

MATHS

BOOKS - NIKITA MATHS (HINGLISH)

Differential Equation

Multiple Choice Question

1.
$$x+rac{dy}{dx}=\sqrt{1+\left(rac{dy}{dx}
ight)^2}$$

A. 1 and 2

B. 1 and 1

C. 1 and $\frac{1}{2}$

D. 2 and 1

Answer: B

2. Order and degree of the differential equation
$$y \frac{dy}{dx} = \frac{x}{\frac{dy}{dx} + \left(\frac{dy}{dx}\right)^3}$$

respectively are

Answer: D

Watch Video Solution

3. Order and degree of the differential equation $\dfrac{dy}{dx}=\dfrac{2\sin x+3}{\dfrac{dy}{dx}}$ respectively are

C. 2 and 1

B. 1 and 2

D. 2 and 2

Answer: B

Watch Video Solution

4. Degree and order of the differential equation $\dfrac{d^2y}{dx^2}=\left(\dfrac{dy}{dx}\right)^2$ are

respectively

- A. 2 and 2
- B. 1 and 1
- D. 1 and 1

C. 2 and 1

Answer: C

5. Order and degree of the differential equation $rac{d^2x}{dt^2}+\left(rac{dx}{dt} ight)^2+7=0$ respectively are

- A. 2 and 2
- B. 1 and 1
- C. 2 and 1
- D. 1 and 2

Answer: C

Watch Video Solution

6. Order and degree of the differential equation

$$egin{array}{c|ccc} x^3 & y^2 & 3 \ 2x^2 & 3yrac{dy}{dx} & 0 \ 5x & 2igg(yrac{d^2y}{dx^2}+igg(rac{dy}{dx}igg)^2igg) & 0 \end{array} = 0$$
 respectively are

- A. 1 and 1
- B. 1 and 2
 - C. 2 and 2
 - D. 2 and 1

Answer: D

7.

Watch Video Solution

Order and degree of the differential equation

- $rac{d^2y}{dx^2} + xrac{dy}{dx} + y = 2\sin x$ respectively are A. 1 and 2

 - B. 1 and 1
 - C. 2 and 1
 - D. 2 and 2

Answer: C

$$\left(rac{d^2y}{dx^2}
ight)^2+\left(rac{dy}{dx}
ight)^3=e^x$$
 respectively are

- A. 2 and 1
- B. 2 and 2
- C. 1 and 3
 - D. 2 and 3

Answer: B

Watch Video Solution

9. Order and degree of the differential equation $\dfrac{d^2y}{dx^2}=\sqrt{1+\left(\dfrac{dy}{dx}\right)^3}$ respectively are

A. 2 and 2

C. 1 and 3

B. 2 and 1

D. 2 and 3

Answer: A

Watch Video Solution

10. Order and degree of the differential equation $\dfrac{d^2y}{dx^2}=\sqrt[3]{1+\left(\dfrac{dy}{dx}
ight)^3}$

respectively are

A. 2 and 2

B. 2 and 1

C. 2 and $\frac{1}{2}$

D. 2 and 3

Answer: D

$$rac{d^2y}{dx^2}=\sqrt[3]{1-\left(rac{dy}{dx}
ight)^4}$$
 are respectively

- A. 1 and 4
- B. 2 and 1
- C. 2 and 3
- D. 2 and 4

Answer: C

Watch Video Solution

12. Select and write the correct answer from the given alternatives in each of the following sub-questions :

$$\left[1+\left(rac{dy}{dx}
ight)^3
ight]^{7/3}=7igg(rac{d^2y}{dx^2}igg)$$
 are respectively.

- A. 3 and 2 B. 2 and 2
 - C. 1 and 1
 - D. 3 and 1

Answer: A

Answer: B

A. 3 and 7

B. 3 and 2

C. 7 and 3

D. 2 and 3

Watch Video Solution

13. Order and degree of the differential equation

 $\left(y^{\,\prime\,\prime\,\prime}
ight)^2+2\left(y^{\,\prime\,\prime\,\prime}
ight)^2+3y^{\,\prime}4y=0$ respectively are

14. The order and degree of the differential equation

$$ho=rac{\left\{1+\left(rac{dy}{dx}
ight)^2
ight\}^{3/2}}{rac{d^2y}{dx^2}}$$
 are respectively

- A. 2 and 2
- B. 2 and 3
- C. 2 and 1
- D. 1 and 4

Answer: A

Watch Video Solution

15. Order and degree of the differential equation

$$\sqrt{1+rac{1}{\left(rac{dy}{dx}
ight)^2}}=\left(rac{d^2y}{dx^2}
ight)^{rac{3}{2}}$$
 respectively are

B. 2 and 3

C. 1 and
$$\frac{1}{2}$$

D. 2 and
$$\frac{3}{2}$$

Answer: B

Watch Video Solution

 $rac{d^2y}{dx^2}+rac{dy}{dx}+x=\sqrt{1+rac{d^3y}{dx^3}}$ respectively are

A. 3 and 1

B. 3 and 2

C. 3 and 4

D. 3 and $\frac{1}{2}$

Answer: A

17. Order and degree of the differential equation
$$\frac{d^3y}{dx^3}=5\sqrt{1-\left(\frac{dy}{dx}\right)^2}$$
 respectively are

Answer: D

Watch Video Solution

18. Order and degree of the differential equation $\left(\frac{d^3y}{dx^3}+x\right)^{\frac{5}{2}}=\frac{d^2y}{dx^2}$ respectively are

- A. 3 and 5
- B. 2 and 2
- C. 2 and 1
 - D. 3 and 2

Answer: A

Watch Video Solution

19. Order and degree of the differential equation $\left(rac{d^3y}{dx^3}
ight)^{rac{1}{6}}\!\left(rac{dy}{dx}
ight)^{rac{1}{3}}=5$

- respectively are
 - A. 3 and $\frac{1}{6}$
 - B. 1 and $\frac{1}{3}$
 - C. 1 and 3
 - D. 3 and 1
- Answer: D

21. Order and degree of the differential equation

$$\left(rac{d^2y}{dx^2}
ight)^5+rac{4{\left(rac{d^2y}{dx^2}
ight)}^3}{rac{d^3y}{dx^3}}+rac{d^3y}{dx^3}=x^2-1$$
 respectively are

B. 3 and 1

C. 3 and 5

D. 3 and 3

Answer: A

Watch Video Solution

 $rac{d^4y}{dx^4} = \left(1+\left(rac{dy}{dx}
ight)^2
ight)^3$ respectively are

- A. 4 and 6
- B. 1 and 6
- C. 4 and 3
- D. 4 and 1

Answer: D

Watch Video Solution

22. Which of the following differential equation has the same order and degree?

A.
$$\frac{d^4y}{dx^4} + 8\left(\frac{dy}{dx}\right)^6 + 5y = e^x$$

B.
$$5{\left(rac{d^3y}{dx^3}
ight)}^4+8{\left(1+rac{dy}{dx}
ight)}^2+5y=x^8$$

C.
$$\left(1+\left(rac{dy}{dx}
ight)^3
ight)^{rac{2}{3}}=4rac{d^3y}{dx^3}$$

D.
$$y=x^2rac{dy}{dx}+\sqrt{1+\left(rac{dy}{dx}
ight)^2}$$

Answer: C

23. The order and degree of the differential equation
$$\frac{d^2y}{dx^2} + \cos\left(\frac{dy}{dx}\right) = 0 \text{ respectively are}$$

A. both degree and other can not be defined

B. order =2, degree can not be defined

C. 2 and 1

D. degree =2, order can not be defined

Answer: B

Watch Video Solution

24. The order and degree of the differential equation $e^{rac{dy}{dx}}+rac{dy}{dx}=x$ respectively are

A. 1 and 1

B. both order and degree can not be defined

C. order =1, degree can not be defined

D. degree =1, order can not be defined

Answer: C

Watch Video Solution

25. The order of the differential equation whose solution is $ae^x + be^{2x} + ce^{3x} + d = 0$ is

A. 4

B. 2

C. 3

D. 1

Answer: A

26. The order of the differential equation whose solution is $x^2 + y^2 + 2gx + 2fy + c = 0$ is

A. 1

B. 2

C. 3

D. 4

Answer: C

Watch Video Solution

27. The differentiala equation representing the family of curves $y^2=2kig(x+\sqrt{k}ig)$ where k is a positive parameter, is of

A. order=1,degree=2

B. order 2, degree=2

D. order2,degree=1
Answer: C
Watch Video Solution
28. The differential equation of all circles in the first quadrant which
touch the coordiante axes is of order
A. 1
B. 2
C. 3
D. 4
Answer: A
Watch Video Solution

C. order=1,degree=3

29. Find the differential equation of all parabolas whose axis are parallel
to the x-axis.
A. 3
B. 1
C. 4
D. 2
Answer: A
Watch Video Solution
30. The order of the differential equation of the family of parabolas whose axis is the X-axis is
A. 2 and 1
A. 2 and 1 B. 1 and 2

Answer: B

Watch Video Solution

31. If radium decoposes at a rate proportional to the amount Q present, then the differential equation is

A.
$$\dfrac{dQ}{dt}=kQ, k>0$$

$$B. \frac{dQ}{dt} = -kQ, k > 0$$

$$\operatorname{C.} \frac{dQ}{dt} = Q$$

$$D. \frac{dQ}{dt} = -Q$$

Answer: B

32. The rate of decay of the mass of a radioactive substance at any time is k times its mass at that time. The differential equation satisfied by the mass of the substance is

A.
$$\dfrac{dm}{dt}+K=0, K>0$$

B.
$$\frac{dm}{dt}-K=0, K>0$$

C.
$$rac{dm}{dt}+Km=0, K>0$$

D.
$$\dfrac{dm}{dt}-Km=0, K>0$$

Answer: C

33. A particle is moving along X-axis Its acceleration at time t is proportional to its velocity at that time. The differential equation of the motion of the particle is

A.
$$\dfrac{d^2x}{dt^2}-k\dfrac{dx}{dt}=0, k>0$$

B. $rac{d^2x}{dt^2}+krac{dx}{dt}=0, k>0$

C.
$$\displaystyle rac{d^2x}{dt^2}-k=0, k>0$$

D.
$$rac{d^2x}{dt^2}+k=0, k>0$$

Answer: A

34. The differntial equation of all straight line passing through origin is

A.
$$y=\sqrt{xrac{dy}{dx}}$$

B.
$$\frac{dy}{dx} = y + x$$

C.
$$\frac{dy}{dx} = \frac{y}{x}$$

D.
$$\frac{dy}{dx} = \frac{x}{y}$$

Answer: C

35. The differential equation of all lines parallel to the line 3x+2y+5=0 is

A.
$$3rac{dy}{dx}+2=0$$

$$\operatorname{B.}3\frac{dy}{dx}-2=0$$

$$\operatorname{C.}2\frac{dy}{dx}+3=0$$

D.
$$2rac{dy}{dx}-3=0$$

Answer: C

Watch Video Solution

36. The differential equation of the family of lines where length of the normal form origin is p and the inclination of the normal is α , is

A.
$$rac{d^2y}{dx^2}=\cotlpha$$

$$B. \frac{d^2y}{dx^2} = 0$$

C.
$$\dfrac{dy}{dx}=\cot lpha$$

D.
$$rac{dy}{dx} = -\cotlpha$$

Answer: B

Watch Video Solution

37. The differential equation of all non-vertical lines in a plane, is

A.
$$\frac{dy}{dx} = 0$$

B.
$$\frac{dy}{dx} = x$$

C.
$$rac{d^2y}{dx^2}=0$$

D.
$$rac{d^2y}{dx^2}=x$$

Answer: C

Watch Video Solution

38. The differential equation of all non-horizontal lines in a plane is (a)

$$(b)(c)(d)\frac{(e)(f)d^{(g)\,2\,(h)}\,(i)y}{j}\Big((k)d(l)x^{\,(m)\,2\,(n)}\,(o)\Big)(p)(q)(r) \quad \text{(s)} \quad \text{(b)}$$

$$(t)(u)(v)\frac{(w)(x)d^{\,(y)\,2\,(z)}\,(aa)x}{bb}\Big((cc)d(dd)y^{\,(ee)\,2\,(ff)}\,(gg)\Big)(hh)(ii) = 0(jj)$$

Answer: A

(kk)

A. $\frac{d^2x}{du^2}=0$

B. $rac{d^2y}{dx^2}=0$

 $\operatorname{C.}\frac{dx}{dy} = 0$

D. $\frac{dy}{dx} = 0$

Watch Video Solution

(c) $(d)(e)(f)\frac{(g)dy}{h}((i)dx)(j)(k) = 0(l)$

39. If the slope of the tangent is equal to the square of tha abscissa of

 $(n)(o)(p)rac{(q)dx}{r}((s)dy)(t)(u)=0(v)$ (w)

(m)

(d)

the point on the curve, then the differential equation is

A. $\frac{dy}{dx} = kx^2$

C. $\frac{dx}{dy} = kx^2$

B. $\frac{dy}{dx} = x^2$

D.
$$rac{dx}{dy}=x^2$$

Answer: B

Watch Video Solution

40. The differential equation of all lines having x-intercept a and y-intercept b is

A.
$$\dfrac{dy}{dx}=0$$

$$\operatorname{B.}\frac{dy}{dx} = \frac{b}{a}$$

C.
$$rac{d^2y}{dx^2}=0$$

D.
$$arac{d^2y}{dx^2}=b$$

Answer: C

41. The differential equation of all straight lines passing through the point (1,-1) is

A.
$$y=(x+1)\frac{dy}{dx}+1$$

$$\mathsf{B.}\, y = (x+1)\frac{dy}{dx} - 1$$

C.
$$y=(x-1)rac{dy}{dx}+1$$

D.
$$y = (x - 1) \frac{dy}{dx} - 1$$

Answer: D

42. Find the differential equation of all straight lines, which are at a unit distance from origin.

A.
$$\left(y-xrac{dy}{dx}
ight)^2=1-\left(rac{dy}{dx}
ight)^2$$

B. $\left(y+xrac{dy}{dx}
ight)^2=1+\left(rac{dy}{dx}
ight)^2$

C.
$$\left(y-xrac{dy}{dx}
ight)^2=1+\left(rac{dy}{dx}
ight)^2$$

D.
$$\left(y+xrac{dy}{dx}
ight)^2=1-\left(rac{dy}{dx}
ight)^2$$

Answer: C

Watch Video Solution

43. The differential equation of the family of fixed radii r with centers on the X-axis is

A.
$$y rac{dy}{dx} + y = r$$

B.
$$yrac{dy}{dx}-y=r$$
C. $y^2igg(rac{dy}{dx}igg)^2+y^2=r^2$

D.
$$y^2 {\left(rac{dy}{dx}
ight)}^2 - y^2 = r^2$$

Answer: C

44. Find the differential equation of the family of circles whose centres lie on X-axis.

A.
$$\left(\frac{dy}{dx}\right)^2+y\frac{d^2y}{dx^2}-1$$
 =0 B. $\left(\frac{dy}{dx}\right)^2-y\frac{d^2y}{dx^2}+1=0$

C.
$$\left(rac{dy}{dx}
ight)^2 - yrac{d^2y}{dx^2} - 1 = 0$$

D.
$$\left(rac{dy}{dx}
ight)^2 - yrac{d^2y}{dx^2} - 1 = 0$$

Answer: D

45. Form the differential equation of the family of circles touching the x-axis at origin.

A.
$$\left(x^2-y^2
ight)rac{dy}{dx}+2xy=0$$

B.
$$\left(x^2-y^2\right)rac{dy}{dx}-2xy=0$$

C.
$$\left(x^2-y^2
ight)rac{dy}{dx}+xy=0$$

D.
$$\left(x^2-y^2\right)\frac{dy}{dx}-xy=0$$

Answer: B

Watch Video Solution

46. The differential equation of all circles whose radius is 5 centre is any point (h,k) is

A.
$$25igg(rac{d^2y}{dx^2}igg)+igg(1+igg(rac{dy}{dx}igg)^2igg)^2=0$$

B.
$$25 \left(rac{d^2 y}{dx^2}
ight) - \left(1 + \left(rac{dy}{dx}
ight)^2
ight)^2 = 0$$

C.
$$25 \left(\frac{d^2y}{dx^2} \right) + \left(1 + \left(\frac{dy}{dx} \right)^2 \right)^3 = 0$$

D.
$$25igg(rac{d^2y}{dx^2}igg)-igg(1+igg(rac{dy}{dx}igg)^2igg)^3=0$$

Answer: D

47. The differential equation for all circles with centre (h,0) and radius r,h and r being arbitary constants is

A.
$$y^2-2xy\frac{dy}{dx}-x^2=0$$

$$\operatorname{B.} y^2 - 2xy\frac{dy}{dx} + x^2 = 0$$

C.
$$y^2+2xyrac{dy}{dx}-x^2=0$$

D.
$$y^2 + 2xy\frac{dy}{dx} + x^2 = 0$$

Answer: A

48. the family of circles having their centres on the line y=10 and touching the X-axis.

A.
$$y rac{d^2y}{dx^2} + \left(rac{dy}{dx}
ight)^2 + 1 = 0$$

B.
$$yrac{d^2y}{dx^2}-\left(rac{dy}{dx}
ight)^2+1=0$$

C.
$$yrac{d^2y}{dx^2}+\left(rac{dy}{dx}
ight)^2-1=0$$

D.
$$yrac{d^2y}{dx^2}-\left(rac{dy}{dx}
ight)^2-1=0$$

Answer: A

Watch Video Solution

49. The differential equation of the family of circles with fixed radius 5 units and centre on the line y=2 is

A.
$$\left(y-10
ight)^2 \left(rac{dy}{dx}
ight)^2 + y^2 + 20y = 0$$

B.
$$(y-10)^2igg(rac{dy}{dx}igg)^2-y^2+20y=0$$
C. $(y-10)^2igg(rac{dy}{dx}igg)^2+y^2-20y=0$

D.
$$(y-10)^2 \left(rac{dy}{dx}
ight)^2 - y^2 - 20y = 0$$

Answer: C

50. Obtain the differential equation of the family of circles passing through the point (a,0) and (-a,0).

A.
$$(y-2)igg(rac{dy}{dx}igg)^2=25+ig(y^2-2ig)^2$$
B. $(y-2)^2igg(rac{dy}{dx}igg)^2=25-ig(y^2-2ig)^2$

C.
$$(y-2)^2 \left(rac{dy}{dx}
ight)^2 = 25 + \left(y^2-2
ight)^2$$

D.
$$(y-2) \left(rac{dy}{dx}
ight)^2 = 25 - \left(y^2-2
ight)^2$$

Answer: B

51. The differential equation of all circles which passes through the origin and whose centers lie on Y-axis is

A.
$$\left(y^2-x^2
ight)rac{dy}{dx}+2xy+a^2=0$$

$$\mathtt{B.}\, y^2 \frac{dy}{dx} + xy + a^2 x^2 = 0$$

C.
$$\left(y^2-x^2+a^2
ight)rac{dy}{dx}+2xy=0$$

D.
$$(y^2 + x^2) \frac{dy}{dx} - 2xy + a^2 = 0$$

Answer: C

Watch Video Solution

52. The differential equation of all circles which passes through the origin and whose centers lie on Y-axis is

A.
$$\left(x^2-y^2
ight)rac{dy}{dx}-2xy=0$$

B.
$$\left(x^2-y^2
ight)rac{dy}{dx}+2xy=0$$

C.
$$\left(x^2-y^2\right)rac{dy}{dx}-2xy=0$$

D.
$$\left(x^2-y^2
ight)rac{dy}{dx}+2xy=0$$

Answer: A

53. The differential equation of all circles which passes through the origin and whose centers lie on Y-axis is

A.
$$x \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 + \frac{dy}{dx} = 0$$

B. $x \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 - \frac{dy}{dx} = 0$

C. $x \frac{d^2y}{dx^2} - \left(\frac{dy}{dx}\right)^3 + \frac{dy}{dx} = 0$

D. $x \frac{d^2y}{dx^2} - \left(\frac{dy}{dx}\right)^3 - \frac{dy}{dx} = 0$

Answer: D

54. Form the differential equation of the family of circles touching the y-axis at origin.

A.
$$\left(x^2+y^2
ight)rac{dy}{dx}-2xy=0$$

B.
$$\left(x^2+y^2\right)rac{dy}{dx}-2xy=0$$

C.
$$\left(x^2-y^2\right)rac{dy}{dx}-2xy=0$$

D.
$$\left(x^2+y^2\right)\frac{dy}{dx}+2xy=0$$

Answer: B

Watch Video Solution

55. Form the differential equation representing the parabolas having vertex at the origin and axis along positive direction of x-axis.

A.
$$xrac{dy}{dx}+2y=0$$

$$\operatorname{B.} x \frac{dy}{dx} - 2y = 0$$

$$\operatorname{C.}x\frac{dy}{dx}+2y=0$$

D.
$$x \frac{dy}{dx} - 2y = 0$$

Answer: B

56. Fid the differential equation of all the parabolas with latus rectum

 $^{\prime}4a^{\prime}$ and whose axes are parallel to x-axis.

A.
$$2rac{d^2y}{dx^2}+\left(rac{dy}{dx}
ight)^3=0$$

B.
$$2rac{d^2y}{dx^2}-\left(rac{dy}{dx}
ight)^3=0$$

C.
$$2arac{d^2y}{dx^2}+\left(rac{dy}{dx}
ight)^3=0$$

D.
$$2arac{d^2y}{dx^2}-\left(rac{dy}{dx}
ight)^3=0$$

Answer: C

57. Show that the differential equation of all parabolas $y^2=4a(x-b)$ is given by

A.
$$y rac{d^2y}{dx^2} + rac{dy}{dx} = 1$$

B.
$$y rac{d^2y}{dx^2} + rac{dy}{dx} = 0$$

C.
$$yrac{d^2y}{dx^2}+\left(rac{dy}{dx}
ight)^2=0$$

Answer: C

Watch Video Solution

D. $y \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 1$

is

(a)

the y-axis is (a)
$$(b)(c)(d)rac{(e)(f)d^{(g)\,3\,(h)}\,(i)y}{j}\Big((k)d(l)x^{\,(m)\,3\,(n)}\,(o)\Big)(p)(q)=0(r)$$
 (s) (b)

$$(b)(c)(d)rac{(e)(f)u^{(d)}+(f)g}{j}\Big((k)d(l)x^{(m)\,3\,(n)}(o)\Big)(p)(q)=0(r) ext{ (s) (b)} \ (t)(u)(v)rac{(w)(x)d^{\,(y)\,2\,(z)}(aa)x}{bb}\Big((cc)d(dd)y^{\,(ee)\,2\,(ff)}(gg)\Big)(hh)(ii)=C(jg)$$

A.
$$\dfrac{d^3y}{dx^3}$$

$$rac{dx^3}{dx^2} = 0$$

C.
$$rac{d^3y}{dx^3}+rac{d^2x}{dy^2}=0$$

D. $rac{d^2y}{dx^2}+2rac{dy}{dx}=0$

Answer: A

A. $\frac{d^3y}{dx^3}=0$

59. Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.

A.
$$x \frac{dy}{dx} + y = 0$$

$$B. x \frac{dy}{dx} - y = 0$$

$$\mathsf{C.}\,x\frac{dy}{dx} + 2y = 0$$

$$D. x \frac{dy}{dx} - 2y = 0$$

Answer: D

Watch Video Solution

60. The differential equation of all parabolas whose axis are parallel to the v-axis is (a)

$$(b)(c)(d)rac{(e)(f)d^{\,(g)\,3\,(\,h\,)}\,(i)y}{i}\Big((k)d(l)x^{\,(\,m\,)\,3\,(\,n\,)}\,(o)\Big)(p)(q)=0(r)$$
 (s) (b)

 $(t)(u)(v)rac{(w)(x)d^{\,(\,y\,)\,2\,(\,z\,)}\,(aa)x}{hh}\Big((cc)d(dd)y^{\,(\,ee\,)\,2\,(\,ff\,)}\,(gg)\Big)(hh)(ii)=C(jg)$

(kk) (c) [Math Processing Error] (ii) (d) [Math Processing Error] (ggg)

Watch Video Solution

Answer: A

curve?

A. $xrac{d^2y}{dx^2}-rac{dy}{dx}=0$

 $\mathrm{B.}\,x\frac{d^2y}{dx^2}+\frac{dy}{dx}=0$

 $\operatorname{C.} x \frac{d^2 y}{dx^2} - y = 0$

 $\operatorname{D.} x \frac{d^2y}{dx^2} - \frac{dy}{dx} = 0$

A. A straight line

B. A cirle

----**6**----

C. A parabola whose axis is parallel to Y-axis

61. The differential equation $\dfrac{d^2y}{dx^2}=2$ represents which of the following

D. A parallel to X-axis

Answer: C

Watch Video Solution

62. The differential equation for all ellips whose major axis is twice its minor axis is

A.
$$2y\frac{dy}{dx} - x = 0$$

$$B. 2y \frac{dy}{dx} + x = 0$$

$$\mathsf{C.}\,4y\frac{dy}{dx}-x=0$$

$$D. 4y \frac{dy}{dx} + x = 0$$

Answer: D

63. The equation of the ellips is $\frac{x^2}{36}+\frac{y^2}{16}=k$. The differential equation of the ellips whose length of major and minor axes half the lenghts of the given ellipse respectively, is

A.
$$2x+3yrac{dy}{dx}=0$$

$$\mathsf{B.}\,2x - 3y\frac{dy}{dx} = 0$$

D.
$$4x - 9y \frac{dy}{dx} = 0$$

 $\mathsf{C.}\,4x + 9y\frac{dy}{dx} = 0$

Answer: C

64. The differential equation satisfied
$$\sqrt{1-x^2}+\sqrt{1-y^2}=a(x-y), a$$
 is arbitary constant

bν

A.
$$\dfrac{dy}{dx}=\sqrt{\dfrac{1-y^2}{1-x^2}}$$

B.
$$rac{dy}{dx}=\ -\sqrt{rac{1-y^2}{1-x^2}}$$

D.
$$\dfrac{dy}{dx}= -\sqrt{\dfrac{1-x^2}{1-y^2}}$$

C. $\dfrac{dy}{dx}=\sqrt{\dfrac{1-x^2}{1-y^2}}$

Watch Video Solution

65. Consider the equation
$$\frac{x^2}{a^2+\lambda}+\frac{y^2}{b^2+\lambda}=1$$
, where a and b are specified constants and λ is an arbitrary parameter. Find a differential equation satisfied by it.

A.
$$rac{dy}{dx}=\sqrt{rac{1-y^2}{1-x^2}}$$
B. $rac{dy}{dx}=-\sqrt{rac{1-y^2}{1-x^2}}$

B.
$$rac{dy}{dx}=-\sqrt{rac{1-y^2}{1-x^2}}$$
C. $rac{dy}{dx}=\sqrt{rac{1-x^2}{1-y^2}}$

D.
$$\displaystyle rac{dy}{dx} = \ - \sqrt{rac{1-x^2}{1-y^2}}$$

Answer: C

Water video Solution

66. The differential equation for $x^3+y^3=4ax$ is

A.
$$3xy^2 \frac{dy}{dx} + 2x^3 + y^3 = 0$$

B.
$$3xy^2 \frac{dy}{dx} + 2x^3 - y^3 = 0$$

C.
$$3xy^2 \frac{dy}{dx} - 2x^3 + y^3 = 0$$

D.
$$3xy^2 \frac{dy}{dx} - 2x^3 - y^3 = 0$$

Answer: B

Watch Video Solution

67. Form of the differential equation of all family of lines $y=mx+\frac{4}{m}$ by eliminating the arbitrary constant m is

A.
$$yrac{dy}{dx}+xigg(rac{dy}{dx}igg)^2+4=0$$

B.
$$y \frac{dy}{dx} - x \left(\frac{dy}{dx}\right)^2 - 4 = 0$$

C.
$$yrac{dy}{dx}+xigg(rac{dy}{dx}igg)^2-4=0$$
D. $yrac{dy}{dx}-xigg(rac{dy}{dx}igg)^2+4=0$

Answer: B

Watch Video Solution

68. The differential equation for $y^2 = \left(x + A\right)^3$ is

A.
$$8 \left(rac{dy}{dx}
ight)^3 + 18 y = 0$$

B.
$$8 \left(rac{dy}{dx}
ight)^3 - 18y = 0$$

C.
$$8 \left(rac{dy}{dx}
ight)^3 + 27 y = 0$$

D.
$$8{\left(rac{dy}{dx}
ight)}^3-27y=0$$

Answer: D

69. The differential equation of $y=c^2+rac{c}{x}$ is

A.
$$x^4 \left(rac{dy}{dx}
ight)^2 - x rac{dy}{dx} = y$$

B.
$$x^4 {\left(rac{dy}{dx}
ight)}^2 + xrac{dy}{dx} + y = 0$$

C.
$$x^3 igg(rac{dy}{dx}igg)^2 + xrac{dy}{dx} = y$$

D.
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$$

Answer: A

Watch Video Solution

70. The differential equation, which represents the family of plane curves

$$y = e^{cx}$$

A.
$$x rac{dy}{dx} + y \log y = 0$$

$$B. x \frac{dy}{dx} - y \log y = 0$$

$$\mathsf{C.}\,\frac{dy}{dx} + y\log y = 0$$

D.
$$\frac{dy}{dx} - y \log y = 0$$

Answer: B

Watch Video Solution

71. The differential eqution for $\dfrac{x}{a}+\dfrac{y}{b}=1$ is

A.
$$\dfrac{dy}{dx}=0$$

B.
$$rac{d^2y}{dx^2}=0$$

C.
$$rac{d^2y}{dx^2}+rac{dy}{dx}=0$$

D.
$$rac{d^2y}{dx^2}-rac{dy}{dx}=0$$

Answer: B

72. From the differential equation by eliminating A and B in

$$Ax^2 + By^2 = 1$$

A.
$$xyrac{d^2y}{dx^2}+\left(rac{dy}{dx}
ight)^2+yrac{dy}{dx}=0$$
B. $xyrac{d^2y}{dx^2}+\left(rac{dy}{dx}
ight)^2-yrac{dy}{dx}=0$

C.
$$xyrac{d^2y}{dx^2}-\left(rac{dy}{dx}
ight)^2+yrac{dy}{dx}=0$$

D.
$$xyrac{d^2y}{dx^2}+\left(rac{dy}{dx}
ight)^2-yrac{dy}{dx}=0$$

Answer: B

73. The differential equation obtained by eliminating a and b from $y=ae^{bx}$ is

A.
$$y \frac{d^2y}{dx^2} - \left(\frac{dy}{dx}\right)^2 = 0$$

B.
$$yrac{d^2y}{dx^2}+\left(rac{dy}{dx}
ight)^2=0$$

C.
$$rac{d^2y}{dx^2}-\left(rac{dy}{dx}
ight)^2=0$$

D.
$$rac{d^2y}{dx^2}+\left(rac{dy}{dx}
ight)^2=0$$

Answer: A

Watch Video Solution

74. The differential equation of the family of curves $y=c_1e^x+c_2e^{-x}$ is

A.
$$rac{d^2y}{dx^2}+y=0$$

B.
$$rac{d^2y}{dx^2}-y=0$$

$$rac{dx^2}{dx^2}$$
 C. $rac{d^2y}{dx^2}+1=0$

$$\mathsf{D.}\,\frac{d^2y}{dx^2}-1=0$$

Answer: B

A.
$$rac{d^2y}{dx^2}+2rac{dy}{dx}+y=0$$
B. $rac{d^2y}{dx^2}+2rac{dy}{dx}-y=0$

A. $\frac{d^2y}{dx^2} - 9y = 0$

 $B. \frac{d^2y}{dx^2} - 3y = 0$

 $\operatorname{C.}\frac{d^2y}{dx^2}+9y=0$

D. $\dfrac{d^2y}{dx^2}+3y=0$

Watch Video Solution

Answer: A

B.
$$rac{dy}{dx^2}+2rac{dy}{dx}-y=0$$
C. $rac{d^2y}{dx^2}-2rac{dy}{dx}+y=0$

76. The differential equation for $y=e^x(a+bx)$ is

D.
$$rac{d^2y}{dx^2}-2rac{dy}{dx}-y=0$$

Answer: C

77. The differential equation for $y = ae^x + be^{-2x}$ is

A.
$$rac{d^2y}{dx^2}+rac{dy}{dx}-2y=0$$

B.
$$rac{d^2y}{dx^2}-rac{dy}{dx}-2y=0$$

C.
$$rac{d^2y}{dx^2}+rac{dy}{dx}-2y=0$$

D.
$$rac{d^2y}{dx^2}-rac{dy}{dx}+2y=0$$

Answer: C

Watch Video Solution

78. The differential equation for $y = Ae^{3x} + Be^{2x}$ is

A.
$$\dfrac{d^2y}{dx^2}-5\dfrac{dy}{dx}+6y=0$$

B.
$$\dfrac{d^2y}{dx^2}+5\dfrac{dy}{dx}-6y=0$$

C.
$$\displaystyle rac{d^2y}{dx^2} - 5rac{dy}{dx} - 6y = 0$$

D.
$$\dfrac{d^2y}{dx^2}+5\dfrac{dy}{dx}+6y=0$$

Answer: A

Watch Video Solution

79. If
$$y=e^{ax}\sin bx, ext{ then } rac{d^2y}{dx^2}-2arac{dy}{dx}+a^2y=$$

$$A.-a^2y$$

$$B.-b^2y$$

$$\mathsf{C.}-ay$$

$$\mathsf{D.}-by$$

Answer: B

80. The differential equation satisfied by the family of curves

$$y-ax\cos\Bigl(rac{1}{x}+b\Bigr)$$
 , where a,b are parameters, is

A.
$$x^2rac{d^2y}{dx^2}+y=0$$

B.
$$x^4rac{d^2y}{dx^2}+y=0$$

$$\operatorname{\mathsf{C.}} x^2 \frac{d^2 y}{dx^2} - y = 0$$

D.
$$x^4 \frac{d^2y}{dx^2} - y = 0$$

Answer: B

Watch Video Solution

81. The differential equation for $y = a \sin(5x + c)$ is

A.
$$\frac{d^2y}{dx^2} + 25y = 0$$

B.
$$\dfrac{d^2y}{dx^2}-25y=0$$

$$\mathsf{C.}\,\frac{d^2y}{dx^2}+5y=0$$

D.
$$rac{d^2y}{dx^2}-5y=0$$

Answer: A

Watch Video Solution

82. The differential equation for $y = c_1 \sin x + c_2 \cos x$ is

A.
$$rac{d^2y}{dx^2}-y=0$$

B.
$$rac{d^2y}{dx^2}+y=0$$

C.
$$rac{d^2y}{dx^2}=0$$

D.
$$rac{d^2x}{dy^2}=0$$

Answer: B

83. Obtion the differential equation by elininating arbitrary constants A, B

from the equation - $y = A\cos(\log x) + B\sin(\log x)$

A.
$$x^2rac{d^2y}{dx^2}+xrac{dy}{dx}+y=0$$

B.
$$x^2rac{d^2y}{dx^2}+xrac{dy}{dx}-y=0$$

C.
$$x^2rac{d^2y}{dx^2}-xrac{dy}{dx}+y=0$$

D.
$$x^2rac{d^2y}{dx^2}-xrac{dy}{dx}-y=0$$

Answer: A

Watch Video Solution

A.
$$\frac{d^2y}{dx^2}+2\frac{dy}{dx}+2y=0$$

B.
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 2y = 0$$

84. The differential equation for $y=e^x(a\cos x+b\sin x)$ is

C.
$$\displaystyle rac{d^2y}{dx^2} - 2rac{dy}{dx} + 2y = 0$$

D.
$$\dfrac{d^2y}{dx^2}-2\dfrac{dy}{dx}-2y=0$$

Answer: C

Watch Video Solution

85. $xy = \log y + c$ is a solution of the differential equation

A.
$$\dfrac{dy}{dx}=\dfrac{-y^2}{1-xy}$$

B.
$$\dfrac{dy}{dx}=\dfrac{y^2}{1-xy}$$

$$\mathsf{C.}\,\frac{dy}{dx} = \frac{-y}{1-xy}$$

D.
$$\frac{dy}{dx} = \frac{y}{1 - xy}$$

Answer: B

Watch Video Solution

86. $y=x^m$ is a solution of the differential equation

A.
$$xrac{d^2y}{dx^2}+rac{dy}{dx}+mrac{dy}{dx}=0$$

 $B. x \frac{d^2y}{dx^2} + \frac{dy}{dx} - m \frac{dy}{dx} = 0$

 $\operatorname{C.} x \frac{d^2 y}{dx^2} - \frac{dy}{dx} + m \frac{dy}{dx} = 0$

 $D. x \frac{d^2y}{dx^2} - \frac{dy}{dx} - m \frac{dy}{dx} = 0$

Answer: B

Watch Video Solution

A.
$$rac{dy}{dx} + y an x + \sec x = 0$$

87. $y \sec x = \tan x + c$ is a solution of the differential equation

B.
$$rac{dy}{dx} + y an x - \sec x = 0$$

C.
$$rac{dy}{dx} - y an x + \sec x = 0$$

D.
$$rac{dy}{dx} - y an x - \sec x = 0$$

Answer: B

88. $y = \left(\sin^{-1}x\right)^2 + c$ is a solution of the differential equation

A.
$$\left(1-x^2\right)rac{d^2y}{dx^2}+xrac{dy}{dx}+2=0$$

B.
$$\left(1-x^2\right)rac{d^2y}{dx^2}+xrac{dy}{dx}-2=0$$

C.
$$\left(1-x^2\right)rac{d^2y}{dx^2}+xrac{dy}{dx}+2=0$$
D. $\left(1-x^2\right)rac{d^2y}{dx^2}-xrac{dy}{dx}+2=0$

Answer: D

Watch Video Solution

89. Verify the solution problems: Show that $y=e^{-x}+ax+b$ is solution of the differential equation $e^x\frac{d^y}{dx^2}=1$

A.
$$\displaystyle rac{d^2y}{dx^2}=e^{-x}$$

B.
$$\frac{d^2y}{dx^2}=e^x$$

C.
$$rac{d^2y}{dx^2}={}-e^{-x}$$

D.
$$rac{d^2y}{dx^2}={}-e^x$$

Answer: A

Watch Video Solution

90. y=logx+c is a solution of the differential equation

A.
$$rac{d^2y}{dx^2}-rac{dy}{dx}=0$$

$$\mathrm{B.}\,\frac{d^2y}{dx^2}+\frac{dy}{dx}=0$$

C.
$$rac{d^2y}{dx^2}-rac{dy}{dx}=0$$

D.
$$rac{d^2y}{dx^2}+rac{dy}{dx}=0$$

Answer: D

Watch Video Solution

91. Solution of the differtial equation $y-x\frac{dy}{dx}=0$ is

B. y=cx

C. xy=0

D. y=x

Answer: B

Watch Video Solution

92. The solution of the differential equationn $\dfrac{d heta}{dt} = -k(heta - heta_0)$ where k is constant, is

A.
$$heta= heta_0+ce^{-kt}$$

B.
$$heta = heta_0 + ce^{kt}$$

C.
$$heta= heta_0+ke^{-kt}$$

D.
$$heta = heta_0 + ke^{kt}$$

Answer: A

93. Solution of the differential equation
$$\dfrac{dy}{dx} = \dfrac{y(1+x)}{x(y-1)}$$
 is

A.
$$\log |xy| + x + y = c$$

$$\mathsf{B.} \log \lvert xy \rvert - x + y = c$$

$$\mathsf{C.} \log |xy| + x - y = c$$

$$\mathsf{D}.\log |xy| - x - y = c$$

Answer: C

94. Solution of the differential equation
$$\dfrac{dy}{dx}=x^2y+y$$
 is

A.
$$\log \lvert y \rvert = rac{1}{2} x^2 - x + c$$

$$|\mathsf{B.log}|y| = rac{1}{2}x^2 + x + c$$

$$|\mathsf{C}.\log|y| = rac{1}{3}x^2 - x + c$$

D.
$$\log \lvert y \rvert = rac{1}{3} x^2 + x + c$$

Answer: D

Watch Video Solution

95. Solution of the differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$ is

A.
$$\tan^{-1} y - \tan^{-1} x = c$$

B.
$$\tan^{-1} y + \tan^{-1} x = c$$

C.
$$(\tan^{-1} x) + (\tan^{-1} y) = 0$$

D.
$$\tan^{-1} y = c \tan^{-1} x = 0$$

Answer: A

Watch Video Solution

96. The solution of the differential equation $(1-x^2)(1-y)dx = xy(1+y)dy$ is

A.
$$\log \left| x (1-y)^2 \right| + rac{y^2 - x^2}{2} + 2y = c$$

$$\mathsf{B.}\logig|x(1-y)^2ig|+rac{y^2+x^2}{2}-2y=c$$
 $\mathsf{C.}\logig|x(1-y)^2ig|-rac{y^2+x^2}{2}+2y=c$

$$+2y=c$$

D.
$$\log \left|x(1-y)^2
ight| - rac{y^2+x^2}{2} - 2y = c$$

Answer: A

equations:

$$(x^2-yx^2)dy+(y^2+xy^2)dx=0$$

A.
$$\log \left| \frac{x}{x} \right| = \frac{1}{x} + \frac{1}{x} + \frac{1}{x}$$

A.
$$\log \left| \frac{x}{y} \right| = \frac{1}{x} + \frac{1}{y} + c$$
B. $\log \left| \frac{y}{x} \right| = \frac{1}{x} + \frac{1}{y} + c$

$$|C.\log|(xy)| = -rac{1}{x} + rac{1}{y} = c$$

D.
$$\log |(xy)| = +rac{1}{x}+rac{1}{y}=c$$

Watch Video Solution

98. What is the solution of the differential equation

$$\frac{dy}{dx} = xy + x + y + 1?$$

A.
$$\log |1 + y| = x - x^2 + c$$

B.
$$\log |1 + y| = x + x^2 + c$$

C.
$$\log |1+y| = x + \frac{x^2}{2} + c$$

$$\mathsf{D}.\log\lvert 1+y\rvert = x - \frac{x^2}{2} + c$$

Answer: C

Watch Video Solution

99. Solution of the differential equation $xy^3 \frac{dy}{dx} = 1 - x^2 + y^2 - x^2y^2$ is

A.
$$x^2 + y^2 + \log \lvert x^2 + x^2 y^2 \rvert = c$$

B. $x^2 + y^2 - \log|x^2 + x^2y^2| = c$

C. $x^2 - y^2 + \log|x^2 + x^2y^2| = c$

D.
$$x^2-y^2-\log \lvert x^2+x^2y^2
vert = c$$

Answer: B

Watch Video Solution

A.
$$y - \left(25 - x^2\right)^{rac{3}{2}} = c$$

100. Solution of the differrential equation $\frac{dy}{dx} = x\sqrt{25-x^2}$ is

B.
$$y+\left(25-x^2
ight)^{rac{3}{2}}=c$$

C.
$$3y - \left(25 - x^2\right)^{rac{3}{2}} = c$$

D.
$$3y+\left(25-x^2
ight)^{rac{3}{2}}=c$$

Answer: D

101. If a an arbitrary constant, then solution of the differential equation

$$rac{dy}{dx}+\sqrt{rac{1-y^2}{1-x^2}}=0$$
 is

$$A.\sin^{-1}x + \sin^{-1}y = c$$

$$\mathsf{B.}\sin^{-1}x-\sin^{-1}y=c$$

$$\mathsf{C.}\sin^{-1}x\sin^{-1}y = c$$

$$\mathsf{D.}\sin^{-1}x = c\sin^{-1}y$$

Answer: A

Watch Video Solution

102. Solution of the differential equation

A.
$$2y^2 \tan^{-1} x - 1 = cy^2$$

B.
$$y^2 \tan^{-1} x - 1 = cy^2$$

C.
$$2y^2 \tan^{-1} x + 1 = cy^2$$

D.
$$y^2 \tan^{-1} x + 1 = cy^2$$

Answer: C

View Text Solution

103. The solution of the differential equation

$$y-xrac{dy}{dx}=aigg(y^2+rac{dy}{dx}igg)$$
 is

Answer: A

104. Solution of the differential equation $dr = a(r\sin\theta d\theta - \cos\theta dr)$ is

A.
$$r(1+a\cos\theta)=c$$

$$\mathtt{B.}\,r(1+a\cos\theta)=ac$$

$$\mathsf{C.}\,r(1-a\cos\theta)=c$$

$$D. r(1 - a\cos\theta) = ac$$

Answer: A

Watch Video Solution

105. Solution of the differential equation $\cos x \cos y \, dy - \sin x \sin y \, dx = 0$ is

A. sin y cos x=c

B. sin y= c cosx

C. cos y sin x=c

D. cos y=c sinx

Answer: A

Watch Video Solution

106. The solution of the differential equation $\sec x dy - \csc y dx = 0$ is

- A. sin x-cosy=x
- B. sin x+cosy=c
- C. sin x=c cos y
- D. sin x cos y=c

Answer: B

Watch Video Solution

107. Solution of the differential equation

 $an y. \sec^2 x dx + an x. \sec^2 y dy = 0$ is

A.
$$tan x tan y = c$$

B. tan x =c tan y

 $\mathsf{C}.\sec^2 x \sec^2 u = c$

D. tan y = c tan x

Answer: A

Watch Video Solution

108. Solution of the differential equation $\sin x \frac{dy}{dx} + 1 + \sin x = 0$ is

A.
$$x+y+\log\Bigl| an\Bigl(rac{x}{2}\Bigr)\Bigr|=c$$

$$\mathsf{B.}\,x + y - \log \Bigl| \tan\Bigl(\frac{x}{2}\Bigr) \Bigr| = c$$

C.
$$x-y+\log\Bigl| an\Bigl(rac{x}{2}\Bigr)\Bigr|=c$$

D.
$$x-y-\log\Bigl| an\Bigl(rac{x}{2}\Bigr)\Bigr|=c$$

Answer: A

109. The general solution of the differential equation

$$rac{dy}{dx} + rac{1+\cos 2y}{1-\cos 2x} = 0$$
 is given by

A. tan y+cot x=c

B. tan y-cot x=c

C. tan y cot x=c

D. cot y tan x=c

Answer: B

Watch Video Solution

110. Find the general solution of each of the following differential equations:

$$\frac{1}{x}\cos^2 y dy + \frac{1}{y}\cos^2 x dx = 0$$

A.
$$2ig(x^2+y^2ig)+2(x\sin2x+y\sin2y)-(\cos2x+\cos2y)=c$$

 ${\tt B.}\,2\big(x^2+y^2\big)+2(x\sin 2x+y\sin 2y)+(\cos 2x+\cos 2y)=c$

C.

D.

Answer: C

Watch Video Solution

111. Solution

of the

 $\frac{dy}{dx}\tan y = \sin(x+y) + \sin(x-y)$ is

differential

equation

A. $\sec y + 2\cos x = c$

 $\mathsf{B.} \sec y - 2\cos x = c$

 $\mathsf{C.}\cos y - 2\sin x = c$

 $\mathsf{D}.\tan y - 2\sec x = c$

Answer: A

$$\frac{dy}{dx} + \frac{\sin(x+y)}{2} = \frac{\sin(x-y)}{2}$$
 is

$$(b)(c) \log an igg((d)(e)(f) rac{y}{g} 2(h)(i)(j) igg) = c - 2 \sin x(k)$$
 (I) (m) [Math

Processing Error] (ee) (ff) [Math Processing Error] (uu) (vv)
$$(ww)(\times)\log\tan\left((yy)(zz)(aaa)rac{y}{bbb}4(ccc)(ddd)+(eee)rac{\pi}{fff}4(ggg)(hhh)
ight)$$
 (rrr)

A.
$$\log \mid an\!\left(rac{y}{2}
ight) = 2\sin x$$

B.
$$\log \mid an\Bigl(rac{y}{4}\Bigr) = c - 2\sin\Bigl(rac{x}{2}\Bigr)$$

C.
$$\log |\tan \left(\frac{y}{4} + \frac{\pi}{4}\right)| = c - 2\sin x$$

D.
$$\log | an\!\left(rac{y}{4} + rac{\pi}{4}
ight) = c - 2\sin\!\left(rac{x}{2}
ight)$$

Answer: B

Solve

113.

the following

differential

equation:

$$(1+y^2)\tan^{-1}dx + 2y(1+x^2)dy = 0$$

A.
$$\frac{1}{2} \tan^{-1} x + \log |1 + y^2| = c$$

B.
$$\frac{1}{2} \tan^{-1} x - \log |1 + y^2| = c$$

C.
$$\frac{1}{2} \tan^{-1} x + \log |1 + y^2| = c$$

D.
$$\frac{1}{2} \tan^{-1} x - \log |1 + y^2| = c$$

Answer: C

Watch Video Solution

114. Solution of differential equation $\dfrac{dy}{dx}=3^{x+y}$ is

A.
$$3^x - 3^{-y} = c$$

B.
$$3^x + 3^{-y} = c$$

$$\mathsf{C.}\, 3^x - 3^y = c$$

D.
$$3^x - 3^y = c$$

Answer: B

Watch Video Solution

115. Solution of differential equation $e^{rac{dy}{dx}}=x$ is

A.
$$x \log |x| - 1 - y = c$$

$$B. x \log |x| - 1 + y = c$$

C.
$$x(\log|x| - 1) + y = c$$

$$D. x(\log|x|-1) - y = c$$

Answer: D

A.
$$4e^x+3e^{-2y}=c$$

$$\mathsf{B.}\,4e^x-3e^{-2y}=c$$

$$\mathsf{C.}\,4e^x+3e^{2y}=c$$

$$\mathsf{D.}\, 4e^x - 3e^{2y} = c$$

Answer: A

Watch Video Solution

117. The solution of the differential equation

$$rac{dy}{dx}=e^{3x-2y}+x^2e^{-2y}$$
,is

A.
$$e^{2y} = e^{3x} + x^3 + c$$

B.
$$e^{2y} = e^{3x} - x^3 + c$$

C.
$$\frac{e^{2y}}{2}=rac{1}{3}ig(e^{3x-x^3}ig)+c$$

D.
$$rac{e^{2y}}{2} = rac{1}{3}ig(e^{3x+x3}ig) + c$$

Answer: D

118. Solution of differential equation
$$\log \left(\frac{dy}{dx} \right) = x + y$$
 is

119. Solution of differential equation $\cos y \frac{dy}{dx} = e^{x+\sin y} + x^2 e^{\sin y}$ is

A.
$$e^x + e^y = c$$

$$B. e^x + e^{-y} = c$$

$$\mathsf{C.}\,e^{-x}+e^y=c$$

D.
$$e^{-x} + e^{-y} = c$$

Answer: B

A.
$$e^x-e^{\sin y}+rac{x^3}{3}=c$$

A.
$$e^-e^-+rac{1}{3}\equiv c$$

$$B. \, e^{-x}-e^{\sin y}+rac{x^3}{3}=c$$

$$\mathsf{C.}\,e^x+e^{\sin y}+\frac{x^3}{3}=c$$

$$\mathsf{D.}\,e^x+e^{-\sin y}-\frac{x^3}{3}=c$$

Answer: C

Watch Video Solution

- **120.** Solve : $3e^x \tan y dx + (1 e^x) \sec^2 y \, dy = 0$
 - A. $\tan y = c(1 + e^x)^3$
 - B. $\tan y = c(1 e^x)^3$
 - C. $\tan y = c(1 + e^x)^3$
 - D. $\tan y = c(1 e^x)^3$

Answer: B

Watch Video Solution

121. Solution of differential equation $\frac{dy}{dx} = x \log x$ is

B.
$$x=e^{ct}$$

 $|\mathsf{C}.\log|x| = e^{-ct}$

A. $y=x^2\log\lvert x
vert-rac{x^2}{2}+c$

 $\mathsf{B.}\, y = \frac{x^2}{2} \mathrm{log} |x| - x^2 + c$

C. $y=rac{x^2}{2}+rac{x^2}{2}\mathrm{log}|x|+c$

D. $y = \frac{x^2}{2} \log \lvert x \rvert - \frac{x^2}{4} + c$

Watch Video Solution

122. Solution of differential equation $\frac{dt}{dx} = \frac{x \log x}{t}$ is

B.
$$x=e^{ct}$$

A. $x = e^{-ct}$

Answer: D

D.
$$\log \lvert x \rvert = e^{ct}$$

Answer: B

the $x\cos y\,dy = (xe^x\log x + e^x)dx$

following

differential equation :

equation

A.
$$x \sin y = e^x + xc$$

Solve

B.
$$\sin y + e^x \log \lvert x \rvert + c = 0$$

$$\mathsf{C}.\sin y - e^x \log \lvert x \rvert + c$$

D.
$$e^x \sin y = \log |x| + c$$

Answer: C

Watch Video Solution

124.

Solution

of differential

 $(x-y^2x)dx - (y+x^2y)dy = 0$, if x = 2, y = 0, is

A. $(1+x^2)(1-y^2)=4$

B. $(1+x^2)(1-y^2)=5$

C.
$$(1+x^2)(1-y^2)=0$$

D.
$$(1+x^2)(1-y^2) = -5$$

Answer: B

Watch Video Solution

125. Solution of differential equation $y - x \frac{dy}{dx} = y^2 + \frac{dy}{dx}$, when

A.
$$(1+x)(1-y)+y=0$$

C.
$$(1+x)(1+y)+y=0$$

D.
$$(1+x)(1+y)-y=0$$

Answer: A

126. Solution of differential equation $\cos \frac{dy}{dx} = a, a \in R, y(0) = 2$, is

A.
$$\sin\!\left(rac{y+2}{x}
ight)=a$$

$$\mathsf{B.}\sin\!\left(rac{y-2}{x}
ight)=a$$

$$\mathsf{C.}\cos\!\left(\frac{y+2}{x}\right) = a$$

$$\mathsf{D.}\cos\!\left(\frac{y-2}{x}\right) = a$$

Answer: D

Watch Video Solution

127. If
$$(2+\sin x)\frac{dy}{dx}+(y+1)\cos x=0$$
 and $y(0)=1$, then $y\Big(\frac{\pi}{2}\Big)$ is equal to

A. 1

B. $\frac{1}{2}$

c. $\frac{1}{3}$

D. $\frac{1}{4}$

Answer: C

Watch Video Solution

128. The differential solution of the differential $\frac{dy}{dx} = 3^{x+y}$, when x=y=0, is

A.
$$3^x + 3^y = 2$$

B.
$$3^x - 3^y = 2$$

$$\mathsf{C.}\,3^x + 3^{-y} = 2$$

D.
$$3^x - 3^{-y} = 2$$

Answer: C

Watch Video Solution

129. The particular solution of the differential equation $\log \left(\frac{dy}{dx} \right) = x$, when x = 0 , y = 1 is

A.
$$y = e^x$$

 $B. y = -e^x$

C. $y = e^x + 2$

D. $y = -e^x + 2$

Answer: A

Watch Video Solution

$rac{\log(dy)}{dx} = 3x + 4y$ given that y = 0 when x = 0 .

A.
$$4e^{3x} + 3e^{-4y} + 7 = 0$$

130. Find the particular solution of the differential equation

B. $4e^{3x} + 3e^{-4y} - 7 = 0$

 $6.4e^{3x} - 3e^{-4y} + 7 = 0$

D. $4e^{3x} - 3e^{-4y} + 7 = 0$

Answer: B

131. The Particular solution of the differential equation $(x+1)rac{dy}{dx}-2e^{-y}=1$ when x=1 , y=0

A.
$$2(2+e^y)=3(x+1)$$

B.
$$2(2+e^y) = -3(x+1)$$

C.
$$2(2+e^y) = x(x+1)$$

D.
$$x+1=(e^y-2)$$

Answer: A

Watch Video Solution

A.
$$e^{-2y}+2\sin x=2$$

B.
$$e^{-2y} + 2\sin x = -2$$

132. $\frac{dy}{dx} = e^{2y}\cos x$, when $x = \frac{\pi}{6}, y = 0$

$$\mathsf{C.}\,e^{-2y}+\sin x=1$$

D.
$$e^{-2y} + \sin x = -1$$

Answer: A

Watch Video Solution

133. $3e^x \tan y dx + (1 + e^x) \sec^2 dy = 0$, when x = 0 and $y = \pi$

A.
$$(1+e^x)^3 an y = 0$$

B.
$$(1 + e^x)^3 \tan y = 4$$

$$\mathsf{C.}\,(1+e^x)^3\cot y=0$$

D.
$$(1 + e^x)^3 \cot y = 4$$

Answer: A

134. The particular solution of the differential equation $y(1+\log x) \frac{dx}{dy} - \log x = 0, \quad \text{when} x = e, y = e^2 \text{ is}$

A.
$$y = ex \log x$$

B. $ey = x \log x$

C. xy =e log x

D. y log x= ex

Answer: A

Watch Video Solution

135. The solution of the differential equation $e^{-x}(y+1)dy + \left(\cos^2 x - \sin 2x\right)y(dx) = 0$ subjected to the condition

A.
$$y=\log \lvert y \rvert + e^x \cos^2 x = 2$$

that y = 1 when x = 0 is

$$\mathsf{B}.\log|y+1| + e^x \cos^2 x = 1$$

$$\mathsf{C.}\, y + \log \lvert y \rvert = e^x \cos^2 x$$

$$\mathsf{D}.\log|y+1| + e^x \cos^2 x = 2$$

Answer: A

Watch Video Solution

136. For solving $\frac{dy}{dx}=4x+y+1$, suitable substitution is

B. y=4x+u

C. y=4x

D. y=ux

Answer: A

137. The solution of the differential equation $\frac{dy}{dx} = (4x + y + 1)^2$, is

A.
$$4x = y + 1 = tan (2x + 2c)$$

B.
$$4x + y+1 = \cot(2x+2c)$$

C.
$$4x + y + 1 = 2tan (2x + 2c)$$

D.
$$4x + y+1 = 2 \cot (2x+2c)$$

Answer: C

138. The solution of the differential equation

$$(x+y)^2 \frac{dy}{dx} = a^2$$
 is

A.
$$y - an^{-1} \left(rac{x+y}{a}
ight) = c$$

B.
$$y + \tan^{-1} \left(\frac{x+y}{a} \right) = c$$

C.
$$y-a an^{-1}\Bigl(rac{x+y}{a}\Bigr)=c$$

D.
$$y + a an^{-1} \Big(rac{x+y}{a}\Big) = c$$

Answer: C

Watch Video Solution

139. Solution of the differential equation $(x-y)^2 \left(rac{dy}{dx}
ight) = a^2$ is

A.
$$a \log \left| rac{x-y-a}{x-y+a}
ight| - y = c$$

$$\mathsf{B.}\,a\log\biggl|\frac{x-y-a}{x-y+a}\biggr|-y=c$$

C.
$$\frac{a}{2} \log \left| \frac{x-y-a}{x-y+a} \right| + y = c$$

D.
$$\frac{a}{2}\log\left|\frac{x-y-a}{x-y+a}\right|-y=c$$

Answer: D

Watch Video Solution

140. Solution of the differential equation $\sin^{-1}\!\left(\frac{dy}{dx}\right) = x + y$ is

A.
$$tan(x+y) - sec(x+y)-x=c$$

B. tan(x+y)+sec(x+y)-x=c

C. tan(x+y)-sec(x=y)+x=c

D. tan(x+y)+sec(x+y)+x=c

Answer: A

Watch Video Solution

141. The solution of differential equation $y' = \cos(x+y)$ is :

A.
$$an\!\left(rac{x+y}{2}
ight)=x+c$$

$$B.\tan\left(\frac{x+y}{2}\right) = -x + c$$

$$\mathsf{C.}\tan\!\left(\frac{x+y}{2}\right) = 2x + c$$

$$\operatorname{\mathsf{D}}
olimits. an\!\left(rac{x+y}{2}
ight) = \ -2x+c$$

Answer: A

$$\frac{dy}{dx} = \sin(x+y) + \cos(x+y)$$
 is:

$$A. 1 + \tan(x + y) = ce^x$$

$$B.1 - \tan(x + y) = ce^x$$

$$\mathsf{C.1} + \tan\!\left(\frac{x+y}{2}\right) = ce^x$$

$$\mathsf{D.}\,1-\tan\!\left(\frac{x+y}{2}\right)=ce^x$$

Answer: C

143. Solution of the differential equation
$$1+rac{dy}{dx}+\cos ec(x+y)=0$$
 is

$$\mathsf{A.}\,x-\sin(x+y)=c$$

$$\mathsf{B.}\,x+\sin(x+y)=c$$

$$\mathsf{C.}\,x-\sin(x+y)=c$$

$$D. x + \sin(x + y) = c$$

Answer: D

Watch Video Solution

- **144.** Solution of the differential equation $\cos^2(x-y) rac{dy}{dx} = 1$

 - $B. -y + \tan(x y) = c$
 - C. y+cot(x-y)=c

A. y+tan(x-y)=c

 $D. -y + \cot(x - y) = c$

Answer: D

Watch Video Solution

145. Solution of the differential equation $\sec^2(x-2y)\left(1-2\frac{dy}{dx}\right)=1$ is

A. tan(x-2y)+x=c

B. tan(x-2y)-x=c

C. 2tan(x-2y)+x=c

D. 2tan(x-2y)-x=c

Answer: B

Watch Video Solution

146. Solution of the differential equation $x+y\frac{dy}{dx}=\sec(x^2+y^2)$ is

$$\mathsf{A.}\sin\!\left(x^2+y^2\right)=x+c$$

$$B.\cos(x^2+y^2)=x+c$$

$$\mathsf{C.}\cos\!\left(x^2+y^2\right)=2x+c$$

D.
$$\sin(x^2+y^2)=2x+c$$

Answer: D

147. Solution of the differential equation $\left(y+xrac{dy}{dx}
ight)\!\sin(xy)=\cos x$ is

A. sinx+cos(xy)=c

B. sinx-cos(xy)=c

C. cosx+sin(xy)=c

D. cosx-sin(xy)=c

Answer: A

Watch Video Solution

148. Solution of the differential equation $x \frac{dy}{dx} - y + x \sin\left(\frac{y}{x}\right) = 0$ is

A.
$$x \left(1 - \cos\left(\frac{y}{x}\right)\right) = c\sin\left(\frac{y}{x}\right)$$

$$B. x \left(1 + \cos\left(\frac{y}{x}\right)\right) = c \sin\left(\frac{y}{x}\right)$$

$$\mathsf{C.}\,x\Big(1-\sin\Big(rac{y}{x}\Big)\Big)=c\cos\Big(rac{y}{x}\Big)$$

$$\operatorname{D.}x\!\left(1+\sin\!\left(\frac{y}{x}\right)\right)=c\cos\!\left(\frac{y}{x}\right)$$

Answer: A

Watch Video Solution

149. The solution of x sin $\left(\frac{y}{x}\right)dy = \left\{y\sin\left(\frac{y}{x}\right) - x\right\}dx$, is given by

A.
$$\log \lvert x \rvert - \cos \left(\frac{y}{x} \right) = c$$

$$\mathsf{B.}\log\lvert x\rvert + \cos\Bigl(\frac{y}{x}\Bigr) = c$$

$$\mathsf{C.}\ x + \cos\Bigl(\frac{y}{x}\Bigr) = c$$

$$\mathsf{D}.\,x-\cos\!\left(\frac{y}{x}\right)=c$$

Answer: A

of the differential

equation

$$\left(x\frac{dy}{dx} - y\right)\sin\left(\frac{y}{x}\right) = x^2\cos x$$
 is

A.
$$\sin x - \cos\left(\frac{y}{x}\right) = c$$

$$B.\sin x + \cos\left(\frac{y}{x}\right) = c$$

$$\mathsf{C}.\cos x + \sin\left(\frac{y}{x}\right) = c$$

D.
$$\cos x - \sin\left(\frac{y}{x}\right) = c$$

Answer: B

Watch Video Solution

151. The solution of the differential equation $\dfrac{dy}{dx} = an\Bigl(\dfrac{y}{x}\Bigr) + \dfrac{y}{x}$ is

A.
$$\cos\left(\frac{y}{x}\right) = cx$$

$$\mathsf{B.}\sin\!\left(\frac{y}{x}\right) = cx$$

$$\mathsf{C.}\cos\!\left(\frac{y}{x}\right) = cy$$

$$D.\sin\left(\frac{y}{x}\right) = cy$$

Answer: B

Watch Video Solution

152. Show that the differential equation:

$$\Big(xrac{\cos y}{x}\Big)(ydx+xdy)=\Big(yrac{\sin y}{x}\Big)(xdy-ydx)$$
 is homogenous and solve it.

A.
$$\cos\left(\frac{y}{x}\right) = cxy$$

$$B. xy \cos\left(\frac{y}{x}\right) = c$$

$$\mathsf{C.}\,x\cos\Bigl(\frac{y}{x}\Bigr)=cy$$

D.
$$y\cos\left(\frac{y}{x}\right) = cx$$

Answer: B

C.
$$x^2\Bigl(\sin\Bigl(rac{y}{x}\Bigr)+ an\Bigl(rac{y}{x}\Bigr)\Bigr)=c$$

D. $-x^2\Bigl(\sin\Bigl(rac{y}{x}\Bigr)- an\Bigl(rac{y}{x}\Bigr)\Bigr)=c$

Solution

A. $x^2 \left(\sin \left(\frac{y}{x} \right) - \tan \left(\frac{y}{x} \right) \right) = c$

B. $-x^2\left(\sin\left(\frac{y}{x}\right) + \tan\left(\frac{y}{x}\right)\right) = c$

the

 $\left(2\sin\left(\frac{y}{x}\right)+2x\tan\left(\frac{y}{x}\right)-y\cos\left(\frac{y}{x}\right)-y\sec^2\left(\frac{y}{x}\right)\right)dx+\left(x\cos\left(\frac{y}{x}\right)+a^2\sin\left(\frac{y}{x}\right)+a^2\sin\left(\frac{y}{x}\right)$

of

differential

equation

153.

154. Solution of the differential equation
$$(x-y)igg(1-rac{dy}{dx}igg)=e^x$$
 is

A.
$$(x-y)^2-e^x=c$$

B. $(x - y)^2 + e^x = c$

$$\mathsf{C.}\,\frac{\left(x-y\right)^2}{2}-e^x=c$$

C.
$$\frac{(x-y)^2}{2} - e^x = c$$
D. $\frac{(x-y)^2}{2} + e^x = c$

Answer: C

Watch Video Solution

155. Solve $\left(1+2e^{x\,/\,y}
ight)\!dx+2e^{x\,/\,y}(1-x\,/y)dy=0.$

A.
$$x+2ye^{rac{x}{y}}=c$$

B.
$$x-2ye^{rac{x}{y}}=c$$

$$\mathsf{C.}\,x + 2y e^{\frac{y}{x}} = c$$

D.
$$x-2ye^{rac{y}{x}}=c$$

Answer: A

Watch Video Solution

156. Solution of the differential equation $(x, x) = \frac{x}{x} (x, x)$

$$\Big(1+e^{rac{x}{y}}\Big)dx+e^{rac{x}{y}}igg(1-rac{x}{y}igg)dy=0$$
 is

A.
$$x + ye^{-\frac{x}{y}} = c$$

$$e^{-\frac{x}{y}}$$
 =

$$\mathsf{B.}\,x-ye^{-\frac{x}{y}}=c$$

$$\mathsf{C.}\,x+ye^{\frac{x}{y}}=c$$

D. $x-ye^{rac{x}{y}}=c$

Answer: C

Watch Video Solution

157. Solution of the differential equation $\left(x \frac{dy}{dx} - y\right) \sin\left(\frac{y}{x}\right) = x^2 e^x$ is

A.
$$e^x + \cos\left(\frac{y}{x}\right) = c$$

$$\mathsf{B.}\,e^x - \cos\!\left(\frac{y}{x}\right) = c$$

$$\mathsf{C.}\, xe^x + \cos\!\left(\frac{y}{x}\right) = c$$

D.
$$xe^x - \cos\Bigl(rac{y}{x}\Bigr) = c$$

Answer: A

158. Solution of the differential equation $\left(x \frac{dy}{dx} - y\right) e^{rac{y}{x}} = x^2 \cos x$ is

A.
$$e^{\frac{x}{y}} - \sin x = c$$

B.
$$e^{rac{x}{y}} + \sin x = c$$

$$\mathsf{C.}\,e^{-\frac{y}{x}}-\sin x=c$$

D.
$$e^{-\frac{y}{x}} + \sin x = c$$

Answer: A

Watch Video Solution

159. Solution of the differential equation

$$(x+y-1)dx + (2x+2y-3)dy = 0$$
 is

A.
$$y + x + \log \lvert x + y - 2 \rvert = c$$

$$\mathsf{B}.\,y + 2x + \log\lvert x + y - 2 \rvert = c$$

C.
$$2y + x + \log|x + y - 2| = c$$

D.
$$2y + 2x + \log|x + y - 2| = c$$

Answer: C

Watch Video Solution

160. General solution of the differential equation $\dfrac{dy}{dx}=\dfrac{x+y+1}{x+y-1}$ is given by

$$A. y + x + \log|x + y| = c$$

$$B. y + x - \log|x + y| = c$$

C.
$$2y + x + \log|x + y - 2| = c$$

D.
$$2y + 2x + \log|x + y - 2| = c$$

Answer: D

161. Solution of the
$$\frac{dy}{dx}=\frac{x+y+1}{x+y-1},y=\frac{1}{3},x=\frac{2}{3},$$
 is

of

the

differential

equation

equation

A.
$$y+x+rac{1}{3}=\log \lvert x+y
vert$$

B. $y - x + \frac{1}{3} = \log|x + y|$

C.
$$y+x-rac{1}{2}=\log \lvert x+y
vert$$

D.
$$y-x-rac{1}{3}=\log \lvert x+y
vert$$

Answer: B

161.

$$rac{x+y-1}{x+y-2}rac{dy}{dx}=rac{x+y+1}{x+y+2}, x=1, y=1, ext{ is}$$
 A. $2(x+y)+\log\left|rac{\left(x-y
ight)^2+2}{2}
ight|=0$

B.
$$2(x+y)-\log\left|\frac{(x-y)^2+2}{2}\right|=0$$
C. $2(x-y)+\log\left|\frac{(x+y)^2-2}{2}\right|=0$

$$\left| \frac{-2}{2} \right| = 0$$

D.
$$2(x-y)-\log\left|rac{\left(x+y
ight)^2-2}{2}
ight|=0$$

Answer: D

View Text Solution

Solution differential 163. of the equation

A.
$$2x-y+\log \lvert x-y+2 \rvert +1=0$$

 $(2x-2y+3)dx-(x-y+1)dy=0, ext{ when y(0)=1 is}$

B. $2x + y - \log|x - y + 2| + 1 = 0$

C.
$$2x - y - \log |x - y + 2| + 1 = 0$$

D. $2x + y + \log|x - y + 2| + 1 = 0$

Answer: C

164. Solution of the differential equation
$$\dfrac{xdy}{x^2+y^2}=\left(\dfrac{y}{x^2+y^2}-1\right)\!dx$$
, is

A.
$$\tan^{-1}\!\left(\frac{y}{x}\right)-x=c$$

B.
$$\tan^{-1}\!\left(\frac{y}{x}\right) + x = c$$

C.
$$an^{-1}\Bigl(rac{y}{x}\Bigr) - \log \lvert x \rvert = c$$

D.
$$an^{-1}\Bigl(rac{y}{x}\Bigr) + \log \lvert x \rvert = c$$

Answer: B

Watch Video Solution

165. If a curve y=f(x) passes through the point $(1,\ -1)$ and satisfies the differential equation ,y(1+xy)dx=xdy , then $f\Big(-rac{1}{2}\Big)$ is equal to: (1) $-\frac{2}{5}$ (2) $-\frac{4}{5}$ (3) $\frac{2}{5}$ (4) $\frac{4}{5}$

A.
$$\frac{-2}{5}$$

B.
$$\frac{-4}{5}$$

D.
$$\frac{4}{5}$$

Answer: D

Watch Video Solution

166. Solution of the differential equation $\dfrac{dy}{dx} = \dfrac{x-y}{x+y}$ is

A.
$$x^2+2xy+y^2=c$$

$$\mathtt{B.}\,x^2+2xy-y^2=c$$

$$\mathsf{C.}\,x^2-2xy+y^2=c$$

D.
$$x^2-2xy-y^2=c$$

Answer: D

167. Solution of the differential equation $\frac{dy}{dx} + \frac{x-2y}{2x-y} = 0$ is

A.
$$\left(x+y\right)^3=c(y-x)$$

$$\mathsf{B.}\left(x+y\right)^{3}=c(x-y)$$

$$\mathsf{C.}\left(x-y\right)^{3}=c(x+y)$$

D.
$$(x - y)^3 = c(x + y)^2$$

Answer: A

Watch Video Solution

168. Solution of the

$$dx=0$$
 is

differential

equation

(9x + 5y)dy + (15x + 11y)dx = 0 is

A. $(x+y)^2(3x+y)^3=c$

B. $(x+y)^3(3x+y)^2=c$

C. $(x+y)^2(3x+y)^2=c$

D.
$$(x + y)^3 (3x + y)^3 = c$$

Answer: A

Watch Video Solution

169. Solution of the differential equation $y^2 dx + \left(xy + x^2\right) dy = 0$ is

A.
$$xy^2=c^2(x+2y)$$

$$\mathsf{B.}\, xy^3 = c^2(x+2y)$$

C.
$$xy^2=c^2(x-2y)$$

$$\mathsf{D}.\, xy^3 = c^2(x-2y)$$

Answer: A

Watch Video Solution

170. Solution of the differential equation $ig(x^2-y^2ig)dx+2xydy=0$ is

$$A. x^2 - y^2 = cx$$

$$y^{2}=c$$

$$\mathsf{B.}\,x^2+y^2=cx$$

$$\mathsf{C.}\,x^2-y^2=cx^2$$

$$\operatorname{D.} x^2 + y^2 = cx^2$$

Watch Video Solution

A. $\tan^{-1}\!\left(\frac{y}{x}\right) - \log\!|x| = c$

$$|x| = c$$

171. The solution of differential equation $x^2 \frac{dy}{dx} = x^2 + xy + y^2$ is

$$\mathsf{B.}\tan^{-1}\!\left(\frac{y}{x}\right) + \log\!|x| = c$$

$$\mathsf{C.} \sin^{-1}\!\left(\frac{y}{x}\right) - \log \lvert x \rvert = c$$

$$\mathsf{D}.\sin^{-1}\!\left(\frac{y}{x}\right) + \log\!|x| = c$$

Answer: A

172. Show that the differential equation $2xy\frac{dy}{dx}=x^2+3y^2$ is homogeneous and solve it.

$$\mathsf{A.}\,x^3+y^2=cx^2$$

$${\tt B.}\,\frac{x^2}{2}+\frac{y^3}{3}=y^2+c$$

$$\mathsf{C.}\,x^2+y^3=cx^2$$

D.
$$x^2 + y^2 = cx^2$$

Answer: D

Watch Video Solution

173. The solution of the differential equation

$$x(x-y)rac{dy}{dx}=y(x+y)$$
 , is

A.
$$\frac{x}{y} + \log |xy| = c$$

B.
$$\frac{y}{x} + \log \lvert xy \rvert = c$$

C.
$$rac{x}{y} + \log \lvert xy
vert = c$$

D.
$$\frac{y}{x} + x \log \lvert xy \rvert = c$$

Answer: A

Watch Video Solution

174. Solution of the differential equation $x^2 \frac{dy}{dx} - 3xy - 2y^2 = 0$ is

B.
$$y=cx(x+y)$$

$$\mathsf{C.}\, y = cx^2(x-y)$$

D.
$$y=cx^2(x+y)$$

Answer: D

175. Solution of the differential equation $ig(x^2-y^2ig)dx-2xydy=0$ is

A.
$$x^2-y^2=cx$$

$$B. x^2 + y^2 = cx$$

$$C. x^2 - y^2 = c$$

D.
$$x^2 + y^2 = c$$

Answer: A

176. Solution of the differential equation $ig(x^2+y^2ig)dy-xydx=0$ is

A.
$$\log \lvert y \rvert = rac{x^2}{2u^2} + c$$

$$|\mathsf{B.log}|y| = rac{-x^2}{2y^2} + c$$

$$|\mathsf{C}.\log|y| = rac{x^2}{y^2} + c$$

D.
$$\log \lvert y \rvert = rac{-x^2}{y^2} + c$$

Answer: A

Watch Video Solution

177. Solution of the differential equation $ig(x^2+3xy+y^2ig)dx-x^2dy=0$

is

A.
$$\frac{x+y}{x} - \log|x| = c$$

$$B. \frac{x+y}{x} + \log|x| = c$$

$$\mathsf{C.}\,\frac{x}{x+y}-\log\lvert x\rvert=c$$

$$\mathsf{D.}\,\frac{x}{x+y} + \log \lvert x \rvert = c$$

Answer: D

Watch Video Solution

178. Solution of the differential equation $y^2 - x^2 \frac{dy}{dx} = xy \frac{dy}{dx}$ is

A.
$$(y-2x)^{12}=c(y-x)(y-3x)^9$$

A. $\frac{y}{x} - \log|y| = c$

 $\mathsf{B.}\,\frac{y}{x} + \log \lvert y \rvert = c$

 $\mathsf{C.}\,\frac{x}{y} - \log |y| = c$

D. $\frac{x}{y} + \log |y| = c$

Watch Video Solution

Answer: B

B.
$$(y-2x)^{12}=c(x-y)(y-3x)^9$$

179. Solution of the differential equation $\dfrac{dy}{dx}=\dfrac{6x^2-5xy-2y^2}{6x^2-8xy+y^2}$ is

C.
$$(y-2x)^9 = c(y-x)(y-3x)^{12}$$

D.
$$(y-2x)^9 = c(x-y)(y-3x)^{12}$$

View Text Solution

Answer: A

180. The solution of the differential equation
$$xy^2dy-\left(x^3+y^3\right)dx=0$$
 is

A.
$$y^3 = 3x^3 + c$$

B.
$$y^3 = 3x^3 \log \lvert cx
vert$$

C.
$$y^3 = 3x^3 + \log \lvert cx
vert$$

D.
$$y^3 + 3x^3 = \log |cx|$$

Watch Video Solution

181. Solution of the differential equation $x^2ydx-\left(x^3+y^3
ight)dy=0$ is

A.
$$\log \lvert y \rvert = rac{x^3}{3 v^3} + c$$

$$\operatorname{B.log} |y| = \frac{-x^3}{3y^3} + c$$

 $|\mathsf{C.log}|y| = \frac{x^3}{u^3} + c$

$$|\mathsf{D}.\log |y| = rac{-x^3}{y^3} + c$$

Answer: A

Watch Video Solution

182. differential Solution οf the equation $x^2udu + (x^3 + x^2y - 2xy^2 - y^3)dx = 0$ is

A.
$$\log \left| rac{y+x}{x^4(y-x)}
ight| = rac{4x}{x+xy} + c$$

$$\left| \mathsf{B.} \log \left| rac{y-x}{x^4(y+x)}
ight| = rac{4x}{x+xy} + c$$

$$\left| \mathsf{C.} \log \left| \dfrac{y+x}{x^4(y-x)} \right| = \dfrac{4x}{x+y} + c \right|$$

$$\left| \mathsf{D.} \log \left| rac{y-x}{x^4(y+x)}
ight| = rac{2x}{x+y} + c$$

Answer: D

Solution of

the

differential equation

$$igg(x\sqrt{x^2-y^2}-y^2igg)dx+xydy=0$$
 is

A.
$$\sqrt{x^2+y^2}=\log \lvert cx
vert$$

$$\mathsf{B.}\,\sqrt{x^2+y^2}=\,-\log\lvert cx\rvert$$

C.
$$\sqrt{x^2+y^2}=x\log |cx|$$

D.
$$\sqrt{x^2+y^2}= -x\log |cx|$$

Answer: D

Watch Video Solution

184. Solution of the differential equation $x \frac{dy}{dx} = y + \sqrt{x^2 + y^2}$, is

A.
$$y-\sqrt{x^2+y^2}=cx^2$$

$$\texttt{B.}\,y + \sqrt{x^2 + y^2} = cx^2$$

C.
$$y-\sqrt{x^2+y^2}=cx$$

D.
$$y+\sqrt{x^2+y^2}=cx$$

Watch Video Solution

185. Solution of the differential equation $\dfrac{dy}{dx} = \dfrac{y + \sqrt{x^2 - y^2}}{x}$ is

A.
$$\sin^{-1}\left(\frac{x}{u}\right) - \log|x| = c$$

$$\mathtt{B.}\sin^{-1}\!\left(\frac{x}{y}\right) + \log\lvert x \rvert = c$$

$$\mathsf{C.}\sin^{-1}\!\left(\frac{y}{x}\right) - \log\!|x| = c$$

D.
$$\sin^{-1}\!\left(rac{y}{x}
ight) + \log\!|x| = c$$

Answer: C

Watch Video Solution

186. The solution of the differential equation $x+y\dfrac{dy}{dx}=2y$ is

- A. 0
- B. constant
- $\mathsf{C}.\,\infty$
- D. 1

Watch Video Solution

- 187. The particular solution of the differential equation x dy+2y dx=0, then x=2, y=1 is
 - A. $x^2y=4$
 - $\mathtt{B.}\,x^2y=2$
 - $\mathsf{C.}\,x^2y=1$
 - $\operatorname{D.} x^2 y = 0$

Answer: A

188. Particular solution of the differential equation $xy \frac{dy}{dx} = x^2 + 2y^2, \, y(1) = 0, \, ext{is}$

A. $x^2 + y^2 + x^4 = 0$

B.
$$x^2 - y^2 - x^4 = 0$$

C.
$$x^2 + y^2 - x^4 = 0$$

D.
$$x^2 - y^2 + x^4 = 0$$

Answer: C

Watch Video Solution

189. Solution of the differential equation $\left(x^2+2y^2\right)dx-xydy=0,$ when y (9)=0 is

A.
$$x^4 = -81(x^2 + y^2)$$

B. $x^4 = 81(x^2 + y^2)$

C. $x^4 = -9(x^2 + y^2)$

D. $x^4 = 9(x^2 + y^2)$

Answer: B

Watch Video Solution

190. Show that the differential equation $2xy\frac{dy}{dx}=x^2+3y^2$ is homogeneousand solve it.

A. $x^2 + y^2 = x^2c$

B. $x^2 - y^2 = x^2c$

C. $x^2 + y^2 = x^3c$

D. $x^2 - y^2 = x^3 c$

Answer: C

191. Which of the following equation is non-linear?

A.
$$\frac{dy}{dx} + \frac{y}{x} = \log x$$

$$\mathsf{B.}\, y \frac{dy}{dx} + 4x = 0$$

C. dx+dy=0

$$D. \frac{dy}{dx} = \cos x$$

Answer: B

Watch Video Solution

192. If the integrating factor of the differential equation

$$\frac{dy}{dx} + P(x) y = Q(x) \text{ is } x \text{, then } P(x) \text{ is}$$

A.
$$y=ce^{\int pdx}$$

B. $x = ce^{-\int pdx}$

C. $y=ce^{-\int pdx}$

D.
$$=ce^{-\int pdx}$$

Answer: C

Watch Video Solution

194. Solution of the differential equation
$$\dfrac{dy}{dx}+\dfrac{y}{3}=1$$
 is $y=3+ce\dfrac{^{-x}}{3}$

A.
$$y=3+ce^{rac{x}{3}}$$

B.
$$y=3+cerac{-x}{3}$$
C. $3y=3+ce^{rac{x}{3}}$

D.
$$3y = 3 + ce^{-\frac{x}{3}}$$

Answer: B

195. Find the general solution of the differential equation

$$xrac{dy}{dx}+2y=x^2(x
eq0).$$

A.
$$y=rac{x^2+c}{4r^2}$$

$$\mathsf{B.}\, y = \frac{x^2}{4} + c$$

$$\mathsf{C.}\, y = \frac{x^4 + c}{x^2}$$

D.
$$y=rac{x^4+c}{4x^2}$$

Answer: D

Watch Video Solution

196. Solution of the differential equation $(x+y) rac{dy}{dx} = 1$ is

A.
$$x + y + 1 = ce^y$$

$$B. x + y - 1 = ce^y$$

C.
$$x - y + 1 = ce^y$$

$$D. x - y - 1 = ce^y$$

Answer: A

Watch Video Solution

197. The solution of the differential equation $\dfrac{dy}{dx}=\dfrac{1}{x+y^2}$ is

A.
$$y = -x^2 - 2x^2 - 2 + ce^x$$

B.
$$y = x^2 + 2x + 2 - ce^x$$

C.
$$x = y^2 + 2y + 2 - ce^y$$

D.
$$x = -y^2 - 2y - 2 + ce^y$$

Answer: D

Watch Video Solution

198. Soluton of the kdifferential equaiton $(x+y)dy=a^2dx$ is

A.
$$x+y-a^2=ce^{rac{y}{a^2}}$$

D.
$$x-y-a^2=ce^{rac{y}{a2}}$$

 $\mathsf{B.}\,x-y+a^2=ce^{\frac{y}{a^2}}$

C. $x + y + a^2 = ce^{\frac{y}{a^2}}$

Answer: C

Watch Video Solution

199. Solution of the differential equation $(x+a)rac{dy}{dx}-3y=(x+a)^5$ is

A.
$$2y + (x+a)^5 = 2c(x+a)^3$$

B.
$$2y - (x+a)^5 = 2c(x+a)^3$$

C.
$$y + 2(x+a)^5 = c(x+a)^3$$

D.
$$y - 2(x+a)^5 = c(x+a)^3$$

Answer: B

200. Solution of the differential equation $\frac{dy}{dx} + \frac{1}{x}y = 3x$ is

$$\int \frac{dy}{dx} + \frac{1}{x}y = 3x$$
 is

A. x

B. log x

C. 0

 $D. \infty$

Answer: A

Watch Video Solution

201. Solution of the differential equation $\frac{dy}{dx} + \frac{1}{x}y = x^3 - 3$ is

A.
$$xy=rac{x^5}{5}-rac{3x^2}{2}+c$$

B.
$$xy = \frac{x^5}{5} + \frac{3x^2}{2} + c$$

C.
$$xy = \frac{-x^5}{5} - \frac{3x^2}{2} + c$$

D.
$$xy=rac{-x^5}{5}+rac{3x^2}{2}+$$
 C

Answer: A

Watch Video Solution

202. The solution of the differential equation
$$\frac{(x+2y^3)dy}{dx} = y$$
 is (a) $(b)(c)(d)\frac{x}{2}(f)(g)y^{(h)2(i)}(j)(k)(l) = y + c(m)$ (b)

$$(b)(c)(d)rac{x}{e}\Big((f)(g)y^{(h)\,2\,(i)}(j)\Big)(k)(l)=y+c(m)$$
 (n) (b) $(o)(p)(q)rac{x}{r}y(s)(t)=(u)y^{\,(v)\,2\,(w)}(x)+c(y)$ (z) (c)

(d)

$$(d)(e)(f)rac{(g)(h)x^{(i)\,2\,(j)}\,(k)}{l}y(m)(n)=(o)y^{(p)\,2\,(q)}\,(r)+c(s)$$
 (t) $(u)(v)(w)rac{y}{x}x(y)(z)=(aa)x^{(bb)\,2\,(cc)}\,(dd)+c(ee)$ (ff)

A.
$$y = x(y^2 + c)$$

B.
$$y = -x(y^2 + c)$$

$$\mathsf{C.}\,\mathsf{x} = y(y^2 + c)$$

$$\mathsf{D}.\,\mathsf{x}=\,-\,y\big(y^2+c\big)$$

Answer: C

203. Solution of the differential equation $ydx + \left(x - y^2\right)dy = 0$ is

$$A. xy + y^3 = c$$

$$B. xy - y^3 = c$$

$$\mathsf{C.}\,3xy+y^3=c$$

$$D. 3xy - y^3 = c$$

Answer: D

204. Solution of the differential equatio
$$(1-x^2)rac{dy}{dx} + 2xy = x\sqrt{1-x^2}$$
 is

A.
$$y - \sqrt{1 - x^2} = c(1 - x^2)$$

B.
$$y+\sqrt{1-x^2}=cig(1-x^2ig)$$

C.
$$y-2\sqrt{1-x^2}=c(1-x^2)$$

D.
$$y+2\sqrt{1-x^2}=c(1-x^2)$$

Answer: A

Watch Video Solution

205. Solution of the differential equation $(1+x)rac{dy}{dx}-xy=1-x$ is

A.
$$xy + y + x = ce^x$$

$$\mathsf{B.}\, xy + y - x = ce^x$$

$$\mathsf{C.}\, xy + y + x = ce^{\,-x}$$

$$\mathsf{D}.\, xy + y - x = ce^{\,-x}$$

Answer: B

$$(x^2+1) \frac{dy}{dx} + 2xy = x^2 - 1$$

Intergrating

factor

equaiton

$$ig(x^2+1ig)rac{dy}{dx}+2xy=x^2-1$$
 is

A.
$$\dfrac{x^2-1}{x^2+1}$$
B. $\dfrac{2x}{x^2+1}$

 $C. x^2 + 1$

206.

$$\frac{4x}{x+1}$$

D. $-(x^2+1)$

Answer: C

Watch Video Solution

 $(1+y+x^2y)dx + (x+x^3)dy = 0$ is

207. An integrating factor of the differential equation

A. log x

B. x

 $\mathsf{C}.\,x^e$

D.
$$\frac{1}{r}$$

Watch Video Solution

- 208. If an intergrating factor of the differential equation $(x-x^3)dy-ig(ax^3+y-2x^2yig)dx=0$ is $e^{\int pdx}, ext{ then p is}$
 - A. $\dfrac{2x^2-1}{x-x^3}$
 - $\mathsf{B.} \; \frac{1-2x^2}{x-x^3}$
 - C. $\frac{ax}{x-x^3}$
 - D. $\dfrac{2x^2-1}{x-x^3}$

Answer: A

$$rac{dy}{dx}+rac{2x}{1+x^2}y=rac{1}{\left(1+x^2
ight)^2}$$
, is

The

210. IF $\sin x$ is the integerating factor (I.F.) of the linear differential

differential

equation

solution

A.
$$y(1-x^2) = \tan^{-1} x + c$$

of

B.
$$y(1+x^2) = \tan^{-1} x + c$$

C.
$$y(1+x^2)^2 = \tan^{-1}x + c$$

D.
$$y(1-x^2)^2= an^{-1}x+c$$

Answer: B

209.

Watch Video Solution

equation $\frac{dy}{dx} + py = Q$ then P is

A. log sin x

B. cos x

C. tan x

Answer: D

Watch Video Solution

211. Solution of the differential equation $\frac{dy}{dx} + y \cos x = 0$ is

$$A. 2y = \cos x - \sin x + 2ce^{-x}$$

$$B. 2y = \cos + \sin x + 2ce^{-x}$$

$$\mathsf{C.}\, y = \cos x - \sin x + c e^{-x}$$

$$D. y = \cos x + \sin x + ce^{-x}$$

Answer: B

A.
$$y + \tan x - 1 = ce^{-\tan x}$$

$$B. y - \tan x + 1 = ce^{-\tan x}$$

$$\mathsf{C.}\,y + \tan x - 1 = ce^{\tan x}$$

D.
$$y - \tan x + 1 = ce^{\tan x}$$

Watch Video Solution

213. Find the general solution of the following differential equations

$$(i)\frac{dy}{dx} + y\sec x = \tan x$$

$$(ii)rac{dy}{dx}+y\cot x=2\cos x$$

$$A. y = 1 + \frac{c + x}{\sec x + \tan x}$$

$$\mathsf{B.}\,y = 1 + \frac{c - x}{\sec x + \tan x}$$

$$\mathsf{C.}\,y = 1 - \frac{c+x}{\sec x + \tan x}$$

D.
$$y=1-rac{c-x}{\sec x+\tan x}$$

Watch Video Solution

214. The integrating factor of linear differential equation $rac{dy}{dx} + y \sec x = \tan x$ is

- A. sec x-tan x
- B. sec x tan x
- C. sec x +tan x
- D. sec x cot x

Answer: C

Watch Video Solution

215. Solution of the differential equation $x \sin x \frac{dy}{dx} + (x \cos x + \sin x)y = \sin x$ is

A.
$$xy \cos x - \sin x = c$$

B.
$$xy cos x + sin x = c$$

C.
$$xy sin x - cos x = c$$

D.
$$xy \sin x + \cos x = c$$

Answer: D

is

Watch Video Solution

216. Solution of the differential equation $dr + (2r\cot\theta + \sin2\theta)d\theta = 0$

A.
$$r\sin^2 heta+rac{\sin^4 heta}{4}=c$$

$$\frac{7.7 \, \text{sm}^{-6} \, \text{o}^{-1}}{4}$$

$$\mathsf{B.}\,r\sin^2\theta - \frac{\sin^4\theta}{4} = c$$

C.
$$r\sin^2 heta+rac{\sin^4 heta}{2}=c$$

D.
$$r\sin^2 heta - rac{\sin^4 heta}{2} = c$$

Answer: C

217. If
$$\frac{dy}{dx}+2y\tan x=\sin x$$
 and $y=0$, when $x=\frac{\pi}{3}$, show that the maximum value of y is $\frac{1}{3}$

$$A. y + \cos x + 2\cos^2 x = 0$$

$$B. y - \cos x - 2\cos^2 x = 0$$

$$\mathsf{C.}\,y - \cos x + 2\cos^2 x = 0$$

D.
$$y+\cos x-2\cos^2 x=0$$

Answer: C

218. If
$$\frac{dy}{dx}+2y\tan x=\sin x$$
 and $y=0$, when $x=\frac{\pi}{3}$, show that the maximum value of y is $\frac{1}{3}$

A.
$$\frac{1}{4}$$

c.
$$\frac{1}{16}$$

Watch Video Solution

219. The solution of the differential equation $\dfrac{dy}{dx} = \sec x - y \tan x$ is :

A.
$$e^{\tan x}$$

B. $e^{\cos x}$

C. sec x +tan x

D. cosec x

Answer: C

220. The solution of the differential equation $\dfrac{dy}{dx} = \sec x - y \tan x$ is :

A. y sec
$$x = tan x+c$$

B. y sec x +tanx=c

C. sec x=y tanx+c

D. sec x +y tan x=c

Answer: A

Watch Video Solution

221. The solution of the differential equation

$$\frac{dy}{dx} + \frac{3x^2}{1+x^3}y = \frac{\sin^2 x}{1+x^3}$$
, is

A.
$$yig(1+x^3ig)=rac{x}{2}-rac{1}{2}{\sin2x}+c$$

$$\texttt{B.}\,y\big(1+x^3\big)=\frac{x}{2}+\frac{1}{2}{\sin 2x}+c$$

$$\mathsf{C.}\,y\big(1+x^3\big)=\frac{x}{2}-\frac{1}{4}{\sin 2x}+c$$

D.
$$yig(1+x^3ig)=rac{x}{2}+rac{1}{4}{
m sin}\,2x+c$$

Answer: C

Watch Video Solution

222. Solve the differential equation $dy=\cos x(2-y\csc x)dx$ given that

$$y=2, ext{when } ext{x}d=rac{\pi}{2}$$

A. y=sinx+cosx

$$\mathtt{B.}\,y = \tan\!\left(\frac{x}{2}\right) + \cot\!\left(\frac{x}{2}\right)$$

$$\mathsf{C.}\,y = rac{1}{\sqrt{2}}\mathrm{sec}\Big(rac{x}{2}\Big) + \sqrt{2}\cos\Big(rac{x}{2}\Big)$$

D. y=sinx+cosx

Answer: A

Watch Video Solution

223. Solution of the differential equation $\frac{dy}{dx} + y \tan x = x^n \cos x$ is

A.
$$(n+1)y - x^{n-1}\cos x = c(n+1)\cos x$$

B.
$$(n+1)y + x^{n-1}\cos x = c(n+1)\cos x$$

$$\mathsf{C.}\,(n+1)y-x^{n-1}\cos x=c(n+1)\!\cos x$$

$$c. (n+1)y - x = cos x - c(n+1)cos$$

D.
$$(n+1)y+x^{n-1}\cos x=c(n+1)\cos x$$

Answer: C

Watch Video Solution

$$(1+y^2)dx = (an^{-1}y - x)dy$$
 is

224. The solution of the differential equation

A.
$$x+ an^{-1}y+1ce^{- an^{-1}y}$$

B.
$$x - \tan^{-1} y + 1ce^{-\tan^{-1} y}$$

C.
$$x + an^{-1} y - 1ce^{- an^{-1} y}$$

D.
$$x - \tan^{-1} y - 1ce^{-\tan^{-1} y}$$

Answer: B

225. Solution of the differential equation $x - an^{-1} y - 1ce^{- an^{-1} y}$ is

A.
$$y = (c - x)e^x$$

B.
$$y = (c-x)e^{-x}$$

$$\mathsf{C}.\,y=(c+x)e^x$$

D.
$$y = (c + x)e^{-x}$$

Answer: D

View Text Solution

226. The solution of the differential equation $x \frac{dy}{dx} = 2y + x^3 e^x$, where

$$A. y = x^3(e^x - e)$$

$$\mathtt{B.}\, y = x^3(e-e^x)$$

$$\mathsf{C}.\,y=x^2(e^x-e)$$

$$D. y = x^2(e - e^x)$$

Answer: C

Watch Video Solution

227. Integrating factor of the differential equation

$$(x.\log x)\frac{dy}{dx} + y = 2\log x$$
 is

A.
$$y = \log|x| + c$$

$$\mathsf{B}.\,y = 2\log|x| + c$$

$$\mathsf{C}.\,y\log|x|=\left(\log|x|\right)^2+c$$

$$\mathsf{D}.\,y = x\log |x| + c$$

Answer: C

Watch Video Solution

228. Let y(x) be the solution of the differential equation $(x\log x)rac{dy}{dx}+y=2x\log x,$ $(x\geq 1)$, Then y(e) is equal to

A. 2

B. 2e

C. e

D. 0

Answer: A

Watch Video Solution

229. An integrating factor of the differential equation

 $xrac{dy}{dx}+y\log x=xe^xx^{rac{-1}{2}\log x},(x>0),$ is

A. $x^{\log x}$

B. e^{x^2}

C. $(\sqrt{e})^{\log x}$

D.
$$\left(\sqrt{x}\right)^{\log x}$$

Answer: D

Watch Video Solution

230. Solution of the differential equation $ydx - xdy + \log xdx = 0$ is

A.
$$y + \log |x| + 1 = cx$$

$$\mathsf{B}.\,y - \log |x| + 1 = cx$$

$$\mathsf{C}.\,y + \log |x| - 1 = cx$$

$$D. y - \log|x| - 1 = cx$$

Answer: A

Watch Video Solution

231. Solution of the differential equation $x \frac{dy}{dx} + 2y = x^2 \log x$ is

- B. $x^2y \frac{x^4}{16} + \frac{x^4}{4}\log|x| = c$

A. $x^2y + \frac{x^4}{16} + \frac{x^4}{4}\log|x| = c$

- $|C.x^2y + \frac{x^4}{16} \frac{x^4}{4}\log|x| = c|$
- D. $x^2y-rac{x^4}{16}-rac{x^4}{4}\mathrm{log}|x|=c$

Answer: C

Watch Video Solution

- 232. An integrating factor of the differential equation $y \log y \frac{dx}{dy} + x - \log y = 0$, is
 - $A. x \log|y| + (\log|y|)^2 = c$
 - $B. x \log|y| (\log|y|)^2 = c$
 - C. $2x \log|y| + (\log|y|)^2 = c$
 - $\mathsf{D}.\,2x\log|y|-(\log|y|)^2=c$

Answer: D

233. Find the equation of a curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.

A.
$$x + y + 1 = e^x$$

B.
$$x + y - 1 = e^x$$

$$\mathsf{C.}\,x-y+1=e^x$$

D.
$$x - y - 1 = e^x$$

Answer: A

234. Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.

A.
$$x + y = 4 + 2e^x$$

$$\mathsf{B.}\,x-y=4+2e^x$$

$$\mathsf{C.}\,x+y=4-2e^x$$

D.
$$x - y = 4 - 2e^x$$

Answer: C

Watch Video Solution

235. Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x coordinate (abscissa) and the product of the x coordinate and y coordinate (ordinate) of t

A.
$$y-1=2e^{-rac{x^2}{2}}$$

B.
$$y+1=2e^{-rac{x^2}{2}}$$

C.
$$y-1=2e^{rac{x^2}{2}}$$

D.
$$y+1=2e^{rac{x^2}{2}}$$

Answer: D

Watch Video Solution

236. The slope of the tangent to the curve at any point is equal to y + 2x.

Find the equation of the curve passing through the origin .

A.
$$y + 2(x + 1) = 2e^x$$

B.
$$y - 2(x+1) = 2e^x$$

C.
$$y + 2(x + 1) = e^x$$

D.
$$y - 2(x + 1) = e^x$$

Answer: A

Watch Video Solution

237. Find the equation of the cure which passes through the origin and has the slope x+3y-1 at the point (x,y) on it.

A.
$$3(x-3y) = 2(1-e^{3x})$$

B. $3(x+3y) = 2(1-e^{3x})$

$$\mathsf{C.}\,3(x-3y)=2\big(e^{3x}-1\big)$$

D.
$$3(x+3y)=2ig(e^{3x}-1ig)$$

Answer: B

Watch Video Solution

then the equation of curve passing through the point (1,2) is

A.
$$x^2y + y + 4 = 0$$

238. If the slope of tangent to the curve at every point on it is $\frac{-2xy}{x^2+1}$,

$$B. x^2y - y - 4 = 0$$

$$\mathsf{C.}\,x^2y-y+4=0$$

D.
$$x^2y+y-4=0$$

Answer: D

239. The tangent at any point (x,y) of a curve makes an angle $\tan^{-1}(2x+3y)$ with x-axis. Find the equation of the curve if it passes through (1,2).

A.
$$6x - 9y - 2 = 26e^{3^{(x-1)}}$$

B.
$$6x - 9y + 2 = 26e^{3^{(x-1)}}$$

C.
$$6x + 9y - 2 = 26e^{3^{(x-1)}}$$

D.
$$6x + 9y + 2 = 26e^{3^{(x-1)}}$$

Answer: D

Watch Video Solution

240. An equation relating to stability of an aeroplane is $\frac{dv}{dt}=g\cos\alpha-kv, \text{ where v is the velocity and g, k,}\alpha\text{ are constantts. If v=0. at t=0, velocity is}$

A.
$$\frac{g\cos\alpha}{k} (1 - e^{-kt})$$

B.
$$\dfrac{-g\coslpha}{k}ig(1-e^{-kt}ig)$$

C.
$$\frac{g\cos\alpha}{k}ig(1-e^{kt}ig)$$

D.
$$\frac{-g\coslpha}{k}ig(1-e^{kt}ig)$$

Answer: A

View Text Solution

241. The population of a city increases at a rate proportional to the population at that time. If the polultion of the city increase from 20 lakhs to 40 lakhs in 30 years, then after another 15 years, the polulation is

A.
$$10\sqrt{2}lakhs$$

B.
$$20\sqrt{2}lakhs$$

C.
$$30\sqrt{2}$$

D.
$$40 sqrqt2 lakhs$$

Answer: D

Watch Video Solution

242. The polulation of a city increases at a rate proportional to the population at that time. If the population of the city is doubled in 60 years, then population will be triplet in (log2=0.6912,log 3=1.0986)

- A. 95.4 years
- B. 95.3 years
- C. 94.5 years
- D. 95.5 years

Answer: A

Watch Video Solution

243. The rate of growth of a population is proportional to the number present if the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?

- A. 60 years
- B. 58 years
- C. 48 years
- D. 54 years

Answer: B

Watch Video Solution

244. The population of a town increases at a rate proportional to the population at that time . If the population increases from 40 thousands to 60 thousands in 40 years, What will be the population in another 20 years ? = [Given: $\sqrt{\frac{3}{2}} = 1.2247$]

- A. $5\sqrt{6}$ thousands
- B. $3\sqrt{6}$ thousands
- C. $5\sqrt{3}$ thousands
- D. $3\sqrt{3}$ thousands

Answer: B

Watch Video Solution

245. The population of a city increases at a rate proportional to the population at that time. If constant of proportionality is 0.04, then population of a city after 25 years, when initial polulation is 10,000 is (e=2.72)

- A. 27200
- B. 13600
- C. 2720
- D. 1360

Watch Video Solution

246. The population of a city increase at a rate proportional to the population at that time. In 40 years the population is increased from 30,000 to 40,000 then after time t, the population is

- A. $(40000) \left(\frac{4}{3}\right)^{\frac{t}{40}}$
- $\mathrm{B.}\,(40000) \left(\frac{3}{4}\right)^{\frac{t}{40}}$
- C. $(30000) \left(\frac{4}{3}\right)^{\frac{t}{40}}$
- D. $(30000) \left(\frac{3}{4}\right)^{\frac{t}{40}}$

Answer: C

Watch Video Solution

247. Let the population of rabbits surviving at a time t be governed by the differential equation $\left(dp\frac{t}{dt}=\frac{1}{2}p(t)-200.$ If p(0)=100, then p(t) equals (1) $400-300e^{t/2}$ (2) $300-200e^{-t/2}$ (3) $600-500e^{t/2}$ (4) $400-300e^{-t/2}$

A.
$$400-300e^{\frac{t}{2}}$$

B.
$$300-200e^{rac{t}{2}}$$

C.
$$600-500e^{rac{t}{2}}$$

D.
$$400-300e^{rac{t}{2}}$$

Answer: A

Watch Video Solution

248. The population grows in at the rate of 8% per year. Find the time taken for the population to become double . (Given : log 2 = 0.6912)

A. 12.98 years

- B. 4.32 years
- C. 17.28 years
- D. 8.64 years

Answer: D

Watch Video Solution

249. The rate of increase in the number of bacteria in a certain becteria culture is proportional to the number present at that time. If initially there are 300 bacteria and after 2 hours, the bacteria polulation is increased by 20% then after 24 houre, the number of bacteria are $(\log 1.2 = 0.18232, e^{2.18784} = 8.9166)$

- A. 2675
- B. 2674
- C. 3210
- D. 3209

Answer: A

View Text Solution

250. The rate of increase in the number of bacterai in a certain becteria culture is proportional to the number present at that time. If is found that the number doubles in 4 hours, then at the end of 12 hours, the number of bacteria are

- A. 4 times the original
- B. 6 time the original
- C. 8 times the original
- D. 10 times the original

Answer: C

View Text Solution

251. The rate of increase in the number of bacteriad in a certain bacteria culture is proportional to the number present at that time. After 2 hours there are 600 becteria and after 8 hours the count is 75000, then the initial population is

- A. 102
- B. 120
- C. 124
- D. 142

Answer: B

Watch Video Solution

252. The rate of increase in the number of bacteria in a certain culture is proportional to the number present at that time. After 2 hours there are 600 bacteria and after 8 hours the count is 75000, then the population will be 200000 after

A. 9.21 hours B. 9.12 hours C. 9.22 hours D. 9.23 hours Answer: A Watch Video Solution 253. Bacteria increases at the rate proportional to the number of bacteria present. If the original number N doubles in 3 hours, find in how many hours the number of bacteria will by 4N? A. 6 hours B. 4 hours C. 5 hours D. 5.5 hours

Answer: A

Watch Video Solution

254. The rate o growth of bacteria is proportional to the number present . IT intially, there were 1000 bacteria and the number doubles in 1 hours.

Find the number of bacteria after $2\frac{1}{2}$ hours . [take $\sqrt{2}=1.414$]

- A. 2828
- B. 5656
- C. 11312
- D. 22624

Answer: B

Watch Video Solution

255. In a culture of yeast the active fernment doubles itself in 3 hours. If the quanitity increases at a rate proportional to itself, then in 15 hours, the amount will be. Times original amount.

- A. 4
- B. 8
- C. 32
- D. 16

Answer: C

Watch Video Solution

256. Bismath decomposes at a rate proportional to the quanitity of the substance present. If initial mass of substance is 800 mg. and its half life is of 5 days, then the mass of bismath after 30 days is

A. 12.5 mg

- B. 25 mg
- C. 6.25 mg
- D. 18.75 mg

Answer: A

Watch Video Solution

- 257. The rate of decay of the mass of a radioactive substance at any time
- is 10^{-4} times its mass at that instant. After 10000 years, the mass will be
 - A. less than half of origina mass
 - B. double of original mass
 - C. tripe of original mass
 - D. square of original mass

Answer: A

Watch Video Solution

258. A radioactive substance decompose at a rate present. If initial amount of substance is 1.5 grams then the 0.5 grams of substance remains in. Days

- A. k log 3
- B. log 3
- $\mathsf{C.}\ \frac{1}{k}\log 3$
- D. $\frac{1}{\log 3}$

Answer: C

Watch Video Solution

259. A radioactive substance decompose at a rate proportional to the quantity of the substance present. If intiallythe substance present is 100 mg and the half life of substance is 1590 years, then the substance reduces to 30 mg in $\log\left(\frac{10}{3}\right)=1.2040, \log 2=0.6932$

- A. 2761.62 years
- B. 2761.63 years
- C. 2767.62 years
- D. 2767.63 years

Answer: B

View Text Solution

260. The rate of decay of certain substance is directly proportional to the amount present at that instant . Initially there are 27 gm of certain substance and three hours later it is found that 8 gm are left. Find the amount left after one more hour.

- A. $\frac{2}{3}$ grams
- $\mathrm{B.}~\frac{4}{3}~\mathrm{grams}$
- C. $\frac{8}{3}$ grams
- D. $\frac{10}{3}$ grams

Answer: D

Watch Video Solution

261. If is given that radium decomposes at a rate proportional to the amount present. If $p\,\%$ of th original amount of radium disappears in l years, what percentageof it will remain after 2l years?

A.
$$\left(10-\frac{P}{10}\right)^2\%$$

B.
$$\left(10 + \frac{P}{10}\right)^2 \%$$

C.
$$\left(100 - \frac{P}{100}\right)^2 \%$$

D.
$$\left(100 + \frac{P}{100}\right)^2 \%$$

Answer: A

Watch Video Solution

262. The uranium disintegrates at a rate proportional to the amount present at any instant. If m_1 and m_2 gms of uranium are present at time t_1 and t_2 respectively, then half life of uranium is

A.
$$\dfrac{(t_1-t_2)\mathrm{log}\,2}{\mathrm{log}\Bigl(\dfrac{m_1}{m_2}\Bigr)}$$
B. $\dfrac{(t_2-t_1)\mathrm{log}\,2}{\mathrm{log}\Bigl(\dfrac{m_1}{m_2}\Bigr)}$
C. $\dfrac{(t_1-t_2)\mathrm{log}\Bigl(\dfrac{m_1}{m_2}\Bigr)}{\mathrm{log}\,2}$
D. $\dfrac{(t_2-t_1)\mathrm{log}\Bigl(\dfrac{m_1}{m_2}\Bigr)}{\mathrm{log}\,2}$

Answer: B

View Text Solution

263. Water at $100^\circ C$ cools in 10 minutes to $88^\circ C$ in a room temperature of $25^\circ C$.Find the temperature of water after 20 minutes.

A. $67^{\circ}C$

B. $68^{\circ}C$

 $\mathsf{C}.\,77^{\circ}\,C$

D. $78^{\circ}C$

Answer: D

Watch Video Solution

264. According to Newton's law of cooling, the body cools from $80^{\circ}C$ and $50^{\circ}C$ at room temperature of $25^{\circ}C$ in 30 minutes. After 1

hours, the temperature of the body is

A. $11.36\,^{\circ}\,C$

B. 18.18° C

C. $36.36^{\circ}C$

D. 22.72° C

Answer: C

265. According to Newton's law of cooling, the body cools from $100^\circ C \to 60^\circ C$ in 20 minutes. The temperature of the surrounding being $20^\circ C$ The body cool down to $30^\circ C$ in

A. 40 minutes

B. 50 minutes

C. 90 minutes

D. 60 minutes

Answer: D

View Text Solution

266. According to Newton's law of cooling, the body cools from $110^\circ C$ to $60^\circ C$ at room temperature of $10^\circ C$ in 1 hour. The body cools to $30^\circ C$ after another

- A. $\frac{\log 5}{\log 2}$ 1hours
 - B. $\frac{\log 5}{\log 2} + 1$ hours
 - C. $\frac{\log 5}{\log 2}$ hours
 - D. $\frac{\log 2}{\log 5}$ hours

Answer: A

View Text Solution

air is proportional to the difference between the temperature of the body and the temperature of the surrounding air. If the air temperature is $20^{\circ}C$ and the body cools for 20 minutes from $140^{\circ}C
ightarrow 80^{\circ}C$, then the temperature will be $50^{\circ} C$ in

267. According to Newton's law of cooling, the rate of cooling of a body in

- A. 30 minutes
- B. 40 minutes
- C. 50 minutes

D. 60 minutes

Answer: B

View Text Solution

268. The doctor took the temperature of a dead body at 11.30 Pm which was 94.6^0F . He took the temperature of the body again after one hour, which was 93.4^0F . If the temperature of the room was 70^0F , estimate the time of death. Taking normal temperature of human body as 98.6^0F . $\log(143)$ $\log(123)$

[Given:
$$\frac{\log(143)}{123} = 0.15066, \frac{\log(123)}{117} = 0.05$$
]

- A. 8.30 a.m.
- B. 8.30 p.m.
- C. 2.30 a.m.
- D. 9.30 p.m.

Answer: B

Watch Vidaa Calutian

269. A bullet is fired into a sand bag such that its retardation is assumed equal to the square root of its velocity on entering. If the velocity on entering the bag is 144 m/sec., then the time k requried for the bullet to

A. 6 sec.

travel is

B. 12 sec.

C. 24 sec.

D. 48 sec.

Answer: C

Watch Video Solution

270. The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 secons it is 2 units, find the radius after t seconds.

A.
$$\sqrt{rac{t^2}{3}+1}$$
units

B.
$$\sqrt{rac{t^2+1}{3}}$$
 units

C.
$$\sqrt{t^2+1}$$
units

D.
$$\sqrt{t^2+3}$$
units

Answer: A

Watch Video Solution

271. Assume that a spherical rain drop evaporates at a rate proportional to its surfaceradius originally is 3 mm and 1 hour later has been reduced to 2 mm, find an expression for the radius of the rain drop at any time.

A. 2-t mm

B. 2+t mm

C. 3-t mm

D. 3+t mm

Answer: C

Watch Video Solution

272. Water is being poured into a vessel, in the form of an inverted right circular cone of semi-vertical angle 45° , in such a way that the rate of change of volume at any time is proportional to the area of the curved surface which is wet at that time. Intially, the vessel is full to a height to 2 cm and after 2 seconds, the height is 10 cm. After 3.5 seconds, the height is

- A. 18 cm
- B. 16 cm
- C. 14 cm
- D. 12 cm

Answer: B

View Text Solution

273. A right circular cone has height 9 cm and base radius is 5 cm. It is inverted and water is poured into it. If at any instant, the level of the water riese at the surface at that instant, then vessel will be full in

- A. 25 seconds
- B. 50 seconds
- C. 75 seconds
- D. 100 seconds

Answer: C

View Text Solution

274. Water flows from the base of rectangular tank of depth 16 mater. The rate of flowing the water is proportional to the square root of depth at any time t. If depth is 4 mater when t=2 hours then after 3 hours the depth is

A. 1 meter
B. 2 meters
C. 3 meters
D. 3.5 meters
Answer: A
Watch Video Solution
275. The rate of reduction of person's assets is proportional to square-root of his exising assets. In 2 years, his assets reduce from 25 lakhs to 6.25 lakhs, then the person will be bankrupt in another
A. 4 years
B. 3 years
C. 2 years
D. 1 years

Answer: C

Watch Video Solution

276. The particular solution of the differntial equation xdy+2ydx=0, when x=2 , y=1 is

A.
$$xy = 4$$

B.
$$x^2y = 4$$

$$\mathsf{C.}\,xy^2=4$$

D.
$$x^2y^2 = 4$$

Answer: B

Watch Video Solution

277. If $(2+\sin x)\frac{dy}{dx}+(y+1)\cos x=0$ and y(0)=1, then $y\Big(\frac{\pi}{2}\Big)$ is equal to

- $\mathsf{B.}\;\frac{1}{3}$
- $\mathsf{c.}\,\frac{-2}{3}$
- D. $\frac{-1}{3}$

Answer: B

Watch Video Solution