700

Answer: A

- Watch Video Solution

88. The vapour pressure of a solvent decreased by 10 mm of Hg when a non-volatile solute was added to the solvent. The mole fraction of solute
in solution is 0.2 , what would be the mole fraction of solvent if the decrease in vapour pressure is 20 mm of Hg ?
A. 0.8
B. 0.6
C. 0.4
D. 0.2

Answer: B

- Watch Video Solution

89. The vapour pressure of a solution of 5 g of non-electrolyte in 100 g of water at a particular temperature is $2985 \mathrm{Nm}^{-2}$. The vapour pressure of pure water at that temperature is $3000 \mathrm{Nm}^{-2}$. The molecular weight of the solute is
A. 180
B. 90
C. 270
D. 200

Answer: A

- Watch Video Solution

90. The molal elevation constant of water $=0.52 \mathrm{Km}^{-1}$. The boiling point of 1.0 molal aqueous KCl solution (assuming complete dissociation of $K C l$) should be
A. 273.04 K
B. 374.04 K
C. 37.404 K
D. 273 K

Answer: B

91. The boiling point of a water containing non-valatile solute is $101.04^{\circ} C$ of 2 molal solution, the ebullioscopic constant of water is
A. $0.52 \mathrm{~K}^{\left(\mathrm{Kg} \mathrm{mol}^{-1}\right.}$
B. $1.04 \mathrm{~K} . \mathrm{Kg} \mathrm{mol}^{-1}$)
C. $10.4 \mathrm{~K} . \mathrm{Kg} \mathrm{mol}^{-1}$
D. $5.2 \mathrm{k} . \mathrm{Kg} \mathrm{mol}^{-1}$

Answer: A

- View Text Solution

92. An aqueous solution containing ig of urea boils at $100.25^{\circ} \mathrm{C}$. The aqueous solution containing 3 g of glucose in the same volume will boil be
A. $100.75^{\circ} \mathrm{C}$
B. $100.5^{\circ} \mathrm{C}$
C. $100^{\circ} \mathrm{C}$
D. $100.25^{\circ} \mathrm{C}$

Answer: D

- Watch Video Solution

93. At certain Hill-station pure water boils at $99.725^{\circ} \mathrm{C}$. If K_{b} for water is
$0.513^{\circ} \mathrm{Ckgmol}^{-1}$, the boiling point of 0.69 m solution of urea will be:
A. $100.079^{\circ} \mathrm{C}$
B. $103^{\circ} \mathrm{C}$
C. $100.359^{\circ} \mathrm{C}$
D. unpredictable.

Answer: A

94. Elevation in boiling point was $0.52^{\circ} \mathrm{C}$ when 6 g of a compound X was dissolved in 100 g of water. Molecular weight of X is (K_{b} of water is $5.2^{\circ} C$ per 100 g of water)
A. 120
B. 60
C. 180
D. 342

Answer: B

- Watch Video Solution

95. The molal elevation constant for water is 0.52 K . molality ${ }^{-}$. The elevation caused in the boiling point of water by dissolving 0.25 mole of a non volatile solute in 250 g of water will be :
A. 52°
B. $5.2^{\circ} \mathrm{C}$
C. $0.52^{\circ} \mathrm{C}$
D. $0.052^{\circ} \mathrm{C}$

Answer: C

- View Text Solution

96. The molal elevation constant for water is $0.56 \mathrm{Kkgmol}^{-1}$. Calculate the boiling point of a solution made by dissolving 6.0 g of urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)$ in 200 g of water.
A. $10.028^{\circ} \mathrm{C}$
B. $100.28^{\circ} \mathrm{C}$
C. $50.14^{\circ} \mathrm{C}$
D. none of these.

- Watch Video Solution

97. Y g of non-volatile organic substance of molecular mass M is dissolved in 250 g benzene. Molal elevation constant of benzene is K_{b}. Elevation in its boiling point is given by :
A. $\frac{M}{K_{b} Y}$
B. $\frac{4 K_{b} Y}{M}$
C. $\frac{K_{b} Y}{4} M$
D. $\frac{K_{b} Y}{M}$

Answer: B

98. The molal boiling point constant of water is $0.573^{\circ} \mathrm{Ckgmole}^{-1}$. When 0.1 mole of glucose is dissolved in 1000 g of water, the solution boils under atmospheric pressure at:
A. $100.53^{\circ} \mathrm{C}$
B. $101.06^{\circ} \mathrm{C}$
C. $100.265^{\circ} \mathrm{C}$
D. $9.47^{\circ} \mathrm{C}$

Answer: C

- Watch Video Solution

99. A solution containing 3.3 g of a substance in 125 g of benzene (b. $p 80^{\circ} \mathrm{C}$) boils at $80.66^{\circ} \mathrm{C}$. If K_{b} for one litre of benzene is $3.28^{\circ} \mathrm{C}$, the molecular mass of the substance shall be
B. 131.2
C. 137.12
D. 142.72

Answer: B

- View Text Solution

100. The boiling point of an aqueous solution of a non-volatile solute is $100.15^{\circ} \mathrm{C}$. What is the freezing point of an aqueous solution obtained by dilute the above solution with an equal volume of water. The values of K_{b} and K_{f} for water are 0.512 and $1.86^{\circ} \mathrm{Cmol}^{-1}$:
A. $-0.544^{\circ} \mathrm{C}$
B. $-0.512^{\circ} \mathrm{C}$
C. $-0.272^{\circ} \mathrm{C}$
D. $-1.86^{\circ} \mathrm{C}$

Answer: C

- Watch Video Solution

101. The boiling point of 0.1 molal aqueous solution of urea is $100.18^{\circ} \mathrm{C}$ atm. The molal elevation constant of water is
A. 1.8
B. 0.18
C. 18
D. 18.6

Answer: A

- View Text Solution

102. The 0.1 molal aqueous solution of glucose boils at $100.16^{\circ} \mathrm{C}$. The boiling point of 0.5 molal aqueous solution of sucrose will be
A. $500.80^{\circ} \mathrm{C}$
B. $100.80^{\circ} \mathrm{C}$
C. $20.16^{\circ} \mathrm{C}$
D. $20.8^{\circ} \mathrm{C}$

Answer: B

- View Text Solution

103. The molal b.pt constant for water is $0.513^{\circ} \mathrm{Ckg} \mathrm{mol}^{-1}$. When 0.1 mole of sugar is dissolved in 200 g of water, the solution boils under a pressure of 1 atm at:
A. $100.513^{\circ} \mathrm{C}$
B. $100.0513^{\circ} \mathrm{C}$
C. $100.256^{\circ} \mathrm{C}$
D. $101.025^{\circ} \mathrm{C}$

- Watch Video Solution

104. For a solvent $K_{b}=5 \mathrm{~kg} \mathrm{~mol}^{-1}$ using this solvent, the solution records the elevation of boiling point of $0.5^{\circ} \mathrm{C}$ The molality of the solution is
A. 0.25
B. 0.1
C. 10
D. unpredictable.

Answer: B

105. If the elevation in boiling point of a solution of 10 g of solute (molecular weight $=100$) in 100 g of water is ΔT_{b}, the ebullioscopic constant of water is
A. 10
B. $10 \Delta T_{b}$
C. ΔT_{b}
D. $\Delta T_{b} / 10$

Answer: C

- Watch Video Solution

106. The freezing point of 0.1 M solution of glucose is $-1.86^{\circ} \mathrm{C}$. If an equal volume of 0.3 M glucose solution is added, the freezing point of the mixture will be

$$
\text { A. }-7.44^{\circ} \mathrm{C}
$$

B. $-5.58^{\circ} \mathrm{C}$
C. $-3.72^{\circ} \mathrm{C}$
D. $-2.79^{\circ} \mathrm{C}$

Answer: C

- Watch Video Solution

107. Pure benzene freezes at $5.45^{\circ} \mathrm{C}$ at a certain place but a 0.374 m solution of tetrachloroethane in benzene freezes at $3.55^{\circ} \mathrm{C}$. The K_{f} for benzene is
A. $5.08 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
B. $508 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
C. $0.508 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
D. $50.8^{\circ} \mathrm{Ckg} \mathrm{mol}^{-1}$
108. The freezing point of a 0.05 molal solution of a non-electrolyte in water is:

$$
\left(K_{f}=1.86 \mathrm{molality}^{-1}\right)
$$

A. $-1.86^{\circ} \mathrm{C}$
B. $-0.93^{\circ} \mathrm{C}$
C. $-0.093^{\circ} \mathrm{C}$
D. $0.093^{\circ} \mathrm{C}$

Answer: C

- Watch Video Solution

109. The freezing point of 1 molal NaCl solution assuming NaCl to be 100% dissociated in water is:
A. $-1.86^{\circ} \mathrm{C}$
B. $-3.72^{\circ} \mathrm{C}$
C. $+1.86^{\circ} \mathrm{C}$
D. $+3.72^{\circ} \mathrm{C}$

Answer: B

- Watch Video Solution

110. An aqueous solution of a non-electrolyte solute boils at $100.52^{\circ} \mathrm{C}$. The freezing point of the solution will be ($K_{f}=1.86 \mathrm{Kkgmol}^{-1}, K_{b}=0.52 \mathrm{Kkgmol}^{-1}$)
A. $0^{\circ} C$
B. $-1.86^{\circ} \mathrm{C}$
C. $1.86^{\circ} \mathrm{C}$
D. none of the above.

- View Text Solution

111. Molal depression of freezing point of water is 1.86° per 100 g of water. 0.02 mole of urea dissolved in 100 g of water will produce a lowering of temperature of:
A. 0.186°
B. 0.372°
C. 1.86°
D. 3.72°

Answer: B

112. What should be the freezing point of aqueous solution containing 17 g of $\mathrm{C}_{2} \mathrm{H}(5) \mathrm{OH}$ is 1000 g of water (K_{f} for water $=1.86 \mathrm{degkgmol}^{-1}$)?
A. 272.31 K
B. 273.69 K
C. 272 K
D. 27.36 K

Answer: A

- Watch Video Solution

113. A solution of 1.25 g of a certain non-volatile substance in 20 g of water freezes at 271.94 K . Calculate the molecular mass of the solute $\left(K_{f}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$.
A. $179.97 \mathrm{gmol}^{-1}$
B. $207.8 \mathrm{gmol}^{-1}$
C. $209.6 \mathrm{gmol}^{-1}$
D. $109.6 \mathrm{gmol}^{-1}$

Answer: D

- Watch Video Solution

114. A 0.50 molal solution of ethylene glycol in water is used as coolant in a car . If the freezing point constant of water is 1.86° per molal , at which temperature will the mixture freeze?
A. $0.93^{\circ} \mathrm{C}$
B. $-0.93^{\circ} \mathrm{C}$
C. $1.86^{\circ} \mathrm{C}$
D. $-1.86^{\circ} \mathrm{C}$

Answer: B

115. A solution of 0.20 g of a non-electrolyte in 2 g of water freezes at 271.14 K . If $K_{f}=1.86 \mathrm{Kmolality}^{-1}$ then the molar mass of the solute is
A. $207.8 \mathrm{~g} / / \mathrm{mol}$
B. $179.79 \mathrm{~g} / / \mathrm{mol}$
C. $200.8 \mathrm{~g} / / \mathrm{mol}$
D. $100.0 \mathrm{~g} / / \mathrm{mol}$

Answer: D

- View Text Solution

116. A solution containing 10 mole of ethylene glycol dissolved in 1000 g of water ($K_{f}=1.86 \mathrm{Kmolality}^{-1}$ will freeze at:
B. 2.544 K
C. 254.4 K
D. 25.44 K

Answer: C

- View Text Solution

117. What is the molality of ethyl alcohol (molar mass $=46$) in aqueous solution which freezes at $-10^{\circ} \mathrm{C}$:
K_{f} for water $=1.86 \mathrm{Kmolality}^{-1}$
A. 3.540
B. 4.567
C. 5.376
D. 6.315
118. The molal depression constant for a solvent is 4.9 . The depression in freezing point for a millimolal solution of a non-electrolyte in the solvent is
A. 0.49
B. 4.9
C. $4.9+0.001$
D. 0.0049 .

Answer: D

- View Text Solution

119. The amount of urea to be dissolved in 500 cc of water $\left(K_{f}=1.86\right)$ to produce a depresssion of $0.186^{\circ} \mathrm{C}$ in the freezing point is :
A. 0.3 g
B. 0.6 g
C. 6 g
D. 3 g

Answer: D

D Watch Video Solution

120. The molecular mass of NaCl determined by studying freezing point depression of it's 0.5% aqueous solution is 30 . The apparent degree of dissociantion of NaCl is :
A. 0.95
B. 0.5
C. 0.6
D. 0.3

- View Text Solution

121. The depression in f.pt. of $0.01 m$ aqueous solution of urea, soldium chloride and soldium sulphate is in the ration:
A. $1: 1: 1$
B. 1:2:3
C. $1: 2: 3$
D. 1:2:4

Answer: B

- Watch Video Solution

122. 20 g of a binary electrolyte (Molecular mass $=100$) are dissolved in 500 g of water. The freezing point of the solution is $-0.74{ }^{\circ} \mathrm{C}$ and
$K_{f}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$. The degree of ionisation of eletrolyte as :
A. 0.5
B. 0.75
C. 1
D. zero

Answer: D

- Watch Video Solution

123. For an aqueous solution freezing point is $-0.186^{\circ} C$. The boiling point of the same solution is $\left(K_{f}=1.86^{\circ} \mathrm{mol}^{-1} \mathrm{~kg}\right)$ and $\left(K_{b}=0.512 \mathrm{~mol}^{-1} \mathrm{~kg}\right)$
A. 0.186
B. 0.512
C. $0.512 / / 1.86$
D. 0.0512

Answer: D

- Watch Video Solution

124. The freezing point of a solution prepared from $1.25 g$ of nonelectrolyte and $20 g$ of water is 271.9 K . If the molar depression constant is $1.86 \mathrm{Kmol}^{-1}$, then molar mass of the solute will be
A. 105.7
B. 106.7
C. 115.3
D. 93.9

Answer: A

125. A 0.2 molal aqueous solution of weak acid (HX) is 20% ionised. The freezing point of this solution is (Given, $K_{f}=1.86^{\circ} \mathrm{Cm}^{-1}$ for water)
A. $-0.45^{\circ} \mathrm{C}$
B. $-0.90^{\circ} \mathrm{C}$
C. $-0.31^{\circ} \mathrm{C}$
D. $-0.53^{\circ} \mathrm{C}$

Answer: A

- Watch Video Solution

126. The freezing point of aqueous solution that contains 5% by mass urea. 1.0% by mass $K C l$ and 10% by mass of glucose is: $\left(K_{f} H_{2} O=1.86 K_{m_{m o l a l i t y ~}}{ }^{-1}\right)$
A. 290.2 K
B. 285.5 K
C. 26993 K
D. 250 K

Answer: C

- Watch Video Solution

127. The values of K_{f} for solvents $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are $1.86,1.99,5.12$ and 4.7 kg mol^{-1} resp. The equimolal solutions of a solute in these solvents will have the freezing point in order of solvents
A. RgtSgtQgtP
B. PgtRgtSgtQ
C. PgtQgtSgtR
D. RgtQgtPgtS

Answer: C

128. The solutions containing 6 g of urea (molecular mass $=60$) per $d m_{3}$ of water and another containing 9 g of solute A per $d m^{3}$ of water freeze at the same temp. The molecular mass of A is
A. 12
B. 90
C. 54
D. 150

Answer: B

- View Text Solution

129. If 15 gm of a solute in 100 gm of water makes a solution that freezes
at $-1.0^{\circ} \mathrm{C}$,then 30 gm of the same solution the freezes at
A. $-0.5^{\circ} \mathrm{C}$
B. $-2.0^{\circ} \mathrm{C}$
C. $0^{\circ} \mathrm{C}$
D. $2.0^{\circ} \mathrm{C}$

Answer: B

- View Text Solution

130. How many grams of sucrose (molecular weight 342) should be dissolved in 100 g water in order to produce a solution with $105^{\circ} \mathrm{C}$ difference between the freezing point and the boiling point ? $\left(K_{b}=0.51^{\circ} \mathrm{Cm}^{-1},\left(K_{f}=1.86^{\circ} \mathrm{Cm}^{-1}\right)\right.$
A. 34.2 g
B. 72 g
C. 342 g
D. 460 g

- Watch Video Solution

131. The percentage composition by mass of an aqueous solution of a solute (molecular mass 150 which boils at 373.26 is ($K_{b}=0.52$)
A. 5
B. 15
C. 7
D. none of the above.

Answer: C

- View Text Solution

132. 8 g of HBr is added in 100 g of H_{2} The freezing point will be

$$
\left(K_{f}=1.86, H=1, b r=80\right)
$$

A. $-0.75^{\circ} \mathrm{C}$
B. 0°
C. $-3.67^{\circ} \mathrm{C}$
D. $-7.6^{\circ} \mathrm{C}$

Answer: C

- View Text Solution

133. Osmotic pressur of blood is 7.65 atm at 310 K . An aqueous solution of glucose that will be isotonic with blood iswt./vol.
A. 0.0541
B. 0.0354
C. 0.0453
D. 0.534

Watch Video Solution

134. The osomotic pressure of a solution at $0^{\circ} \mathrm{C}$ is 4 atm . What will be its osmotic pressure at 546 K under similar conditions?
a.4atm, b. $9 \mathrm{~atm}, \mathrm{c} .8 \mathrm{~atm}, \mathrm{~d} .6 \mathrm{~atm}$
A. 4 atm .
B. 2 atm
C. 8 atm.
D. 1 atm.

Answer: C

- Watch Video Solution

135. The osmotic pressure in atmosphere of 10% solution of cane sugar at $69^{\circ} \mathrm{C}$ is
A. 724
B. 824
C. 8.21
D. 7.21

Answer: C

D Watch Video Solution

136. The osmotic pressure of 0.2 molar slution of urea at $300 K(R=0.082)$ litre atm $\mathrm{mol}^{-1} K^{-1}$ is
A. 4.92 atm
B. 1 atm
C. 0.2 atm
D. 27 atm.

Watch Video Solution

137. The osmotic pressure of a 5% (weight / volume) solution of cane sugar at $150^{\circ} \mathrm{C}$ is
A. 4 atm
B. 3.4 atm
C. 5.078 atm
D. 2.45 atm

Answer: C

- Watch Video Solution

138. The osmotic pressure of a solution containing 0.1 mol of solute per litre at $273 K$ is
A. $\frac{0.1}{1} \times 0.082 \times \mathrm{atm}$
B. $0.1 \times 2 \times 0.082 \times 273 \mathrm{~atm}$
C. $\frac{1}{0.1} \times 0.082 \times 273 \mathrm{~atm}$
D. $\frac{0.1}{1} \times \frac{273}{0.082} \mathrm{~atm}$

Answer: A

- Watch Video Solution

139. Osmotic pressure of 40% (wt./vol.) urea solution is 1.64 atm and that of 3.42% (wt. / vol.) cane sugar is 2.46 atm . When equal volumes of the above two solutions are mixed, the osmotic pressure of the resulting solution is:
A. 1.64 atm
B. 2.46 atm
C. 4.10 atm
D. 2.05 atm

Answer: D

- Watch Video Solution

140. Following solutions at the same temperature will be isotonic
A. 3.42 g of cane sugar in one litre water and 0.18 g of glucose in one
litre water
B. 3.42 g of cane sugar in one litre water and 0.18 g of glucose in 0.1
litre water
C. 3.42 g of cane sugar in one litre water and 1.17 g of NaCl in one litre water
D. 3.42 g of cane sugar in one litre water and 1.17 g of NaCl in one litre water

Answer: B

141. 0.6 gof a solute is dissolved in 0.1 litre of a solvent which develops an osmotic pressure of 1.23 at m at $27^{\circ} \mathrm{C}$. The molecular mass of the substance is
A. $149.5 \mathrm{gmol}^{-1}$
B. $120 \mathrm{gmol}^{-1}$
C. $430 \mathrm{gmol}^{-1}$
D. None.

Answer: B

- Watch Video Solution

142. The osmotic pressure of decimolar solution of glucose at $30^{\circ} \mathrm{C}$ is :
A. 24.88 atm
B. 2.488 atm
C. 248.8 atm
D. 2488 atm

Answer: B

- View Text Solution

143. The osmotic pressure of a solution (density is $1 \mathrm{~g} m L^{-1}$) containing $3 g$ of glucose (molecular weight $=180$) in $60 g$ of water at $15^{\circ} C$ is
A. 41.570 kPa
B. 415.70 kPa
C. 41570 kPa
D. 4157 kPa

Answer: C

144. 100 cc of 1.5% solution of urea is found to have an osmotic pressure of 6.0 atm and 100 cc of 3.42% solution of cane sugar is found to have an osmotic pressure of 2.4 atm . If two solutions are mixed, the osmotic pressure of the resulting solution will be
A. 8.4 atm
B. 4.2 atm
C. 16.8 atm
D. 2.1 atm .

Answer: B

- Watch Video Solution

145. A solution containing 8.6 g urea in $1 L$ was found to be isotonic with 5% (weight/volume) solution of an organic non-volatile solute. The molecular weight of latter is
B. 34.89
C. 3489
D. 861.2

Answer: A

- Watch Video Solution

146. A solution containing $4 g$ of a non-volatile organic solute per 100 mL was found to have an osmotic pressure equal to 500 cm of mercury at $27^{\circ} \mathrm{C}$. The molecular weight of solute is
A. 14.97
B. 149.7
C. 1697
D. 1.497
147. If a 6.84% (wt,vol.)solutionof cane sugar(mol.Wt.=342)is isotonic with $1.52 \%(w t . / v o l$.$) solution of thiocarbamide ,then the molecular weight$ of thiocarbamide is
A. 152
B. 76.5
C. 85.5
D. 180

Answer: C

- Watch Video Solution

148. What is the volume of a solution containing 2 g mole of sugar that will give rise to an osmotic pressure of 1 atmosphere a STP ?
A. 224.0 litre
B. 22.4 litre
C. 2.24 litre
D. none of the above.

Answer: B

- Watch Video Solution

149. osmotic presure of a sugar solution at $27^{\circ} C$ is 2.46 atmosphere. The concentration of the solution in mol per litre is :
A. 1 M
B. 0.01 M
C. 0.0125 M
D. 0.1 M

Answer: D

150. 1 litre of a solution containing 500 g of a protein exerts an osmotic pressure of 0.82 atm at $27^{\circ} \mathrm{C}$. The molecular mass of the protein is :
A. 82000
B. 50000
C. 41000
D. 15000

Answer: D

- View Text Solution

151. Osmotic pressure of a solution is 0.0821 atm at a temperature of 300 K. The concentration in mole/litre will be
A. 0.033
B. 0.066
C. 0.33×10^{-2}
D. 3

Answer: C

- Watch Video Solution

152. The concentration of glucose (in $\mathrm{g} /$ litre) solution which is isotonic with a solution of urea containing 6 g per litre will be :
A. 6
B. 34.2
C. 18
D. 1.8

Answer: C

153. The solute ' A ' is a ternary electrolyte and solute ' B ' is a nonelectrolyte. If 0.1 M solution of solute ' B ' produces an osmotic pressure of 2 P , then, 0.05 M solution of A at the same temperature will produce an osmotic pressure equal to
A. P
B. 1.5 P
C. $2 P$
D. $3 P$

Answer: D

- Watch Video Solution

154. A 3.42% (wt./vol.) solution of cane sugar is isotomic with a 5.96% (wt. / vol.) solution of raffinose. The molecular weight of raffinose is:
A. 59.6
B. 596
C. 5.96
D. 5960

Answer: B

- Watch Video Solution

155. The osmotic pressure of a solution containing 40 g of solute (molecular mass 246) per litre at $27^{\circ} C$ is $\left(R=0.0822 \mathrm{atmLmol}^{-1}\right)$
A. 0.1 atm
B. 0.4 atm
C. 0.2 atm
D. 0.8 atm

Answer: B

(D) Watch Video Solution

156. The vapour pressure of benzene at $80^{\circ} \mathrm{C}$ is lowered by 10 mm by dissoving $2 g$ of a non-volatile substance in 78 gof benzene . The vapour pressure of pure benzene at $80^{\circ} \mathrm{C}$ is 750 mm . The molecular weight of the substance will be:
A. 15
B. 14.8
C. 1500
D. 148

Answer: D

- Watch Video Solution

157. A solution containing 500 g of a protein per liter is isotonic with a solution containing 3.42 g sucrose per liter. The molecular mass of
protein in 5×10^{x}, hence \times is.
A. 5
B. 146
C. 34200
D. 50000

Answer: D

- Watch Video Solution

158. The osomotic pressure of a solution at $0^{\circ} \mathrm{C}$ is 4 atm . What will be its osmotic pressure at $546 K$ under similar conditions?
a. $4 \mathrm{~atm}, \mathrm{~b} .9 \mathrm{~atm}, \mathrm{c} .8 \mathrm{~atm}, \mathrm{~d} .6 \mathrm{~atm}$
A. 0.5 atm
B. $2 \times 273 \mathrm{~atm}$
C. 4 atm
D. $273 / 2 \mathrm{~atm}$

Answer: C

- Watch Video Solution

159. The solution containing 4.0 gm of a polyvinyl chloride polymer in 1 litre dioxane was found to have an osmotic pressure 6.0×10^{-4} atmosphere at $300 K$,the value of R used is 0.082 litre atmosphere mole ${ }^{-1} K^{-1}$.The molecular mass of the polymer was found to be
A. 3×10^{3}
B. 1.6×10^{5}
C. 5×10^{4}
D. 6.4×10^{2}

Answer: B

160. The relationship between osmotic pressure at 273 K when $10 g$ glucose $\left(P_{1}\right), 10 g$ urea $\left(P_{2}\right)$ and $10 g$ sucrose $\left(P_{3}\right)$ are dissolved in 250 mL of water is:
A. $P_{1}>P_{2}>P_{3}$
B. $P_{3}>P_{1}>P_{2}$
C. $P_{2}>P_{1}>P_{3}$
D. $P_{2}>P_{3}>P_{1}$

Answer: C

- Watch Video Solution

161. Insulin $\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{O}_{5}\right)_{n}$ is dissolved in a suitable solvent and the osmotic pressure (π) of solutions of various concentrations $\left(\mathrm{g} / \mathrm{cm}^{3}\right) C$ is measured at $20^{\circ} \mathrm{C}$. The slope of a plot of π against C is found to be 4.65×10^{-3}. The molecular weight of insulin is:
A. 4.8×10^{5}
B. 9×10^{5}
C. 3×10^{5}
D. 5.16×10^{6}

Answer: D

- Watch Video Solution

162. A solution of protein (extracted from carbs) was prepared by dissolving 0.75 g in $125 \mathrm{~cm}^{3}$ of an aqueous solution. At $4^{\circ} \mathrm{C}$ and osmotic pressure rise of 2.6 mm of the solution was observed. Then molecular weight of protein is (assume density of solution is $1.00 \mathrm{~g} / \mathrm{cm}^{3}$):
A. 9.4×10^{5}
B. 5.4×10^{5}
C. 5.4×10^{10}
D. 9.4×10^{10}

- Watch Video Solution

163. If π_{1} is the osmotic pressure of solution containing 6 g . of acetic acid per $d m^{3}$ and π_{2} is that of a solution containing 5.85 g . of NaCl per $d m^{3}$ at the same temperature then
A. $\pi_{1}<\pi_{2}$
B. $\pi_{1}>\pi_{2}$
C. $\pi_{1}=\pi_{2}$
D. $2 \pi 2 \pi_{1}=\pi_{2}$

Answer: A

164. The osmotic pressure (in atm.) of a 1 M solution a non-electrolyte at $0^{\circ} C$ will be
A. 1 atm
B. 22.4 atm
C. 0.0821 atm
D. 76 atm

Answer: B

- View Text Solution

165. The osmotic pressure of a 0.5 M solution of NaCl at $0^{\circ} \mathrm{C}$ will be
A. 11.2 atm
B. less than 11.7 atm
C. more than 11.2 atm
D. unpredictable.

Answer: C

- View Text Solution

166. The solute ' A ' is a ternary electrolyte and solute ' B ' is a nonelectrolyte. If 0.1 M solution of solute ' B ' produces an osmotic pressure of $2 P$, then, 0.05 M solution of A at the same temperature will produce an osmotic pressure equal to
A. 1.5 P
B. $2 P$
C. $3 P$
D. P

Answer: C

167. Which compound corresponds vant Hoff factor (i) to be equal to 2 in dilute solution:
A. $\mathrm{K}_{2} \mathrm{SO}_{4}$
B. NaHSO_{4}
C. Sugar
D. MgSO_{4}

Answer: D

- Watch Video Solution

168. The values of observed and calculated molecular weights of silver nitrate are 92.64 and 170 respectively.The degree of dissociation of silver nitrate is:
A. 0.6
B. 0.835
C. 0.467
D. 0.6023

Answer: B

- Watch Video Solution

169. The solution containing 4 g of KBr dissolved in 100 g of water freezes at $-1.24^{\circ} \mathrm{C}$.

The molar mass of KBr is $\left(K_{f}=1.86 \mathrm{Kkgmol}^{-1}\right.$
A. 102
B. 120
C. 39
D. 60

Answer: B

170. The values of observed and calculated molecular weights of calcium nitrate are respectively 65.6 and 164 . The degree of dissociation of calcium nitrate will be:
A. 0.25
B. 0.5
C. 0.75
D. 0.6

Answer: C

- Watch Video Solution

171. The Van't Hoff factor of very dilute solution of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

172. KBr is 80% dissociated in solution. The freezing point of a 0.5 molal solution is $\left(K_{f}\right.$ water $\left.=1.86^{\circ} \frac{C}{m}\right)$
A. 273 K
B. 277 K
C. 271.326 K
D. 269 K

Answer: C

173. The degree of dissociation (α) of a weak electrolyte $A_{x} B_{y}$ is related to van't Hoff factor (i) by the expression
A. $\alpha=\frac{i-1}{(x+y-1)}$
B. $\alpha=\frac{i-1}{x+y+1}$
C. $\alpha=\frac{x+y-1}{i-1}$
D. $\alpha=\frac{x+y+1}{i-1}$

Answer: A

- Watch Video Solution

174. Acetic acid exists in benzene solution in the dimeric form. In an actual experiment, the van't Hoff factor was found to be 0.52 . Then, the degree of dissociation of acetic acid is
A. 0.48
B. 0.88
C. 0.96
D. 0.52.

Answer: C

- Watch Video Solution

175. 0.1 molal aqueous solution of sodium bromide freezes at $-0.335^{\circ} \mathrm{C}$ at atmospheric pressure. K_{f} for water is $1.86^{\circ} C$. The percentage of dissociation of the salt in solution is
A. 90
B. 80
C. 58
D. 98

Answer: B

Questions From Competition Exam

1. The molal freezing point for water is $1.86^{\circ} \mathrm{Cmol}^{-1}$. If 342 g of cane sugar is dissolved in 1000 mL of water, the solution will freeze at
A. $1.86^{\circ} C$
B. $-1.86^{\circ} \mathrm{C}$
C. $2.42^{\circ} \mathrm{C}$
D. $-2.42^{\circ} \mathrm{C}$

Answer: B

- Watch Video Solution

2. The $B a C l_{2}$ ionises to an extent of 80% in aqueous solution, the value of van't Hoff factor is -
A. 2.6
B. 0.4
C. 0.8
D. 2.4

Answer: A

D View Text Solution

3. Equal masses of methane and oxygen are mixed in an empty container at $25^{\circ} \mathrm{C}$. The fraction of the total pressure exerted by oxygen is:
A. $1 / 2$
B. $1 / 3$
C. $1 / 4$
D. $1 / 5$

Answer: B

- Watch Video Solution

4. An aqueous solution is 1.00 molal in $K I$. Which change will cause the vapor pressure of the solution to increase?
A. Addition of NaCl
B. Addition of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
C. Addition of 1.00 molal Kl
D. Addition of water

Answer: D

- Watch Video Solution

5. A solution of sucrose (molar mass $=342 \mathrm{~g} \mathrm{~mol}^{-1}$) has been prepared by dissolving 68.5 g of sucrose in 1000 g of water. The freezing point of the solution obtained will be :
$\left(K_{f}\right.$ for water $\left.=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$
A. $-0.372^{\circ} C$
B. $-0.520^{\circ} \mathrm{C}$
C. $+0.372^{\circ} \mathrm{C}$
D. $-0.570^{\circ} \mathrm{C}$

Answer: A

- Watch Video Solution

6. If sodium sulphate is considered to be completely dissociated into cations and anions in aqueous solution, the change in freezing point of water $\left(\Delta T_{f}\right)$ when 0.01 mole of sodium sulphate is dissociated in 1 kg of water is : $\left(K_{f}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$
A. 0.0744 K
B. 0.0186 K
C. 0.0372 K
D. 0.0558 K

- Watch Video Solution

7. If $10^{-4} \mathrm{dm}^{3}$ of water is introduced into a $1.0 \mathrm{dm}^{3}$ flask to 300 K how many moles of water are in the vapour phase when equilibrium is established ? (Given vapour pressure of $\mathrm{H}_{2} \mathrm{O}$ at 300 K is $\left.3170 P a R=8.314 J K^{-1} \mathrm{~mol}^{-1}\right)$.
A. $4.46 \times 10^{-2} \mathrm{~mol}$
B. $1.27 \times 10^{-3} \mathrm{~mol}$
C. $5.56 \times 10^{-3} \mathrm{~mol}$
D. $1.53 \times 10^{-2} \mathrm{~mol}$

Answer: B

8. On mixing, heptane and octane form an ideal solution. At 373 K the vapour pressure of the two liquid components (heptane and octane) are $105 k P a$ and $k P a$ respectively. Vapour pressure of the solution obtained by mixing 25.0 of heptane and $35 g$ of octane will be (molar mass of heptane $=100 \mathrm{gmol}^{-1}$ and of octane $=114 \mathrm{gmol}^{-1}$):-
A. 96.2 k Pa
B. 144.5 kPa
C. 72.0 kPa
D. 36.1 kPa

Answer: C

- Watch Video Solution

9. K_{b} for water is $0.52 \mathrm{k} / \mathrm{m}$. Then, 0.1 m solution of NaCl will boil approximately at
A. $100.52^{\circ} \mathrm{C}$
B. $100.052^{\circ} \mathrm{C}$
C. $101.04^{\circ} \mathrm{C}$
D. $100.104^{\circ} \mathrm{C}$

Answer: B

- Watch Video Solution

10. 138 g of ethyl alcohol is mixed with 72 g of water. The ratio of mole fraction of alcohol to water is
A. 3:4
B. 1:2
C. 1:4
D. 1:4

- Watch Video Solution

11. Two solutions of a substance (non-electroyte) are mixed in the following manner 480 mL of 1.5 M of first solution with 520 mL or 1.2 M of second solution. The molarity of final solution is:
A. 2.70 M
B. 1.344 M
C. 1.50 M
D. 1.20 M

Answer: B

- Watch Video Solution

12. 20 g of a binary electrolyte (Molecular mass =100) are dissolved in 500 g of water. The freezing point of the solution is $-0.74^{\circ} \mathrm{C}$ and $K_{f}=1.86$ $\mathrm{K} \mathrm{kg} \mathrm{mol}{ }^{-1}$. The degree of ionisation of eletrolyte as :
A. 0.5
B. 0.75
C. 1
D. 0

Answer: C

D Watch Video Solution

13. Which one of the following in the ratio of the lowering of V.P. of 0.1 M aqueous solution of $\mathrm{BaCl}_{2}, \mathrm{NaCl}$ and $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right.$ - (4) respectively?
A. 2:3:5
B. 3:2:5
C. 5:2:3
D. 5:1:2

Answer: B

- View Text Solution

14. A 0.1 molal aqueous solution of a weak acid is 30% ionized. If K_{f} for water is $1.86^{\circ} \mathrm{C} / \mathrm{m}$, the freezing point of the solution will be.
A. $-0.18^{\circ} \mathrm{C}$
B. $-0.54^{\circ} \mathrm{C}$
C. $-0.36^{\circ} \mathrm{C}$
D. $-0.24^{\circ} \mathrm{C}$

Answer: D

- Watch Video Solution

15. 200 mL of an aqueous solution of a protein contains its 1.26 g . The osmotic pressure of this solution at 300 K is found to be 2.57×10^{-3} bar. The molar mass of protein will be ($R=0.083 \mathrm{Lmol}{ }^{-1} \mathrm{~K}^{-1}$)
A. $51022 \mathrm{gmol}^{-1}$
B. $122044 \mathrm{gmol}^{-1}$
C. $31011 \mathrm{gmol}^{-1}$
D. $61038 \mathrm{gmol}^{-1}$

Answer: D

- Watch Video Solution

16. The freezing point depression constant for water is $1.86^{\circ} \mathrm{K} \mathrm{Kgmol}^{-1}$. If $5.00 \mathrm{gNa} \mathrm{Na}_{2} \mathrm{SO}_{4}$ is dissolved in $45.0 \mathrm{gH} \mathrm{H}_{2} \mathrm{O}$, the freezing point is charged by $-3.82^{\circ} \mathrm{C}$. Calculate the van't Hoff factor for $\mathrm{Na}_{2} \mathrm{SO}_{4}$.
A. 2.05
B. 2.63
C. 3.11
D. 0.381

D Watch Video Solution

17. The van't Hoff factor i for a compound which undergoes dissociation in one solvent and association in other solvent is respectively.
A. less than one and greater than one
B. less than one and lass than one
C. greater than one and less than one.
D. greater than one and greater than one.

Answer: C

- Watch Video Solution

18. Mole fraction of a solution in 1.00 molal aqueous solution is
A. 0.1770
B. 0.0177
C. 0.0344
D. ${ }^{`} 1.7700$

Answer: B

D Watch Video Solution

19. The degree of dissociation (α) of a weak electrolyte $A_{x} B_{y}$ is related to van't Hoff factor (i) by the expression
A. $\alpha=\frac{i-1}{x+y+1}$
B. $\alpha=\frac{x+y-1}{i-1}$
C. $\alpha=\frac{x+y+1}{i-1}$
D. $\alpha=\frac{i-1}{x+y-1}$

Answer: D

- Watch Video Solution

20. Ethylene glycol is used as an antifreeze in a cold climate. Mass of ethylene glycol which should be added to 4 kg of water to prevent it from freezing at $-6^{\circ} \mathrm{C}$ will be $\left(K_{f}\right.$ for water $=1.86 \mathrm{Kkgmol}^{-1}$, and molar mass of ethylene glycol $=62 \mathrm{gmol}^{-1}$)
A. 204.30 g
B. 400.00 g
C. 304.60 g
D. 800.00 g

Answer: D

- Watch Video Solution

21. A 5.2 molal aqueous of methyl alcohol, $\mathrm{CH}_{3} \mathrm{OH}$, is supplied. What is the molefraction of methyl alcohol in the solution ?
A. 0.190
B. 0.086
C. 0.050
D. 0.100

Answer: B

- Watch Video Solution

22. A5 $\%$ solution of cane sugar (molar mass $=342$)is isotonic with 1% of a solution of an known solute.The molar mass of unknown solute in $\mathrm{g} / \mathrm{mol}$ is
A. 136.2
B. 171.2
C. 68.4
D. 34.2

Answer: C

- Watch Video Solution

23. The molality of a urea solution in which 0.0100 g of urea, $\left[\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}\right]$ is added to $0.3000 \mathrm{dm}^{3}$ of water at STP is
A. 0.555 m
B. $5.55 \times 10^{-4} m$
C. 33.3
D. $3.33 \times 10^{-2} m$

Answer: B

- Watch Video Solution

24. Dissolving $120 g$ of urea $(M w=60)$ in $1000 g$ of water gave a solution of density $1.15 \mathrm{gmL}^{-1}$. The molarity of solution is:
A. 1.78 M
B. 2.00 M
C. 2.05 M
D. 2.22 M

Answer: C

D Watch Video Solution

25. The freezing point (in.${ }^{\circ} C$) of a solution containing $0.1 g$ of $K_{3}\left[F e(C N)_{6}\right]$ (Mol.wt. 329) in 100 g of water $\left(K_{f}=1.86 \mathrm{Kkgmol}^{-1}\right)$ is
A. -2.3×10^{-2}
B. -5.7×10^{-2}
C. -5.7×10^{-3}
D. -1.2×10^{-2}

Watch Video Solution

26. If the elevation in boiling point of a solution of 10 g of solute (molecular weight $=100$) in 100 g of water is ΔT_{b}, the ebullioscopic constant of water is
A. $\frac{\Delta T_{b}}{10}$
B. ΔT_{b}
C. $10 \Delta T_{b}$
D. $100 \Delta T_{b}$

Answer: B

- Watch Video Solution

27. 1.2 \% NaCl solution is isotonic with 7.2 \% glucose solution. What will be the van't Hoff factor, i?
A. 0.5
B. 1
C. 2
D. 6

Answer: C

- Watch Video Solution

28. The vapour pressure of two liquid P and Q are 80 torr and 60 torr respectively. The total vapour pressure obtained by mixing 3 moles of P and 2 mole of Q would be
A. 140 torr
B. 20 torr
C. 68 torr
D. 72 torr

- Watch Video Solution

29. A solution of urea boils at $100.18^{\circ} \mathrm{C}$ at the atmospheric pressure. If K_{f} and K_{b} for water are 1.86 and $0.512 \mathrm{Kkgmol}^{-1}$ respectively, the above solution will freeze at,
A. $-6.54^{\circ} C$
B. $6.54^{\circ} C$
C. $0.654^{\circ} C$
D. $-0.654^{\circ} C$

Answer: D

30. Which one of the following aqueous solution will have the lowest freezing point?
A. $0.2 \mathrm{MNa}_{2} \mathrm{SO}_{4}$
B. $0.1 M$ Urea
C. $0.2 \mathrm{MNaNO}_{3}$
D. $0.1 \mathrm{MBaCI} I_{2}$

Answer: A

- Watch Video Solution

31. The weight in grams of a non-volatile solute (molar mass $=60$) to be dissolved in 90 g of water to produce a relative of V.P. of 0.02 is
A. 4
B. 8
C. 6
D. 10

Answer: C

- View Text Solution

32. The density of a solution prepared by dissolving 120 g of urea (mol.

Mass $=60 \mathrm{u}$) in 1000 g of water is $1.15 \mathrm{~g} / \mathrm{mL}$. The molarity if this solution is
A. 2.05 M
B. 0.50 M
C. 1.78 M
D. 1.02 M

Answer: A

33. K_{f} for water is $1.86 \mathrm{Kkgmol}^{-1}$. If your automobile radiator holds 1.0 kg of water, how many grams of ethylene glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ must you add to get the freezing point of the solution lowered to $-2.8^{\circ} C$?
A. 27 g
B. 72 g
C. 93 g
D. 39 g

Answer: C

- Watch Video Solution

34. $29.2 \%(\mathrm{~W} / \mathrm{W}) \mathrm{HCl}$ stock solution has a density of $1.25 \mathrm{~g} m L^{-1}$. The molecular mass of HCl is $36.5 \mathrm{~g} \mathrm{~mol}^{-1}$ Calculate the volume (mL) of stock solution required to prepare 200 mL of 0.4 M HCI
A. 2 mL
B. 4 mL
C. 8 mL
D. 6 mL

Answer: C

- Watch Video Solution

35. For a dilute solution containing 2.5 g of a non-volatile non-electrolyte solution in $100 g$ of water, the elevation in boiling point at 1 atm pressure is $2^{\circ} \mathrm{C}$. Assuming concentration of solute is much lower than the concentration of solvent, the vapour pressure (mm of Hg) of the solution is:
(take $k_{b}=0.76 \mathrm{Kkgmol}^{-1}$)
A. 724
B. 740
C. 736
D. 718

Answer: A

- Watch Video Solution

36. P_{A} and P_{B} are the vapour pressure of pure liquid components ,Aand B respectively of an ideal binary solution,If x_{A} represents the mole fraction of component A , the total pressure of the solution will be
A. $P_{A}+x_{A}\left(P_{B}-P_{A}\right)$
B. $P_{A}+x_{A}\left(P_{A}-P_{B}\right)$
C. $P_{B}+x_{A}\left(P_{B}-P_{A}\right)$
D. $P_{B}+x_{A}\left(P_{A}-P_{B}\right)$

Answer: D

37. Vapour presure of chloroform $\left(\mathrm{CHCI}_{3}\right)$ and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{CI}_{2}\right)$ at $25^{\circ} \mathrm{C}$ are 200 mm Hg and 41.5 mm Hg respectively Vapour pressure of the solution obtained by mixing 25.5 g or CHCI_{3} and 40 g of $\mathrm{CH}_{2} \mathrm{CI}_{2}$ at the same temperature will and 40 g of $\mathrm{CH}_{2} \mathrm{CI}_{2}$ at the same temperature will be ((Molecular mass ofCHCI $I_{3}=119.5 u$ and molecular mass ` O CH_(2)CI_(2) $=85 \mathrm{u}$)
A. 173.9 mm Hg
B. 615.0 mm Hg
C. 347.9 mm Hg
D. 90.64 mm Hg

Answer: D

- View Text Solution

38. The V.P. in mm Hg of an aqueous solution obtained by adding 18 g of glucose to 180 g of water at $100^{\circ} \mathrm{C}$ is
A. 7.60
B. 76.0
C. 759
D. 752.4

Answer: D

- View Text Solution

39. Which one of the following is an isotonic pair of solution ?
A. 0.15 M NaCl and $0.1 \mathrm{MNa}_{2} \mathrm{SO}_{4}$
B. O.2 M urea and 0.1 M sugar
C. $0.1 M B a C I_{2}$ and $0.1 M N H_{4} C I$
D. $0.2 \mathrm{MMgSO}_{4}$ and $0.1 \mathrm{MNH}_{4} \mathrm{CI}$

Answer: A

40. The molarity of a solution obtained by mixing 750 mL of 0.5 M HCl with 250 mL of 2 M HCl will be
A. 0.975 M
B. 0.875 M
C. 1.00 M
D. 1.75 M

Answer: B

- Watch Video Solution

41. A solution of sucrose (molar mass $=342 \mathrm{~g} / \mathrm{mol}$) is prepared by dissolving 68.4 g of it per litre of solution, what is its osmotic pressure at 273 K ?
$\left(R=0.081 \mathrm{Latm}^{-1} \mathrm{~mol}^{-1}\right)$
A. 3.92 atm
B. 4.48 atm
C. 5.92 atm
D. 29.4 atm

Answer: B

- Watch Video Solution

42. At $300 \mathrm{~K}, 36 \mathrm{~g}$ of glucose present per litre in its solution has an osmotic pressure of 4.98^{-}. If the osmotic pressure of the solution is 1.52^{-} at the same temperature, what would be its concentration?
A. $11 g L^{-1}$
B. $22 g L^{-1}$
C. $36 g L^{-1}$
D. $42 g L^{-1}$

- Watch Video Solution

43. The boiling point of solution containing 68.4 g of sucrose $\left(\right.$ molar mass $\left.=342 \mathrm{gmol}^{-1}\right) \quad$ in $100 \quad \mathrm{~g} \quad$ of water is $\left(K_{b}\right.$ for water $\left.=0.512 K . \mathrm{kgmol}^{-1}\right)$
A. $100.02^{\circ} C$
B. $98.98^{\circ} C$
C. $101.02^{\circ} C$
D. $100.512^{\circ} \mathrm{C}$

Answer: C

