# ©゙doubtnut 

## MATHS

# BOOKS - NIKITA MATHS (HINGLISH) 

## LINEAR PROGRAMMING

## Mcqs

1. L.P.P. is a process of finding
A. maximum value of objective function
B. minimum value of objective function
C. optimal value of objective function
D. only maximum value of objective function

## Answer: C

2. Optimization of the objective function is a process of
A. maximizing the objective function
B. maximizing or minimizing the objective function
C. minimizing the objective function
D. only minimizing the objective function

## Answer: B

## - View Text Solution

3. Objective function of an LPP is
A. a constraint
B. a function to be optimised
C. a relation between the variable
D. feasible region

## Answer: B

## - Watch Video Solution

4. The function to be optimized is called
A. an objective function
B. the constraint
C. the non-negative constraint
D. an inequality

## Answer: A

## - View Text Solution

5. Which of the following statement is correct ?
A. A L.P.P admits a unique solution
B. Every L.P.P. does not admits an optimal solution
C. If a L.P.P. admits two optimal solution, then it has infinite number of optimal solution
D. A L.P.P. admits two optimal solution.

## Answer: C

## - Watch Video Solution

6. The optimal value of the objective function is attained at the points
A. given by intersection of inequations with axes only
B. given by by intersection of inequations with X -axis only
C. given by corner points of the feasible region
D. given by corner points

## Answer: C

7. The maximum or minimum of the objective funtion occurs only at the corner points of the feasible region. This theorem is known as fundamental theorem of
A. Algebra
B. Arithmetic
C. Calculus
D. Extreme point

## Answer: D

## - View Text Solution

8. Corner points of fealible region of inequalities gives
A. an optiomal solution of L.P.P.
B. an objective function
C. the constraints.
D. the linear assumption.

## Answer: A

## - View Text Solution

9. The feasible solution of a LPP belongs to
A. first and second
B. first and third
C. only second
D. only first

## Answer: D

10. L.P.P. has constraints of
A. one variables
B. two variables
C. one or two variables
D. two or more variables

## Answer: D

## - View Text Solution

11. If the constraints in a linear programming problem are changed
A. the problem is to be re-evaluated
B. solution is not defined
C. the objective function has to be modify
D. the changes in constraints ignored

## - Watch Video Solution

12. Which of the following statement is incorrect
A. Maximize the objective function when more than one optimal solution is obtained
B. Maximize the objective function when the feasible region is unbounded
C. Maximize the objective function when the feasible region is bounded
D. If a L.P.P. admits two optimal solution, then it has infinite number of optimal solution

## Answer: B

13. Minimize $z=\sum_{j=1}^{n} \sum_{i=1}^{m} c_{i j} x_{i j}$, subject to
$\sum+(i=1)^{n} x_{i j}=a_{i}, i=1,2, \ldots m$ and
$\sum_{i=1}^{m} x_{i j}=a_{i}, i=1,2, \ldots n$ js a L.P.P. with number of constraints
A. $m+n$
B. $m-n$
C. $m n$
D. $\frac{m}{n}$

## Answer: A

## - Watch Video Solution

14. Region represented by the inequalities $x \geq 0, y \geq 0$ is
A. first quadrant
B. second quadrant
C. third quadrant
D. fourth quadrant

## Answer: A

## D Watch Video Solution

15. Solution set of the inequality $x \geq 0$ is
A. half plane on the left of $Y$-axis
B. half plane on the right of Y -axis excluding Y -axis
C. half plane on the right of $Y$-axis including the points on $Y$-axis
D. half plane on the left of $Y$-axis including the points on $Y$-axis

## Answer: C

16. Solution set of the inequality $y \leq 0$ is
A. half plane below X -axis excluding the points on X -axis
B. half plane below X -axis including the points on X -axis
C. half plane above X -axis
D. half plane above X -axis including the points on X -axis

## Answer: B

## - Watch Video Solution

17. Which of the term is not used in a linear programming problem ?
A. Slack variable
B. Objective funciton
C. Concave region
D. Feasible region

## Answer: C

## - Watch Video Solution

18. A set is said to be convex if
A. all points except the end points of the segment inside the set lie inside the set
B. it is concave
C. all points on segment in the set lie inside the set
D. all points on segment in the set lie outside the set

## Answer: C

## - Watch Video Solution

19. Which of the following set is convex?
A. $\left\{(x, y): x^{2}+y^{2} \geq 1\right\}$
B. $\left\{(x, y): y^{2} \geq x\right\}$
C. $\left\{(x, y): 3 x^{2}+4 y^{2} \geq 5\right\}$
D. $\{(x, y): y \geq 2, y \leq 4\}$

## Answer: D

## - Watch Video Solution

20. Which of the following set is not a convex set?
A. $\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 3\right\}$
B. $\left\{(x, y): x^{2}+y^{2} \leq 2\right\}$
C. $\{(x, y): x+y \leq 1\}$
D. $\left\{(x, y): 2 x^{2}+3 y^{2} \leq 6\right\}$

## Answer: A

21. which of the following is not a convex set?
A. $\{(x, y): 2 x+2 y \leq 7\}$
B. $\left\{(x, y): x^{2}+y^{2} \leq 4\right\}$
C. $\{x:|x|=5\}$
D. $\left\{(x, y): 2 x^{2}+3 y^{2} \leq 6\right\}$

## Answer: C

## D View Text Solution

22. The maximum value of $z=11 x+8 y$ subject to $x \leq 4, x+y \leq 6, x \geq 0, y \geq 0$ is
A. 0
B. 48
C. 60

## Answer: C

## - Watch Video Solution

23. Maximize :
$z=3 x+5 y$
Subject to : $x+4 y \leq 24$
$3 x+y \leq 21$
$x+y \leq 9$
$x \geq 0, y \geq 0$
A. 21
B. 37
C. 33
D. 30

## Watch Video Solution

24. The maximum value of $z=4 x+6 y$ subject to $3 x+2 y \leq 12, x+y \geq 4, x \geq 0, y \geq 0$ is
A. 36
B. 16
C. 24
D. 38

## Answer: A

## - Watch Video Solution

25. The maximum value of $z=7 x+11 y$ subject to $3 x+5 y \leq 26,5 x+3 y \leq 30, x \geq 0, y \geq 0$, is
B. 57.2
C. 61.6
D. 59

## Answer: D

## - Watch Video Solution

26. The maximum value of $z=6 x+4 y$ subject to $x \leq 2, x+y \leq 3,-2 x+y \leq 1, x \geq 0, y \geq 0$, is
A. 13
B. 16
C. 13.33
D. 16.33

## Answer: B

27. The minimum value of $z=10 x+25 y$ subject to $0 \leq x \leq 3,0 \leq y \leq 3, x+y \leq 5$ is ......
A. 75
B. 80
C. 95
D. 105

## Answer: C

## - Watch Video Solution

28. The maximum value of $z=75 x+50 y$ subject to $8 x+5 y \leq 60,4 x+5 y \leq 40, x \geq 0, y \geq 0$ is
A. 400
B. 562.5
C. 575.5
D. 575

## Answer: D

## - Watch Video Solution

29. Maximise $Z=5 x+3 y$

Subject to $3 x+5 y \leq 15,5 x+2 y \leq 10, x \geq 0, y \geq 0$.
A. 10
B. 0
C. 6
D. 12

## Answer: A

30. Maximise $Z=5 x+3 y$

Subject to $3 x+5 y \leq 15,5 x+2 y \leq 10, x \geq 0, y \geq 0$.
A. at one point only
B. at two points only
C. at infinite number of points
D. at three points only

## Answer: C

## - Watch Video Solution

31. The maximum value of $z=15 x+30 y$ subject to $3 x+y \leq 12, x+2 y \leq 10, x \geq 0, y \geq 0$ is
A. 60
B. 150
C. 160
D. 100

## Answer: B

## - Watch Video Solution

32. The objective function $z=15 x+30 y$ subject to
$3 x+y \leq 12, x+2 y \leq 10, x \geq 0, y \geq 0$, can be maximized
A. at infinite number of points
B. at two points only
C. at one points only
D. at three points only

## Answer: A

## - Watch Video Solution

33. The maximum value of $z=x+y$ subject to
$x+y \leq 10,3 x-2 y \leq 15, x \leq 6, x \geq 0, y \geq 0$ is
A. 5
B. 7.5
C. 12
D. 10

## Answer: D

## - Watch Video Solution

34. The objective function $z=x+y$ subject to
$x+y \leq 10,3 x-2 y \leq 15, x \leq 6, x \geq 0, y \geq 0$ can be maximized
A. at one point only
B. at two points only
C. at infinite number of points
D. at three points only

## Answer: C

## - Watch Video Solution

35. The objective function $z=x_{1}+x_{2}$, subject to $x_{1}+x_{2} \leq 10,-2 x_{1}+3 x_{2} \leq 15, x_{1} \leq 6, x_{1}, x_{2} \leq 0$ has maximum value of the feasible region.
A. 5
B. 7.5
C. 12
D. 10

Answer: D

## - Watch Video Solution

36. The objective function $z=x_{1}+x_{2}$, subject to $x_{1}+x_{2} \leq 10,-2 x_{1}+3 x_{2} \leq 15, x_{1} \leq 6, x_{1}, x_{2} \leq 0$ has maximum value of the feasible region.
A. at one point only
B. at two points only
C. at every point of the segment joining two points
D. at every point of the line joining two points

## Answer: C

## - Watch Video Solution

37. The objective function $z=4 x+3 y$ subject to
$3 x+4 y \leq 24,8 x+6 y \leq 48, x \leq 5, y \leq 6, x \geq 0, y \geq 0 \quad$ can be maximized
A. at only one point
B. at two points only
C. at infinite number of points
D. at three points only

## Answer: C

## D Watch Video Solution

38. The maximum value of $Z$ is where, $Z=4 x+2$ subject to constraints $4 x+2 y$ $\geq 46, \mathrm{x}+3 \mathrm{y} \leq 24$ and $x, y \geq 0$, is
A. exactly one point
B. two point
C. three point
D. infinite number of points

## Answer: D

39. By graphical method, the solutions of linear programming problem maximise $\quad Z=3 x_{1}+5 x_{2} \quad$ subject
$3 x_{1}+2 x_{2} \leq 18, x_{1} \leq 4, x_{2} \leq 6 x_{1} \geq 0, x_{2} \geq 0$ are
A. $x_{1}=2, x_{2}=0, z=6$
B. $x_{1}=2, x_{2}=6, z=36$
C. $x_{1}=4, x_{2}=3, z=27$
D. $x_{1}=4, x_{2}=6, z=42$

## Answer: B

## - Watch Video Solution

40. The point for which the maximum value of $\mathrm{z}=\mathrm{x}+\mathrm{y}$ subject to the constraints $2 x+5 y \leq 100, \frac{x}{25}+\frac{y}{50} \leq 1, x \geq 0, y \geq 0$ is obtained at
A. $(10,20)$
B. $(25,0)$
C. $(0,20)$
D. $\left(\frac{75}{4}, \frac{25}{2}\right)$

## Answer: D

## - Watch Video Solution

41. The minimum value of $z=20 x+20 y$ subject to
$x+2 y \geq 8,3 x+2 y \geq 15,5 x+2 y \geq 20, x \geq 0, y \geq 0$ is
A. 115
B. 125
C. 105
D. 200

## Answer: A

42. The minimum value of $z=6 x+21 y$ subject to $x+2 y \geq 3, x+4 y \geq 4,3 x+y \geq 3, x \geq 0, y \geq 0$ is
A. 20.5
B. 28.8
C. 24
D. 22.5

## Answer: D

## - Watch Video Solution

43. The minimum value of $z=20 x+9 y$ subject to
$2 x+y \geq 36,6 x+y \geq 60, x \geq 0, y \geq 0$ is
A. 330
B. 336
C. 360
D. 333

## Answer: B

## - Watch Video Solution

44. The minimum value of $z=7 x+y$ subject to
$5 x+y \geq 5, x+y \geq 3, x \geq 0, y \geq 0$ is
A. 5
B. 2.5
C. 6
D. 3.5

## Answer: A

45. The minimum value of $z=8 x+10 y$ subject to $2 x+y \geq 7,2 x+3 y \geq 15, y \geq 2, x \geq 0, y \geq 0$ is
A. 56
B. 52
C. 51
D. 48

## Answer: B

## - Watch Video Solution

46. The minimum value of $z=6 x+2 y$ subject to
$5 x+9 y \leq 90, x+y \geq 4, y \leq 8, x \geq 0, y \geq 0$ is
A. 24
B. 6
C. 8
D. 16

## Answer: C

## - Watch Video Solution

47. The objective function, $z=4 x_{1}+5 x_{2}$, subject to
$2 x_{1}+x_{2} \geq 7,2 x_{1}+3 x_{2} \leq 15, x_{2} \leq 3, x_{1}, x_{2} \geq 0$ has minimum value at the point
A. on X -axis
B. on Y -axis
C. at the origin
D. on the line parallel to X -axis

## Answer: A

## - Watch Video Solution

48. The minimum value of $z=3 x+5 y$ subject to $2 x+3 y \geq 12,-x+y \leq 3, x \leq 4, y \geq 3$ is
A. 19.8
B. 19.5
C. 19.4
D. 19.6

## Answer: A

## - Watch Video Solution

49. The minimum value of $z=8 x+4 y$ subject to $x+2 y \geq 2,3 x+y \geq 3,4 x+3 y \geq 6, x \geq 0, y \geq 0$ is
A. 9.8
B. 11.2
C. 9.6
D. 12

Answer: C

## - Watch Video Solution

50. The minimum value of $z=2 x+4 y$ subject to
$x+2 y \geq 2,3 x+2 y \geq 6, x \geq 0, y \geq 0$ is
A. 4
B. 6
C. 3
D. 12

## Answer: A

51. The objective function $z=2 x+4 y$ subject to
$2 x+y \geq 3, x+2 y \geq 6, x \geq 0 y \geq 0$ can be minimized
A. at infinite number of points
B. at two points only
C. at one points only
D. at three points only

## Answer: A

## - Watch Video Solution

52. The minimum value of $z=x+2 y$ subject to $x+2 y \geq 50,2 x-y \leq 0,2 x+y \leq 100, x \geq 0, y \geq 0$ is
A. 10
B. 30
C. 40
D. 50

Answer: D

## - Watch Video Solution

53. The objective function $z=x+2 y$ subject to
$x+2 y \geq 50,2 x-y \leq 0,2 x+y \leq 100, x, y \geq 0$ can be minimized
A. at infinite number of points
B. at two points only
C. at one points only
D. at three points only

## Answer: A

## - Watch Video Solution

54. Minimize $z=6 x+4 y$, subject to
$3 x+2 y \geq 12, x+y \geq 5,0 \leq x \leq 4,0 \leq y \leq 4$.
A. 22
B. 24
C. 40
D. 28

## Answer: B

## - Watch Video Solution

55. The objective function $z=6 x+4 y$ subjective to $3 x+2 y \geq 12, x+y \geq 5,0 \leq x \leq 4,0 \leq y \leq 4$ can be minimized
A. at one point only
B. at two points only
C. at infinite number of points
D. at three points only

## Answer: C

## - Watch Video Solution

56. The co-ordinates of the point for minimum value $z=7 x-8 y$ subject to the conditons $x+y-20 \leq 0, y \geq 5, x \geq 0$, is
A. $(20,0)$
B. $(15,5)$
C. $(0,5)$
D. $(0,20)$

## Answer: D

## - Watch Video Solution

57. The constraints $x+y \geq 5, x+2 y \geq 6, x \geq 3, y \geq 0$ and the objective function $z=-x+2 y$ has
A. unbounded solution
B. concave solution
C. bounded solution
D. unique solution

## Answer: A

## - Watch Video Solution

58. The constraints $x-y \leq 1, x-y \geq 0, x \geq 0, y \geq 0$, and the objective function $z=x+y$ has
A. unbounded solution
B. concave solution
C. bounded solution
D. unique solution

## Answer: A

## - Watch Video Solution

59. The constraints $3 x+2 y \geq 9, x-y \leq 3, x \geq 0, y \geq 0$ and the objective function $z=4 x+2 y$ has
A. unbounded solution
B. concave solution
C. bounded solution
D. unique solution

## Answer: A

60. The constraints $x-y \geq 0,-x+3 y \leq 3, x \geq 0, y \geq 0$ and the objective function $z=6 x+8 y$ has
A. unbounded solution
B. concave solution
C. bounded solution
D. unique solution

## Answer: A

## ( Watch Video Solution

61. The constraints $-x+y \leq 1,-x+3 y \leq 9, x \geq 0, y \geq 0$ defines
A. bounded feasible region
B. unbounded feasible region
C. both bounded and unbounded region
D. unique solution

## Answer: B

## - Watch Video Solution

62. The area of the feasible region for the following constraints $3 y+x \geq 3, x \geq 0, y \geq 0$ will be
A. bounded
B. unbounded
C. convex
D. concave

## Answer: B

## - Watch Video Solution

63. The constraints $x+y \geq 8,3 x+5 y \leq 15, x \geq 0, y \geq 0$ and the objective function $z=1.5 x+y$ has
A. concave solution
B. no unique solution
C. bounded solution
D. unique solution

## Answer: B

## D Watch Video Solution

64. The constraints $x+y \leq 8,2 x+3 y \leq 12, x \geq 0, y \geq 0$ and the objective function $z=4 x+6 y$ has
A. concave solution
B. no unique solution
C. bounded solution
D. unique solution
65. The constraints $x+2 y \leq 2,2 x+4 y \geq 8, x \geq 0, y \geq 0$ and the objective function $z=7 x-3 y$ has
A. concave solution
B. no unique solution
C. bounded solution
D. unique solution

## Answer: B

## - Watch Video Solution

66. The constraints $x-y \geq 0,-2 x+y \geq 2, x \geq 2, x \geq 0, y \geq 0$ and the objective function $z=4 x+5 y$ has
A. concave solution
B. no solution
C. bounded solution
D. unique solution

## Answer: B

## D Watch Video Solution

$$
\begin{aligned}
& \text { 67. } \begin{array}{l}
\text { Solution } \\
x-2 y \geq 0,-2 x-y+2 \leq 0, x \geq 0, y \geq 0
\end{array}
\end{aligned}
$$

A. empty
B. closed half plane
C. infinite
D. first quadrant

## Answer: C

68. The region represented by the inequations
$2 x+3 y \leq 18, x+y \geq 10, x \geq 0, y \leq 0$ is
A. a polygon
B. unbounded
C. bonded
D. null region

## Answer: B

## - Watch Video Solution

69. Shaded region of the constraints $x+y \leq 5,0 \leq x \leq 4,0 \leq y \leq 2$ is
A.

B.

C.

D.


## Answer: C

## - Watch Video Solution

70. Shaded,
region
of
the
constraints
$4 x+3 y \leq 12,-x+y \leq 2, x \geq 0, y \geq 0$ is
A.


B.

C.

D.

Answer: D

- Watch Video Solution

71. 

Shaded,
region
of
the
$x+y \geq 5,2 x+3 y \leq 18,4 x+3 y \leq 24, x \geq 0, y \geq 0$ is
A.

B)

B.


72. Shaded, region of the constraints $10 x+2 y \geq 20, x+y \geq 6$ is
A.

B)

B.
C.

D)
D.


## Answer: C

## - Watch Video Solution

73. Shaded,region of the constraints $4 x+y \geq 4, x+3 y \geq 6, x+y \geq 3, x \geq 0, y \geq 0$ is

B.
c.


## Answer: A

## - Watch Video Solution

74. The solution set of the inequation $2 x+y>5$ is
A. half plane that contains the origin
B. open half plane not containing the origin
C. whole XY-plane except the points lying on line $2 x+y=5$
D. half plane not containing the origin

## Answer: B

## D Watch Video Solution

75. The solution set of the inequation $x+2 y \geq 3$ is
A. half plane containing the origin
B. half plane not containing the origin
C. the whole XY-plane except point lying on line $x+2 y-3=0$
D. open half plane not containing the origin

## Answer: B

## - Watch Video Solution

76. The solution set of $3 x+2 y \leq 6$ is
A. half plane not containing origin
B. half plane containing the points lying on line $3 x+2 y=6$ and origin
C. XY-plane except points on line $3 x+2 y=6$
D. half plane not containing the points lying on line $3 x+2 y=6$ and origin

## Answer: B

## - Watch Video Solution

77. The solution set of the inequations $x \leq 4, x-y \geq 0,3 x+y \geq 0$
A. lies in first and second quadrants
B. lies in second and third quadrants
C. lies in third and fourth quadrants
D. lies in fourth and first quadrants

## Answer: D

78. The lines $5 x+4 y \geq 20, x \leq 6, y \leq 4, x \geq 0, y \geq 0$ form
A. a square
B. a rhombus
C. a triangle
D. a quadrilateral

## Answer: D

## - Watch Video Solution

79. The common region represented by inequalities $y \leq 2, x+y \leq 3,-2 x+y \leq 1, x \geq 0, y \geq 0$ is
A. a triangle
B. a quadrilateral
C. a square
D. a pentagon

## Answer: D

## - Watch Video Solution

80. The common region represented by inequalities
$0 \leq x \leq 6,0 \leq y \leq 4$ is
A. a triangle
B. a rectangle
C. a square
D. a pentagon

## Answer: B

81. The shaded part of the given figure indicates the feasible region


Then the constraints are
A. $x, y \geq 0, x+y \geq 0, x \geq 5, y \leq 3$
B. $x, y \geq 0, x-y \geq 0, x \leq 5, y \leq 3$
C. $x, y \geq 0, x-y \geq 0, x \leq 5, y \geq 3$
D. $x, y \geq 0, x-y \leq 0, x \leq 5, y \leq 3$

## Answer: B

82. Feasible region is represented by

A. $2 x+5 y \geq 80, x+y \leq 20, x \geq 0, y \geq 0$
B. $2 x+5 y \leq 80, x+y \geq 20, x \geq 0, y \geq 0$
C. $2 x+5 y \geq 80, x+y \geq 20, x \geq 0, y \geq 0$
D. $2 x+5 y \leq 80, x+y \leq 20, x \geq 0, y \geq 0$

## Answer: D

## - Watch Video Solution

83. The vertex of the linear inequalities
$2 x+3 y \leq 6, x+4 y \leq 4, x \geq 0, y \geq 0$ is
A. $(1,0)$
B. $(1,1)$
C. $\frac{12}{5}, \frac{2}{5}$
D. $\frac{2}{5}, \frac{12}{5}$

## Answer: C

## - Watch Video Solution

84. The solution set of the constraints
$x+y \leq 11,3 x+2 y \geq 25,2 x+5 y \geq 20, x \geq 0, y \geq 0 \quad$ includes the point
A. $(2,3$,
B. $(3,2)$
C. $(3,8)$
D. $(4,3)$

## Answer: C

## - Watch Video Solution

85. The corner points of common region are, if
$2 x+y \geq 9, x+2 y \geq 9, x+y \geq 7$ and $x \geq 0, y \geq 0$,
A. $(9,0),(2,5),(0,9)$
B. $(9,0),(2,5),(2,5)$
C. $(9,0),(2,5),(0,9)$
D. $(9,0),(5,2),(2,5),(0,9)$

## Answer: D

86. A company manufactures two types of chemicals A and B. Each chemical requires the types of raw materials $P$ and $Q$. The table below shows number of units of $P$ and $Q$ required to manufacture one unit of $A$ and one unit of $B$ and the total availability of $P$ and $Q$.

| Raw <br> material $\downarrow$ | A | B | Availability |
| :---: | :---: | :---: | :---: |
| $\Gamma$ | 3 | 2 | 120 |
| $Q$ | 2 | 5 | 160 |

The company gets profit of Rs. 350 and RS. 400 by selling one unit of $A$ and one unit of $B$ respectively. If the entire production of $A$ and $B$ is sold, then formulate the problem as LPP.

| A. Maximize | subject | to |
| :--- | :--- | :--- |
| $3 x+2 y \geq 120,2 x+5 y \leq 160, x \geq 0, y \geq 0$ |  |  |
| B. Maximize | subject | to |
| $3 x+2 y \leq 120,2 x+5 y \geq 160, x \geq 0, y \geq 0$ |  |  |
| C. Maximize | $z=350 x+400 y$ | subject |

$$
3 x+2 y \leq 120,2 x+5 y \leq 160, x \geq 0, y \geq 0
$$

D. Maximize

$$
3 x+2 y \geq 120,2 x+5 \geq 160, x \geq 0, y \geq 0
$$

## Answer: C

## - Watch Video Solution

87. A furniture manufacturer produces tables and bookshelves made up of wood and steel. The weekly reuqirement of wood and steel is given as below.


The weekly availability of wood and steel is 450 and 100 units respectively. Profit on a table is Rs. 1000 and that on a book shelf is Rs. 1200. To
determine the number of tables and book shelves to be produced every week in order to maximize the total profit, formulate the problem as L.P.P.
A. Maximize
$z=1000 x+1200 y$
subject
to
$8 x+11 y \leq 450,2 x+3 y \leq 100, x \geq 0, y \geq 0$
B. Maximize
$z=1000 x+1200 y$
subject
to
$8 x+11 y \geq 450,2 x+3 y \geq 100, x \geq 0, y \geq 0$
C. Maximize
$z=1000 x+1200 y$
subject
to
$8 x+11 y \geq 450,2 x+3 y \leq 100, x \geq 0, y \geq 0$
D. Maximize
$z=1000 x+1200 y$
subject
to

$$
8 x+11 y \leq 450,2 x+3 y \geq 100, x \geq 0, y \geq 0
$$

## Answer: A

## - Watch Video Solution

88. Diet of a sick person must contains at least 4000 units of vitamins, 50 units of minerals and 2500 calories. Two foods $F_{1}$ and $F_{2}$ cost Rs. 50 and

Rs. 75 per unit respectively. Each unit of food $F_{1}$ contains 200 units of vitamins, 2 units of minerals and 40 calories, $F_{-}(2)^{\prime}$ contains 100 units of vitamins, 3 units of minerals and 35 calories. Formulate the above problem as LPP to fulfil sick person's requirements at minimum cos.
A. Maximized $z=50 x=75 y \quad$ subject $\quad$ to
$200 x+100 y \geq 4000,2 x+3 y \geq 50,40 x+35 y \leq 2500, x \geq 0, y \geq 0$
B. Maximized $z=50 x=75 y \quad$ subject $\quad$ to

$$
200 x+100 y \leq 4000,2 x+3 y \geq 50,40 x+35 y \geq 2500, x \geq 0, y \geq 0
$$

C. Maximized

$$
z=50 x=75 y
$$

$200 x+100 y \geq 4000,2 x+3 y \leq 50,40 x+35 y \geq 2500, x \geq 0, y \geq 0$
D. Maximized $\quad z=50 x=75 y$
$200 x+100 y \geq 4000,2 x+3 y \geq 50,40 x+35 y \geq 2500, x \geq 0, y \geq 0$

## Answer: D

## - Watch Video Solution

89. A printing company prints two types of magzines A and B. The company earns Rs. 20 and Rs. 30 on each copy of magazines $A$ and $B$ respectively. The magazine A requires 2 hours on machine I, 4 hours on Machine II and 2 hours machine III. Magazine B requires 3 hours on machine I, 5 hours on machine II and 3 hours on machine III. Machines IIII, III are available for 35,50 and 70 hours per week respectively. Formulate the LPP to determine weekly production of magazines $A$ and $B$, so that the total profit is maximum
A. Maximize
$z=20 x+3 y$
subject
$2 x+3 y \leq 35,4 x+5 y \leq 50,2 x+3 y \geq 70, x \geq 0, y \geq 0$
B. Maximize
$z=20 x+3 y \quad$ subject
$2 x+3 y \leq 35,4 x+5 y \leq 50,2 x+3 y \leq 70, x \geq 0, y \geq 0$
C. Maximize
$z=20 x+3 y$
subject
to
$2 x+3 y \leq 35,4 x+5 y \geq 50,2 x+3 y \leq 70, x \geq 0, y \geq 0$
D. Maximize
$z=20 x+3 y$
subject
to

$$
2 x+3 y \geq 35,4 x+5 y \leq 50,2 x+3 y \leq 70, x \geq 0, y \geq 0
$$

## Answer: B

## - Watch Video Solution

90. A dealer wishes to purchase table fans and ceiling fans. He has Rs. 57,600 to invest, and has space to store 40 items. A table fan costs Rs. 750 and ceiling fan costs Rs. 900 . He can make profits of Rs. 70 and Rs. 90 by selling a table fan and a ceiling fan respectively. If dealer sell all the fans that he buy, the formulate this problem as LPP, to maximize the profit.
A. Maximize
$z=70 x+90 y$
subject
to
$750 x+900 y \leq 57600, x+y \leq 40, x \geq 0, y \geq 0$
B. Maximize

$$
z=70 x+90 y
$$

subject
to
$750 x+900 y \geq 57600, x+y \leq 40, x \geq 0, y \geq 0$
C. Maximize

$$
z=70 x+90 y
$$

subject
to

$$
750 x+900 y \leq 57600, x+y \geq 40, x \geq 0, y \geq 0
$$

$$
750 x+900 y \geq 57600, x+y \geq 40, x \geq 0, y \geq 0
$$

## Answer: A

## - Watch Video Solution

91. Shalmali wanto to invest Rs. 50,000 in saving certificates and PPF. She went to invest at least Rs. 15,000 in saving certificates and at least Rs. 20,000 in PPF. The rate of interest on saving certificates is $8 \%$ p.a. and on PPF is $9 \%$ p.a. Formulate the LPP for maximun yearly income.
A. Maximize

$$
z=0.08 x+0.09 y
$$

subject
to

$$
x+y \leq 50000, x \leq 15000, y \geq 20000, x \geq 0, y \geq 0
$$

B. Maximize

$$
z=0.08 x+0.09 y \quad \text { subject }
$$

$$
x+y \leq 50000, x \geq 15000, y \leq 20000, x \geq 0, y \geq 0
$$

C. Maximize

$$
z=0.08 x+0.09 y \quad \text { subject }
$$

to

$$
x+y \leq 50000, x \geq 15000, y \geq 20000, x \geq 0, y \geq 0
$$

$$
x+y \leq 50000, x \leq 15000, y \leq 20000, x \geq 0, y \geq 0
$$

## Answer: C

## D Watch Video Solution

92. If a motorcyclist rides at a speed of $50 \mathrm{~km} / \mathrm{hr}$, he has to spend Rs. 2 per km on petrol. If he rides at a faster speed of $70 \mathrm{~km} / \mathrm{hr}$, the petrol cost increases to Rs. 2.5 per km. He has Rs. 500 To spend on petrol and wishes to travel maximum distance within an hour. Formulate as LPP.

| A. Maximize | $z=x+y$ | subject | to |
| :---: | :---: | :---: | :---: |
| $\frac{x}{50}+\frac{y}{70}$ | $2.5 y \geq 500$ | $\geq 0$ |  |
| B. Maximize | $z=x+y$ | subject | to |
| $\frac{x}{50}+\frac{y}{70}$ | $2.5 y \leq 500$ | $\geq 0$ |  |
| C. Maximize | $z=x+y$ | subject | to |
| $\frac{x}{50}+\frac{y}{70}$ | $2.5 y \leq 500$ | $\geq 0$ |  |

$$
\frac{x}{50}+\frac{y}{70} \geq 1,2 x+2.5 y \geq 500, x \geq 0, y \geq 0
$$

## Answer: B

## - Watch Video Solution

93. Two different kinds of foods $A$ and $B$ are being considered to form a weekly diet. The minimum weekly requirment of fats, carbohydrates and proteins are 17,28 and 14 units respectively. One kg of food A has 5 units of fat, 12 units of carbohydrates and 7 units of protein. One kg of food B has 7 units of fat, 15 units of carbohydrates and 9 units of protein. The price of food $A$ is Rs. 5 per kg. and that of food $B$ is Rs. 7 per kg. Form the LPP to minimize the cost.
A. Minimize
$z=5 x+7 y$
subject
to

$$
5 x+7 y \leq 17,12 x+15 y \geq 28,7 x+9 y \geq 14, x \geq 0, y \geq 0
$$

B. Minimize $z=5 x+7 y$ subject to

$$
\begin{aligned}
& \qquad 5 x+7 y \geq 17,12 x+15 y \leq 28,7 x+9 y \geq 14, x \geq 0, y \geq 0 \\
& \text { C. Minimize } \quad z=5 x+7 y \\
& \qquad \begin{array}{ll}
5 x+7 y \geq 17,12 x+15 y \geq 28,7 x+9 y \leq 14, x \geq 0, y \geq 0 & \text { subject }
\end{array} \\
& \qquad \begin{array}{ll}
\text { D. Minimize } & \text { subject }
\end{array} \\
& \qquad \begin{array}{ll} 
\\
5 x+7 y \geq 17,12 x+15 y \geq 28,7 x+9 y \geq 14, x \geq 0, y \geq 0
\end{array}
\end{aligned}
$$

## Answer: D

## D Watch Video Solution

94. A shop keeper sells to two items, colour T.V. sets and DVD players. He can invest Rs. 12,00,000 and can store only 750 items. The cost of color TV and DVD player is Rs. 6500 and Rs. 2800 respectively. He can sell these items at a price of Rs. 8600 and Rs. 3900 respectively. Form the LPP to maximize the profit.

| A. Maximize | $z=2100 x+1100 y$ | subject | to |
| :---: | :---: | :---: | :---: |
| $6500 x+2800 y \leq 1200000, x+y \geq 750, x \geq 0, y \geq 0$ |  |  |  |
| B. Maximize | $z=2100 x+1100 y$ | subject | to |
| $6500 x+2800 y \leq 1200000, x+y \leq 750, x \geq 0, y \geq 0$ |  |  |  |
| C. Maximize | $z=2100 x+1100 y$ | subject | to |
| $6500 x+2800 y \geq 1200000, x+y \leq 750, x \geq 0, y \geq 0$ |  |  |  |
| D. Maximize | $z=2100 x+1100 y$ | subject | to |
| $6500 x+2800 y \geq 1200000, x+y \geq 750, x \geq 0, y \geq 0$ |  |  |  |

200 gms of sugar and 100 gms . of butter to prepare 1 kg of biscuits. The variety $B_{2}$ requires 600 gms of flour, 300 gms of sugar and 200 gms of butter to prepare 1 kg of biscuits. Formulate the above LPP to minimize the cost.
A. Minimize

$$
z=145 x+160 y
$$

subject
to
$0.7 x+0.6 y \geq 600,0.2 x+0.3 y \geq 400,0.1 x+0.2 y \geq 250, x \geq 0, y \geq$
B. Minimize
$z=145 x+160 y$ subject
to
$0.7 x+0.6 y \geq 600,0.2 x+0.3 y \geq 400,0.1 x+0.2 y \leq 250, x \geq 0, y \geq$
C. Minimize

$$
z=145 x+160 y
$$

subject
to
$0.7 x+0.6 y \geq 600,0.2 x+0.3 y \leq 400,0.1 x+0.2 y \geq 250, x \geq 0, y \geq$
D. Minimize
$z=145 x+160 y$
subject
to
$0.7 x+0.6 y \leq 600,0.2 x+0.3 y \geq 400,0.1 x+0.2 y \geq 250, x \geq 0, y \geq$

## Answer: A

## - Watch Video Solution

96. An aeroplane can carry a maximum of 250 passengers. A profit of Rs. 1500 is made on each executive class ticket and a profit of Rs. 900 made on each economy class ticket. the airline reserves at least 30 seats ofr executive class. However at least 4 times as many passengers perfer to travel by economomy class than by excutive class. Formulate LPP in order to maximize the profit for the airline.
A. Minimize
$z=1500 x+900 y$
subject
to
$x+y \leq 250, x \leq 30, y \geq 4 x, x \geq 0, y \geq 0$
B. Minimize
$z=1500 x+900 y$
subject
to
$x+y \leq 250, x \geq 30, y \geq 4 x, x \geq 0, y \geq 0$
C. Minimize $\quad z=1500 x+900 y$
subject
to
$x+y \geq 250, x \geq 30, y \geq 4 x, x \geq 0, y \geq 0$
D. Minimize
$z=1500 x+900 y$
subject
to

$$
x+y \geq 250, x \geq 30, y \geq 4 x, x \geq 0, y \geq 0
$$

## Answer: B

97. Two tailors P and Q earn Rs. 350 and Rs. 450 per day respectively. Tailor P can stitch 6 shirts and 3 trousers while tailor Q can stitch 7 shirts and 3 trousers per day. Formulate the LPP, if it is desired to produce at least 51 shrits and 24 trousers at a minimum labour cost?
A. Minimize
$z=350 x+450 y$
subject
to
$6 x+7 y \leq 51,3 x+3 y \geq 24, x \geq 0, y \geq 0$
B. Minimize

$$
z=350 x+450 y
$$

subject
to
$6 x+7 y \geq 51,3 x+3 y \leq 24, x \geq 0, y \geq 0$
C. Minimize

$$
z=350 x+450 y
$$

subject
to
D. Minimize
$z=350 x+450 y$
subject
to

$$
6 x+7 y \leq 51,3 x+3 y \leq 24, x \geq 0, y \geq 0
$$

## Answer: C

98. A diet of sick person contains at least 48 units of vitamin A and 64 uints of vitamin B. Two foods $F_{1}$ and $F_{2}$ are available . Food $F_{1}$ costs Rs. 6 per unit and food $F_{2}$ costs Rs. 10 per unit. One unit of food $F_{1}$ contains 6 units of vitamin A and 7 units of vitamin B. One unit of of food $F_{2}$ contain 8 units of vitamin A and 12 units of vitamin B. Formulate the LPP, for the minimum cost for the diet that consists of mixture of these two foods and also meeting the minimal nutrition requirements
A. Minimize $z=6 x+10 y$ subject to
$6 x+8 y \leq 48,7 x+12 y \geq 64, x \geq 0, y \geq 0$
B. Minimize
$z=6 x+10 y$
subject
to
$6 x+8 y \geq 48,7 x+12 y \leq 64, x \geq 0, y \geq 0$
C. Minimize
$z=6 x+10 y$
subject
to
$6 x+8 y \geq 48,7 x+12 y \geq 64, x \geq 0, y \geq 0$
D. Minimize
$z=6 x+10 y$
subject
to

$$
6 x+8 y \leq 48,7 x+12 y \leq 64, x \geq 0, y \geq 0
$$

## D Watch Video Solution

99. The construction company uses concrete blocks made up of cement and sand. The weight of a concrete block has to be at least 5 kg . Cement costs Rs. 20 per kg. while sand costs Rs. 6 per kg. Strength consideration dictate that the concrete block should contain minimum 4 kg . of cement and not more than 2 kg . of sand. Form the LPP for the cost to be minimum.
A. Maximize
$z=20 x+6 y$
subject
to
$x+y \geq 5, x \leq 4, y \leq 2, x \geq 0, y \geq 0$
B. Maximize
$z=20 x+6 y$
subject
to
$x+y \geq 5, x \leq 4, y \geq 2, x \geq 0, y \geq 0$
C. Maximize
$z=20 x+6 y$
subject
to

$$
x+y \geq 5, x \geq 4, y \geq 2, x \geq 0, y \geq 0
$$

D. Maximize

$$
x+y \geq 5, x \geq 4, y \leq 2, x \geq 0, y \geq 0
$$

## Answer: D

## - Watch Video Solution

100. An owner of a lodge plans a extension which contains not more than 50 rooms. At least 5 must be executive single rooms. The number of executive double rooms should be at least 3 times the number of executive single rooms. He charges Rs. 1800 for executive single rooms per day and Rs. 3000 for executive double room. Formulate the above problem as LPP to maximize the profit.
A. Maximize
$z=1800 x+3000 y$
subject

$$
x+y \leq 50, x \geq 5, y \leq 3 x, x \geq 0, y \geq 0
$$

B. Maximize

$$
z=1800 x+3000 y
$$

subject
to

$$
x+y \leq 50, x \leq 5, y \geq 3 x, x \geq 0, y \geq 0
$$

C. Maximize

$$
x+y \leq 50, x \geq 5, y \geq 3 x, x \geq 0, y \geq 0
$$

D. Maximize

$$
z=1800 x+3000 y
$$

subject

$$
x+y \leq 50, x \leq 5, y \leq 3 x, x \geq 0, y \geq 0
$$

## Answer: A

## - Watch Video Solution

101. The objective function off LPP defined over the convex set attains it optimum value at
A. at least two of the corner points
B. all the corner points
C. at least one of the corner points
D. none of the corner points

## Answer: C

