

MATHS

BOOKS - NIKITA MATHS (HINGLISH)

APPLICATION OF DEFINITE INTEGRAL

Multiple Choice Questions Mcq

1. Tangents are drawn to the ellipse $\frac{x^2}{9}+\frac{y^2}{5}=1$ at the end of latus rectum. Find the area of quadrilateral so formed

A. $\frac{27}{2}$ sq. units

B.
$$\frac{27}{4}$$
 sq. units

C. 27sq. units

D. 18 sq. units

Answer: c

- 2. Find the area of the region bounded by $x^2=16y,\;y=1,\;y=4$ and the y-axis in the first quadrant.
 - A. $\frac{112}{3}$ sq. units
 - B. $\frac{56}{3}$ sq. units

C.
$$\frac{28}{3}$$
 sq. units

D.
$$\frac{14}{3}$$
 sq. units

Answer: b

Watch Video Solution

3. Find by integration the area of the region bounded by the curve $y = 2x - x^2$ and the x-axis.

A.
$$\frac{2}{3}$$
 sq. units

B.
$$\frac{4}{3}$$
 sq. units

C.
$$\frac{5}{3}$$
 sq. units

D.
$$\frac{8}{3}$$
 sq. units

Answer: b

Watch Video Solution

4. Find the area of the region bounded by: the parabola $y=x^2$ and the line y=x

A.
$$\frac{1}{2}$$
 sq. units

B.
$$\frac{1}{3}$$
 sq. units

C.
$$\frac{1}{4}$$
 sq. units

D.
$$\frac{1}{6}$$
 sq. units

Answer: d

5. The area of the region bounded by the parabola $y=x^2$ and the line y = 4x is

A.
$$\frac{32}{3}$$
 sq. units

B.
$$\frac{16}{3}$$
 sq. units

C.
$$\frac{8}{3}$$
 sq. units

D.
$$\frac{4}{3}$$
 sq. units

Answer: a

6. The area of the region described by the curves

$$y^2=2x$$
 and y = 4x - 1 is

- A. $\frac{15}{64}$ sq. units
- B. $\frac{9}{32}$ sq. units
- C. $\frac{7}{32}$ sq. units
- D. $\frac{5}{64}$ sq. units

Answer: b

7. Find the area enclosed by the parabola $4y=3x^2$ and the line2y=3x+12.

- A. 27 sq. units
- B. 18 sq. units
- C. 9 sq. units
- D. 3 sq. units

Answer: a

8. Find the area of the region bounded by the parabola

$$\mathrm{x}^2=4\mathrm{y}ackslash$$
 and the line $\mathrm{x}=4\mathrm{y}-2$

- A. $\frac{3}{4}$ sq. units
- B. $\frac{3}{8}$ sq. units
- C. $\frac{9}{4}$ sq. units
- D. $\frac{9}{8}$ sq. units

Answer: d

9. The area of the region bounded by the curves

$$y^2=4a^2(x-1)$$
 and the lines x = 1 and y = 4a, is

- A. $\frac{2a}{3}$ sq. units
- B. $\frac{4a}{3}$ sq. units
- C. $\frac{8a}{3}$ sq. units
- D. $\frac{16a}{3}$ sq. units

Answer: d

10. Find the area of the region bounded by the curve

$$\left(y-1
ight)^2=4(x+1)$$
 and the line y= x-1

- A. $\frac{2}{3}$ sq. units
- B. $\frac{4}{3}$ sq. units
- C. $\frac{64}{3}$ sq. units
- D. $\frac{16}{3}$ sq. units

Answer: c

11. The area of the region bounded by the parabola

 $y^2=16(x-2)$ and the line y = 2 (x - 1) and X-axis is

- A. $\frac{2}{3}$ sq. units
- B. $\frac{4}{3}$ sq. units
- C. $\frac{8}{3}$ sq. units
- D. $\frac{16}{3}$ sq. units

Answer: b

12. Find the area of the region included between the parabolas $y^2 = 4axandx^2 = 4ay, wherea > 0$.

- A. $(2a^2)$ sq. units
- B. $\frac{4a^2}{3}$ sq. units
- C. $\frac{8a^2}{3}$ sq. units
- D. $\frac{16a^2}{3}$ sq. units

Answer: d

13. Find the area of the region bounded by the two parabolas $y=x^2$ and $y^2=x$.

- A. $\frac{16}{3}$ sq. units
- B. $\frac{8}{3}$ sq. units
- C. $\frac{1}{3}$ sq. units
- D. $\frac{4}{3}$ sq. units

Answer: c

14. The area between parabolas $y^2 = 7x \, ext{ and } \, x^2 = 7y$

is

- A. $\frac{7}{3}$ sq. units
- B. $\frac{7}{9}$ sq. units
- C. $\frac{49}{3}$ sq. units
- D. $\frac{49}{9}$ sq. units

Answer: c

15. Find the area of the region bounded by the curves

$$y^2 = x + 1$$
 and $y^2 = \, -x + 1$.

- A. $\frac{2}{3}$ sq. units
- B. $\frac{4}{3}$ sq. units
- C. $\frac{8}{3}$ sq. units
- D. $\frac{16}{3}$ sq. units

Answer: c

16. The area of the plane region bounded by the curves

$$x+2y^2=0$$
 and $x+3y^2=1$ is equal to

- A. $\frac{1}{3}$ sq. units
- B. $\frac{2}{3}$ sq. units
- C. $\frac{4}{3}$ sq. units
- D. $\frac{5}{3}$ sq. units

Answer: c

17. Find the area enclosed between first quadrant of a circle $x^2+y^2=16$ and line y=x.

- A. $8\pi sq.\ units$
- B. $\pi sq.\ units$
- C. $4\pi sq.\ units$
- D. $2\pi sq.\ units$

Answer: d

18. Find the area enclosed between the circle $x^2+y^2=1$ and the line x+y=1 lying in the first quadrant.

A.
$$\frac{\pi}{4} - \frac{1}{2} sq. \ units$$

B.
$$\frac{\pi}{4} - \frac{1}{4} sq. \ units$$

C.
$$\frac{\pi}{2} - 2sq. \ units$$

D.
$$\frac{\pi}{4}-2sq.~units$$

Answer: a

19. Using integration, find the area of the region common to the circle $x^2+y^2=16$ and the parabola $y^2=6x.$

A.
$$\frac{2}{3} \left(\sqrt{3} + 4\pi \right) sq. \ units$$

B.
$$rac{4}{3}ig(\sqrt{3}+4\piig)sq.\ units$$

C.
$$\frac{2}{3} \left(\sqrt{3} + 8\pi \right) sq. \ units$$

D.
$$\frac{4}{3}(\sqrt{3}+8\pi)sq.\ units$$

Answer: b

20. The area lying above the X-axis and included between the circle $x^2+y(2)=8x$ and the parabola $y^2=4x$ is

A.
$$4\pi - \frac{16}{3} sq. \ units$$

B.
$$4\pi - \frac{32}{3} sq. \ units$$

C.
$$8\pi - \frac{16}{3} sq. units$$

D.
$$8\pi - \frac{32}{3} sq. \ units$$

Answer: b

21. The area (in sq. units) of the region

$$ig\{(x,y)\!:\!y^2\leq 2x\ ext{ and } x^2+y^2\leq 4x, x\geq 0, y\leq 0ig\},$$

is

A.
$$\pi-rac{4}{3}$$

B.
$$\pi - \frac{8}{3}$$

C.
$$\pi-rac{4\sqrt{2}}{3}$$

D.
$$\dfrac{\pi}{2}-\dfrac{2\sqrt{2}}{3}$$

Answer: b

22. The area of the region described by

$$A=\left\{(x,y)\!:\!x^2+y^2\leq 1\, ext{and}\,y^2\leq 1-x
ight\}$$
 is :

A.
$$\frac{\pi}{2} + \frac{4}{3} sq. \ units$$

B.
$$\frac{\pi}{2} - \frac{4}{3} sq. \ units$$

C.
$$\frac{\pi}{2} - \frac{2}{3} sq. \ units$$

D.
$$\frac{\pi}{2} + \frac{2}{3} sq. \ units$$

Answer: b

23. Find the area of the region

$$ig\{(x,y)\!:\!y^2\leq 4x, 4x^2+4y^2\leq 9ig\}$$

B.
$$\frac{1}{3\sqrt{2}}+\frac{9\pi}{4}-\frac{9}{4}\sin^{-1}\left(\frac{1}{3}\right)$$
sq. $units$

C.
$$\dfrac{1}{3\sqrt{2}}+\dfrac{3\pi}{8}-\dfrac{3}{4}\sin^{-1}\biggl(\dfrac{1}{3}\biggr)$$
sq. $units$

D.
$$\dfrac{1}{3\sqrt{2}}+\dfrac{3\pi}{4}-\dfrac{3}{4}\sin^{-1}\biggl(\dfrac{1}{3}\biggr)sq.\ units$$

Answer: a

24. Area common to the circle $x^2+y^2=9$ an the parbola $y^1=8x$ is

A.
$$\dfrac{4\sqrt{2}}{3}+\dfrac{9\pi}{4}+\sqrt{2}+\dfrac{9}{2}\mathrm{sin}^{-1}igg(\dfrac{1}{3}igg)\!\!sq.$$
 $units$

B.
$$\dfrac{4\sqrt{2}}{3}+\dfrac{9\pi}{4}-\sqrt{2}-\dfrac{9}{2}\mathrm{sin}^{-1}igg(\dfrac{1}{3}igg)\!\!sq\!\!$$
. $units$

C.
$$\dfrac{8\sqrt{2}}{3}+\dfrac{9\pi}{2}+2\sqrt{2}+9\sin^{-1}igg(\dfrac{1}{3}igg)\!sq.\ units$$

D.
$$\dfrac{8\sqrt{2}}{3}+\dfrac{9\pi}{2}-2\sqrt{2}-9\sin^{-1}igg(\dfrac{1}{3}igg)$$
sq. $units$

Answer: d

25. Find the area of the circle

$$x^2 + y^2 = 16 which is exteri \,\, {
m or} \,\,
ightarrow the parabola y^2 = 6 x$$

by using integration.

A.
$$\frac{1}{3} \left(8\pi - \sqrt{3} \right) sq. \ units$$

B.
$$\frac{2}{3} \left(8\pi - \sqrt{3} \right) sq. \ units$$

C.
$$\frac{2}{3} \left(8\pi - \sqrt{3} \right) sq. \ units$$

D.
$$\frac{4}{3} \left(8\pi - \sqrt{3} \right) sq.~units$$

Answer: d

26. The area of the region bounded by the parabola $(y-2)^2=x-1$, the tangent to the parabola at the point (2,3) and the x-axis is

- A. 3 sq. units
- B. 6 sq. units
- C. 9 sq. units
- D. 1.2 sq. units

Answer: c

27. The area bounded by the curves $x^2+y^2=25, 4y=\left|4-x^2\right| ext{ and } x=0$ in the first quadiant is

A.
$$\dfrac{10}{3}+\dfrac{5}{2}\mathrm{sin}^{-1}igg(\dfrac{2}{5}igg)\!sq.\,units$$

B.
$$\frac{10}{3} + \frac{15}{2} \sin^{-1} \left(\frac{2}{5}\right) sq. \ units$$

C.
$$\dfrac{10}{3}+\dfrac{5}{2}\mathrm{sin}^{-1}igg(\dfrac{4}{5}igg)\!sq.\ units$$

D.
$$\dfrac{10}{3}+\dfrac{25}{2}\mathrm{sin}^{-1}igg(\dfrac{4}{5}igg)$$
sq. $units$

Answer: d

28. The area of the region bounded by the lines y=2x+1y=3x+1 and x=4 is

- A. 16 sq. units
- B. 121/3 sq. units
- C. 121/6 sq. units
- D. 8 sq. units

Answer: d

29. The area of ΔABC whose vertices are A (2,5), B (4,7) and C(6,2) is

- A. 7 sq. units
- B. 14 sq. units
- C. 21 sq. units
- D. 28 sq. units

Answer: a

30. The area of ΔABC with vertices A (2,1), B(3,4) and

C (0.5) is

- A. 1 sq. units
- B. 2 sq. units
- C. 3 sq. units
- D. 4 sq. units

Answer: d

31. Using integration, find the area of the triangle ABC whose vertices are $A(\,-1,1),\,B(0,5)$ and C(3,2).

- A. 15/2 sq. units
- B. 3/2 sq. units
- C. 5/2 sq. units
- D. 9/2 sq. units

Answer: a

32. The area of the region enclosed by the curves $y = \sin x$ and $y = \cos x$ from x = 0 to $x = \frac{\pi}{4}$ and Y-axis is

A.
$$2-\sqrt{2}sq.\ units$$

B.
$$1-\sqrt{2}sq.\ units$$

C.
$$\sqrt{2}-2sq.\ units$$

D.
$$\sqrt{2}-1sq.\ units$$

Answer: d

33. The area of the region bounded by the curves

$$y = ex \log x$$
 and $y = \frac{\log x}{ex}$ is

- A. e/4 5/e sq. units
- B. e/4 4/e sq. units
- C. e/4 5/4e sq. units
- D. 4/e 5/2e sq. units

Answer: c

34. The area (in sqaure units) of the region

$$ig\{(x,y)\!:\!x\geq 0, x+y\leq 3, x^2\leq 4y ext{ and } y\leq 1+\sqrt{x}ig\}$$

A. $\frac{5}{2}$

is

B. $\frac{59}{12}$

 $\mathsf{C.}\,\frac{3}{2}$

D. $\frac{7}{3}$

Answer: a

