© 'doubtnut

MATHS

BOOKS - NIKITA MATHS (HINGLISH)

CONTINUITY

MULTIPLE CHOICE QUESTIONS

1. The function $f(x)=\frac{2 x^{2}+7}{x^{3}+3 x^{2}-x-3}$ is discontinuous for
A. $x=1$ only
B. $x=1,-1$ only
C. $x=1,-1,-3$ and other values of x
D. $x=1,-1,-3$ only
2. Find the points of discontinuity of $y=\frac{1}{u^{2}+u-2}$, where $u=\frac{1}{x-1}$
A. $x=2, \frac{1}{2}$
B. $x=1,2, \frac{1}{2}$
C. $x=2, \frac{-1}{2}$
D. $z=1,2, \frac{-1}{2}$

Answer: B

- Watch Video Solution

3. If $f(x)$ is continuous at $x=3$, where $f(x)=\frac{x^{2}-7 x+12}{x^{2}-5 x+6}$,for $x \neq 3$, then $f(3)=$
A. -1
B. 1
C. $\frac{1}{5}$
D. $\frac{7}{5}$

Answer: A

- Watch Video Solution

4. If $f(x)$ is continuous for all x , where $f(x)=\left\{\begin{array}{l}\frac{x^{2}-7 x+12}{(x-2)^{2}}, \text { for } x \neq 2 \\ k, \text { for } x=2\end{array}\right.$, then $k=$
A. 7
B. -7
C. ± 7
D. None of these

Answer: A

5. if the function $f(x)=\frac{x^{2}-(a+2) x+a}{x-2}$ for $x \neq 2$ and $f(x)=2$ for $x=2$ is continuous function at $x=2$ then value of a is:
A. 2
B. -1
C. 1
D. 0

Answer: D

(Watch Video Solution

6. If $f(x)$ is continuous at $x=2$, where $f(x)=\frac{\left(x^{2}-x-2\right)^{20}}{\left(x^{3}-12 x+16\right)^{10}}$, for $x \neq 2$, then $f(2)=$
A. $\frac{3^{20}}{2^{10}}$
B. $\frac{3^{10}}{2^{20}}$
C. $\left(\frac{3}{2}\right)^{10}$
D. $\left(\frac{3}{2}\right)^{20}$

Answer: C

- Watch Video Solution

7. If $f(x)$ is continuous at $x=-2$, where $f(x)=\frac{2}{x+2}+\frac{1}{x^{2}-2 x+4}-\frac{24}{x^{3}+8}, \quad$ for $\quad x \neq-2, \quad$ then
$f(-2)=$
A. $\frac{-1}{4}$
B. $\frac{1}{4}$
C. $\frac{11}{12}$
D. $\frac{-11}{12}$

Answer: D

8. If $f(x)$ is continuous at $x=1$, where $f(x)=\frac{x^{n}-1}{x-1}$, for $x \neq 1$, then $f(1)=$
A. $\frac{1}{n}$
B. $\frac{1}{n(n-1)}$
C. n
D. $n(n-1)$

Answer: C

Watch Video Solution

9. Examine the continuity of the given function at given points $f(x)=\frac{x+3 x^{2}+5 x^{3}+\ldots .+(2 n-1) x^{n}-n^{2}}{x-1}, \quad$ for $\quad x \neq 1 \quad$ at $x=1$ and $=\frac{n\left(n^{2}-1\right)}{3}$,for $x=1$
A. $\frac{n(n+1)(2 n-1)}{6}$
B. $\frac{n(n+1)(2 n-1)}{3}$
C. $\frac{n(n+1)(4 n-1)}{6}$
D. $\frac{n(n+1)(4 n-1)}{3}$

Answer: C

- Watch Video Solution

10. If $f(x)$ is continuous at $x=3$, where $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-9}{x-3} & , \text { for } x \neq 3 \\ 2 x+k & \text {, otherwise }\end{array}\right.$, then $k=$
A. 0
B. 3
C. -6
D. $\frac{1}{6}$

Answer: A

11. If $f(x)$ is continuous at $x=16$, where
$f(x)=\left\{\begin{array}{l}\frac{x^{8}-(256)^{4}}{x^{4}-(16)^{4}}, \text { for } x \neq 16 \\ k, \text { for } x=16\end{array}\right.$, then $k=$
A. $(16)^{4}$
B. $2(16)^{4}$
C. $4(16)^{4}$
D. $3(16)^{4}$

Answer: B

- Watch Video Solution

12. The value of $f(0)$, so that the function $f(x)=\frac{(27-2 x)^{2}-3}{9-3(243+5 x)^{1 / 5}-2}(x \neq 0)$ is continuous, is given $\frac{2}{3}$ (b) 6
(c) 2 (d) 4
A. -2
B. 2
C. $\frac{-2}{3}$
D. $\frac{2}{3}$

Answer: B

- Watch Video Solution

13. If $f(x)=(1+x)^{5 / x}$ is continuous at $\mathrm{x}=0$, then what is the value of $f(0)$?
A. $\frac{1}{3}$
B. $\frac{1}{2}$
C. $\frac{5}{6}$
D. $\frac{1}{6}$
14. If the function $\mathrm{f}(\mathrm{x})$ defined as : $f(x)=\frac{x^{4}-64 x}{\sqrt{x^{2}+9}-5}$, for $x \neq 4$ and $=3$, for $x=4$ Show that $\mathrm{f}(\mathrm{x})$ has a removable discontinuity at $x=4$
A. 120
B. 240
C. 120
D. -240

Answer: B

- Watch Video Solution

15. The value of $f(0)$, so that the function $f(x)=\frac{\sqrt{a^{2}-a x+x^{2}}-\sqrt{a^{2}+a x+x^{2}}}{\sqrt{a+x}-\sqrt{a-x}}$ becomes continuous for all x, given by $a^{\frac{3}{2}}$ (b) $a^{\frac{1}{2}}$ (c) $-a^{\frac{1}{2}}$ (d) $-a^{\frac{3}{2}}$
A. $-a \sqrt{a}$
B. $a \sqrt{a}$
C. $-\sqrt{a}$
D. \sqrt{a}

Answer: C

D Watch Video Solution

16. Evaluate : $(\lim)_{x 2} \overrightarrow{2}^{a^{+}} \frac{\sqrt{x-2 a}+\sqrt{x}-\sqrt{2 a}}{x^{2}-4 a^{2}}$
A. $2 \sqrt{a}$
B. 2 a
C. $\frac{1}{2 \sqrt{a}}$
D. $\frac{1}{2 a}$

Answer: C

17. If $f(x)$ is continuous at $x=\sqrt{2}$, where
$f(x)=\frac{\sqrt{3+2 x}-(\sqrt{2}+1)}{x^{2}-2}$, for $x \neq \sqrt{2}$, then $f(\sqrt{2})=$
A. $\frac{1}{2(2+\sqrt{2})}$
B. $\frac{1}{\sqrt{2}(2+\sqrt{2})}$
C. $\frac{1}{2+\sqrt{2}}$
D. $\frac{1}{2+2 \sqrt{2}}$

Answer: A

- Watch Video Solution

18. If $f(x)$ is continuous at $x=5$, where $f(x)=\frac{\sqrt{3+\sqrt{4+x}}-\sqrt{6}}{x-5}$, for $x \neq 5$, then $f(5)=$
A. $\frac{1}{2 \sqrt{6}}$
B. $\frac{1}{3 \sqrt{6}}$
C. $\frac{1}{12 \sqrt{6}}$
D. None of these

Answer: C

- Watch Video Solution

19. If $f(x)$ is continuous at $x=0$, where $f(x)=\sin x-\cos x$, for $x \neq 0$, then $f(0)=$
A. 2
B. 0
C. -1
D. 1

Answer: C

20. If $f(x)$ is continuous at $x=\frac{\pi}{2}$, where $f(x)=\frac{\sqrt{2}-\sqrt{1+\sin x}}{\cos ^{2} x}$, for $x \neq \frac{\pi}{2}$, then $f\left(\frac{\pi}{2}\right)=$
A. $4 \sqrt{2}$
B. $2 \sqrt{2}$
C. $\frac{1}{4 \sqrt{2}}$
D. $\frac{1}{2 \sqrt{2}}$

Answer: C

- Watch Video Solution

21. If $f(x)$ is continuous at $x=\frac{\pi}{4}$, where $f(x)=\frac{1-\tan x}{1-\sqrt{2} \sin x}$, for $x \neq \frac{\pi}{4}$, then $f\left(\frac{\pi}{4}\right)=$
A. 2
B. $\sqrt{2}$
C. $2 \sqrt{2}$
D. $\frac{1}{\sqrt{2}}$

Answer: A

- Watch Video Solution

22. If $f(x)$ is continuous at $x=0$,where $f(x)=\frac{\sin \left(\pi \cos ^{2} x\right)}{x^{2}}$,for $x \neq 0$, then $f(0)=$
A. $\frac{\pi}{2}$
B. 1
C. $-\pi$
D. π

Answer: D

23. If $f(x)$ is continuous at $x=\frac{\pi}{4} \quad$ where
$f(x)=\frac{2 \sqrt{2}-(\cos x+\sin x)^{3}}{1-\sin 2 x}$,for $x \neq \frac{\pi}{4}$ then $f\left(\frac{\pi}{4}\right)=$
A. $\frac{3}{\sqrt{2}}$
B. $\frac{\sqrt{2}}{3}$
C. $\frac{1}{\sqrt{2}}$
D. $3 \sqrt{2}$

Answer: A

- Watch Video Solution

24. If $f(x)$ is continuous at $\theta=\frac{\pi}{4}$, where $f(\theta)=\left\{\begin{array}{l}\frac{1-\tan \theta}{1-\sqrt{2} \sin \theta}, \text { for } \theta \neq \frac{\pi}{4} \\ \frac{k}{2}, \text { for } \theta=\frac{\pi}{4}\end{array}\right.$, then $k=$
A. $2 \sqrt{2}$
B. $4 \sqrt{2}$
C. 2
D. 4

Answer: D

- Watch Video Solution

25. The function $f(x)=\frac{1-\sin x+\cos x}{1+\sin x+\cos x}$ is not defined at $x=\pi$. The value of $f(\pi)$, so that $\mathrm{f}(\mathrm{x})$ is continuous at $x=\pi$, is
A. -1
B. 1
C. $\frac{-1}{2}$
D. $\frac{1}{2}$

Answer: A

26. If $f(x)$ is continuous at $x=\frac{\pi}{2}$, where $f(x)=\frac{\cos x}{\sqrt{1-\sin x}}$, for $x \neq \frac{\pi}{2}$, then $f\left(\frac{\pi}{2}\right)=$
A. $\frac{1}{2 \sqrt{2}}$
B. $\frac{1}{\sqrt{2}}$
C. $2 \sqrt{2}$
D. $\sqrt{2}$

Answer: D

- Watch Video Solution

27. If $f(x)$ is continuous at $x=\frac{\pi}{4}$, where $f(x)=\frac{\cos x-\sin x}{\cos 2 x}$, for $x \neq \frac{\pi}{4}$, then $f\left(\frac{\pi}{4}\right)=$
A. $\frac{1}{\sqrt{2}}$
B. $\frac{-1}{\sqrt{2}}$
C. $\sqrt{2}$
D. $-\sqrt{2}$

Answer: A

- Watch Video Solution

28. If $f(x)$ is continuous at $x=\frac{\pi}{4}$, where $f(x)=\frac{2-\operatorname{cosec}^{2} x}{\cot x-1}$, for $x \neq \frac{\pi}{4}$, then $f\left(\frac{\pi}{4}\right)=$
A. 4
B. -4
C. -2
D. None of these

Answer: C

O
 Watch Video Solution

29. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{\sin \left(x^{2}-x\right)}{x}$, for $x \neq 0$, then $f(0)=$
A. -1
B. 1
C. 0
D. 2

Answer: A

- View Text Solution

30. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left\{\begin{array}{l}\frac{x \cos x+3 \tan x}{x^{2}+\sin x}, \text { for } x \neq 0 \\ k^{2}, \text { for } x=0\end{array} \quad\right.$, then $k=$
A. 2
B. -2
C. ± 2
D. None of these

Answer: C

- Watch Video Solution

31. If $f(x)$ is continuous at $x=0$, where
$f(x)=\frac{\sin (a+x)-\sin (a-x)}{\tan (a+x)-\tan (a-x)}, x \neq 0$, then $f(0)=$
A. $2 \sec ^{3} a$
B. $\sec ^{3} a$
C. $\cos ^{3} a$
D. None of these

Answer: A

32. $f: R \rightarrow R$ is defined by $f(x)=\left\{\frac{\cos 3 x-\cos x}{x^{2}}, x \neq 0 \lambda, x=0\right.$ and f is continuous at $x=0$; then $\lambda=$
A. -4
B. -2
C. -8
D. -6

Answer: A

33. If $f(x)$ is continuous at $x=0$, where $f(x)=\left\{\begin{array}{l}\frac{1-\cos x}{x}, \text { for } x \neq 0 \\ k, \text { for } x=0\end{array}\right.$, then $k=$
A. $\frac{1}{2}$
B. $\frac{-1}{2}$
C. $\frac{1}{4}$
D. 0

Answer: D

- Watch Video Solution

34. If $f(x)$ is continuous at $x=0$, where $f(x)=\left\{\begin{array}{l}\frac{1-\cos k x}{x^{2}}, \text { for } x \neq 0 \\ \frac{1}{2}, \text { for } x=0\end{array}\right.$, then $k=$
A. 1
B. -1
C. ± 1
D. None of these

Answer: D

35. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{1-\cos 3 x}{x \tan x}$ for $x \neq 0$, then $f(0)=$
A. $\frac{3}{2}$
B. $\frac{9}{2}$
C. $\frac{3}{4}$
D. None of these

Answer: B

- Watch Video Solution

36. If the function $f(x)\left\{\begin{array}{cl}\frac{1-\cos 4 x}{8 x^{2}}, & x \neq 0 \\ \mathrm{k}, & x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$ then $\mathrm{k}=$?
A. 16
B. 2
C. -1
D. 1

Answer: D

- Watch Video Solution

37. If $f(x)=$ is continuous at $x=0$, where
$f(x)=\frac{(1-\cos 2 x)(3+\cos x)}{x \tan 4 x}$, for $x \neq 0$, then $f(0)=$
A. 2
B. $\frac{1}{2}$
C. 4
D. None of these

Answer: D
38. If α, β are the roots of $a x^{2}+b x+c=0$ and $f(x)$ is continuous at $x=\alpha$, where $f(x)=\frac{1-\cos \left(a x^{2}+b x+c\right)}{(x-\alpha)^{2}}$, for $x \neq \alpha$, then $f(\alpha)=$
A. 0
B. $\frac{4 a c-b^{2}}{2}$
C. $\frac{b^{2}-4 a c}{2}$
D. None of these

Answer: C

- Watch Video Solution

39. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left\{\begin{array}{l}\frac{\cos ^{2} x-\sin ^{2} x-1}{\sqrt{x^{2}+1}-1}, \text { for } x \neq 0 \\ 2 k, \text { for } x=0\end{array}\right.$, then $k=$
A. -2
B. -4
C. 2
D. None of these

Answer: A

- Watch Video Solution

40. If $f(x)$ is continuous at $x=a$, where
$f(x)=\frac{\sin (a+x)+\sin (a-x)-2 \sin a}{x \sin x}$, for $x \neq a$, then $f(a)=$
A. $\frac{2}{a}(\cos a-1)$
B. $\frac{1}{a}(\cos a-1)$
C. $\frac{1}{a}(1-\cos a)$
D. None of these

Answer: A

41. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{3-4 \cos x+\cos 2 x}{x^{2}}$, for $x \neq 0$, then $f(0)=$
A. 0
B. 2
C. -2
D. 4

Answer: A

- Watch Video Solution

42. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{3-4 \cos x+\cos 2 x}{x^{4}}$, for $x \neq 0$, then $f(0)=$
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. 8
D. 4

Answer: B

- Watch Video Solution

43. The value of k which makes $f(x)=\left\{\begin{array}{l}\sin \left(\frac{1}{x}\right), \text { for } x \neq 0 \\ k, \text { for } x=0\end{array}\right.$ continuous at $x=0$ is
A. 0
B. 1
C. -1
D. no value of k

Answer: D

44. If the function $\mathrm{f}(\mathrm{x})$ defined by
$f(x)= \begin{cases}x \sin \frac{1}{x}, & \text { for } x \neq 0 \\ k, & \text { for } x=0\end{cases}$
is continuous at $\mathrm{x}=0$, then k is equal to
A. 0
B. 1
C. -1
D. $\frac{1}{2}$

Answer: A

- Watch Video Solution

45. If $f(x)$ is continuous at $x=a$, where $f(x)=(x-a) \sin \left(\frac{1}{x-a}\right)$, for $x \neq a$, then $f(a)=$
A. 1
B. -1
C. 0
D. ∞

Answer: C

- View Text Solution

46. If $(x)=\frac{1-\sqrt{3} \tan x}{\pi-6 x}$, for $x \neq \frac{\pi}{6} \quad$ is continous at $x=\frac{\pi}{6}$, find $f\left(\frac{\pi}{6}\right)$.
A. $\frac{1}{3 \sqrt{3}}$
B. $\frac{1}{2 \sqrt{3}}$
C. $\frac{2}{3 \sqrt{3}}$
D. $\frac{4}{3 \sqrt{3}}$

Answer: C

47. If $f(x)$ is continuous at $x=\frac{\pi}{4}$, where $f(x)=\frac{\tan \left(\frac{\pi}{4}-x\right)}{\cot 2 x}$, for $x \neq \frac{\pi}{4}$, then $f\left(\frac{\pi}{4}\right)=$
A. 2
B. 1
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: C

- View Text Solution

48. Find the value of k, if the functions are continuous at the points given against them :
$\left.\begin{array}{ll}f(x)=\frac{\sqrt{3}-\tan x}{\pi-3 x}, & \text { for } x \neq \frac{\pi}{3} \\ =k, & \text { for } x=\frac{\pi}{3}\end{array}\right\} a t x=\frac{\pi}{3}$.
A. $\frac{-2}{3}$
B. $\frac{2}{3}$
C. $\frac{-4}{3}$
D. $\frac{4}{3}$

Answer: D

- Watch Video Solution

49. If $f(x)$ is continuous at $x=\frac{\pi}{2}$, where $f(x)=\frac{1-\sin x}{\left(\frac{\pi}{2}-x\right)^{2}}$, for $x \neq \frac{\pi}{2}$, then $f\left(\frac{\pi}{2}\right)=$
A. $\frac{1}{2}$
B. $\frac{-1}{2}$
C. $\frac{\pi}{2}$
D. $\frac{-\pi}{2}$

Answer: A
50. If $f(x)$ is continuous at $x=\frac{\pi}{2}$, where $f(x)=\frac{1-\sin x}{(\pi-2 x)^{2}}$, for $x \neq \frac{\pi}{2}$, then $f\left(\frac{\pi}{2}\right)=$
A. $\frac{-1}{4}$
B. $\frac{-1}{8}$
C. $\frac{1}{4}$
D. $\frac{1}{8}$

Answer: D

- View Text Solution

51. If $f(x)=\left\{\begin{array}{ll}\frac{1-\sin x}{\pi-2 x} & , x \neq \frac{\pi}{2} \\ \lambda & , x=\frac{\pi}{2}\end{array}\right.$, be continuous at $x=\frac{\pi}{2}, \quad$ then value of λ is
A. -1
B. 1
C. 0
D. 2

Answer: C

- Watch Video Solution

52. For what value of k , function $f(x)=\left\{\begin{array}{ll}\frac{k \cos x}{\pi-2 x}, & \text { if } x \neq \frac{\pi}{2} \\ 3, & \text { if } x=\frac{\pi}{2}\end{array}\right.$ is continuous at $x=\frac{\pi}{2}$?
A. 3
B. -3
C. 6
D. -6

Answer: C

53. If $f(x)$ is contiuous at $x=\frac{\pi}{2}$, where
$f(x)=\frac{\cos e c x-\sin x}{\frac{\pi}{2}-x}$, for $x \neq \frac{\pi}{2}$, then $f\left(\frac{\pi}{2}\right)=$
A. $\frac{1}{4}$
B. 0
C. $\frac{1}{6}$
D. $\frac{1}{8}$

Answer: B

- Watch Video Solution

54. If $f(x)$ is continuous at $x=\pi$, where
$f(x)=\frac{\sqrt{2+\cos x}-1}{(\pi-x)^{2}}$, for $x \neq \pi$, then $f(\pi)=$
A. $\frac{1}{4}$
B. $\frac{-1}{4}$
C. $\frac{1}{2}$
D. $\frac{-1}{2}$

Answer: A

- Watch Video Solution

55. If $f(x)$ is continuous at $x=\pi$, where $f(x)=\frac{1-\cos (7(x-\pi))}{5(x-\pi)^{2}}$, for $x \neq \pi$, then $f(\pi)=$
A. $\frac{49}{5}$
B. $\frac{49}{10}$
C. $\frac{7}{2}$
D. None of these

Answer: B
56. If $f(x)$ is continuous at $x=0$, where $f(x)=(1+2 x)^{\frac{1}{x}}$, for $x \neq 0$, then $f(0)=$
A. e^{2}
B. e^{-2}
C. $2 e$
D. None of these

Answer: A

- Watch Video Solution

57. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left\{\begin{array}{l}(1+3 x)^{\frac{1}{x}}, \text { for } x \neq 0 \\ k, \text { for } x=0\end{array}\right.$, then $k=$
A. e^{-3}
B. e^{3}
C. $3 e$
D. None of these

Answer: B

- Watch Video Solution

58. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left(\frac{4-3 x}{4}\right)^{\frac{8}{x}}$, for $x \neq 0$, then $f(0)=$
A. e^{-3}
B. e^{-4}
C. e^{-6}
D. e^{-12}

Answer: C

59. If $f(x)=\left\{\begin{array}{l}\frac{x^{2}-4}{x-2}, \text { for } x \neq 2 \\ 5, \text { for } x=2\end{array}\right.$, then at $x=2$
A. f is continuous if $f(0)=-2$
B. f is continuous
C. f has removable discontinuity
D. f has irremovable discontinuity

Answer: C

- Watch Video Solution

60. If $f(x)=\left\{\begin{array}{l}\sqrt[3]{\frac{4 x+1}{1-4 x}}, \text { for } x \neq 0 \\ e^{6}, \text { for } x=0\end{array}\right.$, then at $x=0$
A. f is continuous if $f(0)=e^{-8}$
B. f is continuous
C. f has irremovable discontinuity
D. f has removable discontinuity

D Watch Video Solution

61. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left(\frac{4-3 x}{4+5 x}\right)^{\frac{1}{x}}$, for $x \neq 0$, then $f(0)=$
A. e^{2}
B. e^{-2}
C. e^{-3}
D. e^{5}

Answer: B

- Watch Video Solution

62. If $f(x)$ is continuous at $x=2$, where $f(x)=(x-1)^{\frac{1}{2-x}}$, for $x \neq 2$, then $f(2)=$
A. $\frac{-1}{e}$
B. $\frac{1}{e}$
C. $-e$
D. None of these

Answer: B

- Watch Video Solution

63. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left\{\begin{array}{l}\left(\sec ^{2} x\right)^{\cot ^{2} x}, \text { for } x \neq 0 \\ k, \text { for } x=0\end{array}\right.$, then $k=$
A. $\frac{1}{e}$
B. $\frac{2}{e}$
C.e
D. None of these

Answer: C

64. If $f(x)$ is continuous at $x=\frac{\pi}{4}$, where $f(x)=(1+\cos 2 x)^{4 \sec 2 x}$, for $x \neq \frac{\pi}{4}$, then $f\left(\frac{\pi}{4}\right)=$
A. e^{-4}
B. e^{4}
C. $4 e$
D.e

Answer: B

- Watch Video Solution

65. In order that the function $f(x)=(x+1)^{\cot x}$ is continuous at $\mathrm{x}=0$, $f(0)$ must be defined as
A. $f(0)=0$
B. $f(0)=e$
C. $f(0)=\frac{1}{e}$
D. $f(0)=\frac{2}{e}$

Answer: B

- Watch Video Solution

66. $f(x)=\left\{\begin{array}{ll}\left(\tan \frac{\pi}{4}+x\right)^{1 / x}, & x \neq 0 \\ k, & x=0\end{array}\right.$ for what value of $\mathrm{k}, \mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$?
A.e
B. e^{-1}
C. e^{2}
D. e^{-2}

Answer: C

67. The function $f(x)=(\sin 2 x)^{\tan ^{2} 2 x}$ is not defined at $x=\frac{\pi}{4}$. The value of $f(\pi / 4)$, so that f is continuous at $x=\pi / 4$, is
A. $\frac{1}{\sqrt{e}}$
B. $\frac{-1}{\sqrt{e}}$
C. \sqrt{e}
D. e^{-2}

Answer: A

- Watch Video Solution

68. If $f(x)$ is continuous at $x=1$, where $f(x)=\left(\log _{2} 2 x\right)^{\frac{1}{\log _{2} x}}$, for $x \neq 1$, then $f(1)=$
A. 0
B. 1
C.e
D. None of these

Answer: C

- Watch Video Solution

69. If $f(x)$ is continuous at $x=0$, where $f(x)=\left\{\begin{array}{l}\frac{8^{x}-2^{x}}{k^{x}-1}, \text { for } x \neq 0 \\ 2, \text { for } x=0\end{array}\right.$, then $k=$
A. 4
B. -2
C. 2
D. None of these

Answer: C

70. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{4^{x}-e^{x}}{6^{x}-1}$, for $x \neq 0$, then $f(0)=$
A. $\frac{\log 4-1}{\log 6}$
B. $\frac{1-\log 4}{\log 6}$
C. $\frac{\log 2-2}{\log 6}$
D. $\frac{2-\log 2}{\log 6}$

Answer: A

- Watch Video Solution

71. The value of f at $\mathrm{x}=0$ so that funcation $f(x)=\frac{2^{x}-2^{-x}}{x}, x \neq 0$ is continuous at $\mathrm{x}=0$ is
A. 0
B. e^{4}
C. $\log 4$
D. $\log 2$

Answer: C

- Watch Video Solution

72.

the
function
$f(x) \quad$ defined
by
$f(x)=\left\{\frac{\log (1+a x)-\log (1-b x)}{x}, \quad\right.$ if $\quad x \neq 0 \quad k$,
is continuous at $x=0$, find k.
A. $\log a+\log b$
B. $\log a-\log b$
C. $a+b$
D. $a-b$

Answer: C

73. If $f(x)$ is continuous at $x=0$, where
$f(x)=\frac{\log 100+\log (0.01+x)}{3 x}$, for $x \neq 0$, then $f(0)=$
A. $\frac{10}{3}$
B. $\frac{100}{3}$
C. $\frac{1}{3}$
D. 100

Answer: B

74. For what value of k, the function defined by

$$
\begin{aligned}
& f(x)=\frac{\log (1+2 x) \sin x^{0}}{x^{2}} \text { for } x \neq 0 \\
& =K \text { for } x=0
\end{aligned}
$$

is continuous at $x=0$?
A. 1
B. -1
C. 2
D. -2

Answer: B

- Watch Video Solution

75. If $f(x)=\left\{\begin{array}{ll}\log _{(1-3 x)}(1+3 x), & \text { for } x \neq 0 \\ k, & \text { for } x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$, then k is equal to
A. -1
B. 1
C. 3
D. -3

Answer: A
76. If $f(x)$ is continuous at $x=7$, where $f(x)=\frac{\log x-\log 7}{x-7}$, for $x \neq 7$, then $f(7)=$
A. 14
B. 7
C. $\frac{1}{14}$
D. $\frac{1}{7}$

Answer: D

- Watch Video Solution

77. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{e^{5 x}-e^{2 x}}{\sin 3 x}$, for $x \neq 0$ then $f(0)=$
A. 1
B. -1
C. 3
D. None of these

Answer: A

- Watch Video Solution

78. Let $f(x)=\frac{\left(e^{k x}-1\right) \cdot \sin K x}{x^{2}}$ for $x \neq 0 ;=4, \quad$ for $x=0$ is continuous at $x=0$ then k
A. 4
B. -2
C. 2
D. ± 2

Answer: D

79. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{\left(e^{2 x}-1\right) \tan x}{x \sin x}$, for $x \neq 0$, then $f(0)=$
A. $\frac{1}{2}$
B. $\frac{-1}{2}$
C. 2
D. -2

Answer: C

- Watch Video Solution

80. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{\left(e^{3 x}-1\right) \sin x^{\circ}}{x^{2}}$, for $x \neq 0$, then $f(0)=$
A. $\frac{\pi}{180}$
B. $\frac{\pi}{60}$
C. $\frac{\pi}{90}$

D. 3

Answer: B

- Watch Video Solution

81. if $f(x)=\frac{e^{x^{2}}-\cos x}{x^{2}}$, for $x \neq 0$ is continuous at $x=0$, then value of $f(0)$ is
A. $\frac{3}{2}$
B. $\frac{1}{2}$
C. 1
D. $\frac{-1}{2}$

Answer: A

82. If $f(x)$ is continuous at $x=0$, where $f(x)=\left\{\begin{array}{l}\frac{3^{x}-3^{-x}}{\sin x}, \text { for } x \neq 0 \\ k, \text { for } x=0\end{array}\right.$, then $k=$
A. $\log 9$
B. $\log 3$
C. $\log 1$
D. $\log \mathrm{e}$

Answer: A

- Watch Video Solution

83. If $f(x)$ is continuous at $x=0$, where $f(x)=\left\{\begin{array}{l}\frac{9^{x}-9^{-x}}{\sin x}, \text { for } x \neq 0 \\ k, \text { for } x=0\end{array}\right.$, then $k=$
A. $\log 9$
B. $\log 81$
C. $2 \log 3$
D. $(\log 9)^{2}$

Answer: B

- Watch Video Solution

84. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{10^{x}+7^{x}-14^{x}-5^{x}}{1-\cos 4 x}$, for $x \neq 0$, then $f(0)=$
A. $\frac{1}{4}(\log 2) \log \left(\frac{5}{7}\right)$
B. $\frac{1}{8}(\log 2) \log \left(\frac{5}{7}\right)$
C. $\frac{1}{4}(\log 2) \log \left(\frac{7}{5}\right)$
D. None of these

Answer: B

- Watch Video Solution

85. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{\left(5^{x}-2^{x}\right) x}{\cos 5 x-\cos 3 x}$, for $x \neq 0$, then $f(0)=$
A. $\frac{-1}{4} \log \left(\frac{2}{5}\right)$
B. $\frac{1}{4} \log \left(\frac{2}{5}\right)$
C. $\frac{-1}{8} \log \left(\frac{2}{5}\right)$
D. $\frac{1}{8} \log \left(\frac{2}{5}\right)$

Answer: D

- Watch Video Solution

86. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{4^{x}-2^{x+1}+1}{1-\cos x}$, for $x \neq 0$, then $f(0)=$
A. $(2 \log 2)^{2}$
B. $2(\log 2)^{2}$
C. $(\log 2)^{2}$
D. $\frac{(\log 2)^{2}}{2}$

Answer: B

- Watch Video Solution

87. If $f(x)$ is continuous at $x=\frac{\pi}{2}$, where $f(x)=\frac{3^{x-\frac{\pi}{2}}-6^{x-\frac{\pi}{2}}}{\cos x}$, for $x \neq \frac{\pi}{2}$, then $f\left(\frac{\pi}{2}\right)=$
A. $\log 3$
B. $\log 6$
C. $\log 2$
D. $\log 18$

Answer: C

88. If $f(x)$ is continuous at $x=a, a>0$, where $f(x)=\left[\frac{a^{x}-x^{a}}{x^{x}-a^{a}}\right.$, for $x \neq a,-1$ for $\mathrm{x}=\mathrm{a}$, then $a=$
A. e
B. $2 e$
C. 1
D. 0

Answer: C

- Watch Video Solution

89. The function $f(x)$ is condtions at the point $x=0$ where
$f(x)=\frac{\log (1+k x)}{\sin x}$, for $x \neq 0$
$=5$ for $x=0$ then value of k is
A. 5
B. -5
C. $\frac{1}{5}$
D. $\frac{-1}{5}$

Answer: A

- Watch Video Solution

90. For what value of k, the function defined by
$f(x)= \begin{cases}\frac{\log (1+2 x) \sin x^{\circ}}{x^{2}}, & \text { for } x \neq 0 \\ k, & \text { for } x=0\end{cases}$
is continuous at $\mathrm{x}=0$?
A. 2
B. $\frac{1}{2}$
C. $\frac{\pi}{90}$
D. $\frac{90}{\pi}$

Answer: C

91. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{\log \sec ^{2} x}{x \sin x}$, for $x \neq 0$ then $f(0)=$
A. e
B. ± 1
C. -1
D. 1

Answer: D

Watch Video Solution
92. If $f(x)$ is continuous at $x=0$, where
$f(x)=\frac{\log \left(1+x^{2}\right)-\log \left(1-x^{2}\right)}{\sec x-\cos x}$, for $x \neq 0$, then $f(0)=$
A. 0
B. 2
C. 1
D. -1

Answer: B

- Watch Video Solution

93. If $f(x)$ is continuous at $x=0$, where
$f(x)=\frac{\log \left(1+x+x^{2}\right)+\log \left(1-x+x^{2}\right)}{\sin x}$, for $x \neq 0$, then $f(0)=$
A. 0
B. 2
C. 1
D. -1

Answer: A

- Watch Video Solution

94. If $f(x)$ is continuous at $x=0$, where
$f(x)=\frac{\log (2+x)-\log (2-x)}{\tan x}$, for $x \neq 0$, then $f(0)=$
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. 2
D. 1

Answer: D

- Watch Video Solution

95. If $\mathrm{f}(\mathrm{x})$ is continous at $x=0$, where $f(x) \frac{\left(e^{3 x}-1\right) \sin x}{x \log (1+x)}$, for $x \neq 0$, find $f(0)$.
A. 1
B. 3
C. $\frac{2}{3}$
D. $\frac{1}{3}$

Answer: B

- Watch Video Solution

96. If $f(x)=\frac{\left(8^{x}-1\right)^{2}}{\sin x \log \left(1+\frac{x}{4}\right)}$ in $[-1,1]-\{0\}$, then for removable discontinuity of f at $x=0, f(0)=$
A. $4 \log 8$
B. $8 \log 2$
C. $4(\log 8)^{2}$
D. $8(\log 2)^{2}$

Answer: C

97. If the function $f(x)=\frac{\left(4^{\sin x}-1\right)^{2}}{x \cdot \log (1+2 x)}$, for $x \neq 0$ is continuous at $x=0$, find $f(0)$.
A. $\frac{1}{4}(\log 4)^{2}$
B. $\frac{1}{2}(\log 4)^{2}$
C. $2(\log 4)^{2}$
D. $2(\log 2)^{2}$

Answer: D

- Watch Video Solution

98. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{\left(3^{\sin x}-1\right)^{2}}{x \log (1-x)}$, for $x \neq 0$, then $f(0)=$
A. $(\log 3)^{2}$
B. $\log 9$
C. $\frac{1}{2} \log 3$
D. $\log 3$

Answer: A

- Watch Video Solution

99. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left\{\begin{array}{l}\frac{\left(e^{x}-1\right)^{4}}{\sin \left(\frac{x^{2}}{k^{2}}\right) \log \left(1+\frac{x^{2}}{2}\right)}, \text { for } x \neq 0 \\ 8, \text { for } x=0\end{array}\right.$, then $k=$
A. 1
B. ± 2
C. 2
D. -2

Answer: B

100. If $f(x)=\frac{e^{x}+e^{-x}-2}{x \sin x}$, for $x \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]-\{0\}$, then for f to be continuous in $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right], f(0)=$
A. $-e^{2}$
B. e^{2}
C. 1
D. None of these

Answer: C

- Watch Video Solution

101. The function defined by $f(x)=\left\{\begin{array}{l}\left(1+\tan ^{2} \sqrt{x}\right)^{\frac{1}{2 x}}, \text { for } x \neq 0 \\ k, \text { for } x=0\end{array}\right.$, is continuous from right at point $x=0$, then $k=$
A.e
B. e^{2}
C. $e^{\frac{1}{2}}$
D. None of these

Answer: C

- Watch Video Solution

102. The function defined by
$f(x)=\left\{\begin{array}{ll}\left(x^{2}+e^{\frac{1}{2-x}}\right)^{-1}, & x \neq 2 \\ k & , \quad x=2\end{array}\right.$ is continuous from right at the point
$\mathrm{x}=2$, then k is equal to
A. 0
B. 4
C. $\frac{-1}{4}$
D. $\frac{1}{4}$

Answer: D

103. Is the function defined by $f(x)=x^{2}-\sin x+5$ continuous at $x=\pi$?
A. f is discontinuous
B. f is continuous
C. $\lim _{x \rightarrow \pi^{-}} f(x)=\pi^{2}-5$
D. $\lim _{x \rightarrow \pi^{+}} f(x)=5-\pi^{2}$

Answer: B

- Watch Video Solution

104. If $f(x)=\left\{\begin{array}{l}x, \text { for } 0 \leq x<\frac{1}{2} \\ 1-x, \text { for } \frac{1}{2} \leq x<1\end{array}\right.$, then
A. $\lim _{x \rightarrow \frac{1^{-}}{2}} f(x)=\frac{-1}{2}$
B. $\lim _{x \rightarrow \frac{1^{+}}{2}} f(x)=\frac{-1}{2}$
C. f is continuous at $x=\frac{1}{2}$
D. f is discontinuous at $x=\frac{1}{2}$

Answer: C

- Watch Video Solution

105. If $f(x)=\left\{\begin{array}{l}\frac{x^{2}-9}{x-3}, \text { for } 0<x<3 \\ x+3, \text { for } 3 \leq x<6 \\ \frac{x^{2}-9}{x+3}, \text { for } 6 \leq x<9\end{array}\right.$ then f is
A. continuous at $x=3, x=6$
B. discontinuous at $x=3, x=6$
C. continuous at $x=6$ and discontinuous at $x=3$
D. continuous at $x=3$ and discontinuous at $x=6$

Answer: D

106. If $f(x)=\left\{\begin{array}{l}\frac{\sin 2 x}{\sqrt{1-\cos 2 x}}, \text { for } 0<x<\frac{\pi}{2} \\ \frac{\cos x}{\pi-2 x}, \text { for } \frac{\pi}{2}<x<\pi\end{array}\right.$, then
A. f is discontinuous at $x=\frac{\pi}{2}$
B. f is continuous at $x=\frac{\pi}{2}$
C. $\lim _{x \rightarrow \frac{\pi^{-}}{2}} f(x)=\frac{1}{2}$
D. $\lim f(x)=0$
$x \rightarrow \frac{\pi^{+}}{2}$

Answer: A

- Watch Video Solution

107. If $f(x)=\left\{\begin{array}{l}x-1, \text { for } 1 \leq x<2 \\ 2 x+3, \text { for } 2 \leq x \leq 3\end{array}\right.$, then at $x=2$
A. $\lim _{x \rightarrow 2^{-}} f(x)=7$
B. $\lim _{x \rightarrow 2^{+}} f(x)=1$
C. f has removable discontinuity at $x=2$
D. f has irremovable discontinuity at $x=2$

D Watch Video Solution

108. If $f(x)=\left\{\begin{array}{l}x \sin x, \text { for } 0<x \leq \frac{\pi}{2} \\ \frac{\pi}{2} \sin (\pi+x), \text { for } \frac{\pi}{2}<x<\pi\end{array}\right.$, then
A. $f(x)$ is discontinuous at $x=\frac{\pi}{2}$
B. $f(x)$ is continuous at $x=\frac{\pi}{2}$
C. $f(x)$ is continuous at $x=0$
D. $f(x)$ is discontinuous at $x=0$

Answer: A

- Watch Video Solution

109. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left\{\begin{array}{l}\frac{\sin x}{x}+\cos x, \text { for } x>0 \\ \frac{4(1-\sqrt{1-x})}{x}, \text { for } x<0\end{array}\right.$, then $f(0)=$
A. 2
B. -2
C. 4
D. None of these

Answer: A

- Watch Video Solution

110. If $f(x)=\left\{\begin{array}{l}x+2, \text { if } x \leq 4 \\ x+4, \text { if } x>4\end{array}\right.$, then
A. $\lim _{x \rightarrow 4^{+}} f(x)=6$

$$
x \rightarrow 4^{+}
$$

B. $\lim _{x \rightarrow 4^{-}} f(x)=8$
C. f has removable discontinuity
D. f has irremovable discontinuity

Answer: D

111. If $f(x)=\left\{\begin{array}{l}2 x, \text { if } x<2 \\ 2, \text { if } x=2 \\ x^{2}, \text { if } x>2\end{array}\right.$, then
A. $\lim _{x \rightarrow 2^{-}} f(x)=-4$
B. $\lim _{x \rightarrow 2^{+}} f(x)=-4$
C. f has irremovable discontinuity
D. f has removable discontinuity

Answer: D

- Watch Video Solution

112. If $f(x)=\left\{\begin{array}{l}x-1, \text { for } 1 \leq x<2 \\ 2, \text { for } x=2 \\ 2 x-3, \text { for } 2<x<3\end{array}\right.$, then f has removable discontinuity at $x=2$, if $f(2)=$
A. 2
B. 3
C. 1
D. -1

Answer: C

- Watch Video Solution

113. If $f(x)=\left\{\begin{array}{l}x^{2}, \text { for } x \leq 1 \\ x+3, \text { for } x>1\end{array}\right.$, then at $x=1$
A. $\lim _{x \rightarrow 1^{-}} f(x)=4$
B. $\lim _{x \rightarrow 1^{+}} f(x)=1$
C. f has removable discontinuity
D. f has irremovable discontinuity

Answer: D

- Watch Video Solution

114. If $f(x)=\sqrt{x-2}$, for $2<x<4$, then $f(x)$ is
A. continuous in $(2,4)$ except at $x=3$
B. discontinuous in $(2,4)$ except at $x=3$
C. discontinuous in $(2,4)$
D. continuous in $(2,4)$

Answer: D

- Watch Video Solution

115. If $f(x)=\left\{\begin{array}{l}1-x, \text { for } 0<x \leq 1 \\ \frac{1}{2}, \text { for } x=0\end{array}\right.$, then in [0,1]
A. $f(x)$ is not continuous
B. $f(x$ is continuous
C. $\mathrm{f}(\mathrm{x})$ is continuous at $x=0$
D. $\mathrm{f}(\mathrm{x})$ is continuous at $x=1$

- Watch Video Solution

116. If $f(x)=\left\{\begin{array}{l}3 x+5, \text { for } 0 \leq x<3 \\ 2 x+8, \text { for } 3 \leq x<5 \\ x+13, \text { for } 5 \leq x \leq 10\end{array}\right.$, then
A. $f(x)$ is discontinuous in its domain
B. $f(x)$ is continuous in its domain
C. $\mathrm{f}(\mathrm{x})$ is continuous in its domain except at $x=3$
D. $\mathrm{f}(\mathrm{x})$ is continuous in its domain except at $x=5$

Answer: B

- Watch Video Solution

117. If $f(x)=\left\{\begin{array}{l}\frac{\sin x}{x}, \text { for } x<0 \\ x+1, \text { for } x \geq 0\end{array}\right.$, then
A. f is continuous on its domain
B. f is discontinuous on its domain
C. f is continuous on its domain except $x=0$
D. f is discontinuous on its domain except $x=0$

Answer: A

- Watch Video Solution

118. If $f(x)=\left\{\begin{array}{l}\frac{2 x+5}{x+1}, \text { for } 0 \leq x<2 \\ 4 x-5, \text { for } 2 \leq x \leq 4 \\ \frac{x^{2}+2}{x-5}, \text { for } 4<x \leq 6, x \neq 5\end{array}\right.$ then
A. f is continuous on its domain
B. f is continuous on its domain except $x=5$
C. f is continuous on its domain except $x=4$
D. f is continuous on its domain except $x=2$

Answer: C

(D) Watch Video Solution

119. If $f(x)=\left\{\begin{array}{l}\frac{\sin 2 x}{\sqrt{1-\cos 2 x}}, \text { for } 0<x \leq \frac{\pi}{2} \\ \frac{\cos x}{\pi-2 x}, \text { for } \quad \frac{\pi}{2}<x \leq \pi\end{array}\right.$
A. f is continuous on its domain except $x=\frac{\pi}{2}$
B. f is continuous on its domain
C. f is discontinuous on its domain
D. f is continuous on its domain except $x=0$

Answer: A

- Watch Video Solution

120. If $f(x)=\left\{\begin{array}{l}x, \text { for } 0 \leq x<1 \\ 2, \text { for } x=1 \\ x+1, \text { for } 1<x \leq 2\end{array}\right.$, then f is
A. f is continuous at $x=1$
B. f is discontinuous at $x=1$
C. $\lim _{x \rightarrow 1^{-}} f(x)=2$
D. $\lim _{x \rightarrow 1^{+}} f(x)=1$

Answer: B

- Watch Video Solution

121. If $f(x)=\frac{x^{3}+3 x+5}{x^{3}-3 x+2}$ in $[0,5]$, then f is
A. continuous on its domain except at $x=1, x=-2$
B. continuous on its domain except at $x=1$
C. continuous on its domain except at $x=-2$
D. continuous on its domain

Answer: B

122. If $f(x)=\frac{x+1}{(x-2)(x-5)}$, then in $[4,6]$
A. f is discontinuous
B. f is continuous
C. f is continuous except at $x=2$
D. f is continuous except at $x=5$

Answer: D

- Watch Video Solution

123. If $f(x)=\frac{x+1}{(x-2)(x-5)}$, then in $[0,1]$
A. f is continuous
B. f is discontinuous
C. f is continuous except at $x=0$
D. f is continuous except at $x=1$

D Watch Video Solution

124. If $f(x)=\left\{\begin{array}{l}x, \text { for } x \geq 0 \\ x^{2}, \text { for } x<0\end{array}\right.$, then f is
A. continuous on R except at $x=0$
B. continuous on R
C. discontinuous on R except at $x=0$
D. continuous on R^{+}only

Answer: B

- Watch Video Solution

125. If $f(x)=\left\{\begin{array}{l}x^{2}-4, \text { for } 0 \leq x \leq 2 \\ 2 x+3, \text { for } 2<x \leq 4 \text {, then } \\ x^{2}-5, \text { for } 4<x \leq 6\end{array}\right.$
A. f is continuous on $[0,6]$
B. f is discontinuous on $[0,6]$
C. f is continuous on $[0,6]$ except at $x=2$
D. f is continuous on $[0,6]$ except at $x=4$

Answer: C

D Watch Video Solution

126. If $f(x)=\left\{\begin{array}{l}\frac{1}{x+1}, \text { for } 2 \leq x \leq 4 \\ \frac{x+1}{x-3}, \text { for } 4<x \leq 6\end{array}\right.$, then
A. f is discontinuous on $[2,6]$
B. f is continuous on $[2,6]$
C. f is continuous on $[2,6]$ except at $x=3$
D. f is continuous on $[2,6]$ except at $x=4$
127. If $f(x)=\left\{\begin{array}{l}3, \text { if } 0 \leq x \leq 1 \\ 4, \text { if } 1<x<3 \\ 5, \text { if } 3 \leq x \leq 10\end{array}\right.$, then
A. f is continuous on $[0,10]$ except at $x=1,3$
B. f is continuous on $[0,10$] except at $x=1$
C. f is continuous on $[0,10$] except at $x=3$
D. f is continuous on $[0,10$]

Answer: A

- Watch Video Solution

128. If $f(x)=\left\{\begin{array}{l}-2, \text { for } x \leq-1 \\ 2 x, \text { for }-1<x \leq 1, \text { then } \\ 2, \text { for } x>1\end{array}\right.$
A. f is discontinuous on its domain
B. f is continuous on its domain
C. f is continuous on its domain except at $x=-1$
D. f is continuous on its domain except at $x=1$

Answer: B

- Watch Video Solution

129. $f(x)=\left\{\begin{array}{ll}|x|+3, & \text { if } x \leq-3 \\ -2 x, & \text { if }-3<x<3 \\ 6 x+2, & \text { if } x \geq 3\end{array}\right.$ is
A. f is continuous on its domain except at $x=-3$
B. f is continuous on its domain except at $x=3$
C. f is continuous on its domain except at $x=-3,3$
D. f is continuous on its domain

Answer: C

130. If $f(x)=\left\{\begin{array}{l}2 x, \text { for } x<0 \\ 2 x+1, \text { for } x \geq 0\end{array}\right.$, then
A. $f(|x|)$ is continuous at $x=0$
B. $f(x)$ is discontinuous at $x=0$
C. $f(x)$ is continuous at $x=0$
D. $f(|x|)$ is discontinuous at $x=0$

Answer: B

- Watch Video Solution

131. Function $f(x)=\left\{\begin{array}{ll}x-1, & x<2 \\ 2 x-3, & x \geq 2\end{array}\right.$ is a continuous function
A. for $x=2$ only
B. for all real values of x
C. for all real values of x such that $x \neq 2$
D. for all integral values of x only

D Watch Video Solution

132. If $f(x)=\frac{x^{3}-8}{x^{2}+x-20}$, then
A. f is continuous on R
B. f is continuous on $R-(-5,4)$
C. f is continuous on $R-\{-5,4\}$
D. f is continuous on $\mathrm{R}-[-5,4]$

Answer: C

- Watch Video Solution

133. If $f(x)=\left\{\begin{array}{l}\frac{x^{2}-3 x+2}{x-3}, \text { for } 0 \leq x<4 \\ \frac{x^{2}-1}{x-2}, \text { for } 4 \leq x \leq 6\end{array}\right.$,then on [0, 6]
A. f is continuous except at $x=2$
B. f is continuous except at $x=3$
C. f is continuous except at $x=4$
D. f is continuous except at $x=3$ and $x=4$

Answer: D

- Watch Video Solution

134. If the function

$$
\begin{aligned}
& f(x)=k+x, \text { For } x<1 \\
& =4 x+3, \text { For } x \geq 1
\end{aligned}
$$

is continous at $x=1$ then $k=\ldots \ldots$..
A. 7
B. 8
C. 6
D. -6

D Watch Video Solution

135. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left\{\begin{array}{l}x^{2}+1, \text { for } x \geq 0 \\ 2 \sqrt{x^{2}+1}+k, \text { for } x<0\end{array}\right.$, then $k=$
A. 3
B. -2
C. -1
D. 1

Answer: C

- Watch Video Solution

136. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left\{\begin{array}{l}k\left(x^{2}-2\right), \text { for } x \leq 0 \\ 4 x+1, \text { for } x>0\end{array}\right.$, then $k=$
A. $\frac{1}{2}$
B. $\frac{-1}{2}$
C. 2
D. -2

Answer: B

- Watch Video Solution

137. If f is continuous at $x=0$, where $f(x)=x^{2}+\alpha, x \geq 0$, $f(x)=2 \sqrt{x^{2}+1}+\beta, x<0$. Find α and β given that $f\left(\frac{1}{2}\right)=2$
A. $\alpha=\frac{-1}{4}, \beta=\frac{7}{4}$
B. $\alpha=\frac{-7}{4}, \beta=\frac{1}{4}$
C. $\alpha=\frac{1}{4}, \beta=\frac{-7}{4}$
D. $\alpha=\frac{7}{4}, \beta=\frac{-1}{4}$

Answer: D

- Watch Video Solution

138. If $f(x) \frac{x^{2}-9}{x-3}+\alpha$, for $x>3$
$=5$, for $x=3$
$=2 x^{2}+3 x+\beta$, for $x<3$
is continous at $x=3$, find α and β.
A. $\alpha=-1, \beta=22$
B. $\alpha=1, \beta=-22$
C. $\alpha=-1, \beta=-22$
D. $\alpha=1, \beta=22$

Answer: C

139. If the function $f(x)= \begin{cases}5, & x \leq 2 \\ a x+b, & 2<x \leq 10 \\ 21, & x>10\end{cases}$
continuous, find the values of a and b
A. $a=2, b=1$
B. $a=-2, b=-1$
C. $a=2, b=-1$
D. $a=-2, b=1$

Answer: A

- Watch Video Solution

140. If $f(x)$ is continuous at $x=1$, where $f(x)=\left\{\begin{array}{l}k x^{2}, \text { for } x \geq 1 \\ 4, \text { for } x<1\end{array}\right.$, then $k=$
B. 4
C. -2
D. ± 2

Answer: B

- Watch Video Solution

141. If $f(x)$ is continuous on $[0,8]$, where
$f(x)=\left\{\begin{array}{l}x^{2}+a x+6, \text { for } 0 \leq x<2 \\ 3 x+2, \text { for } 2 \leq x \leq 4 \\ 2 a x+5 b, \text { for } 4<x \leq 8\end{array}\right.$, then
A. $a=-1, b=\frac{22}{5}$
B. $a=-1, b=\frac{-8}{5}$
C. $a=-1, b=\frac{-22}{5}$
D. $a=1, b=\frac{8}{5}$

Answer: A

142. If $f(x)$ is continuous in $[0,3]$, where
$f(x)=\left\{\begin{array}{l}3 x-4, \text { for } 0 \leq x \leq 2 \\ 2 x+k, \text { for } 2<x \leq 3\end{array}\right.$, then $k=$
A. 6
B. -14
C. 2
D. -2

Answer: D

Watch Video Solution

143. If $f(x)$ continuous on its domain, where
$f(x)=\left\{\begin{array}{l}6, \text { for } x \leq 2 \\ a x+b, \text { for } 2<x<10, \text { then } \\ 22, \text { for } x \geq 10\end{array}\right.$
A. $a=3, b=1$
B. $a=2, b=-1$
C. $a=3, b=-1$
D. $a=2, b=2$

Answer: D

- Watch Video Solution

144. If $f(x)$ is continuous on $0-4,2$], defined as

$$
\begin{aligned}
& f(x)=6 b-3 a x, \text { for }-4 \leq x<-2 \\
& =4 x+1, \text { for }-2 \leq x \leq 2,
\end{aligned}
$$

find the value of $a+b$.
A. $\frac{7}{6}$
B. $\frac{-7}{6}$
C. $\frac{9}{2}$
D. $\frac{-9}{2}$

D Watch Video Solution

145. If $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=3$, then $f(x)=a x+1, \quad$ for $\mathrm{x} \quad \leq 3$
$=b x+3, \quad$ for $\mathrm{x}>3$ then
A. $a+b=\frac{2}{3}$
B. $a+b=\frac{-2}{3}$
C. $a-b=\frac{2}{3}$
D. $a-b=\frac{-2}{3}$

Answer: C

146. If $f(x)$ is continuous in $[-2,2]$, where $f(x)=\left\{\begin{array}{l}x+a, \text { for } x<0 \\ x, \text { for } 0 \leq x<1, \\ b-x, \text { for } x \geq 1\end{array}\right.$
then $a+b=$
A. 0
B. -2
C. ± 2
D. 2

Answer: D

- Watch Video Solution

147.

$$
f(x)=\left\{\frac{\sqrt{1+k x}-\sqrt{1-k x}}{x}\right.
$$

$1 \leq x<0$ and $2 x^{2}+3 x-2 f$ or $0 \leq x \leq 1$ is continuous at $x-0$ then k
A. -1
B. -2
C. -3
D. -4

Answer: B

- Watch Video Solution

148. If the function $f: R \rightarrow R$ given by
$f(x)=\left\{\begin{array}{ll}x+a, & \text { if } x \leq 1 \\ 3-x^{2}, & \text { if } x>1\end{array}\right.$ is continuous at $\mathrm{x}=1$, then a is equal to
A. 2
B. 1
C. 4
D. 3

Answer: B
149. If $f(x)=\left\{\begin{array}{l}a x^{2}-b, \text { for } 0 \leq x<1 \\ 2, \text { for } x=1 \\ x+1, \text { for } 1<x \leq 2\end{array}\right.$ is continuous at $x=1$, then the most suitable values of a, b are
A. $a=2, b=-2$
B. $a=-1, b=-1$
C. $a=1, b=1$
D. $a=1, b=-1$

Answer: D

- Watch Video Solution

150. If the derivative of the function
$f(x)=\left\{a x^{2}+b, x<-1\right.$ and $b x^{2}+a x+4, x \leq-1$ is everywhere continuous, then-

$$
\text { A. } a=3, b=2
$$

B. $a=2, b=3$
C. $a=-2, b=-3$
D. $a=-3, b=-2$

Answer: B

- Watch Video Solution

151. If $f(x)$ is continuous at $x=2$, where $f(x)=\left\{\begin{array}{l}4 x-3, \text { for } x<2 \\ k x+7, \text { for } x>2\end{array}\right.$, then $k=$
A. -1
B. 1
C. -6
D. 6

Answer: A

152. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left\{\begin{array}{l}\frac{1-\cos 4 x}{x^{2}}, \text { for } x<0 \\ k, \text { for } x=0 \\ \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}, \text { for } x>0\end{array}\right.$, then $k=$
A. 2
B. 0
C. 4
D. 8

Answer: D

Watch Video Solution

153. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left\{\begin{array}{l}\frac{\sin 4 x}{5 x}+a, \text { for } x>0 \\ x+4-b, \text { for } x<0, \text { then } \\ 1, \text { for } x=0\end{array}\right.$
A. $a=\frac{1}{5}, b=3$
B. $a=\frac{-1}{5}, b=-3$
C. $a=\frac{1}{5}, b=-3$
D. $a=\frac{-1}{5}, b=3$

Answer: A

- Watch Video Solution

154. If $f(x)=\frac{\sin \pi x}{x-1}+a$, for $x<1$
$=2 \pi, \quad$ for $x=1$
$=\frac{1+\cos \pi x}{\pi}(1-x)^{2}+b, \quad$ for $x>1$
is continuous at $\mathrm{x}=1$, find a and b
A. $a=\pi, b=\frac{3 \pi}{2}$
B. $a=3 \pi, b=\frac{3 \pi}{2}$
C. $a=\pi, b=\frac{5 \pi}{2}$
D. $a=3 \pi, b=\frac{5 \pi}{2}$

D Watch Video Solution

155. Let $f(x)=\left\{\begin{array}{ll}\sin 2 x & 0<x \leq x \pi / 6 \\ a x+b & \pi / 6<x<1\end{array}\right.$ If $\mathrm{f}(\mathrm{x})$ and $\mathrm{f}^{\prime}(\mathrm{x})$ are continuous, then
A. $a=-2, b=\frac{\sqrt{3}}{2}+\frac{\pi}{3}$
B. $a=2, b=\frac{\sqrt{3}}{2}-\frac{\pi}{3}$
C. $a=-1, b=\frac{\sqrt{3}}{2}+\frac{\pi}{6}$
D. $a=1, b=\frac{\sqrt{3}}{2}-\frac{\pi}{6}$

Answer: D

- Watch Video Solution

156. Determine the values of a, b, c for which the function

$$
f(x)=\left\{\frac{\sin (a+1) x+\sin x}{x c, f \otimes=0}, f \text { or } x<0 \frac{\sqrt{x+b x^{2}}-\sqrt{x}}{b x^{\frac{3}{2}}}, f \text { or } x>0 i s\right.
$$

A. $a=-2, b=0, c=0$
B. $a=-2, b=R, c=0$
C. $a=-2, b \neq 0, c=0$
D. $a=-2, b=0, c \neq 0$

Answer: C

- Watch Video Solution

157. Determine the values of a, b, c for which the function $f(x)=\left\{\frac{\sin (a+1) x+\sin x}{x c, f \otimes=0}, f\right.$ or $x<0 \frac{\sqrt{x+b x^{2}}-\sqrt{x}}{b x^{\frac{3}{2}}}, f$ or $x>0 i s$
A. $a=-2, b=R, c=0$
B. $a=-2, b \neq 0, c=0$
C. $a=\frac{-3}{2}, b=R, c=\frac{1}{2}$
D. $a=\frac{-3}{2}, b=R-\{0\}, c=\frac{1}{2}$

Answer: D

- Watch Video Solution

158. If $f(x)$ is continuous on $[-2,2]$, where
$f(x)=\left\{\begin{array}{l}\frac{\sin a x}{x}+2, \text { for }-2 \leq x<0 \\ 3 x+5, \text { for } 0 \leq x \leq 1 \\ \sqrt{x^{2}+8}-b, \text { for } 1<x<2\end{array}\right.$, then $a+b=$
A. -15
B. 0
C. 2
D. -2
159. Find the values of a and b so that the function
$f(x)=\left\{\begin{array}{lc}x+a \sqrt{2} \sin x, & 0 \leq x \leq \pi / 4 \\ 2 x \cot x+b, & \pi / 4 \leq x \leq \pi / 2 \\ a \cot 2 x-b \sin x, & \pi / 2<x \leq \pi\end{array}\right.$
is continuous for $0 \leq x \leq \pi$.
A. $a=\frac{-\pi}{6}, b=\frac{\pi}{12}$
B. $a=\frac{\pi}{6}, b=\frac{-\pi}{12}$
C. $a=\frac{-\pi}{6}, b=\frac{-\pi}{12}$
D. $a=\frac{\pi}{6}, b=\frac{\pi}{12}$

Answer: B

- Watch Video Solution

160. Let $f(x)=\left\{\begin{array}{ll}-2 \sin x & \text { for }-\pi \leq x \leq-\frac{\pi}{2} \\ a \sin x+b & \text { for }-\frac{\pi}{2}<x<\frac{\pi}{2} \\ \cos x & \text { for } \frac{\pi}{2} \leq x \leq \pi\end{array}\right.$. If f is continuous on $[-\pi, \pi)$, then find the values of a and b.
A. $\alpha=1, \beta=1$
B. $\alpha=-1, \beta=-1$
C. $\alpha=-1, \beta=1$
D. $\alpha=1, \beta=-1$

Answer: C

- Watch Video Solution

161. If the function $f(x)$ is continuous in the interval $[-2,2]$. find the values of a and b where

$$
\begin{array}{ll}
f(x)=\frac{\sin x}{x}-2 & \text {,for }-2 \leq x<0 \\
=2 x+1 & \text {,for } 0 \leq x \leq 1 \\
=2 b \sqrt{x^{2}+3}-1 & \text {,for } 1<x \leq 2
\end{array}
$$

A. 3
B. 1
C. 4
D. 2

- Watch Video Solution

162. If $f(x)$ is continuous in $(-\infty, 6)$, where
$f(x)=\left\{\begin{array}{l}1+\sin \left(\frac{\pi x}{2}\right), \text { for }-\infty<x \leq 1 \\ a x+b, \text { for } 1<x<3 \\ 6 \tan \left(\frac{\pi x}{12}\right), \text { for } 3 \leq x<6\end{array}\right.$, then
A. $a=2, b=0$
B. $a=0, b=2$
C. $a=1, b=1$
D. $a=2, b=1$

Answer: A

163. If $f(x)=\left\{\begin{array}{ll}a x+1, & x \leq \frac{\pi}{2} \\ \sin x+b, & x>\frac{\pi}{2}\end{array}\right.$ is continuous, then
A. $\frac{a \pi}{2}=b$
B. $\frac{b \pi}{2}=a_{a}$
C. $a=b=\frac{\pi}{2}$
D. $a=b=\frac{\pi}{2}+1$

Answer: A

Watch Video Solution

164. If $f(x)=\left\{\begin{array}{l}e^{\frac{1}{x}}-1 \\ e^{\frac{1}{x}}+1 \\ 1, \text { for } x=0\end{array}\right.$, then f is
A. continuous at $x=0$
B. discontinuous at $x=0$
C. continuous if $f(0)=-1$
D. discontinuous if $f(0)=-1$

Answer: B

- Watch Video Solution

165. If $f(x)$ is continuous at $x=0$, where $f(x)\left\{\begin{array}{l}\frac{1}{1+e^{\frac{1}{x}}}, \text { for } x \neq 0 \\ k, \text { for } x=0\end{array}\right.$, then $k=$
A. 1
B. 0
C. -1
D. does not exists

Answer: D

D Watch Video Solution

166. The function $f(x)=k(k \in R)$ at every $x \in R$ is
A. continuous on R^{+}
B. continuous on R
C. discontinuous on R^{+}
D. discontinuous on R

Answer: B

D Watch Video Solution

167. The composition of two continuous functions is a continuous function.
A. discontinuous
B. continuous
C. continuous for some real numbers
D. discontinuous for some real numbers

Answer: B

168. If $f(x)=\sin x$, then f is
A. discontinuous for all $x \in R$
B. continuous for all $x \in R^{+}$
C. continuous for all $x \in R^{-}$
D. continuous for all $x \in R$

Answer: D

- View Text Solution

169. If $f(x)=\sin x^{2}$, then f is
A. continuous for all $x \in R$
B. discontinuous for all $x \in R$
C. continuous for only $x \in R^{+}$
D. continuous for only $x \in R^{-}$

Answer: A

- Watch Video Solution

170. If $f(x)=a^{x}, a>0$, then f is
A. continuous for all $x \in R^{+}$
B. continuous for all $x \in R^{-}$
C. continuous for all $x \in R$
D. discontinuous for all $x \in R$

Answer: C

- Watch Video Solution

171. Discuss the continuity of the function $\log _{c} x$, where $c>0, x>0$.
A. continuous in $(-\infty, \infty)$
B. continuous in $(0, \infty)$
C. discontinuous in $(-\infty, \infty)$
D. discontinuous in $(0, \infty)$

Answer: B

- Watch Video Solution

172. The rational function $f(x)=\frac{g(x)}{h(x)}, h(x) \neq 0$ is
A. continuous
B. discontinuous for integer values only
C. continuous for integer values only
D. continuous for imaginary values only

Answer: A

173. The function $f(x)=|x|$ is
A. continuous on R
B. discontinuous on R
C. continuous on only R^{+}
D. discontinuous only R^{+}

Answer: A

- Watch Video Solution

174. The function $f(x)=[\cos x]$ is
A. continuous on R
B. discontinuous on R
C. continuous on only R^{+}
D. discontinuous only R^{+}

Answer: A

- Watch Video Solution

175. If $f(x)=|x|$, then at $x=0$
A. discontinuous
B. continuous
C. $\lim _{x \rightarrow 0} f(x)=1$
D. $\lim _{x \rightarrow 0} f(x)=-1$

Answer: B

- Watch Video Solution

176. If $f(x)$ is continuous at $x=3$, where $f(x)=\left\{\begin{array}{l}|x-3|, \text { for } x \neq 3 \\ k, \text { for } x=3\end{array}\right.$, then $k=$
A. 1
B. 0
C. -1
D. does not exist

Answer: B

- Watch Video Solution

177. If $f(x)=[x]$, where $[\mathrm{x}]$ is the greatest integer not greater than x , in $(-4,4)$, then $f(x)$ is
A. discontinuous at $x=0$, only in $(-4,4)$
B. continuous at $x=0$ only in ($-4,4$)
C. discontinuous at every integral point of ($-4,4$)
D. continuous at every integral point of $(-4,4)$

Answer: C

- Watch Video Solution

178. If $f(x)=|(1+x)| x| |$, then f is
A. discontinuous for all $x \in R$
B. continuous for all $x \in R$
C. continuous for all $x \in R^{+}$
D. continuous for all $x \in R^{-}$

Answer: B

- Watch Video Solution

179. If $f(x)=|x|+|x-1|$, then in [-1, 2]
A. f is continuous except at $x=0$
B. f is continuous except at $x=1$
C. f is continuous
D. f is discontinuous

Answer: C

- Watch Video Solution

180. The function $f(x)=x+|x|$ is continuous for
A. only $x>0$
B. $x \in(-\infty, \infty)-\{0\}$
C. $x \in(-\infty, \infty)$
D. no values of x

Answer: C

181. The function $f(x)=|x| \forall x \in R$ is
A. continuous for all $x \in R^{-}$
B. continuous for all $x \in R^{+}$
C. continuous for all $x \in R$
D. discontinuous for all $x \in R$

Answer: C

- Watch Video Solution

182. If $f(x)=2 x-|x|$, then at $x=0$
A. f is continuous
B. f is discontinuous
C. $\lim _{x \rightarrow 0^{-}} f(x)=3$
D. $\lim _{x \rightarrow 0^{+}} f(x)=1$

Answer: A

- Watch Video Solution

183. If $f(x)=\left\{\begin{array}{l}\frac{x}{|x|}, \text { for } x \neq 0 \\ c, \text { for } x=0\end{array}\right.$, then f is
A. continuous at $x=0$
B. discontinuous at $x=0$
C. continuous if $f(0)=1$
D. continuous if $f(0)=-1$

Answer: B

Watch Video Solution

184. If $f(x)=\left\{\begin{array}{l}\frac{|x|}{x}, \text { for } x \neq 0 \\ 1, \text { for } x=0\end{array}\right.$, then
A. $\lim _{x \rightarrow 1^{-}} f(x)=1$
B. $\lim _{x \rightarrow 1^{+}} f(x)=-1$
C. f is discontinuous at origin
D. f is continuous at origin

Answer: C

- View Text Solution

185. If $f: R \rightarrow R$ is defined bu $f(x)=[x-3]+|x-4|$ for $x \in R$, then $\lim _{x \rightarrow 3^{-}} f(x)=$
A. 0
B. -1
C. -2
D. 1
186. If $f(x)=\left\{\begin{array}{l}\frac{\cot x-\cos x}{(\pi-2 x)^{3}}, \text { for } x \neq \frac{\pi}{2} \\ k,\end{array}\right.$ is continuous at $x=\frac{\pi}{2}$, where, k, for $x=\frac{\pi}{2}$
then $k=$
A. $\frac{1}{4}$
B. $\frac{1}{24}$
C. $\frac{1}{16}$
D. None of these

Answer: C

Watch Video Solution

187. If $f(x)=\log \left(\sec ^{2} x\right)^{\cot 2}$ for $x \neq 0$ for $\mathrm{x}=0$ is continuous at $\mathrm{x}=0$, then K is
A. e^{-1}
B. 1
C.e
D. 0

Answer: B

- Watch Video Solution

188. The function $f(x)=\frac{2 x^{2}+7}{x^{3}+3 x^{2}-x-3}$ is discontinuous for
A. $x=1$ only
B. $x=1,-1$ only
C. $x=1,-1,-3$ and other values of x
D. $x=1,-1,-3$ only

Answer: D

189. If $\mathrm{f}(\mathrm{u})=\frac{1}{u^{2}+u-2}$, where $u=\frac{1}{x-1}$, then the points of discontinuity of f are $x=\ldots . .$.
A. $x=2, \frac{1}{2}$
B. $x=1,2, \frac{1}{2}$
C. $x=2, \frac{-1}{2}$
D. $z=1,2, \frac{-1}{2}$

Answer: B

- Watch Video Solution

190. If $f(x)$ is continuous at $x=3$, where $f(x)=\frac{x^{2}-7 x+12}{x^{2}-5 x+6}$,for $x \neq 3$, then $f(3)=$
A. -1
B. 1
C. $\frac{1}{5}$
D. $\frac{7}{5}$

Answer: A

- Watch Video Solution

191. If $f(x)$ is continuous for all x , where $f(x)=\left\{\begin{array}{l}\frac{x^{2}-7 x+12}{(x-2)^{2}}, \text { for } x \neq 2 \\ k, \text { for } x=2\end{array}\right.$, then $k=$
A. 7
B. -7
C. ± 7
D. 14

Answer: A

192. If $f(x)$ is continuous at $x=2$, where
$f(x)=\left\{\begin{array}{l}\frac{x^{2}-(a+2) x+a}{x-2}, \text { for } x \neq 2 \\ 2, \text { for } x=2\end{array}\right.$, then $a=$
A. 2
B. -1
C. 1
D. 0

Answer: D

- Watch Video Solution

193. If $f(x)$ is continuous at $x=2$, where $f(x)=\frac{\left(x^{2}-x-2\right)^{20}}{\left(x^{3}-12 x+16\right)^{10}}$, for $x \neq 2$, then $f(2)=$
A. $\frac{3^{20}}{2^{10}}$
B. $\frac{3^{10}}{2^{20}}$
C. $\left(\frac{3}{2}\right)^{10}$
D. $\left(\frac{3}{2}\right)^{20}$

Answer: C

- Watch Video Solution

194. If $f(x)$ is continuous at $x=-2$, where $f(x)=\frac{2}{x+2}+\frac{1}{x^{2}-2 x+4}-\frac{24}{x^{3}+8}, \quad$ for $\quad x \neq-2, \quad$ then
$f(-2)=$
A. $\frac{-1}{4}$
B. $\frac{1}{4}$
C. $\frac{11}{12}$
D. $\frac{-11}{12}$

Answer: D

195. If $f(x)$ is continuous at $x=1$, where $f(x)=\frac{x^{n}-1}{x-1}$, for $x \neq 1$, then $f(1)=$
A. $\frac{1}{n}$
B. $\frac{1}{n(n-1)}$
C. n
D. $n(n-1)$

Answer: C

Watch Video Solution

196. If $f(x)$ is continuous at $x=1$, where
$f(x)=\left(\frac{x+3 x^{2}+5 x^{3}+\ldots+(2 n-1) x^{n}-n^{2}}{x-1}\right)$, for $x \neq 1$, then $f(1)=$
A. $\frac{n(n+1)(2 n-1)}{6}$
B. $\frac{n(n+1)(2 n-1)}{3}$
C. $\frac{n(n+1)(4 n-1)}{6}$
D. $\frac{n(n+1)(4 n-1)}{3}$

Answer: C

- Watch Video Solution

197. If $f(x)$ is continuous at $x=3$, where $f(x)= \begin{cases}\frac{x^{2}-9}{x-3} & , \text { for } x \neq 3 \\ 2 x+k & \text {, otherwise }\end{cases}$, then $k=$
A. 0
B. 3
C. -6
D. $\frac{1}{6}$

Answer: A

198. If $f(x)$ is continuous at $x=16$, where
$f(x)=\left\{\begin{array}{l}\frac{x^{8}-(256)^{4}}{x^{4}-(16)^{4}}, \text { for } x \neq 16 \\ k, \text { for } x=16\end{array}\right.$, then $k=$
A. $(16)^{4}$
B. $2(16)^{4}$
C. $4(16)^{4}$
D. $3(16)^{4}$

Answer: B

- Watch Video Solution

199. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{(27-2 x)^{\frac{1}{3}}-3}{9-3(243+5 x)^{\frac{1}{5}}}$, for $x \neq 0$ then $f(0)=$
B. 2
C. $\frac{-2}{3}$
D. $\frac{2}{3}$

Answer: B

- Watch Video Solution

200. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{\sqrt{1+x}-\sqrt[3]{1+x}}{x}$, for $x \neq 0$, then $f(0)=$
A. $\frac{1}{3}$
B. $\frac{1}{2}$
C. $\frac{5}{6}$
D. $\frac{1}{6}$

Answer: D

201. If $f(x)$ is continuous at $x=4$, where $f(x)=\frac{x^{4}-64 x}{\sqrt{x^{2}+9}-5}$, for $x \neq 4$, then $f(4)=$
A. 120
B. 240
C. 120
D. -240

Answer: B

- Watch Video Solution

202. If $f(x)=\frac{\sqrt{a^{2}-a x+x^{2}}-\sqrt{a^{2}+a x+x^{2}}}{\sqrt{a+x}-\sqrt{a-x}}$ is continuous at $x=0$ then $f(0)$

$$
\text { A. }-a \sqrt{a}
$$

B. $a \sqrt{a}$
C. $-\sqrt{a}$
D. \sqrt{a}

Answer: C

- Watch Video Solution

203. If $f(x)$ is continuous at $x=2 a$, where
$f(x)=\frac{\sqrt{x}-\sqrt{2 a}+\sqrt{x-2 a}}{\sqrt{x^{2}-4 a^{2}}}$, for $x \neq 2 a$, then $f(2 a)=$
A. $2 \sqrt{a}$
B. 2 a
C. $\frac{1}{2 \sqrt{a}}$
D. $\frac{1}{2 a}$

Answer: C
204. If $f(x)$ is continuous at $x=\sqrt{2}$, where
$f(x)=\frac{\sqrt{3+2 x}-(\sqrt{2}+1)}{x^{2}-2}$, for $x \neq \sqrt{2}$, then $f(\sqrt{2})=$
A. $\frac{1}{2(2+\sqrt{2})}$
B. $\frac{1}{\sqrt{2}(2+\sqrt{2})}$
C. $\frac{1}{2+\sqrt{2}}$
D. $\frac{1}{2+2 \sqrt{2}}$

Answer: A

- Watch Video Solution

205. If $f(x)$ is continuous at $x=5$, where $f(x)=\frac{\sqrt{3+\sqrt{4+x}}-\sqrt{6}}{x-5}$, for $x \neq 5$, then $f(5)=$
A. $\frac{1}{2 \sqrt{6}}$
B. $\frac{1}{3 \sqrt{6}}$
C. $\frac{1}{6 \sqrt{6}}$
D. $\frac{1}{12 \sqrt{6}}$

Answer: D

- Watch Video Solution

206. If $f(x)$ is continuous at $x=0$, where $f(x)=\sin x-\cos x$, for $x \neq 0$, then $f(0)=$
A. 2
B. 0
C. -1
D. 1

Answer: C

207. If $f(x)$ is continuous at $x=\frac{\pi}{2}$, where $f(x)=\frac{\sqrt{2}-\sqrt{1+\sin x}}{\cos ^{2} x}$, for $x \neq \frac{\pi}{2}$, then $f\left(\frac{\pi}{2}\right)=$
A. $4 \sqrt{2}$
B. $2 \sqrt{2}$
C. $\frac{1}{4 \sqrt{2}}$
D. $\frac{1}{2 \sqrt{2}}$

Answer: C

- Watch Video Solution

208. If $f(x)$ is continuous at $x=\frac{\pi}{4}$, where $f(x)=\frac{1-\tan x}{1-\sqrt{2} \sin x}$, for $x \neq \frac{\pi}{4}$, then $f\left(\frac{\pi}{4}\right)=$
A. 2
B. $\sqrt{2}$
C. $2 \sqrt{2}$
D. $\frac{1}{\sqrt{2}}$

Answer: A

- Watch Video Solution

209. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{\sin \left(\pi \cos ^{2} x\right)}{x^{2}}$, for $x \neq 0$, then $f(0)=$
A. $\frac{\pi}{2}$
B. 1
C. $-\pi$
D. π

Answer: D
210. If $f(x)$ is continuous at $x=\frac{\pi}{4} \quad$ where $f(x)=\frac{2 \sqrt{2}-(\cos x+\sin x)^{3}}{1-\sin 2 x}$,for $x \neq \frac{\pi}{4}$ then $f\left(\frac{\pi}{4}\right)=$
A. $\frac{3}{\sqrt{2}}$
B. $\frac{\sqrt{2}}{3}$
C. $\frac{1}{\sqrt{2}}$
D. $3 \sqrt{2}$

Answer: A

- Watch Video Solution

211. If $f(x)$ is continuous at $\theta=\frac{\pi}{4}$, where $f(\theta)=\left\{\begin{array}{l}\frac{1-\tan \theta}{1-\sqrt{2} \sin \theta}, \text { for } \theta \neq \frac{\pi}{4} \\ \frac{k}{2}, \text { for } \theta=\frac{\pi}{4}\end{array}\right.$, then $k=$
A. $2 \sqrt{2}$
B. $4 \sqrt{2}$
C. 2
D. 4

Answer: D

- Watch Video Solution

212. The function $f(x)=\frac{1-\sin x+\cos x}{1+\sin x+\cos x}$ is not defined at $x=\pi$. The value of $f(\pi)$, so that $\mathrm{f}(\mathrm{x})$ is continuous at $x=\pi$, is
A. -1
B. 1
C. $\frac{-1}{2}$
D. $\frac{1}{2}$

Answer: A

213. If $f(x)$ is continuous at $x=\frac{\pi}{2}$, where $f(x)=\frac{\cos x}{\sqrt{1-\sin x}}$, for $x \neq \frac{\pi}{2}$, then $f\left(\frac{\pi}{2}\right)=$
A. $\frac{1}{2 \sqrt{2}}$
B. $\frac{1}{\sqrt{2}}$
C. $2 \sqrt{2}$
D. $\sqrt{2}$

Answer: D

214. If $f(x)$ is continuous at $x=\frac{\pi}{4}$, where $f(x)=\frac{\cos x-\sin x}{\cos 2 x}$, for $x \neq \frac{\pi}{4}$, then $f\left(\frac{\pi}{4}\right)=$
A. $\frac{1}{\sqrt{2}}$
B. $\frac{-1}{\sqrt{2}}$
C. $\sqrt{2}$
D. $-\sqrt{2}$

Answer: A

- Watch Video Solution

215. If $f(x)$ is continuous at $x=\frac{\pi}{4}$, where $f(x)=\frac{2-\operatorname{cosec}^{2} x}{\cot x-1}$, for $x \neq \frac{\pi}{4}$, then $f\left(\frac{\pi}{4}\right)=$
A. 4
B. -4
C. 2
D. -2

Answer: D

0
 Watch Video Solution

216. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{\sin \left(x^{2}-x\right)}{x}$, for $x \neq 0$, then $f(0)=$
A. -1
B. 1
C. 0
D. 2

Answer: A

- Watch Video Solution

217. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left\{\begin{array}{l}\frac{x \cos x+3 \tan x}{x^{2}+\sin x}, \text { for } x \neq 0 \\ k^{2}, \text { for } x=0\end{array}\right.$, then $k=$
A. 2
B. -2
C. ± 2
D. 0

Answer: C

- Watch Video Solution

218. If $f(x)$ is continuous at $x=0$, where
$f(x)=\frac{\sin (a+x)-\sin (a-x)}{\tan (a+x)-\tan (a-x)}, x \neq 0$, then $f(0)=$
A. $2 \sec ^{3} a$
B. $\sec ^{3} a$
C. $2 \cos ^{3} a$
D. $\cos ^{3} a$

Answer: D

219. $f: R \rightarrow R$ is defined by $f(x)=\left\{\frac{\cos 3 x-\cos x}{x^{2}}, x \neq 0 \lambda, x=0\right.$ and f is continuous at $x=0$; then $\lambda=$
A. -4
B. -2
C. -8
D. -6

Answer: A

220. If $f(x)$ is continuous at $x=0$, where $f(x)=\left\{\begin{array}{l}\frac{1-\cos x}{x}, \text { for } x \neq 0 \\ k, \text { for } x=0\end{array}\right.$, then $k=$
A. $\frac{1}{2}$
B. $\frac{-1}{2}$
C. $\frac{1}{4}$
D. 0

Answer: D

- Watch Video Solution

221. If $f(x)$ is continuous at $x=0$, where $f(x)=\left\{\begin{array}{l}\frac{1-\cos k x}{x^{2}}, \text { for } x \neq 0 \\ \frac{1}{2}, \text { for } x=0\end{array}\right.$, then $k=$
A. 1
B. -1
C. ± 1
D. 0

Answer: C

222. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{1-\cos 3 x}{x \tan x}$ for $x \neq 0$, then $f(0)=$
A. $\frac{3}{2}$
B. $\frac{9}{2}$
C. $\frac{3}{4}$
D. $\frac{9}{4}$

Answer: B

- Watch Video Solution

223. Function $f(x)=(1-\cos 4 x) /\left(8 x^{2}\right)$, where $x \neq 0$, and $\mathrm{f}(\mathrm{x})=\mathrm{k}$, where $\mathrm{x}=0$, is a continuous function at $\mathrm{x}=0$ Then : $\mathrm{k}=$
A. 16
B. 2
C. -1
D. 1

Answer: D

- Watch Video Solution

224. If $f(x)=$ is continuous at $x=0$, where
$f(x)=\frac{(1-\cos 2 x)(3+\cos x)}{x \tan 4 x}$, for $x \neq 0$, then $f(0)=$
A. 2
B. $\frac{1}{2}$
C. 4
D. 3

Answer: A

O
 Watch Video Solution

225. If α, β are the roots of $a x^{2}+b x+c=0$ and $f(x)$ is continuous at $x=\alpha$, where $f(x)=\frac{1-\cos \left(a x^{2}+b x+c\right)}{(x-\alpha)^{2}}$, for $x \neq \alpha$, then $f(\alpha)=$
A. 0
B. $\frac{4 a c-b^{2}}{2}$
C. $\frac{b^{2}-4 a c}{2}$
D. $\frac{b^{2}-4 a c}{2 a^{2}}$

Answer: C

- Watch Video Solution

226. If $f(x)$ is continuous at $x=0$, where $f(x)=\left\{\begin{array}{l}\frac{\cos ^{2} x-\sin ^{2} x-1}{\sqrt{x^{2}+1}-1}, \text { for } x \neq 0 \\ 2 k, \text { for } x=0\end{array}\right.$, then $k=$
A. -2
B. -4
C. 2
D. 4

Answer: A

D Watch Video Solution

227. If $f(x)$ is continuous at $x=a$, where $f(x)=\frac{\sin (a+x)+\sin (a-x)-2 \sin a}{x \sin x}$, for $x \neq a$, then $f(a)=$
A. $\frac{1}{a}(1-\cos a)$
B. $\frac{1}{a}(\cos a-1)$
C. $\frac{2}{a}(1-\cos a)$
D. $\frac{2}{a}(\cos a-1)$

Answer: D
228. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{3-4 \cos x+\cos 2 x}{x^{2}}$, for $x \neq 0$, then $f(0)=$
A. 0
B. 2
C. -2
D. 4

Answer: A

- Watch Video Solution

229. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{3-4 \cos x+\cos 2 x}{x^{4}}$, for $x \neq 0$, then $f(0)=$
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. 8
D. 4

Answer: B

- Watch Video Solution

230. The value of k which makes $f(x)=\left\{\begin{array}{l}\sin \left(\frac{1}{x}\right) \text {, for } x \neq 0 \\ k, \text { for } x=0\end{array}\right.$ continuous at $x=0$ is
A. 0
B. 1
C. -1
D. no value of k

Answer: D

231. If the function $f(x)$ defined by
$f(x)= \begin{cases}x \sin \frac{1}{x}, & \text { for } x \neq 0 \\ k, & \text { for } x=0\end{cases}$
is continuous at $\mathrm{x}=0$, then k is equal to
A. 0
B. 1
C. -1
D. $\frac{1}{2}$

Answer: A

- Watch Video Solution

232. If $f(x)$ is continuous at $x=a$, where $f(x)=(x-a) \sin \left(\frac{1}{x-a}\right)$, for $x \neq a$, then $f(a)=$
A. 1
B. -1
C. 0
D. ∞

Answer: C

- Watch Video Solution

233. If $(x)=\frac{1-\sqrt{3} \tan x}{\pi-6 x}$, for $x \neq \frac{\pi}{6} \quad$ is continous at $x=\frac{\pi}{6}$, find $f\left(\frac{\pi}{6}\right)$.
A. $\frac{1}{3 \sqrt{3}}$
B. $\frac{1}{2 \sqrt{3}}$
C. $\frac{2}{3 \sqrt{3}}$
D. $\frac{4}{3 \sqrt{3}}$

Answer: C

234. Value of $\mathrm{f}\left(\frac{\pi}{4}\right)$ so that the function $\mathrm{f}(\mathrm{x})=\frac{\tan \left(\frac{\pi}{4}-x\right)}{\cot 2 x}, x \neq \frac{\pi}{4}$ is continuous everywhere is
A. 2
B. 1
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: C

- Watch Video Solution

235. Find the value of k, if the functions are continuous at the points given against them :

$$
\left.\begin{array}{ll}
f(x)=\frac{\sqrt{3}-\tan x}{\pi-3 x}, & \text { for } x \neq \frac{\pi}{3} \\
=k, & \text { for } x=\frac{\pi}{3}
\end{array}\right\} \text { atx }=\frac{\pi}{3}
$$

A. $\frac{-2}{3}$
B. $\frac{2}{3}$
C. $\frac{-4}{3}$
D. $\frac{4}{3}$

Answer: D

- Watch Video Solution

236. If $f(x)$ is continuous at $x=\frac{\pi}{2}$, where $f(x)=\frac{1-\sin x}{\left(\frac{\pi}{2}-x\right)^{2}}$, for $x \neq \frac{\pi}{2}$, then $f\left(\frac{\pi}{2}\right)=$
A. $\frac{1}{2}$
B. $\frac{-1}{2}$
C. $\frac{\pi}{2}$
D. $\frac{-\pi}{2}$

Answer: A
237. If $f(x)$ is continuous at $x=\frac{\pi}{2}$, where $f(x)=\frac{1-\sin x}{(\pi-2 x)^{2}}$, for $x \neq \frac{\pi}{2}$, then $f\left(\frac{\pi}{2}\right)=$
A. $\frac{-1}{4}$
B. $\frac{-1}{8}$
C. $\frac{1}{4}$
D. $\frac{1}{8}$

Answer: D

- Watch Video Solution

238. If $f(x)$ is continuous at $x=\frac{\pi}{2}$, where
$f(x)=\left\{\begin{array}{l}\frac{1-\sin x}{\pi-2 x}, \text { for } x \neq \frac{\pi}{2} \\ \lambda, \text { for } x=\frac{\pi}{2}\end{array}\right.$,then $\lambda=$
A. -1
B. 1
C. 0
D. 2

Answer: C

- Watch Video Solution

239. For what value of k , function $f(x)=\left\{\begin{array}{ll}\frac{k \cos x}{\pi-2 x}, & \text { if } x \neq \frac{\pi}{2} \\ 3, & \text { if } x=\frac{\pi}{2}\end{array}\right.$ is continuous at $x=\frac{\pi}{2}$?
A. 3
B. -3
C. 6
D. -6

Answer: C

240. If $f(x)$ is contiuous at $x=\frac{\pi}{2}$, where
$f(x)=\frac{\sec x-\tan x}{\frac{\pi}{2}-x}$, for $x \neq \frac{\pi}{2}$, then $f\left(\frac{\pi}{2}\right)=$
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. $\frac{1}{6}$
D. $\frac{1}{8}$

Answer: B

- Watch Video Solution

241. If $f(x)$ is continuous at $x=\pi$, where
$f(x)=\frac{\sqrt{2+\cos x}-1}{(\pi-x)^{2}}$, for $x \neq \pi$, then $f(\pi)=$
A. $\frac{1}{4}$
B. $\frac{-1}{4}$
C. $\frac{1}{2}$
D. $\frac{-1}{2}$

Answer: A

- Watch Video Solution

242. If $f(x)$ is continuous at $x=\pi$, where $f(x)=\frac{1-\cos (7(x-\pi))}{5(x-\pi)^{2}}$, for $x \neq \pi$, then $f(\pi)=$
A. $\frac{49}{5}$
B. $\frac{49}{10}$
C. $\frac{7}{2}$
D. $\frac{7}{10}$

Answer: B
243. If $f(x)$ is continuous at $x=0$, where $f(x)=(1+2 x)^{\frac{1}{x}}$, for $x \neq 0$, then $f(0)=$
A. e^{2}
B. e^{-2}
C. $2 e$
D. $-2 e$

Answer: A

244. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left\{\begin{array}{l}(1+3 x)^{\frac{1}{x}}, \text { for } x \neq 0 \\ k, \text { for } x=0\end{array}\right.$, then $k=$
A. e^{-3}
B. e^{3}
C. $3 e$
D. e

Answer: B

- Watch Video Solution

245. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left(\frac{4-3 x}{4}\right)^{\frac{8}{x}}$, for $x \neq 0$, then $f(0)=$
A. e^{-3}
B. e^{-4}
C. e^{-6}
D. e^{-12}

Answer: C

246. If $f(x)=\left\{\begin{array}{l}\frac{x^{2}-4}{x-2}, \text { for } x \neq 2 \\ 5, \text { for } x=2\end{array}\right.$, then at $x=2$
A. f is continuous if $f(0)=-2$
B. f is continuous
C. f has removable discontinuity
D. f has irremovable discontinuity

Answer: C

- Watch Video Solution

247. If $f(x)=\left\{\begin{array}{l}\sqrt[3]{\frac{4 x+1}{1-4 x}}, \text { for } x \neq 0 \\ e^{6}, \text { for } x=0\end{array}\right.$, then at $x=0$
A. f is continuous if $f(0)=e^{-8}$
B. f is continuous
C. f has irremovable discontinuity
D. f has removable discontinuity

D Watch Video Solution

248. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left(\frac{4-3}{4+5 x}\right)^{\frac{1}{x}}$, for $x \neq 0$, then $f(0)=$
A. e^{2}
B. e^{-2}
C. e^{-3}
D. e^{5}

Answer: B

- Watch Video Solution

249. If $f(x)$ is continuous at $x=2$, where $f(x)=(x-1)^{\frac{1}{2-x}}$, for $x \neq 2$, then $f(2)=$
A. $\frac{-1}{e}$
B. $\frac{1}{e}$
C. $-e$
D. e

Answer: B

- Watch Video Solution

250. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left\{\begin{array}{l}\left(\sec ^{2} x\right)^{\cot ^{2} x}, \text { for } x \neq 0 \\ k, \text { for } x=0\end{array}\right.$, then $k=$
A. $\frac{1}{e}$
B. $\frac{2}{e}$
C.e
D. $2 e$

Watch Video Solution

251. If $f(x)$ is continuous at $x=\frac{\pi}{4}$, where $f(x)=(1+\cos 2 x)^{4 \sec 2 x}$, for $x \neq \frac{\pi}{4}$, then $f\left(\frac{\pi}{4}\right)=$
A. e^{-4}
B. e^{4}
C. $4 e$
D.e

Answer: B

- Watch Video Solution

252. In order that the function $f(x)=(x+1)^{\cot x}$ is continuous at $\mathrm{x}=0$, the value of $f(0)$ must be defined as :

$$
\text { A. } f(0)=0
$$

B. $f(0)=e$
C. $f(0)=\frac{1}{e}$
D. $f(0)=\frac{2}{e}$

Answer: B

- Watch Video Solution

253. $f(x)=\left\{\begin{array}{ll}\left(\tan \frac{\pi}{4}+x\right)^{1 / x}, & x \neq 0 \\ k, & x=0\end{array}\right.$ for what value of $\mathrm{k}, \mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$?
A.e
B. e^{-1}
C. e^{2}
D. e^{-2}

Answer: C

254. If $f(x)$ is continuous at $x=\frac{\pi}{4}$, where $f(x)=(\sin 2 x)^{\tan ^{2} 2 x}$, for $x \neq \frac{\pi}{4}$, then $f\left(\frac{\pi}{4}\right)=$
A. $\frac{1}{\sqrt{e}}$
B. $\frac{-1}{\sqrt{e}}$
C. \sqrt{e}
D. e^{-2}

Answer: A

- Watch Video Solution

255. If $f(x)$ is continuous at $x=1$, where $f(x)=\left(\log _{2} 2 x\right)^{\log _{2} x}$, for $x \neq 1$, then $f(1)=$
A. 0
B. 1
C.e
D. e^{2}

Answer: C

- Watch Video Solution

256. If $f(x)$ is continuous at $x=0$, where $f(x)=\left\{\begin{array}{l}\frac{8^{x}-2^{x}}{k^{x}-1}, \text { for } x \neq 0 \\ 2, \text { for } x=0\end{array}\right.$, then $k=$
A. 4
B. -2
C. 2
D. ± 2

Answer: C

257. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{4^{x}-e^{x}}{6^{x}-1}$, for $x \neq 0$, then $f(0)=$
A. $\frac{\log 4-1}{\log 6}$
B. $\frac{1-\log 4}{\log 6}$
C. $\frac{\log 2-2}{\log 6}$
D. $\frac{2-\log 2}{\log 6}$

Answer: A

- Watch Video Solution

258. The value of f at $\mathrm{x}=0$ so that funcation $f(x)=\frac{2^{x}-2^{-x}}{x}, x \neq 0$ is continuous at $\mathrm{x}=0$ is
A. 0
B. e^{4}
C. $\log 4$
D. $\log 2$

Answer: C

- Watch Video Solution

259. The function $f(x)=\frac{\log (1+a x)-\log (1-b x)}{x}$ is not difined at $\mathrm{x}=$ 0 . The value which should be assigned to f at $x=0$, so that it is continuous at $\mathrm{x}=0$, is
A. $\log a+\log b$
B. $\log a-\log b$
C. $a+b$
D. $a-b$

Answer: C

260. If $f(x)$ is continuous at $x=0$, where
$f(x)=\frac{\log 100+\log (0.01+x)}{3 x}$, for $x \neq 0$, then $f(0)=$
A. $\frac{10}{3}$
B. $\frac{100}{3}$
C. $\frac{1}{3}$
D. 100

Answer: B

- Watch Video Solution

261. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left\{\begin{array}{l}\log _{(1-2 x)}(1+2 x), \text { for } x \neq 0 \\ k, \text { for } x=0\end{array}\right.$, then $k=$
A. 1
B. -1
C. 2
D. -2

Answer: B

- Watch Video Solution

262. If $f(x)=\left\{\begin{array}{ll}\log _{(1-3 x)}(1+3 x), & \text { for } x \neq 0 \\ k, & \text { for } x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$, then k is equal to
A. -1
B. 1
C. 3
D. -3

Answer: A

- Watch Video Solution

263. If $f(x)$ is continuous aat $x=7$, where $f(x)=\frac{\log x-\log 7}{x-7}$, for $x \neq 7$, then $f(7)=$
A. 14
B. 7
C. $\frac{1}{14}$
D. $\frac{1}{7}$

Answer: D

- Watch Video Solution

264. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{e^{5 x}-e^{2 x}}{\sin 3 x}$, for $x \neq 0$ then $f(0)=$
A. 1
B. -1
C. 3
D. $\frac{7}{3}$

Answer: A

- Watch Video Solution

265. Let $f(x)=\frac{\left(e^{k x}-1\right) \cdot \sin K x}{x^{2}}$ for $x \neq 0 ;=4$, for $x=0$ is continuous at $x=0$ then k
A. 4
B. -2
C. 2
D. ± 2

Answer: D
266. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{\left(e^{2 x}-1\right) \tan x}{x \sin x}$, for $x \neq 0$, then $f(0)=$
A. $\frac{1}{2}$
B. $\frac{-1}{2}$
C. 2
D. -2

Answer: C

- Watch Video Solution

267. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{\left(e^{3 x}-1\right) \sin x^{\circ}}{x^{2}}$, for $x \neq 0$, then $f(0)=$
A. $\frac{\pi}{180}$
B. $\frac{\pi}{60}$
C. $\frac{\pi}{90}$
D. 3

Answer: B

- Watch Video Solution

268. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{e^{x^{2}}-\cos x}{x^{2}}$, for $x \neq 0$, then $f(0)=$
A. $\frac{3}{2}$
B. $\frac{1}{2}$
C. 1
D. $\frac{-1}{2}$

Answer: A

269. If $f(x)$ is continuous at $x=0$, where $f(x)=\left\{\begin{array}{l}\frac{3^{x}-3^{-x}}{\sin x}, \text { for } x \neq 0 \\ k, \text { for } x=0\end{array}\right.$, then $k=$
A. $\log 9$
B. $\log 3$
C. $\log 1$
D. $\log \mathrm{e}$

Answer: A

- Watch Video Solution

270. If $f(x)$ is continuous at $x=0$, where $f(x)=\left\{\begin{array}{l}\frac{9^{x}-9^{-x}}{\sin x}, \text { for } x \neq 0 \\ k, \text { for } x=0\end{array}\right.$, then $k=$
A. $\log 9$
B. $\log 81$
C. $2 \log 3$
D. $(\log 9)^{2}$

Answer: B

- Watch Video Solution

271. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{10^{x}+7^{x}-14^{x}-5^{x}}{1-\cos 4 x}$, for $x \neq 0$, then $f(0)=$
A. $\frac{1}{4}(\log 2) \log \left(\frac{5}{7}\right)$
B. $\frac{1}{8}(\log 2) \log \left(\frac{5}{7}\right)$
C. $\frac{1}{4}(\log 2) \log \left(\frac{7}{5}\right)$
D. $\frac{1}{8}(\log 2) \log \left(\frac{7}{5}\right)$

Answer: B

- Watch Video Solution

272. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{\left(5^{x}-2^{x}\right) x}{\cos 5 x-\cos 3 x}$, for $x \neq 0$, then $f(0)=$
A. $\frac{-1}{4} \log \left(\frac{2}{5}\right)$
B. $\frac{1}{4} \log \left(\frac{2}{5}\right)$
C. $\frac{-1}{8} \log \left(\frac{2}{5}\right)$
D. $\frac{1}{8} \log \left(\frac{2}{5}\right)$

Answer: D

D Watch Video Solution

273. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{4^{x}-2^{x+1}+1}{1-\cos x}$, for $x \neq 0$, then $f(0)=$
A. $(2 \log 2)^{2}$
B. $2(\log 2)^{2}$
C. $(\log 2)^{2}$
D. $\frac{(\log 2)^{2}}{2}$

Answer: B

- Watch Video Solution

274. If $f(x)$ is continuous at $x=\frac{\pi}{2}$, where $f(x)=\frac{3^{x-\frac{\pi}{2}}-6^{x-\frac{\pi}{2}}}{\cos x}$, for $x \neq \frac{\pi}{2}$, then $f\left(\frac{\pi}{2}\right)=$
A. $\log 3$
B. $\log 6$
C. $\log 2$
D. $\log 18$

Answer: C

275. If $f(x)$ is continuous at $x=a, a>0$, where $f(x)=\left[\frac{a^{x}-x^{a}}{x^{x}-a^{a}}\right.$, for $x \neq a,-1$ for $\mathrm{x}=\mathrm{a}$, then $a=$
A. e
B. 2 e
C. 1
D. 0

Answer: C

- Watch Video Solution

276. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left\{\begin{array}{l}\frac{\log (1+k x)}{\sin x}, \text { for } x \neq 0 \\ 5, \text { for } x=0\end{array}\right.$, then $k=$
A. 5
B. -5
C. $\frac{1}{5}$
D. $\frac{-1}{5}$

Answer: A

- Watch Video Solution

277. For what value of k, the function defined by
$f(x)= \begin{cases}\frac{\log (1+2 x) \sin x^{\circ}}{x^{2}}, & \text { for } x \neq 0 \\ k, & \text { for } x=0\end{cases}$
is continuous at $\mathrm{x}=0$?
A. 2
B. $\frac{1}{2}$
C. $\frac{\pi}{90}$
D. $\frac{90}{\pi}$

Answer: C

278. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{\log \sec ^{2} x}{x \sin x}$, for $x \neq 0$ then $f(0)=$
A. e
B. ± 1
C. -1
D. 1

Answer: D

Watch Video Solution
279. If $f(x)$ is continuous at $x=0$, where
$f(x)=\frac{\log \left(1+x^{2}\right)-\log \left(1-x^{2}\right)}{\sec x-\cos x}$, for $x \neq 0$, then $f(0)=$
A. 0
B. 2
C. 1
D. -1

Answer: B

- Watch Video Solution

280. If $f(x)$ is continuous at $x=0$, where
$f(x)=\frac{\log \left(1+x+x^{2}\right)+\log \left(1-x+x^{2}\right)}{\sin x}$, for $x \neq 0$, then $f(0)=$
A. 0
B. 2
C. 1
D. -1

Answer: A

281. If $f(x)$ is continuous at $x=0$, where
$f(x)=\frac{\log (2+x)-\log (2-x)}{\tan x}$, for $x \neq 0$, then $f(0)=$
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. 2
D. 1

Answer: D

- Watch Video Solution

282. If $\mathrm{f}(\mathrm{x})$ is continous at $x=0$, where $f(x) \frac{\left(e^{3 x}-1\right) \sin x}{x \log (1+x)}$, for $x \neq 0$, find $f(0)$.
A. 1
B. 3
C. $\frac{2}{3}$
D. $\frac{1}{3}$

Answer: B

- Watch Video Solution

283. If $f(x)=\frac{\left(8^{x}-1\right)^{2}}{\sin x \log \left(1+\frac{x}{4}\right)}$ in $[-1,1]-\{0\}$, then for removable discontinuity of f at $x=0, f(0)=$
A. $4 \log 8$
B. $8 \log 2$
C. $4(\log 8)^{2}$
D. $8(\log 2)^{2}$

Answer: C

284. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{\left(4^{\sin x}-1\right)^{2}}{x \log (1+2 x)}$, for $x \neq 0$, then $f(0)=$
A. $\frac{1}{4}(\log 4)^{2}$
B. $\frac{1}{2}(\log 4)^{2}$
C. $2(\log 4)^{2}$
D. $2(\log 2)^{2}$

Answer: D

- Watch Video Solution

285. If $f(x)$ is continuous at $x=0$, where $f(x)=\frac{\left(3^{\sin x}-1\right)^{2}}{x \log (1-x)}$, for $x \neq 0$, then $f(0)=$
A. $(\log 3)^{2}$
B. $\log 9$
C. $\frac{1}{2} \log 3$
D. $\log 3$

Answer: A

- Watch Video Solution

286. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left\{\begin{array}{l}\frac{\left(e^{x}-1\right)^{4}}{\sin \left(\frac{x^{2}}{k^{2}}\right) \log \left(1+\frac{x^{2}}{2}\right)}, \text { for } x \neq 0 \\ 8, \text { for } x=0\end{array}\right.$, then $k=$
A. 1
B. ± 2
C. 2
D. -2

Answer: B

287. If $f(x)=\frac{e^{x}+e^{-x}-2}{x \sin x}$, for $x \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]-\{0\}$, then for f to be continuous in $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right], f(0)=$
A. $-e^{2}$
B. e^{2}
C. -1
D. 1

Answer: D

- Watch Video Solution

288. The function defined by $f(x)=\left\{\begin{array}{l}\left(1+\tan ^{2} \sqrt{x}\right)^{\frac{1}{2 x}}, \text { for } x \neq 0 \\ k \text {, for } x=0\end{array}\right.$, is continuous from right at point $x=0$, then $k=$
A.e
B. e^{2}
C. $e^{\frac{1}{2}}$
D. $e^{\frac{1}{4}}$

Answer: C

- Watch Video Solution

289. The function defined by
$f(x)=\left\{\begin{array}{ll}\left(x^{2}+e^{\frac{1}{2-x}}\right)^{-1}, & x \neq 2 \\ k & , \quad x=2\end{array}\right.$ is continuous from right at the point
$x=2$, then k is equal to
A. 0
B. 4
C. $\frac{-1}{4}$
D. $\frac{1}{4}$

Answer: D

290. If $f(x)=x^{2}-\sin x+5$, then at $x=\pi$
A. f is discontinuous
B. f is continuous
C. $\lim _{x \rightarrow \pi^{-}} f(x)=\pi^{2}-5$
D. $\lim _{x \rightarrow \pi^{+}} f(x)=5-\pi^{2}$

Answer: B

- Watch Video Solution

291. If $f(x)=\left\{\begin{array}{l}x, \text { for } 0 \leq x<\frac{1}{2} \\ 1-x, \text { for } \frac{1}{2} \leq x<1\end{array}\right.$, then
A. $\lim _{x \rightarrow \frac{1^{-}}{2}} f(x)=\frac{-1}{2}$
B. $\lim _{x \rightarrow \frac{1^{+}}{2}} f(x)=\frac{-1}{2}$
C. f is continuous at $x=\frac{1}{2}$
D. f is discontinuous at $x=\frac{1}{2}$

Answer: C

- Watch Video Solution

292. If $f(x)=\left\{\begin{array}{l}\frac{x^{2}-9}{x-3}, \text { for } 0<x<3 \\ x+3, \text { for } 3 \leq x<6 \\ \frac{x^{2}-9}{x+3}, \text { for } 6 \leq x<9\end{array}\right.$ then f is
A. continuous at $x=3, x=6$
B. discontinuous at $x=3, x=6$
C. continuous at $x=6$ and discontinuous at $x=3$
D. continuous at $x=3$ and discontinuous at $x=6$

Answer: D

293. If $f(x)=\left\{\begin{array}{l}\frac{\sin 2 x}{\sqrt{1-\cos 2 x}}, \text { for } 0<x<\frac{\pi}{2} \\ \frac{\cos x}{\pi-2 x}, \text { for } \frac{\pi}{2}<x<\pi\end{array}\right.$, then
A. f is discontinuous at $x=\frac{\pi}{2}$
B. f is continuous at $x=\frac{\pi}{2}$
C. $\lim _{x \rightarrow \frac{\pi^{-}}{2}} f(x)=\frac{1}{2}$
D. $\lim f(x)=0$ $x \rightarrow \frac{\pi^{+}}{2}$

Answer: A

- Watch Video Solution

294. If $f(x)=\left\{\begin{array}{l}x-1 \text {, for } 1 \leq x<2 \\ 2 x+3, \text { for } 2 \leq x \leq 3\end{array}\right.$, then at $x=2$
A. $\lim _{x \rightarrow 2^{-}} f(x)=7$
B. $\lim _{x \rightarrow 2^{+}} f(x)=1$
C. f has removable discontinuity at $x=2$
D. f has irremovable discontinuity at $x=2$

- Watch Video Solution

295. If $f(x)=\left\{\begin{array}{l}x \sin x, \text { for } 0<x \leq \frac{\pi}{2} \\ \frac{\pi}{2} \sin (\pi+x), \text { for } \frac{\pi}{2}<x<\pi\end{array}\right.$, then
A. $f(x)$ is discontinuous at $x=\frac{\pi}{2}$
B. $f(x)$ is continuous at $x=\frac{\pi}{2}$
C. $f(x)$ is continuous at $x=0$
D. $f(x)$ is discontinuous at $x=0$

Answer: A

D Watch Video Solution

296. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left\{\begin{array}{l}\frac{\sin x}{x}+\cos x, \text { for } x>0 \\ \frac{4(1-\sqrt{1-x})}{x}, \text { for } x<0\end{array}\right.$, then $f(0)=$
A. 2
B. -2
C. 4
D. -4

Answer: A

- Watch Video Solution

297. If $f(x)=\left\{\begin{array}{l}x+2, \text { if } x \leq 4 \\ x+4, \text { if } x>4\end{array}\right.$, then
A. $\lim _{x \rightarrow 4^{+}} f(x)=6$

$$
x \rightarrow 4^{+}
$$

B. $\lim _{x \rightarrow 4^{-}} f(x)=8$
C. f has removable discontinuity
D. f has irremovable discontinuity

Answer: D

298. If $f(x)=\left\{\begin{array}{l}2 x, \text { if } x<2 \\ 2, \text { if } x=2 \\ x^{2}, \text { if } x>2\end{array}\right.$, then
A. $\lim _{x \rightarrow 2^{-}} f(x)=-4$
B. $\lim _{x \rightarrow 2^{+}} f(x)=-4$
C. f has irremovable discontinuity
D. f has removable discontinuity

Answer: D

- Watch Video Solution

299. If $f(x)=\left\{\begin{array}{l}x-1, \text { for } 1 \leq x<2 \\ 2, \text { for } x=2 \\ 2 x-3, \text { for } 2<x<3\end{array}\right.$, then f has removable discontinuity at $x=2$, if $f(2)=$
A. 2
B. 3
C. 1
D. -1

Answer: C

- Watch Video Solution

300. If $f(x)=\left\{\begin{array}{l}x^{2}, \text { for } x \leq 1 \\ x+3, \text { for } x>1\end{array}\right.$, then at $x=1$
A. $\lim _{x \rightarrow 1^{-}} f(x)=4$
B. $\lim _{x \rightarrow 1^{+}} f(x)=1$
C. f has removable discontinuity
D. f has irremovable discontinuity

Answer: D
301. If $f(x)=\sqrt{x-2}$, for $2<x<4$, then $f(x)$ is
A. continuous in $(2,4)$ except at $x=3$
B. discontinuous in $(2,4)$ except at $x=3$
C. discontinuous in $(2,4)$
D. continuous in $(2,4)$

Answer: D

- Watch Video Solution

302. If $f(x)=\left\{\begin{array}{l}1-x, \text { for } 0<x \leq 1 \\ \frac{1}{2}, \text { for } x=0\end{array}\right.$, then in $[0,1]$
A. $f(x)$ is not continuous
B. $f(x$ is continuous
C. $\mathrm{f}(\mathrm{x})$ is continuous at $x=0$
D. $\mathrm{f}(\mathrm{x})$ is continuous at $x=1$

D Watch Video Solution

303. If $f(x)=\left\{\begin{array}{l}3 x+5, \text { for } 0 \leq x<3 \\ 2 x+8, \text { for } 3 \leq x<5 \\ x+13, \text { for } 5 \leq x \leq 10\end{array}\right.$, then
A. $f(x)$ is discontinuous in its domain
B. $f(x)$ is continuous in its domain
C. $\mathrm{f}(\mathrm{x})$ is continuous in its domain except at $x=3$
D. $\mathrm{f}(\mathrm{x})$ is continuous in its domain except at $x=5$

Answer: B

D Watch Video Solution

304. If $f(x)=\left\{\begin{array}{l}\frac{\sin x}{x}, \text { for } x<0 \\ x+1, \text { for } x \geq 0\end{array}\right.$, then
A. f is continuous on its domain
B. f is discontinuous on its domain
C. f is continuous on its domain except $x=0$
D. f is discontinuous on its domain except $x=0$

Answer: A

- Watch Video Solution

305. If $f(x)=\left\{\begin{array}{l}\frac{2 x+5}{x+1} \text {, for } 0 \leq x<2 \\ 4 x-5, \text { for } 2 \leq x \leq 4 \\ \frac{x^{2}+2}{x-5}, \text { for } 4<x \leq 6, x \neq 5\end{array}\right.$ then
A. f is continuous on its domain
B. f is continuous on its domain except $x=5$
C. f is continuous on its domain except $x=4$
D. f is continuous on its domain except $x=2$

Answer: C

(D) Watch Video Solution

306. If $f(x)=\left\{\begin{array}{l}\frac{\sin 2 x}{\sqrt{1-\cos 2 x}}, \text { for } 0<x \leq \frac{\pi}{2} \\ \frac{\cos x}{\pi-2 x}, \text { for } \frac{\pi}{2}<x \leq \pi\end{array}\right.$
A. f is continuous on its domain except $x=\frac{\pi}{2}$
B. f is continuous on its domain
C. f is discontinuous on its domain
D. f is continuous on its domain except $x=0$

Answer: A

- Watch Video Solution

307. If $f(x)=\left\{\begin{array}{l}x, \text { for } 0 \leq x<1 \\ 2, \text { for } x=1 \\ x+1, \text { for } 1<x \leq 2\end{array}\right.$,then f is
A. f is continuous at $x=1$
B. f is discontinuous at $x=1$
C. $\lim _{x \rightarrow 1^{-}} f(x)=2$
D. $\lim _{x \rightarrow 1^{+}} f(x)=1$

Answer: B

- Watch Video Solution

308. If $f(x)=\frac{x^{3}+3 x+5}{x^{3}-3 x+2}$ in $[0,5]$, then f is
A. continuous on its domain except at $x=1, x=-2$
B. continuous on its domain except at $x=1$
C. continuous on its domain except at $x=-2$
D. continuous on its domain

Answer: B

- Watch Video Solution

309. If $f(x)=\frac{x+1}{(x-2)(x-5)}$, then in [4, 6]
A. f is discontinuous
B. f is continuous
C. f is continuous except at $x=2$
D. f is continuous except at $x=5$

Answer: D

- Watch Video Solution

310. If $f(x)=\frac{x+1}{(x-2)(x-5)}$, then in [0, 1]
A. f is continuous
B. f is discontinuous
C. f is continuous except at $x=0$
D. f is continuous except at $x=1$

D Watch Video Solution

311. If $f(x)=\left\{\begin{array}{l}x, \text { for } x \geq 0 \\ x^{2}, \text { for } x<0\end{array}\right.$, then f is
A. continuous on R except at $x=0$
B. continuous on R
C. discontinuous on R except at $x=0$
D. continuous on R^{+}only

Answer: B

(Watch Video Solution

312. If $f(x)=\left\{\begin{array}{l}x^{2}-4, \text { for } 0 \leq x \leq 2 \\ 2 x+3, \text { for } 2<x \leq 4 \text {, then } \\ x^{2}-5, \text { for } 4<x \leq 6\end{array}\right.$
A. f is continuous on $[0,6]$
B. f is discontinuous on $[0,6]$
C. f is continuous on $[0,6]$ except at $x=2$
D. f is continuous on $[0,6]$ except at $x=4$

Answer: C

D Watch Video Solution

313. If $f(x)=\left\{\begin{array}{l}\frac{1}{x+1}, \text { for } 2 \leq x \leq 4 \\ \frac{x+1}{x-3}, \text { for } 4<x \leq 6\end{array}\right.$, then
A. f is discontinuous on $[2,6]$
B. f is continuous on $[2,6]$
C. f is continuous on $[2,6]$ except at $x=3$
D. f is continuous on $[2,6]$ except at $x=4$
314. If $f(x)=\left\{\begin{array}{l}3, \text { if } 0 \leq x \leq 1 \\ 4, \text { if } 1<x<3 \\ 5, \text { if } 3 \leq x \leq 10\end{array}\right.$, then
A. f is continuous on $[0,10]$ except at $x=1,3$
B. f is continuous on $[0,10$] except at $x=1$
C. f is continuous on $[0,10$] except at $x=3$
D. f is continuous on $[0,10$]

Answer: A

- Watch Video Solution

315. If $f(x)=\left\{\begin{array}{l}-2, \text { for } x \leq-1 \\ 2 x, \text { for }-1<x \leq 1, \text { then } \\ 2, \text { for } x>1\end{array}\right.$
A. f is discontinuous on its domain
B. f is continuous on its domain
C. f is continuous on its domain except at $x=-1$
D. f is continuous on its domain except at $x=1$

Answer: B

- Watch Video Solution

316. $f(x)= \begin{cases}|x|+3 & \text { if } x \leq-3 \\ -2 x & \text { if }-3<x<3 \\ 6 x+2 & \text { if } x \geq 3\end{cases}$
A. f is continuous on its domain except at $x=-3$
B. f is continuous on its domain except at $x=3$
C. f is continuous on its domain except at $x=-3,3$
D. f is continuous on its domain

Answer: C

- Watch Video Solution

317. If $f(x)=\left\{\begin{array}{l}2 x, \text { for } x<0 \\ 2 x+1, \text { for } x \geq 0\end{array}\right.$, then
A. $f(|x|)$ is continuous at $x=0$
B. $f(x)$ is discontinuous at $x=0$
C. $f(x)$ is continuous at $x=0$
D. $f(|x|)$ is discontinuous at $x=0$

Answer: B

- Watch Video Solution

318. Function $f(x)=\left\{\begin{array}{ll}x-1, & x<2 \\ 2 x-3, & x \geq 2\end{array}\right.$ is a continuous function
A. for $x=2$ only
B. for all real values of x
C. for all real values of x such that $x \neq 2$
D. for all integral values of x only

- Watch Video Solution

319. If $f(x)=\frac{x^{3}-8}{x^{2}+x-20}$, then
A. f is continuous on R
B. f is continuous on $R-(-5,4)$
C. f is continuous on $R-\{-5,4\}$
D. f is continuous on $\mathrm{R}-[-5,4]$

Answer: C

- Watch Video Solution

320. If $f(x)=\left\{\begin{array}{l}\frac{x^{2}-3 x+2}{x-3}, \text { for } 0 \leq x<4 \\ \frac{x^{2}-1}{x-2}, \text { for } 4 \leq x \leq 6\end{array}\right.$, then on [0, 6]
A. f is continuous except at $x=2$
B. f is continuous except at $x=3$
C. f is continuous except at $x=4$
D. f is continuous except at $x=3$ and $x=4$

Answer: D

- Watch Video Solution

321. If $f(x)$ is continuous at $x=1$, where $f(x)=\left\{\begin{array}{l}k+x, \text { for } x<1 \\ 4 x+3, \text { for } x \geq 1\end{array}\right.$, then $k=$
A. 7
B. 8
C. 6
D. -6

Answer: C

322. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left\{\begin{array}{l}x^{2}+1, \text { for } x \geq 0 \\ 2 \sqrt{x^{2}+1}+k, \text { for } x<0\end{array}\right.$, then $k=$
A. 3
B. -2
C. -1
D. 1

Answer: C

- Watch Video Solution

323. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left\{\begin{array}{l}k\left(x^{2}-2\right), \text { for } x \leq 0 \\ 4 x+1, \text { for } x>0\end{array}\right.$, then $k=$
A. $\frac{1}{2}$
B. $\frac{-1}{2}$
C. 2
D. -2

Answer: B

- Watch Video Solution

324. If $f(x)$ is continuous at $x=0$, where $f(x)=\left\{\begin{array}{l}x^{2}+\alpha, \text { for } x \geq 0 \\ 2 \sqrt{x^{2}+1}+\beta, \text { for } x<0\end{array}\right.$ and $f\left(\frac{1}{2}\right)=2$, then
A. $\alpha=\frac{-1}{4}, \beta=\frac{7}{4}$
B. $\alpha=\frac{-7}{4}, \beta=\frac{1}{4}$
C. $\alpha=\frac{1}{4}, \beta=\frac{-7}{4}$
D. $\alpha=\frac{7}{4}, \beta=\frac{-1}{4}$

Answer: D

- Watch Video Solution

325. If $f(x)$ is continuous at $x=3$, where

$$
f(x)=\left\{\begin{array}{l}
\frac{x^{2}-9}{x-3}+\alpha, \text { for } x>3 \\
5, \text { for } x=3 \\
2 x^{2}+3 x+\beta, \text { for } x<3
\end{array}\right. \text {, then }
$$

A. $\alpha=-1, \beta=22$
B. $\alpha=1, \beta=-22$
C. $\alpha=-1, \beta=-22$
D. $\alpha=1, \beta=22$

Answer: C

- Watch Video Solution

326. If $f(x)$ is continuous at $x=2$ and $x=10$, where $f(x)=\left\{\begin{array}{l}5, \text { if } x \leq 2 \\ a x+b, \text { if } 2<x<10 \\ 21, \text { if } x \geq 10\end{array}\right.$, then
A. $a=2, b=1$
B. $a=-2, b=-1$
C. $a=2, b=-1$
D. $a=-2, b=1$

Answer: A

- Watch Video Solution

327. If $f(x)$ is continuous at $x=1$, where $f(x)=\left\{\begin{array}{l}k x^{2}, \text { for } x \geq 1 \\ 4, \text { for } x<1\end{array}\right.$, then $k=$
A. 2
B. 4
C. -2
D. ± 2

Answer: B

328. If $f(x)$ is continuous on $[0,8]$, where
$f(x)=\left\{\begin{array}{l}x^{2}+a x+6, \text { for } 0 \leq x<2 \\ 3 x+2, \text { for } 2 \leq x \leq 4 \\ 2 a x+5 b, \text { for } 4<x \leq 8\end{array}\right.$,then
A. $a=-1, b=\frac{22}{5}$
B. $a=-1, b=\frac{-8}{5}$
C. $a=-1, b=\frac{-22}{5}$
D. $a=1, b=\frac{8}{5}$

Answer: A

- Watch Video Solution

329. If $f(x)$ is continuous in $[0,3]$, where $f(x)=\left\{\begin{array}{l}3 x-4, \text { for } 0 \leq x \leq 2 \\ 2 x+k, \text { for } 2<x \leq 3\end{array}\right.$, then $k=$
A. 6
B. -14
C. 2
D. -2

Answer: D

- Watch Video Solution

330. If $f(x)$ continuous on its domain, where
$f(x)=\left\{\begin{array}{l}6, \text { for } x \leq 2 \\ a x+b, \text { for } 2<x<10, \text { then } \\ 22, \text { for } x \geq 10\end{array}\right.$
A. $a=3, b=1$
B. $a=2, b=-1$
C. $a=3, b=-1$
D. $a=2, b=2$

Answer: D

331. If $f(x)$ is continuous on $0-4,2$], defined as
$f(x)=6 b-3 a x$, for $-4 \leq x<-2$
$=4 x+1$, for $-2 \leq x \leq 2$,
find the value of $a+b$.
A. $\frac{7}{6}$
B. $\frac{-7}{6}$
C. $\frac{9}{2}$
D. $\frac{-9}{2}$

Answer: B

Watch Video Solution

332. If $f(x)$ is continuous at $x=3$, where $f(x)=\begin{aligned} & a x+1, \text { for } x \leq 3 \\ & b x+3, \text { for } x>3\end{aligned}$, then
A. $a+b=\frac{2}{3}$
B. $a+b=\frac{-2}{3}$
C. $a-b=\frac{2}{3}$
D. $a-b=\frac{-2}{3}$

Answer: C

- Watch Video Solution

333. If $f(x)$ is continuous in [-2, 2], where $f(x)=\left\{\begin{array}{l}x+a, \text { for } x<0 \\ x, \text { for } 0 \leq x<1, \\ b-x, \text { for } x \geq 1\end{array}\right.$ then $a+b=$
A. 0
B. -2
C. ± 2
D. 2
334. If $f(x)= \begin{cases}\frac{\sqrt{1+k x}-\sqrt{1-k x}}{x} & , \quad \text { for }-1 \leq x<0 \\ 2 x^{2}+3 x-2 & , \quad \text { for } 0 \leq x \leq 1\end{cases}$
A. -1
B. -2
C. -3
D. -4

Answer: B

335. If the function $f: R \rightarrow R$ given by
$f(x)=\left\{\begin{array}{ll}x+a, & \text { if } x \leq 1 \\ 3-x^{2}, & \text { if } x>1\end{array}\right.$ is continuous at $\mathrm{x}=1$, then a is equal to
A. 2
B. 1
C. 4
D. 3

Answer: B

- Watch Video Solution

336. If $f(x)=\left\{\begin{array}{l}a x^{2}-b, \text { for } 0 \leq x<1 \\ 2, \text { for } x=1 \\ x+1, \text { for } 1<x \leq 2\end{array}\right.$ is continuous at $x=1$, then the most suitable values of a, b are
A. $a=2, b=-2$
B. $a=-1, b=-1$
C. $a=1, b=1$
D. $a=1, b=-1$

Answer: D

337. If the function and the derivative of the function $f(x)$ is everywhere continuous and is given by
$f(x)=\left\{\begin{array}{l}b x^{2}+a x+4, \text { for } x \geq-1 \\ a x^{2}+b, \text { for } x<-1\end{array}\right.$, then
A. $a=3, b=2$
B. $a=2, b=3$
C. $a=-2, b=-3$
D. $a=-3, b=-2$

Answer: B

- Watch Video Solution

338. If $f(x)$ is continuous at $x=2$, where $f(x)=\left\{\begin{array}{l}4 x-3, \text { for } x<2 \\ k x+7, \text { for } x>2\end{array}\right.$, then $k=$
A. -1
B. 1
C. -6
D. 6

Answer: A

- Watch Video Solution

339. If $f(x)$ is continuous at $x=0$, where
$f(x)=\left\{\begin{array}{l}\frac{1-\cos 4 x}{x^{2}}, \text { for } x<0 \\ k, \text { for } x=0 \\ \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}, \text { for } x>0\end{array}\right.$, then $k=$
A. 2
B. 0
C. 4
D. 8

Answer: D
340. If $f(x)$ is continuous at $x=0$, where $f(x)=\left\{\begin{array}{l}\frac{\sin 4 x}{5 x}+a, \text { for } x>0 \\ x+4-b, \text { for } x<0 \\ 1, \text { for } x=0\end{array}\right.$
A. $a=\frac{1}{5}, b=3$
B. $a=\frac{-1}{5}, b=-3$
C. $a=\frac{1}{5}, b=-3$
D. $a=\frac{-1}{5}, b=3$

Answer: A

- Watch Video Solution

341. If $f(x)=\frac{\sin \pi x}{x-1}+a$, for $x<1$
$=2 \pi, \quad$ for $\quad x=1$
$=\frac{1+\cos \pi x}{\pi}(1-x)^{2}+b, \quad$ for $x>1$
is continuous at $x=1$, find a and b
A. $a=\pi, b=\frac{3 \pi}{2}$
B. $a=3 \pi, b=\frac{3 \pi}{2}$
C. $a=\pi, b=\frac{5 \pi}{2}$
D. $a=3 \pi, b=\frac{5 \pi}{2}$

Answer: B

- Watch Video Solution

342. If $f(x)$ and $f^{\prime}(x)$ are continuous at $x=\frac{\pi}{6}$, where $f(x)=\left\{\begin{array}{l}\sin 2 x, \text { if } x<\frac{\pi}{6} \\ a x+b, \text { if } x>\frac{\pi}{6}\end{array}\right.$, then
A. $a=-2, b=\frac{\sqrt{3}}{2}+\frac{\pi}{3}$
B. $a=2, b=\frac{\sqrt{3}}{2}-\frac{\pi}{3}$
C. $a=-1, b=\frac{\sqrt{3}}{2}+\frac{\pi}{6}$
D. $a=1, b=\frac{\sqrt{3}}{2}-\frac{\pi}{6}$
343. If $f(x)$ is continuous at $x=0$, where $f(x)=\left\{\begin{array}{l}\frac{\sin (a+1) x+\sin x}{x}, \text { for } x<0 \\ c, \text { for } x=0 \\ \frac{\sqrt{x+b x^{2}}-\sqrt{x}}{b \sqrt{x}}, \text { for } x>0\end{array}\right.$, then
A. $a=-2, b=0, c=0$
B. $a=-2, b=R, c=0$
C. $a=-2, b \neq 0, c=0$
D. $a=-2, b=0, c \neq 0$
344. If $f(x)$ is continuous at $x=0$, where $f(x)=\left\{\begin{array}{l}\frac{\sin (a+1) x+\sin x}{x}, \text { for } x<0 \\ c, \text { for } x=0 \\ \frac{\sqrt{x+b x^{2}}-\sqrt{x}}{b \sqrt{x}}, \text { for } x>0\end{array}\right.$, then
A. $a=-2, b=R, c=0$
B. $a=-2, b \neq 0, c=0$
C. $a=\frac{-3}{2}, b=R, c=\frac{1}{2}$
D. $a=\frac{-3}{2}, b=R-\{0\}, c=\frac{1}{2}$

Answer: D

- Watch Video Solution

345. If $f(x)$ is continuous on $[-2,2]$, where $f(x)=\left\{\begin{array}{l}\frac{\sin a x}{x}+2, \text { for }-2 \leq x<0 \\ 3 x+5, \text { for } 0 \leq x \leq 1 \quad \\ \sqrt{x^{2}+8}-b, \text { for } 1<x<2\end{array}\right.$, then $a+b=$
B. 0
C. 2
D. -2

Answer: D

- Watch Video Solution

346. The values of a and b so that the function $f(x)= \begin{cases}x+a \sqrt{2} \sin x, & 0 \leq x<\pi / 4 \\ 2 x \cot x+b, & \pi / 4 \leq x \leq \pi / 2 \quad \text { is } \quad \text { continuous for } \\ a \cos 2 x-b \sin x, & \pi / 2<x \leq \pi\end{cases}$ $x \in[0, \pi]$, are
A. $a=\frac{-\pi}{6}, b=\frac{\pi}{12}$
B. $a=\frac{\pi}{6}, b=\frac{-\pi}{12}$
C. $a=\frac{-\pi}{6}, b=\frac{-\pi}{12}$
D. $a=\frac{\pi}{6}, b=\frac{\pi}{12}$

- Watch Video Solution

347. If $f(x)$ is continuous over $[-\pi, \pi]$, where $f(x)$ is defined as
$f(x)=\left\{\begin{array}{lll}-2 \sin x & , & -\pi \leq x \leq \frac{-\pi}{2} \\ \alpha \sin x+\beta & , & -\frac{\pi}{2}<x<\frac{\pi}{2} \\ \cos x & , & \frac{\pi}{2} \leq x<\pi\end{array}\right.$
then α and β equals
A. $\alpha=1, \beta=1$
B. $\alpha=-1, \beta=-1$
C. $\alpha=-1, \beta=1$
D. $\alpha=1, \beta=-1$

Answer: C

348. If $f(x)$ is continuous in $[-2, \quad 2]$, where $f(x)=\left\{\begin{array}{l}\frac{\sin a x}{x}-1, \text { for }-2 \leq x<0 \\ 2 x+1, \text { for } 0 \leq x \leq 1 \\ 2 b \sqrt{x^{2}+3}-1, \text { for } 1<x \leq 2\end{array}\right.$, then $a+b=$
A. 3
B. 1
C. 4
D. 2

Answer: C

Watch Video Solution
349. If $f(x)$ is continuous in $(-\infty, 6)$, where $f(x)=\left\{\begin{array}{l}1+\sin \left(\frac{\pi x}{2}\right), \text { for }-\infty<x \leq 1 \\ a x+b, \text { for } 1<x<3 \\ 6 \tan \left(\frac{\pi x}{12}\right), \text { for } 3 \leq x<6\end{array}\right.$,then
A. $a=2, b=0$
B. $a=0, b=2$
C. $a=1, b=1$
D. $a=2, b=1$

Answer: A

- Watch Video Solution

350. If $f(x)=\left\{\begin{array}{ll}a x+1, & x \leq \frac{\pi}{2} \\ \sin x+b, & x>\frac{\pi}{2}\end{array}\right.$ is continuous, then
A. $\frac{a \pi}{2}=b$
B. $\frac{b \pi}{2}=a_{a}$
C. $a=b=\frac{\pi}{2}$
D. $a=b=\frac{\pi}{2}+1$

Answer: A

351. If $f(x)=\left\{\begin{array}{l}\frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1}, \text { for } x \neq 0 \\ 1, \text { for } x=0\end{array}\right.$, then f is
A. continuous at $x=0$
B. discontinuous at $x=0$
C. continuous if $f(0)=-1$
D. discontinuous if $f(0)=-1$

Answer: B

Watch Video Solution

352. If $f(x)$ is continuous at $x=0$, where $f(x)\left\{\begin{array}{l}\frac{1}{1+e^{\frac{1}{x}}}, \text { for } x \neq 0 \\ k, \text { for } x \neq 0\end{array}\right.$, then $k=$
A. 1
B. 0
C. -1
D. does not exists

Answer: D

- Watch Video Solution

353. The function $f(x)=k(k \in R)$ at every $x \in R$ is
A. continuous on R^{+}
B. continuous on R
C. discontinuous on R^{+}
D. discontinuous on R

Answer: B

- Watch Video Solution

354. The composition of two continuous functions is a continuous function.
A. discontinuous
B. continuous
C. continuous for some real numbers
D. discontinuous for some real numbers

Answer: B

- Watch Video Solution

355. If $f(x)=\sin x$, then f is
A. discontinuous for all $x \in R$
B. continuous for all $x \in R^{+}$
C. continuous for all $x \in R^{-}$
D. continuous for all $x \in R$

- Watch Video Solution

356. If $f(x)=\sin x^{2}$, then f is
A. continuous for all $x \in R$
B. discontinuous for all $x \in R$
C. continuous for only $x \in R^{+}$
D. continuous for only $x \in R^{-}$

Answer: A

Watch Video Solution

357. If $f(x)=a^{x}, a>0$, then f is
A. continuous for all $x \in R^{+}$
B. continuous for all $x \in R^{-}$
C. continuous for all $x \in R$
D. discontinuous for all $x \in R$

Answer: C

- Watch Video Solution

358. The function $f(x)=\log _{c} x$, where $c>0, x>0$ is
A. continuous in $(-\infty, \infty)$
B. continuous in $(0, \infty)$
C. discontinuous in $(-\infty, \infty)$
D. discontinuous in $(0, \infty)$

Answer: B

359. The rational function $f(x)=\frac{g(x)}{h(x)}, h(x) \neq 0$ is
A. continuous
B. discontinuous for integer values only
C. continuous for integer values only
D. continuous for imaginary values only

Answer: A

- Watch Video Solution

360. The function $f(x)=|x|$ is
A. continuous on R
B. discontinuous on R
C. continuous on only R^{+}
D. discontinuous only R^{+}

D Watch Video Solution

361. The function $f(x)=|\cos x|$ is
A. continuous on R
B. discontinuous on R
C. continuous on only R^{+}
D. discontinuous only R^{+}

Answer: A

Watch Video Solution

362. If $f(x)=|x|$, then at $x=0$
A. discontinuous
B. continuous
C. $\lim _{x \rightarrow 0} f(x)=1$
D. $\lim _{x \rightarrow 0} f(x)=-1$

Answer: B

- Watch Video Solution

363. If $f(x)$ is continuous at $x=3$, where $f(x)=\left\{\begin{array}{l}|x-3|, \text { for } x \neq 3 \\ k, \text { for } x=3\end{array}\right.$, then $k=$
A. 1
B. 0
C. -1
D. does not exist

Answer: B

364. If $f(x)=[x]$, where x is the greatnest integer not greater than x , in $(-4,4)$, then $f(x)$ is
A. discontinuous at $x=0$, only in $(-4,4)$
B. continuous at $x=0$ only in ($-4,4$)
C. discontinuous at every integral point of ($-4,4$)
D. continuous at every integral point of $(-4,4)$

Answer: C

- Watch Video Solution

365. If $f(x)=|(1+x)| x| |$, then f is
A. discontinuous for all $x \in R$
B. continuous for all $x \in R$
C. continuous for all $x \in R^{+}$
D. continuous for all $x \in R^{-}$

Answer: B

- Watch Video Solution

366. If $f(x)=|x|+|x-1|$, then in $[-1,2]$
A. f is continuous except at $x=0$
B. f is continuous except at $x=1$
C. f is continuous
D. f is discontinuous

Answer: C

- Watch Video Solution

367. The function $f(x)=x+|x|$ is continuous for
A. only $x>0$
B. $x \in(-\infty, \infty)-\{0\}$
C. $x \in(-\infty, \infty)$
D. no values of x

Answer: C

D Watch Video Solution

368. The function $f(x)=|x| \forall x \in R$ is
A. continuous for all $x \in R^{-}$
B. continuous for all $x \in R^{+}$
C. continuous for all $x \in R$
D. discontinuous for all $x \in R$

Answer: C

369. If $f(x)=2 x-|x|$, then at $x=0$
A. f is continuous
B. f is discontinuous
C. $\lim _{x \rightarrow 0^{-}} f(x)=3$
D. $\lim _{x \rightarrow 0^{+}} f(x)=1$

Answer: A

- Watch Video Solution

370. If $f(x)=\left\{\begin{array}{l}\frac{x}{|x|}, \text { for } x \neq 0 \\ c, \text { for } x=0\end{array}\right.$, then f is
A. continuous at $x=0$
B. discontinuous at $x=0$
C. continuous if $f(0)=1$
D. continuous if $f(0)=-1$

Answer: B

- Watch Video Solution

371. If $f(x)=\left\{\begin{array}{l}\frac{|x|}{x}, \text { for } x \neq 0 \\ 1, \text { for } x=0\end{array}\right.$, then
A. $\lim _{x \rightarrow 1^{-}} f(x)=1$
B. $\lim _{x \rightarrow 1^{+}} f(x)=-1$ $x \rightarrow 1^{+}$
C. f is discontinuous at origin
D. f is continuous at origin

Answer: C

372. If $f: R \rightarrow R$ is defined by (where [.] is g.i.f) $f(x)[x-3]+|x-4|$ for $x \in R$ then $\lim _{x \rightarrow 3^{-}} f(x)=$
A. 0
B. -1
C. -2
D. 1

Answer: A

- Watch Video Solution

373. If $f(x)=\left\{\begin{array}{l}\frac{\cot x-\cos x}{(\pi-2 x)^{3}}, \text { for } x \neq \frac{\pi}{2} \\ k, \text { for } x=\frac{\pi}{2}\end{array}\right.$ is continuous at $x=\frac{\pi}{2}$, where, then $k=$
A. $\frac{1}{4}$
B. $\frac{1}{24}$
C. $\frac{1}{16}$
D. $\frac{1}{8}$

Answer: C

- Watch Video Solution

374. If $f(x)=\log \left(\sec ^{2} x\right)^{\cot 2}$ for $x \neq 0$ for $\mathrm{x}=0$ is continuous at $\mathrm{x}=0$, then K is
A. e^{-1}
B. 1
C.e
D. 0

Answer: B

