d'doubtnut

MATHS

BOOKS - NIKITA MATHS (HINGLISH)

APPLICATION OF DEFINITE INTEGRAL

Multiple Choice Questions Mcq

1. Tangents are drawn to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ at
the end of latus rectum. Find the area of quadrilateral
so formed
A. $\frac{27}{2}$ sq. units
B. $\frac{27}{4}$ sq. units
C. 27 sq. units
D. 18 sq. units

Answer: c

- Watch Video Solution

2. Find the area of the region bounded by
$x^{2}=16 y, y=1, y=4$ and the y-axis in the first quadrant.
A. $\frac{112}{3}$ sq. units
B. $\frac{56}{3}$ sq. units
C. $\frac{28}{3}$ sq. units
D. $\frac{14}{3}$ sq. units

Answer: b

(D) Watch Video Solution

3. Find by integration the area of the region bounded by the curve $y=2 x-x^{2}$ and the x-axis.
A. $\frac{2}{3}$ sq. units
B. $\frac{4}{3}$ sq. units

5
C. $\frac{5}{3}$ sq. units
D. $\frac{8}{3}$ sq. units

Answer: b

- Watch Video Solution

4. Find the area of the region bounded by: the
parabola $y=x^{2}$ and the line $y=x$
A. $\frac{1}{2}$ sq. units
B. $\frac{1}{3}$ sq. units
C. $\frac{1}{4}$ sq. units
D. $\frac{1}{6}$ sq. units

Answer: d
5. The area of the region bounded by the parabola
$y=x^{2}$ and the line $\mathrm{y}=4 \mathrm{x}$ is
A. $\frac{32}{3}$ sq. units
B. $\frac{16}{3}$ sq. units
C. $\frac{8}{3}$ sq. units
D. $\frac{4}{3}$ sq. units

Answer: a

6. The area of the region described by the curves
$y^{2}=2 x$ and $y=4 x-1$ is
A. $\frac{15}{64}$ sq. units
B. $\frac{9}{32}$ sq. units
C. $\frac{7}{32}$ sq. units
D. $\frac{5}{64}$ sq. units

Answer: b

- View Text Solution

7. Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line $2 y=3 x+12$.
A. 27 sq. units
B. 18 sq. units
C. 9 sq. units
D. 3 sq. units

Answer: a

- Watch Video Solution

8. Find the area of the region bounded by the parabola
$x^{2}=4 y \backslash \quad$ and the line $x=4 y-2$
A. $\frac{3}{4}$ sq. units
B. $\frac{3}{8}$ sq. units
C. $\frac{9}{4}$ sq. units
D. $\frac{9}{8}$ sq. units

Answer: d

- Watch Video Solution

9. The area of the region bounded by the curves
$y^{2}=4 a^{2}(x-1)$ and the lines $x=1$ and $y=4 a$, is
A. $\frac{2 a}{3}$ sq. units
B. $\frac{4 a}{3}$ sq. units
C. $\frac{8 a}{3}$ sq. units
D. $\frac{16 a}{3}$ sq. units

Answer: d

- Watch Video Solution

10. Find the area of the region bounded by the curve
$(y-1)^{2}=4(x+1)$ and the line $y=x-1$
A. $\frac{2}{3}$ sq. units
B. $\frac{4}{3}$ sq. units
C. $\frac{64}{3}$ sq. units
D. $\frac{16}{3}$ sq. units

Answer: C

11. The area of the region bounded by the parabola $y^{2}=16(x-2)$ and the line $\mathrm{y}=2(\mathrm{x}-1)$ and X -axis is
A. $\frac{2}{3}$ sq. units
B. $\frac{4}{3}$ sq. units
C. $\frac{8}{3}$ sq. units
D. $\frac{16}{3}$ sq. units

Answer: b

- View Text Solution

12. Find the area of the region included between the parabolas $y^{2}=4 a x a n d x^{2}=4 a y$, wherea >0.
A. $\left(2 a^{2}\right)$ sq. units
B. $\frac{4 a^{2}}{3}$ sq. units
C. $\frac{8 a^{2}}{3}$ sq. units
D. $\frac{16 a^{2}}{3}$ sq. units

Answer: d

- Watch Video Solution

13. Find the area of the region bounded by the two parabolas $y=x^{2}$ and $y^{2}=x$.
A. $\frac{16}{3}$ sq. units
B. $\frac{8}{3}$ sq. units
C. $\frac{1}{3}$ sq. units
D. $\frac{4}{3}$ sq. units

Answer: c

14. The area between parabolas $y^{2}=7 x$ and $x^{2}=7 y$ is
A. $\frac{7}{3}$ sq. units
B. $\frac{7}{9}$ sq. units
C. $\frac{49}{3}$ sq. units
D. $\frac{49}{9}$ sq. units

Answer: C

- View Text Solution

15. Find the area of the region bounded by the curves
$y^{2}=x+1$ and $y^{2}=-x+1$.
A. $\frac{2}{3}$ sq. units
B. $\frac{4}{3}$ sq. units
C. $\frac{8}{3}$ sq. units
D. $\frac{16}{3}$ sq. units

Answer: c

16. The area of the plane region bounded by the curves $x+2 y^{2}=0$ and $x+3 y^{2}=1$ is equal to
A. $\frac{1}{3}$ sq. units
B. $\frac{2}{3}$ sq. units
C. $\frac{4}{3}$ sq. units

5
D. $\frac{5}{3}$ sq. units

Answer: c

- Watch Video Solution

17. Find the area enclosed between first quadrant of a
circle $x^{2}+y^{2}=16$ and line $y=x$.
A. $8 \pi s q$. units
B. $\pi s q$. units
C. $4 \pi s q$. units
D. $2 \pi s q$. units

Answer: d
(D) Watch Video Solution
18. Find the area enclosed between the circle $x^{2}+y^{2}=1$ and the line $x+y=1$ lying in the first quadrant.
A. $\frac{\pi}{4}-\frac{1}{2}$ sq. units
B. $\frac{\pi}{4}-\frac{1}{4}$ sq. units
C. $\frac{\pi}{2}-2$ sq. units
D. $\frac{\pi}{4}-2$ sq. units

Answer: a

19. Using integration, find the area of the region common to the circle $x^{2}+y^{2}=16$ and the parabola $y^{2}=6 x$.
A. $\frac{2}{3}(\sqrt{3}+4 \pi)$ sq. units
B. $\frac{4}{3}(\sqrt{3}+4 \pi) s q$. units
C. $\frac{2}{3}(\sqrt{3}+8 \pi)$ sq. units
D. $\frac{4}{3}(\sqrt{3}+8 \pi)$ sq. units

Answer: b

- Watch Video Solution

20. The area lying above the X-axis and included between the circle $x^{2}+y(2)=8 x$ and the parabola $y^{2}=4 x$ is
A. $4 \pi-\frac{16}{3}$ sq. units
B. $4 \pi-\frac{32}{3}$ sq. units
C. $8 \pi-\frac{16}{3}$ sq. units
D. $8 \pi-\frac{32}{3}$ sq. units

Answer: b

- View Text Solution

21. The area (in sq. units) of the region
$\left\{(x, y): y^{2} \leq 2 x\right.$ and $\left.x^{2}+y^{2} \leq 4 x, x \geq 0, y \leq 0\right\}$, is
A. $\pi-\frac{4}{3}$
B. $\pi-\frac{8}{3}$
C. $\pi-\frac{4 \sqrt{2}}{3}$
D. $\frac{\pi}{2}-\frac{2 \sqrt{2}}{3}$

Answer: b
22. The area of the region described by $A=\left\{(x, y): x^{2}+y^{2} \leq 1\right.$ and $\left.y^{2} \leq 1-x\right\}$ is:
A. $\frac{\pi}{2}+\frac{4}{3} s q$. units
B. $\frac{\pi}{2}-\frac{4}{3} s q$. units
C. $\frac{\pi}{2}-\frac{2}{3}$ sq. units
D. $\frac{\pi}{2}+\frac{2}{3}$ sq. units

Answer: b

- Watch Video Solution

23. Find the area of the region $\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$
A. $\frac{1}{3 \sqrt{2}}+\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1}\left(\frac{1}{3}\right)$ sq. units
B. $\frac{1}{3 \sqrt{2}}+\frac{9 \pi}{4}-\frac{9}{4} \sin ^{-1}\left(\frac{1}{3}\right)$ sq. units
C. $\frac{1}{3 \sqrt{2}}+\frac{3 \pi}{8}-\frac{3}{4} \sin ^{-1}\left(\frac{1}{3}\right)$ sq. units
D. $\frac{1}{3 \sqrt{2}}+\frac{3 \pi}{4}-\frac{3}{4} \sin ^{-1}\left(\frac{1}{3}\right)$ sq. units

Answer: a

- Watch Video Solution

24. Area common to the circle $x^{2}+y^{2}=9$ an the parbola $y^{1}=8 x$ is
A. $\frac{4 \sqrt{2}}{3}+\frac{9 \pi}{4}+\sqrt{2}+\frac{9}{2} \sin ^{-1}\left(\frac{1}{3}\right)$ sq. units
B. $\frac{4 \sqrt{2}}{3}+\frac{9 \pi}{4}-\sqrt{2}-\frac{9}{2} \sin ^{-1}\left(\frac{1}{3}\right)$ sq. units
C. $\frac{8 \sqrt{2}}{3}+\frac{9 \pi}{2}+2 \sqrt{2}+9 \sin ^{-1}\left(\frac{1}{3}\right)$ sq. units
D. $\frac{8 \sqrt{2}}{3}+\frac{9 \pi}{2}-2 \sqrt{2}-9 \sin ^{-1}\left(\frac{1}{3}\right) s q$. units

Answer: d

D Watch Video Solution

25. Find the area of the circle $x^{2}+y^{2}=16$ whichisexteri or \rightarrow theparabolay ${ }^{2}=6 x$ by using integration.
A. $\frac{1}{3}(8 \pi-\sqrt{3})$ sq. units
B. $\frac{2}{3}(8 \pi-\sqrt{3})$ sq. units
C. $\frac{2}{3}(8 \pi-\sqrt{3})$ sq. units
D. $\frac{4}{3}(8 \pi-\sqrt{3}) s q$. units

Answer: d

26. The area of the region bounded by the parabola $(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the x-axis is
A. 3 sq. units
B. 6 sq. units
C. 9 sq. units
D. 1.2 sq. units

Answer: c

- Watch Video Solution

27. The area bounded by the curves
$x^{2}+y^{2}=25,4 y=\left|4-x^{2}\right|$ and $x=0$ in the first quadiant is
A. $\frac{10}{3}+\frac{5}{2} \sin ^{-1}\left(\frac{2}{5}\right) s q$. units
B. $\frac{10}{3}+\frac{15}{2} \sin ^{-1}\left(\frac{2}{5}\right)$ sq. units
C. $\frac{10}{3}+\frac{5}{2} \sin ^{-1}\left(\frac{4}{5}\right) s q$. units
D. $\frac{10}{3}+\frac{25}{2} \sin ^{-1}\left(\frac{4}{5}\right) s q$. units

Answer: d

- View Text Solution

28. The area of the region bounded by the lines $y=2 x+1 y=3 x+1$ and $x=4$ is
A. 16 sq. units
B. $121 / 3$ sq. units
C. $121 / 6$ sq. units
D. 8 sq. units

Answer: d

- Watch Video Solution

29. The area of $\triangle A B C$ whose vertices are A (2,5), B
$(4,7)$ and $C(6,2)$ is
A. 7 sq. units
B. 14 sq. units
C. 21 sq. units
D. 28 sq. units

Answer: a

- View Text Solution

30. The area of $\triangle A B C$ with vertices $\mathrm{A}(2,1), \mathrm{B}(3,4)$ and
$C(0.5)$ is
A. 1 sq. units
B. 2 sq. units
C. 3 sq. units
D. 4 sq. units

Answer: d

- View Text Solution

31. Using integration, find the area of the triangle $A B C$ whose vertices are $A(-1,1), B(0,5)$ and $C(3,2)$.
A. $15 / 2$ sq. units
B. $3 / 2$ sq. units
C. $5 / 2$ sq. units
D. 9/2 sq. units

Answer: a

- Watch Video Solution

32. The area of the region enclosed by the curves $y=$
$\sin \mathrm{x}$ and $\mathrm{y}=\cos \mathrm{x}$ from $\mathrm{x}=0$ to $\mathrm{x}=\frac{\pi}{4}$ and Y -axis is
A. $2-\sqrt{2}$ sq. units
B. $1-\sqrt{2}$ sq. units
C. $\sqrt{2}-2 s q$. units
D. $\sqrt{2}-1$ sq. units

Answer: d

- View Text Solution

33. The area of the region bounded by the curves
$y=e x \log x$ and $y=\frac{\log x}{e x}$ is
A. e/4-5/e sq. units
B. e/4-4/e sq. units
C. e/4-5/4e sq. units
D. $4 / \mathrm{e}-5 / 2 \mathrm{e}$ sq. units

Answer: c

- Watch Video Solution

34. The area (in sqaure units) of the region $\left\{(x, y): x \geq 0, x+y \leq 3, x^{2} \leq 4 y\right.$ and $\left.y \leq 1+\sqrt{x}\right\}$
is

> A. $\frac{5}{2}$
> B. $\frac{59}{12}$
> C. $\frac{3}{2}$
> D. $\frac{7}{3}$

Answer: a

