

India's Number 1 Education App

MATHS

BOOKS - NIKITA MATHS (HINGLISH)

MHT-CET 2017

Mcq

1. The statement pattern $(\neg p \land q)$ is logically equivalent to

A.
$$(p \lor q) \lor { extstyle extstyle$$

B.
$$(p \lor q) \land \neg p$$

C.
$$(p \wedge q) o p$$

D.
$$(p \lor q) \to p$$

Answer: B

2. If g(x) is the inverse function of f(x) and
$$f'(x) = \frac{1}{1+x^4}$$
, then $g'(x)$ is

A.
$$\left(1+g(x)
ight)^4$$

B.
$$(1-q(x))^4$$

C.
$$1+\left(f(x)
ight)^4$$
D. $\dfrac{1}{1+\left(g(x)
ight)^4}$

Answer: A

3. The inverse of the matrix
$$\begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{bmatrix}$$
 is A. $\frac{-1}{3}\begin{bmatrix} -3 & 0 & 0 \\ 3 & 1 & 0 \\ 9 & 2 & -3 \end{bmatrix}$

B.
$$\frac{7}{12}$$
C. $\frac{19}{12}$
D. $\frac{9}{12}$

B. $\frac{-1}{3} \begin{bmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}$ C. $\frac{-1}{3} \begin{bmatrix} 3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}$ D. $\frac{-1}{3} \begin{bmatrix} -3 & 0 & 0 \\ -3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}$

Watch Video Solution

Answer: B

4. if $\int \frac{1}{\sqrt{0-16\alpha^2}} dx = \alpha \sin^{-1}(\beta x) + c$. then $\alpha + \frac{1}{\beta} =$

A. 1

Answer: A

5. O(0,0), A(1,2), B(3,4) are the vertices of ΔOAB . The joint equation of the altitude and median drawn from O is

A.
$$x^2 + 7xy - y^2 = 0$$

$$\mathsf{B.}\,x^2+7xy+y^2=0$$

C.
$$3x^2 - xy - 2y^2 = 0$$

D.
$$3x^2+xy-2y^2=0$$

Answer: D

6. If
$$\int \!\! \frac{1}{(x^2+4)(x^2+9)} dx = A \ \tan^{-1}\! \frac{x}{2} + B \tan^{-1}\! \left(\frac{x}{3}\right) + C$$
, then

$$\frac{1}{6}$$

D.
$$\frac{-1}{6}$$

c. $\frac{-1}{30}$

B. $\frac{1}{30}$

Answer: A

Watch Video Solution

7. If
$$lpha$$
 and eta are the roots of the equation $x^2+5|x|-6=0$, then the value of the $\left| an^{-1}lpha- an^{-1}eta
ight|$ is

A.
$$\frac{\pi}{2}$$

B. 0

 $\mathsf{C}.\,\pi$

D. $\frac{\pi}{4}$

Answer: A

8. If
$$x=a\Big(t-rac{1}{t}\Big), y=a\Big(t+rac{1}{t}\Big)$$
, where t be the parameter, then

$$\frac{dy}{dx} = ?$$

A.
$$\frac{y}{x}$$

$$\mathsf{B.}\,\frac{-x}{y}$$

C.
$$\frac{x}{y}$$

D.
$$\frac{-y}{x}$$

Answer: C

Watch Video Solution

9. The point on the curve $y=\sqrt{x-1}$ where the tangent is perpendicular to the line 2x+y-5=0 is

A.
$$(2, -1)$$

10.

, then

A. -1

B. $\frac{1}{2}$

 $\mathsf{C.}\,\frac{-1}{2}$

Answer: C

B.(10,3)

C.(2,1)

D. (5, -2)

Watch Video Solution

 $\int\!\!\sqrt{rac{x-5}{x-7}}dx = A\sqrt{x^2-12x+35} + \log\!\left|x-6+\sqrt{x^2-12x+35}
ight| + C$

If

Answer: D

D. 1

11. The number of principal solutions of $\tan 2\theta = 1$ is

A. One

B. Two

C. Three

D. Four

Answer: B

Watch Video Solution

objective function, $z = 4x_1 + 5x_2$, subject 12. The to $2x_1 + x_2 \geq 7, 2x_1 + 3x_2 \leq 15, x_2 \leq 3, x_1, x_2 \geq 0$ has minimum value

at the point

A. on X-axis

B. on Y-axis

C. at the origin

D. on the line parallel to X-axis

Answer: A

Watch Video Solution

- **13.** If z_1 and z_2 are z-coordinates of the points of trisection of the segment joining the points A(2,1,4), B(-1,3,6], then z_1+z_2+
 - A. 1
 - B. 4
 - C. 5
 - D. 10

Answer: D

14. The maximum value of
$$f(x) = \frac{\log x}{x} (x
eq 0, x
eq 1)$$
 is

B.
$$\frac{1}{e}$$

$$\mathsf{C.}\,e^2$$

D.
$$\frac{1}{e^2}$$

Answer: B

15.
$$\int_0^1 x \tan^{-1} x dx =$$

A.
$$\frac{\pi}{4} + \frac{1}{2}$$

B.
$$\frac{\pi}{4}-\frac{1}{2}$$

c.
$$\frac{1}{2} - \frac{\pi}{4}$$

D.
$$\frac{-\pi}{4} - \frac{1}{2}$$

Answer: B

Watch Video Solution

16. If c denotes the contradication, then dual of the compound statement ${ iny p} \wedge (q \vee c)$ is

A. ~
$$p \lor (q \land t)$$

B.
$$\sim p \wedge (q \vee t)$$

C.
$$p \lor (extstyle p \lor t)$$

D. ~
$$p \lor (q \land c)$$

Answer: A

17. All parabolas whose axis is the Y-axis.

A.
$$x rac{d^2y}{dx^2} - rac{dy}{dx} = 0$$

$$\mathtt{B.}\,x\frac{d^2y}{dx^2}+\frac{dy}{dx}=0$$

C.
$$rac{d^2y}{dx^2}-y=0$$

D.
$$rac{d^2y}{dx^2}-rac{dy}{dx}=0$$

Answer: A

- **18.** $\int_{0}^{3} [x] dx = \ldots$, where [x] is greatest integer function.
 - A. 3
 - B. 0
 - C. 2
 - D. 1

Answer: A

19. The objective function off LPP defined over the convex set attains it optimum value at

- A. at least two of the corner points
- B. all the corner points
- C. at least one of the corner points
- D. none of the corner points

Answer: C

20. IF the inverse of the matrix $\begin{bmatrix} \alpha & 14 & -1 \\ 2 & 3 & 1 \\ 6 & 2 & 3 \end{bmatrix}$ does not exist then the

value of α is

- A. 1
- B. 1
- C. 0
- D.-2

Answer: D

Watch Video Solution

21. Find the value of k, if the function f given by:

$$f(x) = \left[an\!\left(rac{\pi}{4} + x
ight)^{rac{1}{x}}
ight], \;\; ext{for} x
eq 0 \ = k. \;\;\; ext{for} x = 0$$

= k, is continous at x=0. A. e

B. e^{-1}

 $\mathsf{C.}\,e^2$

D. e^{-2}

Answer: C

Watch Video Solution

22. For a invertible matrix A if $A(adjA)=\begin{bmatrix}10&0\\0&10\end{bmatrix}$ then |A|=

- - A. 100
 - B. 100
 - C. 10
 - D. -10

Answer: C

23. The solution of the differential equation $\dfrac{dy}{dx} = an\Bigl(\dfrac{y}{x}\Bigr) + \dfrac{y}{x}$ is

A.
$$\cos\left(\frac{y}{x}\right) = cx$$

$$B.\sin\!\left(\frac{y}{x}\right) = cx$$

$$\mathsf{C}.\cos\left(\frac{y}{x}\right) = cy$$

$$D.\sin\left(\frac{y}{x}\right) = cy$$

Answer: B

Watch Video Solution

24. In ΔABC , if $\sin^2 A + \sin^2 B = \sin^2 C$ and l(AB) = 10, then the maximum value of the area of ΔABC is

A. 50

B. $10\sqrt{2}$

D.
$$25\sqrt{2}$$

Answer: C

Watch Video Solution

25. If x=f(t) and y=g(t) , then write the value of $\frac{d^2y}{dx^2}$.

A.
$$\frac{f'(t)g''(t) - g'(t)f''(t)}{(f'(t))^3}$$

B.
$$\frac{f'(t)g''(t) - g'(t)f''(t)}{(f'(t))^2}$$
C.
$$\frac{g'(t)f''(t) - f'(t)g''(t)}{(f'(t))^3}$$

C.
$$\frac{g''(t)f'''(t) - f''(t)g'''(t)}{\left(f'(t)\right)^3}$$

D.
$$\dfrac{g^{\,\prime}(t)f^{\,\prime\,\prime}(t)+f^{\,\prime}(t)g^{\,\prime\,\prime}(t)}{\left(f^{\,\prime}(t)
ight)^3}$$

Answer: A

respectively, then total number of possible values of X are

26. A r.v. $X \sim B$ (n, p). If values of mean and variance of X are 18 and 12

Answer: B

27.

The

Watch Video Solution

area

y = 2x + 1, y = 3x + 1 and x = 4 is

of

the reggion

bounded

by

the

lines

B.
$$\frac{121}{3}$$
 sq. units

C.
$$\frac{121}{6}$$
 sq. units

D. 8 sq. units

Answer: D

Watch Video Solution

28. A box contains 6 pens , 2 of which are defective Two pens are taken randomy from the bax .If r,v. X_n : Number of defective pens obtained , then standard deviation of x=

$$\mathrm{A.}\pm\frac{4}{3\sqrt{5}}$$

B.
$$\frac{8}{3}$$

$$\mathsf{C.}\ \frac{16}{45}$$

D.
$$\frac{4}{3\sqrt{5}}$$

Answer: D

29. If the volume of spherical ball is increasing at the rate of 4π cc/s, then the rate of change of its surface area when the volume is 288 π cc is

- A. $\frac{4\pi}{3}$ cm²/sec.
- B. $\frac{2\pi}{3}$ cm²/sec.
- C. 4π cm²/sec.
- D. 2π cm²/sec.

Answer: A

Watch Video Solution

30. If $f(x) = \log(\sec^2 x)^{\cot 2}$ for $x \neq 0$ for x=0 is continuous at x=0,

then K is

- A. e^{-1}
- B. 1

C. e

D. 0

Answer: B

Watch Video Solution

31. If the origin and the points P(2,3,4), Q(1,2,3) and R(x,y,z) are coplanar, then

A.
$$x - 2y - z = 0$$

B.
$$x + 2y + z = 0$$

$$\mathsf{C.}\,x-2y+z=0$$

D.
$$2x - 2y + z = 0$$

Answer: C

32. if lines represented by equation $px^2-qy^2=0$ are distinct, then

A.
$$pq>0$$

$$\mathrm{B.}\,pq<0$$

$$\mathsf{C}.\,pq=0$$

$$\mathsf{D}.\, p+q=0$$

Answer: A

Watch Video Solution

33. Let $\Box PQRS$ be a quadrilateral. If M and N are the mid-points of the sides PQ and RS respectively, then PS+QR=

A.
$$3\overline{MN}$$

B.
$$4\overline{MN}$$

C.
$$2\overline{MN}$$

D. $2\overline{NM}$

Answer: C

Watch Video Solution

- **34.** If slopes of lines represented by $kx^2 + 5xy + y^2 = 0$ differ by 1,
- then k=
 - A. 2
 - B. 3
 - C. 6
 - D. 8

Answer: C

35. If vector r wiith dc's l,m,n is equally inclined to the coordinate axes, then the total number of such vectors is

36. The particular solution of the differential equation x dy+2y dx=0,

- A. 4
- B. 6
- C. 8
- D. 2

Answer: C

Watch Video Solution

then x=2, y=1 is

- A. xy = 4
- $\mathtt{B.}\,x^2y=4$

$$\mathsf{C.}\,xy^2=4$$

D. $x^2y^{2=4}$

Answer: B

Watch Video Solution

37. ABC

A. 10, 7

B. 9, 10

C. 7, 9

D. 7, 10

is

is equally inclined to the axes, then find the value of $\lambda and\mu$

a

 $A=(235)\dot{B}=(\,-1,3,2) and C=(\lambda,5,\mu)$. If the median through A

triangle

and

Answer: D

38. For the following distribution function F (X) of a r.v. X

Χ	1	2	3	4	5	6
F (X)	0.2	0.37	0.48	0.62	0.85	1

$$P(3 < X \le 5) =$$

- A.0.48
- $\mathsf{B.}\ 0.37$
- C. 0.27
- D. 1.47

Answer: B

Watch Video Solution

39. The lines $\frac{x-1}{2}=\frac{y+1}{2}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect each other at point

A.
$$(-2, -4, 5)$$

B.
$$(-2, -4, -5)$$

C.
$$(2, 4, -5)$$

D.
$$(2, -4, -5)$$

Answer: B

View Text Solution

40.
$$\int \frac{\sec^8 x}{\csc x} dx =$$

A.
$$\frac{\sec^8 x}{8} + c$$

B. $\frac{\sec^7 x}{7} + c$

 $\mathsf{C.}\,\frac{\sec^6+x}{6}+c$

$$- + c$$

D. $\frac{\sec^9 x}{9} + c$

Answer: B

41. The equation of line equally inclined to coordinate axes and passing through (-3,2,-5) is

A.
$$\frac{x+3}{1} = \frac{y-2}{1} = \frac{z+5}{1}$$

B.
$$\frac{x+3}{-1} = \frac{y-2}{1} = \frac{5+z}{-1}$$

c.
$$\frac{x+3}{-1} = \frac{y-2}{1} = \frac{z+5}{1}$$

D.
$$\frac{x+3}{-1} = \frac{2-y}{1} = \frac{z+5}{-1}$$

Answer: B

42. If
$$\int_0^{\pi/2}\log(\cos x)dx=rac{\pi}{2}\log\Bigl(rac{1}{2}\Bigr),$$
 then $\int_0^{\pi/2}\log(\sec x)dx=$

A.
$$\frac{\pi}{2}\log\left(\frac{1}{2}\right)$$

D.
$$\frac{\pi}{2}\log 2$$

 $\mathsf{B.}\,1 - \frac{\pi}{2} \mathrm{log}\!\left(\frac{1}{2}\right)$

 $\mathsf{C.}\,1 + \frac{\pi}{2} \mathsf{log} \bigg(\frac{1}{2}\bigg)$

Answer: D

Watch Video Solution

- 43. A boy tosses faiir coin 3 times. If he gets Rs 2X for X heads, then his expected gain equals to Rs....
 - A. 1
 - B. $\frac{3}{2}$

C. 3

- D. 4
- Answer: C

44. Which of the following statement patten is a tautology?

A.
$$p \lor (q
ightarrow p)$$

B. ~
$$q
ightarrow$$
 ~ p

C.
$$(q
ightarrow p) \lor (extstyle p \leftrightarrow q)$$

D.
$$p \lor { extstyle au} p$$

Answer: C

View Text Solution

45. If the angle between the planes $ar{r}$. $\left(m\hat{i}-\hat{j}+2\hat{k}\right)+3=0$ and $ar{r}$. $\left(2\hat{i}-m\hat{j}-\hat{k}\right)-5=0$ is $\frac{\pi}{3}$,

then m =

A. 2

 ${\sf B}.\pm 3$

C. 3

 $\mathsf{D.}-2$

Answer: C

Watch Video Solution

- **46.** If f(x)=x for $x\leq 0=0$ for x>0, then f(x) at x=0 is
 - A. continuous but not differentibale
 - B. not continuous but differentibale
 - C. continuous and differentiable
 - D. not continuous and not differentiable

Answer: A

47. The equation of the plane through (-1,1,2), whose normal makes equal acute angles with coordinate axes is

A.
$$ar{r}$$
. $\left(\hat{i}+\hat{j}+\hat{k}
ight)=2$

B.
$$ar{r}$$
. $\left(\hat{i}+\hat{j}+\hat{k}
ight)=6$

C.
$$ar{r}$$
. $\left(3\hat{i}-3\hat{j}+3\hat{k}
ight)=2$

D.
$$ar{r}$$
. $\left(\hat{i}-\hat{j}+\hat{k}
ight)=3$

Answer: A

Watch Video Solution

48. Probability that a person will develop immunity after vaccinations is 0.8. if 8 people are givenn the vaccine, then probability that all develop immunity is=

A.
$$(0.2)^8$$

B.
$$(0.8)^8$$

D.
$$^8C_6(0.2)^6(0.8)^2$$

Answer: B

Watch Video Solution

49. If the distance of points $2\hat{i}+3\hat{t}\,j+\lambda\hat{k}$ from the plane

$$r\cdot\left(3\hat{i}+2\hat{j}+6\hat{k}
ight)=13$$
 is 5 units, then $\lambda=$

A. 6,
$$\frac{-17}{3}$$

B. 6,
$$\frac{17}{3}$$

C.
$$-6, \frac{-17}{3}$$

D.
$$-6, \frac{17}{3}$$

Answer: A

50. The value of $\cos^{-1}\Bigl(\cot\Bigl(\frac{\pi}{2}\Bigr)\Bigr) + \cos^{-1}\Bigl(\sin\Bigl(\frac{2\pi}{3}\Bigr)\Bigr)$ is

- A. $\frac{2\pi}{3}$
- B. $\frac{\pi}{3}$
- C. $\frac{\pi}{2}$
- D. π

Answer: A

