© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - NIKITA MATHS (HINGLISH)

PAIR OF STRAIGHT LINES

MULTIPLE CHOICE QUESTIONS

1. Second degree homogeneous equation in x and y always represents
A. a circle
B. a parabola
C. an ellipse
D. a pair of straight lines

Answer: D

- Watch Video Solution

2. The condition of representing the coincident lines by the general quadratic equation $f(x, y)=0$, is
A. $\Delta=0, h^{2}=a b$
B. $\Delta=o, a+b=0$
C. $\Delta=0, h^{2}=a b, g^{2}=a c, f^{2}=b c$
D. $h^{2}=a b, g^{2}=a c, f^{2}=b c$

Answer: C

- Watch Video Solution

3. If in the general quadratic equation
$f(x, y)=0, \Delta=0 \quad$ and $\quad h^{2}=a b, \quad$ then \quad the equation represents.
A. two straight lines
B. two parallel lines
C. two perpendicular lines
D. two intersecting lines

Answer: B

D Watch Video Solution

4. If m_{1} and m_{2} are the slopes of the lines
represented by $a x^{2}+2 h x y+b y^{2}=0$, then
$m_{1}+m_{2}=$
A. $\frac{2 h}{a}$
B. $\frac{-2 h}{a}$
C. $\frac{2 h}{b}$
D. $\frac{-2 h}{b}$

Answer: D

- Watch Video Solution

5. If m_{1} and m_{2} are the slopes of the lines
represented by $a x^{2}+2 h x y+b y^{2}=0, \quad$ then
$m_{1} m_{2}=$
A. $\frac{a}{b}$
B. $\frac{-a}{b}$
C. $\frac{b}{a}$
D. $\frac{-b}{a}$

Answer: A

- Watch Video Solution

6. If θ is the angle between the lines represented by

$$
a x^{2}+2 h x y+b y^{2}=0, \text { then } \tan \theta=
$$

A. $\pm \frac{\sqrt{h^{2}-a b}}{a+b}$
B. $\pm \frac{\sqrt{h^{2}-4 a b}}{a+b}$
C. $\pm \frac{2 \sqrt{h^{2}-a b}}{a+b}$
D. $\pm \frac{2 \sqrt{h^{2}-4 a b}}{a+b}$

Answer: C

D Watch Video Solution

7. The lines represents by $a x^{2}+2 h x y+b y^{2}=0$
are perpendicular to each other, if
A. $h^{2}=a b$
B. $a b=1$
C. $a=-b$

D. $a=b$

Answer: C

D Watch Video Solution

8. The product of perpendiculars let fall from the point $\left(x_{1}, y_{1}\right)$ upon the lines represented by $a x^{2}+2 h x y+b y^{2}$, is
A. $\left|\frac{a x_{1}^{2}+2 h x_{1} y_{1}+b y_{1}^{2}}{\sqrt{(a-b)^{2}-4 h^{2}}}\right|$
B. $\left|\frac{a x_{1}^{2}+2 h x_{1} y_{1}+b y_{1}^{2}}{\sqrt{(a-b)^{2}+4 h^{2}}}\right|$
C. $\left|\frac{a x_{1}^{2}+2 h x_{1} y_{1}+b y_{1}^{2}}{\sqrt{(a+b)^{2}-4 h^{2}}}\right|$
D. $\left|\frac{a x_{1}^{2}+2 h x_{1} y_{1}+b y_{1}^{2}}{\sqrt{(a+b)^{2}+4 h^{2}}}\right|$

Answer: B

D Watch Video Solution

9. If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents parallel straight lines, then
A. $a b c+2 g f h-a f^{2}-b g^{2}-c h^{2}=0$
B. $h^{2}-a b=0$
C. $h^{2}>a b$
D. $h^{2}<a b$

Answer: A

D Watch Video Solution

10.

If
the
equation
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
represents a pair of parallel lines, then
A. $\frac{a}{h}=\frac{b}{h}=\frac{f}{g}$
B. $\frac{a}{b}=\frac{b}{h}=\frac{g}{f}$
c. $\frac{a}{h}=\frac{h}{b}=\frac{g}{f}$
D. $\frac{h}{a}=\frac{b}{h}=\frac{g}{f}$

Answer: C

- Watch Video Solution

11.

If
the
equation
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
represents a pair of parallel lines, then
A. $2 \sqrt{\frac{g^{2}-a c}{h^{2}+a^{2}}}$
B. $\sqrt{\frac{g^{2}-a c}{h^{2}+a^{2}}}$
C. $2 \sqrt{\frac{g^{2}+a c}{h^{2}+a^{2}}}$
D. $\sqrt{\frac{g^{2}+a c}{h^{2}+a^{2}}}$

Answer: A

D Watch Video Solution

12. Lines represented by $4 x^{2}+4 x y+y^{2}=0$ are
A. real and distinct
B. real and coincident
C. imaginary
D. perpendicular

Answer: B

- Watch Video Solution

13. Lines represented by $x^{2}-y^{2}=0$ are
A. real and distinct
B. real and coincident
C. imaginary
D. parallel

Answer: A
14. Lines represented by $x^{2}+7 x y+2 y^{2}=0$ are
A. real and distinct
B. real and coincident
C. imaginary
D. perpendicular

Answer: A

- Watch Video Solution

15. Lines represented by $x^{2}+2 x y-y^{2}=0$ are
A. real and distinct
B. real and coincident
C. imaginary
D. parallel

Answer: A

D Watch Video Solution

16. If the lines represented by $a x^{2}+4 x y+4 y^{2}=0$
are real distinct, then
A. $a=0$
B. $a=1$
C. $a<1$
D. $a>1$

Answer: C

D Watch Video Solution
17. if lines represented by equation $p x^{2}-q y^{2}=0$ are distinct, then
A. $p q>0$
B. $p q<0$
C. $p q=0$
D. $p+q=0$

Answer: A

D Watch Video Solution
18. Lines represented by $p x^{2}-q y^{2}=0$ are real and
coincident, if
A. p and q have same sign
B. p and q have opposite sign
C. p and q is zero
D. $p \neq|q|$

Answer: C

- Watch Video Solution

19. Lines represented by $p x^{2}-q y^{2}=0$ are imaginary, if
A. p and q have same sign
B. p and q have opposite sign
C. p and q is zero
D. $p \neq|q|$

Answer: B

- Watch Video Solution

20. Which of the following equation does not represent a pair of lines ?

$$
\begin{aligned}
& \text { A. } x^{2}-x=0 \\
& \text { B. } x y-x=0 \\
& \text { C. } y^{2}-x+1=0 \\
& \text { D. } x y+x+y+1=0
\end{aligned}
$$

- Watch Video Solution

21. If I, m, n are in AP, then the line $I x+m y+n=0$, will always pass through the point
A. $(-1,2)$
B. $(1,-2)$
C. $(2,4)$
D. $(3,2)$

Answer: B

22. The separate equations of the lines represented by the equation $x^{2}-4 y^{2}=0$ are

$$
\begin{aligned}
& \text { A. } x-2 y=0 \text { and } 2 x+y=0 \\
& \text { B. } 2 x-y=0 \text { and } x+2 y=0 \\
& \text { C. } x-2 y=0 \text { and } x+2 y=0 \\
& \text { D. } 2 x-y=0 \text { and } 2 x+y=0
\end{aligned}
$$

Answer: C

- Watch Video Solution

23. The separate equations of the lines represented by the equation $3 x^{2}-y^{2}=0$ are

$$
\begin{aligned}
& \text { A. } \sqrt{3} x+2 y=0 \text { and } \sqrt{3}-2 y=0 \\
& \text { B. } \sqrt{3} x-y=0 \text { and } \sqrt{3} x+y=0 \\
& \text { C. } 3 x-y=0 \text { and } x+y=0 \\
& \text { D. } 3 x+y=0 \text { and } x-y=0
\end{aligned}
$$

Answer: B

- Watch Video Solution

24. The separate equations of the lines represented by the equation $5 x^{2}-9 y^{2}=0$ are

$$
\text { A. } 5 x-3 y=0 \text { and } 5 x+3 y=0
$$

B. $5 x-3 y=0$ and $5 x+9 y=0$
C. $\sqrt{3} x-3 y=0$ and $\sqrt{5} x+3 y=0$
D. $\sqrt{5} x-9 y=0$ and $\sqrt{5} x+9 y=0$

Answer: C

- Watch Video Solution

25. The separate equations of the lines represented by the equation $5 x^{2}-3 y^{2}=0$ are

$$
\begin{aligned}
& \text { A. } \sqrt{5} x-\sqrt{3} y=0 \text { and } \sqrt{5} x+\sqrt{3} y=0 \\
& \text { B. } \sqrt{5} x-\sqrt{3} y=0 \text { and } \sqrt{3} x+\sqrt{5} y=0 \\
& \text { C. } 5 x-3 y=0 \text { and } x+y=0 \\
& \text { D. } x-y=0 \text { and } 5 x-3 y=0
\end{aligned}
$$

Answer: A

- Watch Video Solution

26. The separate equations of the lines given by

$$
(x-4)^{2}-16(y-5)^{2}=0 \text { are }
$$

A. $x+4 y+16=0$ and $x-4 y-24=0$
B. $x+4 y-16=0$ and $x-4 y-24=0$
C. $x+4 y-16=0$ and $x-4 y+24=0$
D. $x+4 y+16=0$ and $x-4 y+24=0$

Answer: A

- Watch Video Solution

27. Equation $y^{2}-x^{2}+2 x-1=0$ represents
A. a circle
B. a parabola
C. an ellipse
D. a pair of straight lines

Answer: D

- Watch Video Solution

28. The equation $(x+y)^{2}-\left(x^{2}+y^{2}\right)=0$
represents
A. Two mutually perpendicular lines
B. two parallel lines
C. Two lines
D. a circle

Answer: A

D Watch Video Solution
29. One of the lines represented by $x^{2}+6 x y=0$ is
A. X -axis
B. Y-axis
C. parallel to X-axis
D. parallel to Y-axis

Answer: B

- Watch Video Solution

30. The separate equations of the lines represented by the equation $x^{2}-4 x y=0$ are
A. $x=0$ and $x-2 y=0$
B. $x=0$ and $x+2 y=0$
C. $x=0$ and $x-4 y=0$
D. $x=0$ and $x+4 y=0$

Answer: C

- Watch Video Solution

31. The separate equations of the lines represented by the equation $y^{2}+7 x y=0$ are

$$
\begin{aligned}
& \text { A. } y=0 \text { and } 3 x-7 y=0 \\
& \text { B. } y=0 \text { and } 3 x+7 y=0 \\
& \text { C. } y=0 \text { and } 7 x-3 y=0 \\
& \text { D. } y=0 \text { and } 7 x+3 y=0
\end{aligned}
$$

- Watch Video Solution

32. Separate equations of the two lines jointly given by $a b\left(x^{2}-y^{2}\right)+\left(a^{2}-b^{2}\right) x h=0$ are
A. $a x+b y=0$ and $b x+a y=0$
B. $a x+b y=0$ and $b x-a y=0$
C. $a x-b y=0$ and $b x+a y=0$
D. $a x-b y=0$ and $b x-a y=0$

Answer: C

- Watch Video Solution

33. Statement -1 : If $a>b>c$, then the lines

represented

$(a-b) x^{2}+(b-c) x y+(c-a) y^{2}=0$ are real
and distinct.
Statement-2 : Pair of lines represented by $a x^{2}+2 h x y+b y^{2}=0$ are real and distinct if $h^{2}>a b$.

$$
\text { A. } a(b-c) x+c(a-b) y=0 \text { and } x+y=0
$$

$$
\text { B. } a(b-c) x-c(a-b) y=0 \text { and } x-y=0
$$

$$
\text { C. } a(b-c) x+c(a-b) y=0 \text { and } x-y=0
$$

$$
\text { D. } a(b-c) x-c(a-b) y=0 \text { and } x+y=0
$$

- Watch Video Solution

34. The equation of the lines represented by $3 x^{2}-7 x y+4 y^{2}=0$ are
A. $x+2 y=0$ and $3 x+2 y=0$
B. $3 x-y=0$ and $x-4 y=0$
C. $x-2 y=0$ and $3 x-2 y=0$
D. $x-y=0$ and $3 x-4 y=0$

- Watch Video Solution

35. The equation of the lines represented by

$$
3 x^{2}-10 x y-8 y^{2}=0 \text { are }
$$

A. $x-2 y=0$ and $3 x+4 y=0$
B. $x-4 y=0$ and $3 x+2 y=0$
C. $x+2 y=0$ and $3 x-4 y=0$
D. $x+4 y+16=0$ and $3 x-2 y=0$

Answer: B

36. The equation of the lines represented by $6 x^{2}-5 x y-6 y^{2}=0$ are
A. $2 x+3 y=0$ and $3 x+2 y=0$
B. $2 x-3 y=0$ and $3 x-2 y=0$
C. $2 x-3 y=0$ and $3 x+2 y=0$
D. $2 x+3 y=0$ and $3 x-2 y=0$

Answer: C

- Watch Video Solution

37. The equation of the lines represented by $3 x^{2}-2 \sqrt{3} x y-3 y^{2}=0$ are

$$
\begin{aligned}
& \text { A. } x-\sqrt{3} y=0 \text { and } \sqrt{3} x+y=0 \\
& \text { B. } x+\sqrt{3} y=0 \text { and } \sqrt{3} x-y=0 \\
& \text { C. } x-3 y=0 \text { and } 3 x+y=0 \\
& \text { D. } x+3 y=0 \text { and } 3 x+y=0
\end{aligned}
$$

Answer: A

- Watch Video Solution

38. The equation of the lines represented by $x^{2}+2 x y-y^{2}=0$ are
A.

$$
(1+\sqrt{2}) x-y=0 \text { and }(1-\sqrt{2}) x+y=0
$$

B.

$$
(1+\sqrt{2}) x-y=0 \text { and }(1-\sqrt{2}) x-y=0
$$

C.

$$
(\sqrt{2}+1) x-y=0 \text { and }(\sqrt{2}-1) x-y=0
$$

D.

$$
(1+\sqrt{2}) x-y=0 \text { and }(\sqrt{2}-1) x-y=0
$$

- Watch Video Solution

39. The equation of the lines represented by $2 x^{2}+2 x y-y^{2}=0$ are
A.

$$
(1+\sqrt{3}) x+y=0 \text { and }(1-\sqrt{3}) x+y=0
$$

B.

$$
(1+\sqrt{3}) x-y=0 \text { and }(1-\sqrt{3}) x-y=0
$$

C.

$$
x-(1-\sqrt{3}) y=0 \text { and } x-(1-\sqrt{3}) y=0
$$

D.

$$
x-(1+\sqrt{3}) y=0 \text { and } x+(1-\sqrt{3}) y=0
$$

Answer: B

D Watch Video Solution

40. The equation of the lines represented by $x^{2}+2(\operatorname{cosec} \alpha) x y+y^{2}=0$ are
A. $(1 \pm \sin \alpha) x+2(\cos \alpha) y=0$
B. $(1 \pm \cos \alpha) x+2(\sin \alpha) y=0$
C. $(1 \pm \sin \alpha) x+(\cos \alpha) y=0$
D. $(1 \pm \cos \alpha) x+(\sin \alpha) y=0$

Answer: D

- Watch Video Solution

41. The separate equation of the lines represented by the equation $x^{2}+2(\tan \alpha) x y-y^{2}=0$ are
A. $(1 \pm \cos \alpha) x-\sin \alpha y=0$
B. $(1 \pm \cos \alpha) x+\sin \alpha y=0$
C. $(\tan \alpha \pm \sec \alpha) x-y=0$
D. $(\tan \alpha \pm \sec \alpha) x+y=0$

Answer: C

- Watch Video Solution

42. The equation of the whose sum of the intercepts on the axes is 7 and is parallel to the common line of the lines represented by the equation
$6 x^{2}-x y-12 y^{2}=0$ and $15 x^{2}+14 x y-8 y^{2}=0$
is
A. $3 x+4 y+12=0$
B. $3 x-4 y-12=0$
C. $3 x-4 y+12=0$
D. $3 x+4 y-12=0$

Answer: D

- Watch Video Solution

43. The separate equations of the lines represented
by the equation
$(x-2)^{2}-3(x-2)(y+1)-3(y+1)^{2}=0$ are
A. $x-2 y-4=0$ and $x-y-3=0$
B. $x-2 y+4=0$ and $x-y+3=0$
C. $x+2 y-4=0$ and $x+y-3=0$
D. $x+2 y+4=0$ and $x+y+3=0$

Answer: A

D View Text Solution

44. The separate equations of the lines represented
by
the
line
equation
$(x+1)^{2}+(x+1)(y-2)-2(y-2)^{2}=0$ are
A. $2 x+y-4=0$ and $5 x-3 y+1=0$
B. $2 x-y+4=0$ and $5 x+3 y-1=0$
C. $2 x+y+4=0$ and $5 x-3 y-1=0$
D. $2 x-y-4=0$ and $5 x+3 y+1=0$

Answer: B

D View Text Solution

45. The separate equations of the lines represented

$$
\begin{aligned}
& \text { by } \begin{array}{l}
\text { the } \\
\text { by }
\end{array} \text { line equation } \\
& 8(x-1)^{2}+10(x-1)(y-3)-3(y-3)^{2}=0
\end{aligned}
$$

are
A. $4 x+3 y+13=0$ and $2 x+y+5=0$
B. $4 x+3 y-13=0$ and $2 x+y-5=0$
C. $4 x+3 y-13=0$ and $2 x+y+5=0$
D. $4 x+3 y+13=0$ and $2 x+y-5=0$

Answer: B

- Watch Video Solution

46.

$$
(x-5)^{2}+(x-5)(y-6)-2(y-6)^{2}=0
$$

A. two lines
B. two lines passing through origin
C. two lines passing through the point $(6,5)$
D. two passing through the point $(5,6)$

Answer: D

D Watch Video Solution

47. The joint equation of the line
$2 x+y=0$ and $3 x-5 y=0$ is

$$
\text { A. } 6 x^{2}+3 x y-5 y^{2}=0
$$

B. $6 x^{2}-10 x y-5 y^{2}=0$
C. $6 x^{2}+7 x y-5 y^{2}=0$
D. $6 x^{2}-7 x y-5 y^{2}=0$

Answer: D

D Watch Video Solution

48. The joint equation of the line

$$
x-y=0 \text { and } x+y=0 \text { is }
$$

A. $x^{2}-x y+y^{2}=0$
B. $x^{2}-x y-y^{2}=0$
C. $x^{2}+y^{2}=0$
D. $x^{2}-y^{2}=0$

Answer: D

D Watch Video Solution

49. The joints equation of the lines

$$
3 x-2 y+5=0 \text { and } 5 x-3 y=0 \text { is }
$$

$$
\text { A. } 15 x^{2}-19 x y+6 y^{2}-25 x-15 y=0
$$

B. $15 x^{2}-19 x y+6 y^{2}+25 x-15 y=0$
C. $15 x^{2}-x y+6 y^{2}+25 x-15 y=0$
D. $15 x^{2}+x y+6 y^{2}+25 x-15 y=0$

Answer: B

D Watch Video Solution

50. The joint equation of the lines $3 x+2 y-1=0$ and $x+3 y-2=0$ is
A. $3 x^{2}+11 x y+6 y^{2}-7 x+7 y+2=0$
B. $3 x^{2}+11 x y+6 y^{2}+7 x-7 y+2=0$
C. $3 x^{2}+11 x y+6 y^{2}-7 x-7 y+2=0$
D. $3 x^{2}+11 x y+6 y^{2}+7 x+7 y+2=0$

Answer: C

- Watch Video Solution

51. The joint equation of the lines

$$
x+2 y-1=0 \text { and } 2 x-3 y+2=0 \text { is }
$$

A. $2 x^{2}+x y-6 y^{2}+7 y-2=0$
B. $2 x^{2}-x y-6 y^{2}+7 y-2=0$
C. $2 x^{2}+x y+6 y^{2}+4 y-2=0$
D. $2 x^{2}-x y+6 y^{2}-4 y-2=0$

- Watch Video Solution

52. Find the joint equation of the lines $x+y-3=0$ and

$$
2 x+y-1=0
$$

$$
\begin{aligned}
& \text { А. } 2 x^{2}+3 x y+y^{2}-4 x-7 y+3=0 \\
& \text { В. } 2 x^{2}+3 x y+y^{2}-7 x-4 y+3=0
\end{aligned}
$$

$$
\text { C. } 2 x^{2}+3 x y+y^{2}+7-4 y+3=0
$$

$$
\text { D. } 2 x^{2}+3 x y+y^{2}-7 x+4 y+3=0
$$

Answer: B

- Watch Video Solution

53. The combine equation of the lines passing through the origin and having slopes 3 and 2 is

> A. $6 x^{2}+5 x y+y^{2}=0$
> B. $6 x^{2}-5 x y+y^{2}=0$
> C. $x^{2}+5 x y+6 y^{2}=0$
> D. $x^{2}-5 x y+6 y^{2}=0$

Answer: B

- Watch Video Solution

54. The combine equation of the lines passing through the origin and having slopes
$1+\sqrt{3}$ and $1-\sqrt{3}$ is
A. $x^{2}+x y-2 y^{2}=0$
B. $x^{2}+2 x y-2 y^{2}=0$
C. $2 x^{2}+x y-y^{2}=0$
D. $2 x^{2}+2 x y-y^{2}=0$

Answer: D

- Watch Video Solution

55. Find the combined equation of the lines passing through the origin and having inclinations $\frac{\pi}{3}$ and $\frac{5 \pi}{3}$.
A. $x^{2}+3 y^{2}=0$
B. $x^{2}+y^{2}=0$
C. $3 x^{2}-y^{2}=0$
D. $x^{2}-3 y^{2}=0$

Answer: C

- Watch Video Solution

56. The combine equation of the lines passing through the origin and having inclinations 60° and 120° with X -axis is
A. $3 x^{2}-y^{2}=0$
B. $3 x^{2}+y^{2}=0$
C. $x^{2}-3 y^{2}=0$
D. $x^{2}+3 y^{2}=0$

Answer: A

- Watch Video Solution

57. The joint equation of pair of lines passing through the origin and inclined at 30° and 60° with X -axis is
A. $2 x^{2}-2 x y+3 y^{2}=0$
B. $2 x^{2}-2 x y+\sqrt{3} y^{2}=0$
C. $\sqrt{3}\left(x^{2}+y^{2}\right)=4 x y$
D. $4\left(x^{2}+y^{2}\right)=\sqrt{3} x y$

Answer: C

- Watch Video Solution

58. The combine equation of the lines passing through the origin and each of which makes an angle of 60° with the Y-axis is
A. $x^{2}-3 y^{2}=0$
B. $3 x^{2}-y^{2}=0$
C. $x^{2}-\sqrt{3} y^{2}=0$
D. $\sqrt{3} x^{2}-y^{2}=0$

Answer: A

- Watch Video Solution

59. The joint equation of lines passing through the origin and bisecting the angles between coordinate axes is
A. $x^{2}-x y+y^{2}=0$
B. $x^{2}-x y+y^{2}=0$
C. $x^{2}-y^{2}=0$
D. $x^{2}+y^{2}=0$

Answer: C

60. The joint equation of lines passing through the origin and trisecting the first quadrant is

> A. $x^{2}+\sqrt{3} x y-y^{2}=0$
> B. $x^{2}-\sqrt{3} x y-y^{2}=0$
> C. $\sqrt{3} x^{2}-4 x y+\sqrt{3} y^{2}=0$
> D. $3 x^{2}-y^{2}=0$

Answer: C

D Watch Video Solution

61. The joint equation of lines passing through the origin and trisecting the second and fourth quadrant is
A. $\sqrt{3} x^{2}+4 x y+\sqrt{3} y^{2}=0$
B. $x^{2}-\sqrt{3} x y-y^{2}=0$
C. $\sqrt{3} x^{2}-4 x y+\sqrt{3} y^{2}=0$
D. $3 x^{2}-y^{2}=0$

Answer: A

- Watch Video Solution

62. The combine equation of the lines passing through the origin and which are at a distance of 9 units from the Y-axis is
A. $y^{2}-81=0$
B. $y^{2}+81=0$
C. $x^{2}-81=0$
D. $x^{2}+81=0$

Answer: C

63. The joint equation of pair of lines through point (a, b) parallel to the co-ordinate axes is

$$
\text { A. }(x+a)(y+b)=0
$$

$$
\text { B. }(x+a)(y-b)=0
$$

$$
\text { C. }(x-a)(y-b)=0
$$

$$
\text { D. }(x-a)(y+b)=0
$$

Answer: D

- Watch Video Solution

64. Combined equation of pair of lines, through $(1,2)$ and parallel to co-ordinate axes is

$$
\text { A. } x y-2 x-y+2=0
$$

$$
\text { B. } x y-x-2 y+2=0
$$

$$
\text { C. } x y+2 x+y+2=0
$$

$$
\text { D. } x y+x+2 y+2=0
$$

Answer: A

- Watch Video Solution

65. The combined equations of lines passing through $(2,3)$ and parallel to the co-ordinate axes is
A. $x y-3 x-2 y+2=0$
B. $x y+3 x+2 y+6=0$
C. $x y=0$
D. $x y-3 x-2 y-6=0$

Answer: A

- Watch Video Solution

66. The combined equations of lines passing through (3, 2) and parallel to the co-ordinate axes is
A. $x y+2 x+3 y+6=0$
B. $x y+3 x+2 y+6=0$
C. $x y-3 x-2 y+6=0$
D. $x y-2 x-3 y+6=0$

Answer: D

- Watch Video Solution

67. The joint equation of bisectors of angles between lines $x=5$ and $y=3$ is

$$
\begin{aligned}
& \text { A. }(x-5)(y-3)=0 \\
& \text { B. } x^{2}-y^{2}-10 x+6 y+16=0 \\
& \text { C. } x y=0 \\
& \text { D. } x y-5 x-3 y+15=0
\end{aligned}
$$

Answer: B

- Watch Video Solution

68. The joint equation of pair of lines passing through the origin and parallel to the lines

$$
y=m_{1} x+c_{1} \text { and } y=m_{2} x+c_{2} \text { is }
$$

A. $m_{1} m_{2} x^{2}+\left(m_{1}+m_{2}\right) x y+y^{2}=0$
B. $m_{1} m_{2} x^{2}-\left(m_{1}+m_{2}\right) x y+y^{2}=0$
C. $m_{1} m_{2} y^{2}+\left(m_{1}+m_{2}\right) x y+x^{2}=0$
D. $m_{1} m_{2} y^{2}-\left(m_{1}+m_{2}\right) x y+x^{2}=0$

Answer: B

- Watch Video Solution

69. The combine equation of the lines passing through the origin and perpendicular to the lines $x+2 y=19$ and $3 x+y=18$ is
A. $3 x^{2}-7 x y+2 y^{2}=0$
B. $2 x^{2}-7 x y+3 y^{2}=0$
C. $3 x^{2}+7 x y+2 y^{2}=0$
D. $2 x^{2}+7 x y+3 y^{2}=0$

Answer: B

- Watch Video Solution

70. Joint equation of pair of lines passing through origin of which one is perpendicular and other is parallel to line $6 x-4 y+5=0$ is
A. $3 x^{2}+5 x y-6 y^{2}=0$
B. $6 x^{2}+5 x y-6 y^{2}=0$
C. $x^{2}+2 x y+6 y^{2}=0$
D. $x^{2}-5 x y+y^{2}=0$

Answer: B

- Watch Video Solution

71. The joint equation of pair lines passing through the origin of which one is parallel and other is perpendicular to $5 x+3 y=7$ is

$$
\begin{aligned}
& \text { A. } x^{2}-x y-y^{2}=0 \\
& \text { B. } 3 x^{2}-16 x y+3 y^{2}=0 \\
& \text { C. } 15 x^{2}-16 x y-15 y^{2}=0 \\
& \text { D. } 15 x^{2}+16 x y+15 y^{2}=0
\end{aligned}
$$

Answer: C

- Watch Video Solution

72. The joint equation of pair lines passing through the origin of which one is parallel $3 x-y=7$ and other is perpendicular to $2 x+y=8$ is

$$
\begin{aligned}
& \text { A. } 3 x^{2}+x y+2 y^{2}=0 \\
& \text { B. } 3 x^{2}-x y+2 y^{2}=0 \\
& \text { C. } 3 x^{2}+7 x y+2 y^{2}=0 \\
& \text { D. } 3 x^{2}-7 x y+2 y^{2}=0
\end{aligned}
$$

Answer: D

- Watch Video Solution

73. The combined equation of pair of lines through

 point (2, 1) and parallel to the lines given by $3 x^{2}-4 x y+2 y^{2}=0$ isA. $3 x^{2}-4 x y+2 y^{2}+16 x+12 y-22=0$
B. $3 x^{2}-4 x y+2 y^{2}+16 x+12 y+22=0$
C. $3 x^{2}-4 x y+2 y^{2}+16 x-12 y+22=0$
D. $3 x^{2}-4 x y+2 y^{2}+16 x+12 y+22=0$

Answer: B

D View Text Solution

74. The joint equation of pair of lines through $(2,-1)$ and parallel to $2 x^{2}+3 x y-9 y^{2}=0$ is

$$
\begin{aligned}
& \text { A. } 2 x^{2}+3 x y+9 y^{2}-5 x-24 y+7=0 \\
& \text { B. } 2 x^{2}+3 x y-9 y^{2}-5 x-24 y+7=0 \\
& \text { C. } 2 x^{2}+3 x y+9 y^{2}-5 x-24 y-7=0 \\
& \text { D. } 2 x^{2}+3 x y-9 y^{2}-5 x-24 y-7=0
\end{aligned}
$$

Answer: D

- Watch Video Solution

75. The joint equation of pair of lines through
$(2,-3)$ and parallel to $x^{2}+x y-y^{2}=0$ is

> A. $x^{2}+x y-y^{2}-x-8 y-11=0$
> B. $x^{2}+x y-y^{2}-8 x-y-11=0$
> C. $x^{2}+x y-y^{2}-x-8 y+11=0$
> D. $x^{2}+x y-y^{2}-8 x-y+11=0$

Answer: A

- Watch Video Solution

76. The combined equation of lines passing through the point $(1,2)$ and perpendicular to the lines $3 x+2 y-5=0 a d 2 x-5 y+1=0$ is
A. $10 x^{2}+11 x y-6 y^{2}+2 x-35 y-36=0$
B. $10 x^{2}+11 x y-6 y^{2}-2 x+3 y-36=0$
C. $10 x^{2}-11 x y-6 y^{2}+2 x-35 y-36=0$
D. $10 x^{2}-11 x y-6 y^{2}+2 x+35 y-36=0$

Answer: D

- Watch Video Solution

77. The combined equation of lines passing through the point $(2,3)$ and perpendicular to the lines

$$
3 x+2 y-1=0 \text { and } x-3 y+2=0 \text { is }
$$

$$
\begin{aligned}
& \text { A. } 6 x^{2}-7 x y+3 y^{2}-3 x-32 y-45=0 \\
& \text { B. } 6 x^{2}-7 x y-3 y^{2}-3 x+32 y-45=0 \\
& \text { C. } 6 x^{2}-7 x y-3 y^{2}+3 x+32 y-45=0 \\
& \text { D. } 6 x^{2}-7 x y+3 y^{2}-3 x+32 y-45=0
\end{aligned}
$$

Answer: B

- Watch Video Solution

78. The combined equation of lines passing through the point $(-1,2)$ and perpendicular to the lines $x+2 y+3=0$ and $3 x-4 y-5=0$ is
A. $8 x^{2}+2 x y-3 y^{2}-12 x+14 y+8=0$
B. $8 x^{2}+2 x y-3 y^{2}+12 x+14 y-8=0$
C. $8 x^{2}+2 x y-3 y^{2}+12 x-14 y-8=0$
D. $8 x^{2}+2 x y-3 y^{2}-12 x-14 y+8=0$

Answer: B

- Watch Video Solution

79. The combined equation of lines passing through the point $(3,2)$ of which one is parallel to $x-2 y=2$ and other is perpendicular to $y=3$ is

$$
\begin{aligned}
& \text { A. } x^{2}-2 x y-2 x+6 y-3=0 \\
& \text { B. } x^{2}-2 x y-4 x+6 y+3=0 \\
& \text { C. } x^{2}-2 x y-6 x+2 y-3=0 \\
& \text { D. } x^{2}-2 x y-6 x+4 y+3=0
\end{aligned}
$$

Answer: A

- Watch Video Solution

80. The combined equation of lines passing through the point $(-1,2)$ of which one is parallel to $x+3 y-1=0$ and other is perpendicular to $2 x-3 y-1=0$ is
A. $3 x^{2}+11 x y+6 y^{2}+16 x+13 y+5=0$
B. $3 x^{2}+11 x y+6 y^{2}+13 x+16 y+5=0$
C. $3 x^{2}+11 x y+6 y^{2}-16 x-13 y+5=0$
D. $3 x^{2}+11 x y+6 y^{2}-13 x-16 y-5=0$

Answer: C

- Watch Video Solution

81. The joint equation of lines passing through point $(2,3)$ of which one is parallel to $2 x+3 y=5$ and other is perpendicular to $x-4 y=7$ is

$$
\begin{aligned}
& \text { А. }(2 x+3 y+13)(4 x+y+11)=0 \\
& \text { В. }(2 x+3 y-13)(4 x+y-11)=0 \\
& \text { С. }(2 x+3 y-13)(4 x+y-11)=0 \\
& \text { D. }(2 x+3 y-13)(4 x+y+11)=0
\end{aligned}
$$

Answer: B

- Watch Video Solution

82. The combined equation of the pair of lines through the origin and perpendicular to the pair of
lines given by $a x^{2}+2 h x y+b y^{2}=0$, is

$$
\text { A. } a^{2}-2 h x y+b y^{2}=0
$$

B. $b x^{2}+2 h x y+a y^{2}=0$
C. $b x^{2}-2 h x y+a y^{2}=0$
D. $b x^{2}+h x y+a y^{2}=0$

Answer: C

- Watch Video Solution

83. The joint equation of linespassing through the origin and perpendicular to lines represented by
$5 x^{2}-8 x y+3 y^{2}=0$ is

$$
\text { A. } 3 x^{2}+8 x y+5 y^{2}=0
$$

B. $3 x^{2}-8 x y+5 y^{2}=0$
C. $3 x^{2}+4 x y+5 y^{2}=0$
D. $3 x^{2}-4 x y+5 y^{2}=0$

Answer: A

- Watch Video Solution

84. The joint equation of lines passing through the origin and perpendicular to lines represented by
$5 x^{2}+2 x y-3 y^{2}=0$ is

$$
\begin{aligned}
& \text { A. } 3 x^{2}-4 x y-5 y^{2}=0 \\
& \text { B. } 3 x^{2}+4 x y-5 y^{2}=0 \\
& \text { C. } 3 x^{2}-2 x y-5 y^{2}=0 \\
& \text { D. } 3 x^{2}+2 x y-5 y^{2}=0
\end{aligned}
$$

Answer: D

- Watch Video Solution

85. The joint equation of lines passing through the origin and perpendicular to lines represented by $x^{2}+4 x y-5 y^{2}=0$ is
A. $5 x^{2}+4 x y+y^{2}=0$
B. $5 x^{2}+4 x y-y^{2}=0$
C. $5 x^{2}-4 x y+y^{2}=0$
D. $5 x^{2}-4 x y-y^{2}=0$

Answer: B

- Watch Video Solution

86. The joint equation of lines passing through the origin and perpendicular to lines represented by $2 x^{2}-3 x y-9 y^{2}=0$ is
A. $9 x^{2}-3 x y-2 y^{2}=0$
B. $9 x^{2}-3 x y+2 y^{2}=0$
C. $9 x^{2}+3 x y-2 y^{2}=0$
D. $9 x^{2}+3 x y+2 y^{2}=0$

Answer: A

- Watch Video Solution

87. The joint equation of lines passing through the origin and perpendicular to lines represented by $x^{2}+x y-y^{2}=0$ is
A. $x^{2}-x y-y^{2}=0$
B. $x^{2}-x y+y^{2}=0$
C. $x^{2}+x y-y^{2}=0$
D. $x^{2}+2 x y-y^{2}=0$

Answer: C

- Watch Video Solution

88. The combined equation of pair of lines passing through origin and perpendicular to the lines given by $2 x^{2}-3 x y+y^{2}=0$ is
A. $x^{2}+3 x y+2 y^{2}=0$
B. $x^{2}-3 x y+2 y^{2}=0$
C. $2 x^{2}+3 x y+y^{2}=0$
D. $2 x^{2}-3 x y+y^{2}=0$

Answer: A

- Watch Video Solution

89. The combined equation of pair of lines passing through origin and perpendicular to the lines given by $5 x^{2}+3 x y-2 y^{2}=0$ is
A. $2 x^{2}+3 x y+5 y^{2}=0$
B. $2 x^{2} \pm x y+5 y^{2}=0$
C. $2 x^{2}+3 x y-5 y^{2}=0$
D. $2 x^{2}-3 x y-5 y^{2}=0$

Answer: C

D Watch Video Solution

90. The joint equation of lines passing through the origin and perpendicular to lines represented by $2 x^{2}+5 x y+2 y^{2}+10 x+5 y=0$ is

$$
\text { A. } 2 x^{2}-5 x y+2 y^{2}=0
$$

B. $2 x^{2}+5 x y-2 y^{2}=0$
C. $2 x^{2}-5 x y-2 y^{2}=0$
D. $2 x^{2}+5 x y+2 y^{2}=0$

Answer: A

- Watch Video Solution

91. The joint equation of pair of lines through point
$(1,2)$ and perpendicular to the lines given by $2 x^{2}-5 x y+3 y^{2}=0$ is

> A. $3 x^{2}+5 x y+2 y^{2}-16 x+13 y-21=0$
> B. $3 x^{2}+5 x y+2 y^{2}+16 x-13 y-21=0$
> C. $3 x^{2}+5 x y+2 y^{2}-16 x-13 y-21=0$
> D. $3 x^{2}+5 x y+2 y^{2}-16 x-13 y+21=0$

Answer: D

- Watch Video Solution

92. The equation $a x^{2}+2 h x y+a y^{2}=0$ represents a pair of coincident lines through origin,
if
A. $h=2 a$
B. $2 h=a$
C. $h= \pm a$
D. $2 h^{2}=a$

Answer: C

93. The equation $4 x^{2}+h x y+y^{2}=0$ represents a pair of coincident lines through origin, if $h=$
A. ± 2
B. ± 16
C. ± 4
D. ± 3

Answer: C

- Watch Video Solution

94. If the equation $k\left(x^{2}+y^{2}\right)=8 x y$ represents a pair of coincident lines, If $k=$
A. ± 1
B. ± 16
C. ± 2
D. ± 4

Answer: D

- Watch Video Solution

95.

If
the
$(k+1) x^{2}-6 x y+(k-7) y^{2}=0 \quad$ represents a pair of coincident lines, If $\mathrm{k}=$
A. $8,-2$
B. $-8,2$
C. $-8,-2$
D. 8,2

Answer: A

- Watch Video Solution

96. If the equation $a^{2} x^{2}+b x y^{2}=a(b+c) x y$ represents a pair of coincident lines, then
A. $b=a$
B. $b=c$
C. $c=a$
D. $a+b=0$

Answer: B

- Watch Video Solution

97. Which of the following pair of straight lines intersect at right angle?

$$
\begin{aligned}
& \text { A. } y= \pm 2 x \\
& \text { B. } 2 y(x+y)=x y \\
& \text { C. }(x+y)^{2}=x(3 x+y) \\
& \text { D. } 2 x^{2}=y(x+2 y)
\end{aligned}
$$

Answer: D

- Watch Video Solution

98. The equation $x^{2}+\alpha x y+\beta y^{2}=0$ represents a pair of perpendicular lines, if

$$
\begin{aligned}
& \text { A. } \alpha=2 \beta \\
& \text { B. } \beta=-1 \\
& \text { C. } 2 \alpha=\beta \\
& \text { D. } \alpha \beta=-1
\end{aligned}
$$

Answer: B

- Watch Video Solution

99. If the equation $K\left(x^{2}+y^{2}\right)=(3 x-y)^{2}$ represents a pair of coincident lines, then $k=$
A. -5
B. 5
C. -9
D. -1

Answer: B

- Watch Video Solution

100. If the equation $(k x+y)^{2}=k\left(x^{2}+y^{2}\right)$ represents a pair of perpendicular lines, then $\mathrm{k}=$
A. -2
B. -1
C. 1
D. 2

Answer: C
101. If the lines represented by
$\sin ^{2} \alpha\left(x^{2}+y^{2}\right)=((\cos \alpha) x-(\sin \alpha) y)^{2} \quad$ are
perpendicular to each other, then $\alpha=$
A. 0
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer: D

- Watch Video Solution

102. If $a x^{2}+6 x y+3 y^{2}-10 x+10 y-6=0$ represents a pair of perpendicular lines, then $|a|=$
A. ± 3
B. 0
C. -3
D. 3

Answer: D

- Watch Video Solution

103. The sum of the slopes of the lines given by

$$
x^{2}-7 x y+12 y^{2}=0 \text { is }
$$

A. $\frac{-7}{12}$
B. $\frac{7}{12}$
C. $\frac{-1}{12}$
D. $\frac{1}{12}$

Answer: B

- Watch Video Solution

104. The product of the slopes of the line given by

$$
x^{2}-x y-6 y^{2}=0 \text { is }
$$

A. $\frac{-1}{3}$
B. $\frac{1}{3}$
C. $\frac{-1}{6}$
D. $\frac{1}{6}$

Answer: C

- Watch Video Solution

105. If the sum of the slopes of the lines given by $3 x^{2}+k x y-y^{2}=0$ is zero, then $\mathrm{k}=$
A. -1
B. 0
C. 3
D. -3

Answer: B

- Watch Video Solution

106. If the lines represented by
$6 x^{2}+41 x y-7 y^{2}=0$ makes angle α and β with
X-axis, then $\tan \alpha \times \tan \beta$

$$
\begin{aligned}
& \text { A. } \frac{-6}{7} \\
& \text { B. } \frac{6}{7} \\
& \text { C. } \frac{-7}{6} \\
& \text { D. } \frac{7}{6}
\end{aligned}
$$

Answer: A

- Watch Video Solution

107. If the lines represented by $a x^{2}-b x y-y^{2}=0$
makes angle α and β with X -axis, then $\tan (\alpha+\beta)=$

$$
\begin{aligned}
& \text { A. } \frac{-a}{1+b} \\
& \text { B. } \frac{a}{1+b} \\
& \text { C. } \frac{-b}{1+a} \\
& \text { D. } \frac{b}{1+a}
\end{aligned}
$$

Answer: C

- Watch Video Solution

108. If the lines represented by $x^{2}-4 x y+y^{2}=0$ makes angle α and β with X -axis, then $\tan ^{2} \alpha+\tan ^{2} \beta=$
A. 2
B. -2
C. 14
D. -14

Answer: C

- Watch Video Solution

109. If the sum of the square of slopes of the lines

 represented by $k x^{2}-3 x y+y^{2}=0$ is 5 , then $\mathrm{k}=$A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

110. If the slope of one of the lines given by
$k x^{2}+(3 k+1) x y+3 y^{2}=0$ is reciprocal of the slope of the other line, then $k=$
A. 2
B. -2
C. 3
D. -3

Answer: C

- Watch Video Solution

111. If the slope of one of the lines given by $a x^{2}+2 h x y+b y^{2}=0$ is k times the slope of other, then

> A. $k h^{2}=4 a b(1+k)^{2}$
> B. $k h^{2}=2 a b(1+k)^{2}$
> C. $4 x h^{2}=a b(1+k)^{2}$
> D. $2 k h^{2}=a b(1+k)^{2}$

Answer: C

- Watch Video Solution

112. If the sum of the slopes of the lines given by
$2 x^{2}+k x y-3 y^{2}=0$ is equal to their product,
then $\mathrm{k}=$

$$
\text { A. }-2
$$

B. 2
C. $\frac{-2}{3}$
D. $\frac{-2}{9}$

Answer: A

113. If sum of the slopes of the lines represented by

 $x^{2}+k x y-3 y^{2}=0$ is twice their product, then $\mathrm{k}=$A. -2
B. 2
C. $\frac{-2}{3}$
D. $\frac{2}{3}$

Answer: A

- Watch Video Solution

114. If the sum of the slopes given by $a x^{2}+8 x y+5 y^{2}=0$ is twice their product, then $a=$
A. -8
B. 2
C. 4
D. -4

Answer: D

115. if $\frac{X^{2}}{a}+\frac{y^{2}}{b}+\frac{2 x y}{h}=0$ represent pair of straight lies and slope one line is twice the other line then $a b: h^{2}$.
A. 1:2
B. 2: 1
C. 8: 9
D. $9: 8$

Answer: D

116. If the slopes of the line given by $6 x^{2}+2 h x y+y^{2}=0$ are in the ratio $1: 2$, then $\mathrm{h}=$

$$
\begin{aligned}
& \text { A. } \frac{3 \sqrt{3}}{2} \\
& \text { B. } \frac{3}{2 \sqrt{3}} \\
& \text { C. } \frac{3}{2} \\
& \text { D. } \frac{27}{4}
\end{aligned}
$$

Answer: A

- Watch Video Solution

117. If the slopes of one of the line given by $a x^{2}+2 h x y+b y^{2}=0$ is three times the other, then

> A. $4 h^{2}=3 a b$
> B. $2 h^{2}=3 a b$
> C. $3 h^{2}=4 a b$
> D. $3 h^{2}=2 a b$

Answer: C

- Watch Video Solution

118. If the slopes of one of the line given by $3 x^{2}+4 x y+k y^{2}=0$ is three times the other, then $\mathrm{k}=$
A. 0
B. 1
C. 3
D. -1

Answer: B

- Watch Video Solution

119. If the ratio of gradients of the line given by $a x^{2}+2 h x y+b y^{2}=0$ is $1: 3$, then $h^{2}: a b=$
A. $\frac{1}{3}$
B. 1
C. $\frac{3}{4}$
D. $\frac{4}{3}$

Answer: D

- Watch Video Solution

120. If the slope of one of the line given by $a x^{2}+2 h x y+b y^{2}=0$ is four times the other, then

$$
\text { A. } 4 h+5 a b=0
$$

B. $4 h-5 a b=0$
C. $16 h^{2}+25 a b=0$
D. $16 h^{2}-25 a b=0$

Answer: D

- Watch Video Solution

121. If the slope of one of the lines given by $4 x^{2}+k x y+y^{2}=0$ is four times the other, then $\mathrm{k}=$
A. 25
B. 5
C. -5
D. ± 5

Answer: D

122. If the sum of slopes of the lines given by $3 x^{2}+k x y-9 y^{2}=0$ is 5 times their product, then $\mathrm{k}=$
A. 10
B. -2
C. -10
D. -5

Answer: C

- Watch Video Solution

123. The difference of the slopes of the lines given by $3 x^{2}-4 x y+y^{2}=0$ is
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

124. The slopes of the lines given by $12 x^{2}+b x y-y^{2}=0$ differ by 6 , Then value of b is
A. 2
B. ± 2
C. ± 1
D. 1

Answer: C

- View Text Solution

125. If slopes of lines represented by
$k x^{2}+5 x y+y^{2}=0$ differ by 1 , then $\mathrm{k}=$
A. 2
B. 3
C. 6
D. 8

Answer: C

- Watch Video Solution

126. If the slopes of the lines represented by $3 x^{2}+k x y-y^{2}=0$ differ by 4 , then $\mathrm{k}=$
A. 2
B. -2
C. ± 2
D. 4

Answer: C

- Watch Video Solution

127. If the slope of one of the lines given by
$k x^{2}+4 x y-y^{2}=0$ exceeds the slope of the other
by 8 , then $\mathrm{k}=$
A. 4
B. 16
C. 48
D. 12

Answer: D

- Watch Video Solution

128. If two lines represented by
$x^{2}\left(\tan ^{2} \theta+\cos ^{2} \theta\right)-2 x y \tan \theta+y^{2} \sin ^{2} \theta=0$
make angles α, β with x -axis then
A. -2
B. 2
C. -4
D. 4

Answer: B

- Watch Video Solution

129. The difference of the slopes of the lines

represented

$$
x^{2}\left(\sec ^{2} \theta-\sin ^{2} \theta\right)-(2 \tan \theta) x y+y^{2} \sin ^{2} \theta=0
$$

A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

130. If two lines represented by
$x^{2}\left(\tan ^{2} \theta+\cos ^{2} \theta\right)-2 x y \tan \theta+y^{2} \sin ^{2} \theta=0$
make angles α, β with x -axis then
A. 0
B. 2
C. 3
D. $2 \tan \theta$

Answer: B

- Watch Video Solution

131. If $4 a b=3 h^{2}$, then the ratio of the slopes of the
lines represented by $a x^{2}+2 h x y+b y^{2}=0$ is
A. $\sqrt{3}: 1$
B. $\sqrt{2}: 1$
C. 1:3
D. 2:1

Answer: C

- Watch Video Solution

132. The ratio of the slopes of the lines represented by $a x^{2}+2 h x y+b y^{2}=0$ is $2: 3$, then $h^{2}: a b=$
A. $6: 5$
B. 5: 6
C. $24: 25$
D. $25: 24$

Answer: D

- Watch Video Solution

133. If the slope of one of the lines represented by $a x^{2}+2 h x y+b y^{2}=0$ is square of the slope of the other line, then

$$
\begin{aligned}
& \text { A. } a^{2} b+a b^{2}+8 h^{3}+6 a b h=0 \\
& \text { B. } a^{2} b+a b^{2}-8 h^{3}+6 a b h=0 \\
& \text { C. } a^{2} b+a b^{2}-8 h^{3}-6 a b h=0 \\
& \text { D. } a^{2} b+a b^{2}+8 h^{3}-6 a b h=0
\end{aligned}
$$

Answer: D

- Watch Video Solution

134. If the slope of one of the lines given by $3 x^{2}-4 x y+k y^{2}=0$ is 1 , then $\mathrm{k}=$
A. 3
B. -4
C. 1
D. -1

Answer: C

- Watch Video Solution

135. If the slope of one of the line given by
$2 p x^{2}-16 x y+q y^{2}=0$ is 2 , then the equation of the other line, is

- Watch Video Solution

136. If $2 x+y=0$ is one of the lines given by $3 x^{2}+k x y+2 y^{2}=0$, then $\mathrm{k}=$
A. $\frac{1}{2}$
B. $\frac{11}{2}$
C. $\frac{5}{2}$
D. $\frac{-11}{2}$

Answer: B

D Watch Video Solution

137. Find k, if one of the lines given by $6 x^{2}+k x y+y^{2}=0$ is $2 x+y=0$.
A. 10
B. 2
C. 5
D. -5

Answer: C

- Watch Video Solution

138. If one of the lines given by
$6 x^{2}-x y+4 c y^{2}=0$ is $3 x+4 y=0$,then value of $|c|$ is
A. 12
B. -12
C. 3
D. -3

Answer: D

- Watch Video Solution

139. If the line $x+2=0$ coincides with one of the
lines represented by $x^{2}+2 x y+4 y+k$, then $\mathrm{k}=$
A. -4
B. 4
C. $\frac{-1}{4}$
D. $\frac{1}{4}$

- Watch Video Solution

140. If the line $3 x-2 y=0$ coincide with one of the lines given by $a x^{2}+2 h x y+b y^{2}=0$, then

$$
\begin{aligned}
& \text { A. } 4 a+12 h+9 b=0 \\
& \text { B. } 4 a+12 h-9 b=0 \\
& \text { C. } 4 a-12 h+9 b=0 \\
& \text { D. } 4 a-12 h-9 b=0
\end{aligned}
$$

Answer: A

141. If the line $4 x+5 y=0$ coincide with one of the
lines given by $a x^{2}+2 h x y+b y^{2}=0$, then
A. $25 a+40 h+16 b=0$
B. $25 a+40 h-16 b=0$
C. $25 a-40 h+16 b=0$
D. $25 a-40 h-9 b=0$

Answer: C

D Watch Video Solution

142. If the line $4 x-5 y=0$ coincide with one of the lines given by $a x^{2}+2 h x y+b y^{2}=0$, then

$$
\text { A. } 25 a-40 h-9 b=0
$$

B. $25 a+40 h-16 b=0$
C. $25 a-40 h+16 b=0$
D. $25 a+40 h+16 b=0$

Answer: B

- Watch Video Solution

143. If one of the lines given by
$k x^{2}-5 x y-3 y^{2}=0$ is perpendicular to the line $x-2 y+3=0$, then $\mathrm{k}=$
A. 2
B. 3
C. $\frac{11}{2}$
D. $\frac{2}{3}$

Answer: A

144. If one of the lines given by $3 x^{2}-k x y+5 y^{2}=0$ is perpendicular to the line $5 x+3 y=0$, then $k=$
A. 24
B. -3
C. -8
D. 8

Answer: D

- Watch Video Solution

145. If one of the lines given by
$a x^{2}+2 h x y+b y^{2}=0$ is perpendicular to $p x+q y=0$, show that $a p^{2}+2 h p q+b q^{2}=0$
A. $a p^{2}-2 h p q+b q^{2}=0$
B. $a p^{2}+2 h p q+b q^{2}=0$
C. $a q^{2}-2 h p q+b p^{2}=0$
D. $a q^{2}+2 h p q+b p^{2}=0$

Answer: B

- Watch Video Solution

146. If the line $3 x+y=0$ is perpendicular to one of the lines represented by $a x^{2}+2 h x y+b y^{2}=0$, then
A. $9 a-6 h-b=0$
B. $9 a+6 h-b=0$
C. $9 a-6 h+b=0$
D. $9 a+6 h+b=0$

Answer: D

- Watch Video Solution

147. If two lines $a x^{2}+2 h x y+b y^{2}=0$ make equal angles with a co-ordinate axis, then
A. $a b= \pm 1$
B. $a=b$
C. $a=-b$
D. $a= \pm b$

Answer: D

- Watch Video Solution

148. If the line given by $a x^{2}+2 h x y+b y^{2}=0$ are equally inclined to the co-ordinate axes, then
A. $h=0$
B. $a+b=0$
C. $h^{2}-a b=0$
D. $h=a$

Answer: A

- Watch Video Solution

149. If one of the lines of $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the axes, in the first quadrant, then

> A. $(a+b)^{2}=2 h$
> B. $(a-b)^{2}=2 h$
> C. $(a+b)^{2}=4 h^{2}$
> D. $(a-b)^{2}=4 h^{2}$

Answer: C

- Watch Video Solution

150. If one of the lines given by $k x^{2}+x y-y^{2}=0$
bisects the angle between the co-ordinate axes, then $\mathrm{k}=$
A. $1,-1$
B. 0,1
C. $0,-2$
D. 0,2

Answer: C

- Watch Video Solution

151. If one of the lines given by
$k x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the axes in the first qaudrant, then

> A. $(a+b)^{2}=2 h^{2}$
> B. $(a+b)^{2}=4 h^{2}$
> C. $h^{2}-a b=0$
> D. $h^{2}+a b=0$

Answer: B

- Watch Video Solution

152. If one of the lines given by $k x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the axes in the first qaudrant, then

- Watch Video Solution

153. If the pair of lines $x^{2}+2 x y+a y^{2}=0$ and $a x^{2}+2 x y+y^{2}=0$ have exactly one line in common, then $\mathrm{a}=$

$$
\begin{aligned}
& \text { A. }\left(a b^{\prime}+a^{\prime} b\right)^{2}=4\left(a h^{\prime}+a^{\prime} h\right)\left(b^{\prime} h+a h^{\prime}\right) \\
& \text { B. }\left(a b^{\prime}+a^{\prime} b\right)^{2}=2\left(a h^{\prime}+a^{\prime} h\right)\left(b^{\prime} h+a h^{\prime}\right) \\
& \text { C. }\left(a b^{\prime}-a^{\prime} b\right)^{2}=4\left(a h^{\prime}-a^{\prime} h\right)\left(b^{\prime} h-b h^{\prime}\right)
\end{aligned}
$$

D. $\left(a b^{\prime}-a^{\prime} b\right)^{2}=2\left(a h^{\prime}-a^{\prime} h\right)\left(b^{\prime} h-b h^{\prime}\right)$

Answer: C

D Watch Video Solution

154. If the pair of lines $x^{2}+2 x y+a y^{2}=0$ and $a x^{2}+2 x y+y^{2}=0$ have exactly one line in common, then $\mathrm{a}=$
A. $a^{2}+a+1=0$
B. $a^{2}-a-1=0$
C. $a^{2}+a-1=0$
D. $a^{2}-a+1=0$

Answer: C

D Watch Video Solution

155. If the pair of lines
$3 x^{2}-5 x y+k y^{2}=0$ and $6 x^{2}-x y-5 y^{2}=0$
have one line in common, then $k=$
A. $2, \frac{25}{4}$
B. $-2, \frac{25}{4}$
C. $2, \frac{-25}{4}$

D. $-2,-\frac{25}{4}$

Answer: C

- Watch Video Solution

156. If the pairs of lines $x^{2}+2 x y+a y^{2}=0$ and $a x^{2}+2 x y+y^{2}=0$ have exactly one line in common, then the joint equation of the other two
lines is given by $3 x^{2}+8 x y-3 y^{2}=0$
$3 x^{2}+10 x y+3 y^{2}=0 \quad y^{2}+2 x y-3 x^{2}=0$
$x^{2}+2 x y-3 y^{2}=0$
A. $3 x^{2}+10 x y+3 y^{2}=0$
B. $3 x^{2}-10 x y+3 y^{2}=0$
C. $3 x^{2}+10 x y-3 y^{2}=0$
D. $3 x^{2}-10 x y-3 y^{2}=0$

Answer: A

- Watch Video Solution

157. The angle between the lines $x y=0$ is
A. 45°
B. 30°
C. 90°
D. 180°

Answer: C

- Watch Video Solution

158. Find the angle between the lines represented
by $3 x^{2}+4 x y-3 y^{2}=0$
A. 30°
B. 60°
C. 45°
D. 90°

Answer: D

- Watch Video Solution

159. The acute angle θ between the lines
represented by $x^{2}-4 x y+y^{2}=0$ is
A. 30°
B. 60°
C. 45°
D. 90°

- Watch Video Solution

160. The acute angle θ between the lines represented by $3 x^{2}-4 \sqrt{3} x y+3 y^{2}=0$ is
A. 30°
B. 60°
C. 45°
D. 90°

Answer: A

161. The acute angle θ between the lines represented by $2 x^{2}+7 x y+3 y^{2}=0$ is
A. 30°
B. 60°
C. 45°
D. 90°

Answer: B

- Watch Video Solution

162. Find the measure of the acute angle between the lines represented
$\left(a^{2}-3 b^{2}\right) x^{2}+8 a b x y+\left(b^{2}-3 a^{2}\right) y^{2}=0$.
A. 30°
B. 60°
C. 45°
D. 90°

Answer: C

- Watch Video Solution

163. The acute angle θ between the lines given by $3 y^{2}=x(7 y-2 x)$ is
A. 30°
B. 60°
C. 45°
D. 90°

Answer: B

- Watch Video Solution

164. The acute angle θ between the lines represented by $3 x^{2}+2 x y-y^{2}=0$ is

> A. $\tan ^{-1}\left(\frac{1}{2}\right)$
> B. $\tan ^{-1}\left(\frac{3}{2}\right)$
> C. $\tan ^{-1}\left(\frac{2}{3}\right)$
D. $\tan ^{-1} 2$

Answer: D

- Watch Video Solution

165. The acute angle θ between the lines represented by $2 x^{2}-6 x y+y^{2}=0$ is
A. $\tan ^{-1}\left(\frac{\sqrt{7}}{2}\right)$
B. $\tan ^{-1}\left(\frac{2 \sqrt{7}}{3}\right)$
C. $\tan ^{-1}\left(\frac{3 \sqrt{7}}{2}\right)$
D. $\tan ^{-1}\left(\frac{2 \sqrt{7}}{3}\right)$

Answer: B
166. The acute angle θ between the lines represented by $4 x^{2}+5 x y+y^{2}=0$ is
A. $\tan ^{-1}\left(\frac{1}{5}\right)$
B. $\tan ^{-1}\left(\frac{1}{3}\right)$
C. $\tan ^{-1}\left(\frac{3}{5}\right)$
D. $\tan ^{-1}\left(\frac{5}{3}\right)$

Answer: C

- Watch Video Solution

167. The angle between the lines
$\left.a y^{2}-\left(1+\lambda^{2}\right)\right) x y-a x^{2}=0$ is same as the angle between the line:

$$
\text { A. } x y=0
$$

B. $5 x^{2}+2 x y-3 y^{2}=0$
C. $5 x^{2}+16 x y+5 y^{2}=0$
D. $x^{2}-2 x y-3 y^{2}=0$

Answer: A

- Watch Video Solution

168. The acute angle between the lines given by

$$
\left(\sin ^{2} \theta-1\right) x^{2}-\left(\cos ^{2} \theta\right) x y+\left(\cos ^{2} \theta\right) y^{2}=0 \text { is }
$$

A. 30°
B. 60°
C. 45°
D. 90°

Answer: D

- Watch Video Solution

169. The acute angle between the lines given by $x^{2}+2(\operatorname{cosec} \theta) x y+y^{2}=0$ is
A. α
B. 90°
C. $90^{\circ}-\alpha$
D. $90^{\circ}+\alpha$

Answer: C

- Watch Video Solution

170. The acute angle between the lines given by $x^{2}+2(\cot \theta) x y+y^{2}=0$ is
A. 0°
B. 60°
C. 90°
D. $\tan ^{-1}(\cos e c \alpha \sqrt{\cos 2 \alpha})$

Answer: D

- Watch Video Solution

171. The angle between the pair of lines represented by $\left(\sin ^{2} \alpha\right)\left(x^{2}+y^{2}\right)=(x \cos \alpha-y \sin \alpha)^{2}$ is
A. α
B. 2α
C. $-\alpha$
D. -2α

Answer: B

- Watch Video Solution

172. If the angle θ is acute, then the angle between the pair of lines given by $(\cos \theta-\sin \theta) x^{2}+2(\cos \theta) x y+(\cos \theta+\sin \theta) y^{2}=0$ is
A. θ
B. 2θ
C. $\frac{\theta}{2}$
D. $\frac{\theta}{3}$

Answer: A

173. If the angle between the lines given by $\left(\tan ^{2} A\right) x^{2}-k x y-y^{2}=0$ is 2 A , then $\mathrm{k}=$
A. 0
B. 1
C. 2
D. $\tan A$

Answer: A

- Watch Video Solution

174. If θ is the acute angle between the lines

represented

$k x^{2}-4 x y+y^{2}=0$ and $\tan \theta=\frac{1}{2}$, then $\mathrm{k}=$

$$
\text { A. }-21,-3
$$

B. $-21,3$
C. $21,-3$
D. 21,3

Answer: B

- Watch Video Solution

175. If the angle between the lines given by $6 x^{2}+x y+k y^{2}=0$ is 45°, then $\mathrm{k}=$

$$
\text { A. } 1,35
$$

$$
\text { B. }-1,35
$$

C. $1,-35$

$$
\text { D. }-1,-35
$$

Answer: D

- Watch Video Solution

176. If the angle between the lines given by $x^{2}-2 k x y+y^{2}=0$ is 60°, then $\mathrm{k}=$
A. $\pm \sqrt{3}$
B. $\pm \sqrt{2}$
C. ± 2
D. ± 1

Answer: C

- Watch Video Solution

177. If θ_{1} and θ_{2} are the acute angle between the lines given
$3 x^{2}-7 x y+4 y^{2}=0$ and $6 x^{2}-5 x y+y^{2}=0$,
then
A. $\theta_{1}=\theta_{2}$
B. $\theta_{1}=2 \theta_{2}$
C. $\theta_{2}=2 \theta_{1}$
D. $2 \theta_{2}=3 \theta_{1}$

Answer: A

178. If the angle between the lines given by $a x^{2}+2 h x y+b y^{2}=0$ is equal to the angle between lines given by $2 x^{2}-5 x y+3 y^{2}=0$, then

$$
\text { A. } 100\left(h^{2}-a b\right)=(a+b)^{2}
$$

B. $100\left(h^{2}-a b\right)=(a-b)^{2}$
C. $25\left(h^{2}-a b\right)=(a+b)^{2}$
D. $25\left(h^{2}-a b\right)=(a-b)^{2}$

Answer: A

- Watch Video Solution

179. If the acute angle between the lines $a x^{2}+2 h x y+b y^{2}=0$ is congruent to the acute angle between the lines $3 x^{2}-7 x y+4 y^{2}=0$, then

$$
\begin{aligned}
& \text { A. } 4\left(h^{2}-a b\right)=(a+b)^{2} \\
& \text { В. } 7\left(h^{2}-a b\right)=(a+b)^{2} \\
& \text { С. } 49\left(h^{2}-a b\right)=(a+b)^{2}
\end{aligned}
$$

$$
\text { D. } 196\left(h^{2}-a b\right)=(a+b)^{2}
$$

Answer: D

- Watch Video Solution

180. If $x^{2}+2 h x y+y^{2}=0$ represents the equation of the straight lines through the origin which make an angle α with the straight line

$$
\begin{aligned}
& y+x=0 \sec 2 \alpha=h \cos \alpha=\sqrt{\frac{(1+h)}{(2 h)}} 2 \sin \alpha \\
& =\sqrt{\frac{(1+h)}{h}}\left(\text { d) } \cot \alpha=\sqrt{\frac{(1+h)}{(h-1)}}\right.
\end{aligned}
$$

A. $\sin 2 \alpha$
B. $\cos 2 \alpha$
C. $\cos e c 2 \alpha$
D. $\sec 2 \alpha$

- Watch Video Solution

181. The joint equation of pair of lines passing through the origin and making an angle of 45° with the line $3 x+y=0$ is
A. $x^{2}-2 \cos e c 2 \alpha x y+y^{2}=0$
B. $x^{2}+2 \cos e c 2 \alpha x y+y^{2}=0$
C. $x^{2}-2 \sec 2 \alpha x y+y^{2}=0$
D. $x^{2}+2 \sec 2 \alpha x y+y^{2}=0$

Answer: D
182. The equation of the pair of straight lines, each of which makes an angle α with the line $y=x$ is
A. $x^{2}-2 x y+y^{2}=0$
B. $x^{2}-2 \cos e c \alpha x y+y^{2}=0$
C. $x^{2}-\sec \alpha x y+y^{2}=0$
D. $x^{2}-2 \sec 2 \alpha x y+y^{2}=0$

Answer: D
183. The joint equation of pair of lines passing through the origin and making an angle of 45° with the line $3 x+y=0$ is
A. $x^{2}+3 x y+y^{2}=0$
B. $2 x^{2}+3 x y+y^{2}=0$
C. $2 x^{2}+3 x y-2 y^{2}=0$
D. $3 x^{2}+2 x y-2 y^{2}=0$

Answer: C

184. The joint equation of pair of lines through the origin and making an angle of $\frac{\pi}{6}$ with the line $3 x+y-6=0$ is
A. $3 x^{2}-12 x y-13 y^{2}=0$
B. $3 x^{2}+12 x y-3 y^{2}=0$
C. $3 x^{2}-12 x y-3 y^{2}=0$
D. $3 x^{2}+12 x y-13 y^{2}=0$

Answer: B

D View Text Solution

185. Find the joint equaiton of the pair of the lines through the origin each of which is making an angle of 30° with the line $3 x+2 y-11=0$.
A. $23 x^{2}+48 x y+3 y^{2}=0$
B. $3 x^{2}+48 x y+23 y^{2}=0$
C. $23 x^{2}+24 x y+3 y^{2}=0$
D. $3 x^{2}+24 x y+23 y^{2}=0$

Answer: A

- Watch Video Solution

186. Joint equation of two lines through the origin each making angle of 60° with line $x-y=0$, is

$$
\begin{aligned}
& \text { A. } x^{2}-4 x y+y^{2}=0 \\
& \text { B. } x^{2}+4 x y+y^{2}=0 \\
& \text { C. } x^{2}-3 x y+y^{2}=0 \\
& \text { D. } x^{2}+3 x y+y^{2}=0
\end{aligned}
$$

Answer: B

- Watch Video Solution

187. Joint equation of two lines, through the origin, each making an angle of 30° with the Y-axis is

> A. $3 x^{2}-y^{2}=0$
> B. $x^{2}-3 y^{2}=0$
> C. $3 x^{2}+y^{2}=0$
> D. $x^{2}+3 y^{2}=0$

Answer: A

- Watch Video Solution

188. Find the joint equation of the pair of lines
through the origin and making an equilateral triangle with the line $x=3$.
A. $x^{2}+3 y^{2}=0$
B. $x^{2}-3 y^{2}=0$
C. $3 x^{2}+y^{2}=0$
D. $3 x^{2}-y^{2}=0$

Answer: B

- Watch Video Solution

189. Find the joint equation of the pair of lines through the origin and making an equilateral triangle with the line $x=3$.
A. $x^{2}+3 y^{2}=0$
B. $x^{2}-3 y^{2}=0$
C. $3 x^{2}+y^{2}=0$
D. $3 x^{2}-y^{2}=0$

Answer: D

- Watch Video Solution

190. The joint equation of pair of lines through the origin and making an equilateral triangle with the line $x+y=10$, is

$$
\begin{aligned}
& \text { A. } x^{2}-4 x y+y^{2}=0 \\
& \text { B. } x^{2}+4 x y+y^{2}=0 \\
& \text { C. } x^{2}-2 x y+y^{2}=0 \\
& \text { D. } x^{2}+2 x y+y^{2}=0
\end{aligned}
$$

Answer: A

D View Text Solution

191. The joint equation of pair of lines through the origin and making an equilateral triangle with the line $3 x+4 y=5$, is

$$
\begin{aligned}
& \text { A. } 39 x^{2}+48 x y+11 y^{2}=0 \\
& \text { B. } 39 x^{2}-48 x y+11 y^{2}=0 \\
& \text { C. } 39 x^{2}+96 x y+11 y^{2}=0 \\
& \text { D. } 39 x^{2}-96 x y+11 y^{2}=0
\end{aligned}
$$

Answer: D

D View Text Solution

192. If the slope of one of the lines given by $a x^{2}+2 h x y+b y^{2}=0$ is 5 times the other, then
A. $-2 h$
B. $2 h$
C. $-4 h^{2}$
D. $4 h^{2}$

Answer: D

- Watch Video Solution

193. The line $x+y=\sqrt{6}$, forms an equilateral triangle with the lines $x^{2}-4 x y+y^{2}=0$, The perimeter of the triangle is :

$$
\begin{aligned}
& \text { A. } x^{2}-4 x y+y^{2}=0 \\
& \text { B. } x^{2}+4 x y+y^{2}=0 \\
& \text { C. } x^{2}-2 x y+y^{2}=0 \\
& \text { D. } x^{2}+2 x y+y^{2}=0
\end{aligned}
$$

Answer: A

- Watch Video Solution

194. The line $x+y=\sqrt{6}$, forms an equilateral triangle with the lines $x^{2}-4 x y+y^{2}=0$, The perimeter of the triangle is :
A. $2 \sqrt{3}$ sq.units
B. $\sqrt{3}$ sq.units
C. $\frac{2}{\sqrt{3}}$ sq.units
D. $\frac{1}{\sqrt{3}}$ sq. units

Answer: B

- Watch Video Solution

195. The line $x+y=\sqrt{6}$, forms an equilateral triangle with the lines $x^{2}-4 x y+y^{2}=0$, The perimeter of the triangle is :
A. $3 \sqrt{3}$ units
B. 3 units
C. 2 units
D. 6 units

Answer: D

- Watch Video Solution

196. The line $3 x-4 y+5=0$ and
$3(3 y+4 x)^{2}-(3 x-4 y)^{2}=0$ forms a triangle
which is (i) isosceles (ii) Equilateral (iii) Right Angled
Triangle (iv) Right Angled isosceles
A. an equilateral
B. a right angled isosceles
C. a right angled with one angle 30°
D. an isosceles with base angl 30°

Answer: A

- Watch Video Solution

197. $\begin{gathered}\text { If }\end{gathered}$ the
$k x^{2}+6 x y+2 y^{2}=0$ and $x+3 y=9$ form an isosceles triangle, then $\mathrm{k}=$
A. -8
B. 8
C. 6
D. -6

Answer: D

- View Text Solution

198. Triangle formed by $x^{2}-3 y^{2}=0$ and $x=4$ is
A. an equilateral
B. an isosceles
C. a right angled
D. a scalene

Answer: A

D Watch Video Solution

199. The triangle formed by the lines
$10 x^{2}+21 x y-10 y^{2}=0$ and $7 x+3 y=4 \mathrm{Is}$
A. an equilateral
B. an isosceles with base angl 30°
C. a right angled with one angle 30°
D. a right angled isoscels

Answer: D

- Watch Video Solution

200. the area formed by the lines $x^{2}-y^{2}=0$ and
$x+8=0$ is
A. 8 sq.units
B. 16 sq.units
C. 32 sq.units
D. 64 sq.units

Answer: D

- Watch Video Solution

201. Show that the lines $x^{2}-4 x y+y^{2}=0$ and
$x+y=10$ contain the sides of an equilateral triangle.
A. $\frac{100}{\sqrt{3}}$ sq.units
B. $\frac{75}{\sqrt{3}}$ sq.units
C. $\frac{50}{\sqrt{3}}$ sq.units
D. $\frac{25}{\sqrt{3}}$ sq.units

Answer: C

- Watch Video Solution

202. Show that
the
lines
$x^{2}-4 x y+y^{2}=0$ and $x+y=1 \quad$ form \quad an equilateral triangle and find its area.
A. $\frac{1}{\sqrt{2}}$ sq.units
B. $\frac{1}{\sqrt{3}}$ sq.units
C. $\frac{2}{\sqrt{3}}$ sq.units
D. $\frac{\sqrt{3}}{2}$ sq.units

Answer: D

- Watch Video Solution

203. The coordinates of the orthocentre of the triangle formedby the lines $2 x^{2}-3 x y+y^{2}=0$ and $x+y=1$ are
A. $\frac{\sqrt{13}}{6}$ sq.units
B. $\frac{\sqrt{13}}{4}$ sq.units
C. $\frac{\sqrt{13}}{2}$ sq.units
D. $\frac{\sqrt{13}}{5}$ sq.units

Answer: A

- Watch Video Solution

204. The area of the triangle formed by the lines

$$
3 x^{2}-4 \sqrt{2} x y+y^{2}=0 \text { and } x+\sqrt{2} y+7=0 \text { ।s }
$$

A. $\frac{49 \sqrt{5}}{3}$ sq.units
B. $\frac{98 \sqrt{5}}{3}$ sq.units
C. $\frac{49 \sqrt{5}}{15}$ sq.units
D. $\frac{98 \sqrt{5}}{15}$ sq.units

Answer: C

D View Text Solution

205. If $a+b=2 h$, then the area of the triangle formed by the lines $a x^{2}+2 h x y+b y^{2}=0$ and the line $x-y+2=0$, in sq. units is
A. $\left|\frac{a^{2}+b^{2}}{a-b}\right|$
B. $\left|\frac{a^{2}+b^{2}}{a+b}\right|$
C. $\left|\frac{a-b}{a+b}\right|$
D. $\left|\frac{a-b}{a+b}\right|$

Answer: C

- Watch Video Solution

206. The length of each perpendicular side of an isoscele right angled triangle formed by
$4 x^{2}+6 x y-4 y^{2}=0$ and $x-3 y+7=0$ is

> A. $\frac{7}{\sqrt{5}}$
> B. $\frac{4}{\sqrt{5}}$
C. $\frac{3}{\sqrt{5}}$
D. $\frac{2}{\sqrt{5}}$

Answer: A

D View Text Solution

207. Show that the straight lines
$x^{2}+4 x y+y^{2}=0$ and the line $\mathrm{x}-\mathrm{y}=4$ form an equilateral triangle .
A. $\frac{4}{\sqrt{3}}$ sq.units
B. $\frac{2}{\sqrt{3}}$ sq.units
C. $\frac{16}{\sqrt{3}}$ sq.unts
D. $\frac{8}{\sqrt{3}}$ sq.units

Answer: D

D Watch Video Solution

$\begin{array}{lll}\text { 208. Show that straight } & \text { lines } \\ \left(A^{2}-3 b^{2}\right) x^{2}+8 A B x y\left(b^{2}-3 A^{2}\right) y^{2}=0 & \text { form }\end{array}$
with the line $A x+B y+C=0$ an equilateral
triangle of area $\frac{C^{2}}{\sqrt{3\left(A^{2}+B^{2}\right)}}$.
A. $\sqrt{3}$
B. $2 \sqrt{3}$
C. 3
D. 12

Answer: A

- Watch Video Solution

209. The area of triangle (in sq units) formed by the
lines $x^{2}-4 y^{2}=0$ and $x=a$, is
A. $2 a^{2}$ sq.units
B. $\frac{a^{2}}{2}$ sq. units
C. $\frac{\sqrt{3} a^{2}}{2}$ sq.units
D. $\frac{2 a^{2}}{\sqrt{3}}$ sq.units

Answer: B

- Watch Video Solution

210. If the area of the triangle formed by the pair of
lines $8 x^{2}-6 x y+y^{2}=0$ and the line
$2 x+3 y=a$ is 7 then $a=$
A. 49
B. 14
C. 112
D. 28

Answer: D

- Watch Video Solution

211. The joint equation of pair of lines which bisects

$$
\begin{aligned}
& \text { angle between the lines given by } \\
& x^{2}+3 x y+y^{2}=0 \text { is }
\end{aligned}
$$

A. $3 x^{2}+2 x y+3 y^{2}=0$
B. $3 x^{2}-2 x y-3 y^{2}=0$
C. $3 x^{2}-2 x y+y^{2}=0$
D. $3 x^{2}-2 x y+3 y^{2}=0$

Answer: C

- Watch Video Solution

212. The joint equation of bisectors of the angles between the lines given by $5 x^{2}+6 x y-y^{2}=0$, is
A. $x^{2}+2 x y+y^{2}=0$
B. $x^{2}+2 x y-y^{2}=0$
C. $x^{2}-2 x y+y^{2}=0$
D. $x^{2}-2 x y-y^{2}=0$

Answer: D

- Watch Video Solution

213. If the lines $x^{2}+2 h x y-y^{2}=0$ bisect the angle between the lines $2 x^{2}+10 x y-y^{2}=0$ then
$h=$
A. $\frac{3}{10}$
B. $\frac{-3}{10}$
C. $\frac{3}{5}$
D. $\frac{-3}{5}$

Answer: B

- Watch Video Solution

214. If $7 x^{2}-k x y-7 y^{2}=0$ represents the joint equation of the bisectors of the angles between the
lines given by $2 x^{2}-7 x y+4 y^{2}=0$, then $\mathrm{k}=$
A. 4
B. -4
C. 2
D. -2

Answer: A

- Watch Video Solution

215. The pair of lines $h\left(x^{2}-y^{2}\right)+p x y=0$ bisects
the angle between the pair of lines
$a x^{2}+2 h x y+b y^{2}=0$, then $\mathrm{p}=$
A. $a+b$
B. $-(a+b)$
C. $a-b$

$$
\text { D. }-(a-b)
$$

Answer: D

- Watch Video Solution

216. If the two pairs of line
$x^{2}-2 m x y-y^{2}=0$ and $x^{2}-2 n x y-y^{2}=0$
are such that one of them represent the bisector of
the angles between the other, then: (A) $m n+1=0$
(B) $m n-1=0$ (C) $1 / m+1 / n=0$ (D) $1 / m-1 / n=0$
A. $m n=-1$
B. $m n=1$
C. $\frac{1}{m}+\frac{1}{n}=0$
D. $\frac{1}{m}-\frac{1}{n}=0$

Answer: A

D Watch Video Solution

217. If one of the lines of $m y^{2}+\left(1-m^{2}\right) x y-m x^{2}=0$ is a bisector of the angle between the lines $x y=0$, then m is
A. 2
B. -2
C. $\frac{-1}{2}$
D. 1

Answer: D

- Watch Video Solution

218. The product of lenghts of the perpendicular from point $(2,3)$ on the lines given by $2 x^{2}+6 x y-y^{2}=0$ is
A. $\frac{7}{9 \sqrt{5}}$
B. $\frac{7}{3 \sqrt{5}}$
C. $\frac{7 \sqrt{5}}{9}$
D. $\frac{7 \sqrt{5}}{3}$

Answer: D

D View Text Solution

219. The product of legths of the perpendicular from point $(4,1)$ on the lines given by
$3 x^{2}-4 x y-y^{2}=0$ is
A. $\frac{31 \sqrt{2}}{4}$
B. $\frac{31 \sqrt{2}}{8}$
C. $\frac{31}{4}$
D. $\frac{31}{8}$

Answer: B

- Watch Video Solution

220. The equation of the bisectors of angle between
the lines $x^{2}-4 x y+y^{2}=0$ is
A. $x+y=0$
B. $x-y=0$
C. $7 x+8 y=0$

$$
\text { D. } 7 x-8 y=0
$$

Answer: B

- Watch Video Solution

221. $\triangle O A B$ is formed by the lines
$x^{2}-4 x y+y^{2}=0$ and the line $A B$. The equation
of line $A B$ is $2 x+3 y-1=0$. Find the equation of
the median of the triangle drawn from the origin.
A. $x+y=0$
B. $x-y=0$
C. $7 x+y=0$
D. $7 x-8 y=0$

Answer: D

- Watch Video Solution

222. 9.y If two sides of a triangle are represented by
$x^{2}-7 x y+6 y^{2}=0$ and the centroid is $(1,0)$ then the equation of third side is

$$
\text { A. } 2 x-7 y+3=0
$$

$$
\text { B. } 2 x+7 y-3=0
$$

C. $2 x-7 y-3=0$
D. $2 x+7 y+3=0$

Answer: C

- Watch Video Solution

223. Orthocentre of the triangle formed by the lines
$x y=0$ and $x+y=1$ is
A. $(-1,1)$
B. $(0,0)$
C. $(1,0)$
D. $(0,1)$

Answer: B

D Watch Video Solution

224. Orthocentre of the triangle formed by the lines
$3 x^{2}+8 x y-y^{2}=0$ and $x+2 y-3=0$ is
A. $\left(\frac{3}{5}, \frac{6}{5}\right)$
B. $\left(\frac{6}{5}, \frac{3}{5}\right)$
C. $\left(\frac{-6}{5}, \frac{-12}{5}\right)$
D. $\left(\frac{12}{5}, \frac{6}{5}\right)$

Answer: C

- View Text Solution

225. The angle between the lines
$x d^{2}+4 x y+y^{2}=0$ is
A. $\left(\frac{-1}{3}, \frac{1}{3}\right.$
B. $\left(\frac{1}{3}, \frac{-1}{3}\right)$
C. $\left(\frac{1}{3}, \frac{1}{3}\right)$
D. $(3,3)$

- Watch Video Solution

226. The coordinates of the orthocentre of the triangle formedby the lines $2 x^{2}-3 x y+y^{2}=0$ and $x+y=1$ are
A. $\left(\frac{35}{36}, \frac{25}{36}\right)$
B. $\left(\frac{25}{36}, \frac{35}{36}\right)$
c. $\left(\frac{35}{36}, \frac{25}{18}\right)$
D. $\left(\frac{25}{18}, \frac{35}{36}\right)$

Answer: C
227. The orthocentre of the triangle formed by the
lines $x y=0$ and $x+y=1$ is
A. $(0,0)$
B. $(1,0)$
C. $(0,1)$
D. $\left(\frac{1}{2}, \frac{1}{2}\right)$

Answer: D

- Watch Video Solution

228. The diagonal of the rectangle formed by the
lines $x^{2}-7 x+6=0$ and $y^{2}-14 y+40=0$ is

$$
\begin{aligned}
& \text { A. } 6 x-5 y-14=0 \\
& \text { B. } 6 x-5 y+14=0 \\
& \text { C. } 5 x-6 y=0 \\
& \text { D. } 5 x+6 y=0
\end{aligned}
$$

Answer: B

- Watch Video Solution

229. If pairs of opposite sides of a quadrilateral are $x^{2}-7 x+6=0$ and $y^{2}-14 y+40=0 \quad$ then equations of its diagonals are

$$
\begin{aligned}
& \text { A. } 36 x^{2}-25 y^{2}-252 x-350 y+784=0 \\
& \text { B. } 36 x^{2}+25 y^{2}-252 x-350 y-784=0 \\
& \text { C. } 36 x^{2}-25 y^{2}-252 x+350 y-784=0 \\
& \text { D. } 36 x^{2}-25 y^{2}+252 x+350 y-784=0
\end{aligned}
$$

Answer: C

- Watch Video Solution

230. If the lines represented by
$2 x^{2}-5 x y+2 y^{2}=0$ be the sides of a parallelogram and the line $5 x+2 y=1$ be one of its diagonal. Find the equation of the other diagonal, and area of the parallelogram .
A. $\frac{1}{72}$ sq.units
B. $\frac{1}{54}$ sq.units
C. $\frac{1}{36}$ sq.units
D. $\frac{1}{18}$ sq.units

Answer: C
231. The centre of circle inscribed in a square formed by lines
$x^{2}-8 x+12=0$ and $y^{2}-14 y+45=0$ is $(4,7)$
$(7,4)(9,4)(4,9)$
A. $\left(1, \frac{5}{2}\right)$
B. $\left(3, \frac{9}{2}\right)$
C. $(4,7)$
D. $(7,4)$

Answer: C
232. The angle between the pair of lines $x y-6 x+5 y-30=0$
A. 30°
B. 60°
C. 45°
D. 90°

Answer: D

D Watch Video Solution

233. The angle between the pair of lines $3(x-4)^{2}+4 \sqrt{3}(x-4)(y+2)-2(y+2)^{2}=0$ is

- Watch Video Solution

234. The angle between the pair of lines

$$
(x-3)^{2}+(x-3)(y-4)-2(y-4)^{2}=0 \text { is }
$$

A. $\tan ^{-1}(2 \sqrt{2})$
B. $\tan ^{-1}(2 \sqrt{3})$
C. $\tan ^{-1} 3$
D. $\tan ^{-1}(-3)$

Answer: C

- Watch Video Solution

235. The acute angle between the line represented by $9 x^{2}-6 x y+y^{2}+18 x-6 y+8=0$ is
A. 30°
B. 60°
C. 45°
D. 90°

- Watch Video Solution

236. The acute angle between the line represented by $2 x^{2}+x y-y^{2}+x+4 y-3=0$ is
A. $\tan ^{-1} 3$
B. $\tan ^{-1} 5$
C. $\tan ^{-1}(2 \sqrt{3})$
D. $\tan ^{-1}(2 \sqrt{2})$

Answer: A

- Watch Video Solution

237. The acute angle between the line represented by $2 x^{2}-x y-3 y^{2}-6 x+19 y-20=0$ is
A. $\tan ^{-1}(-5)$
B. $\tan ^{-1}(5)$
C. $\tan ^{-1}\left(\frac{5}{2}\right)$
D. $\tan ^{-1}\left(\frac{5}{4}\right)$

Answer: B

D Watch Video Solution

238. The acute angle between the line represented by $x^{2}-6 x y+5 y^{2}+10 x-4 y+9=0$ is
A. $\tan ^{-1}\left(\frac{3}{2}\right)$
B. $\tan ^{-1}\left(\frac{3}{4}\right)$
C. $\tan ^{-1}\left(\frac{2}{3}\right)$
D. $\tan ^{-1}\left(\frac{4}{3}\right)$

Answer: C

- Watch Video Solution

239. The angle between the pair of lines
$2 x^{2}+5 x y+2 y^{2}-3 x-3 y+1=0$ is

$$
\begin{aligned}
& \text { A. } \tan ^{-1}\left(\frac{4}{5}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{4}{5}\right) \\
& \text { C. } \cos ^{-1}\left(\frac{4}{5}\right) \\
& \text { D. } \tan ^{-1}\left(\frac{3}{4}\right)
\end{aligned}
$$

Answer: C

- Watch Video Solution

240. The angle between the pair of lines $2 x^{2}+4 x y-2 y^{2}+4 x+8 y+1=0$ is
A. 45°
B. 90°
C. 30°
D. 60°

Answer: B

- Watch Video Solution
$x^{2}-3 x y+\lambda y^{2}+3 x-5 y+2=0, \quad \lambda \in R$,
represents a pair of straight lines. If θ is the angle between these lines, then $\cos e c^{2} \theta=$
A. 10
B. 9
C. 1
D. 5

242. The acute angle between the line represented by $9 x^{2}-6 x y+y^{2}+18 x-6 y+8=0$ is
A. parallel
B. perpendicular
C. intersecting
D. intersecting and perpendicular

Answer: A

- Watch Video Solution

243. The acute angle between the line represented by $x^{2}-6 x y+5 y^{2}+10 x-4 y+9=0$ is
A. $(2,1)$
B. $(1,2)$
C. $(2,-1)$
D. $(-1,2)$

Answer: B

- Watch Video Solution

244. The point of intersection of the lines
represented
$2 x^{2}-x y-3 y^{2}-6 x+19 y-20=0$ is
A. $\left(\frac{14}{25}, \frac{11}{25}\right)$
B. $\left(\frac{11}{25}, \frac{14}{25}\right)$
C. $\left(\frac{14}{5}, \frac{11}{5}\right)$
D. $\left(\frac{11}{5}, \frac{14}{5}\right)$

Answer: D

- Watch Video Solution

245. The point of intersection of the lines represented by $2 x^{2}+x y-y^{2}+x+4 y-3=0$ is

$$
\begin{aligned}
& \text { А. }\left(\frac{-2}{3}, \frac{5}{3}\right) \\
& \text { в. }\left(\frac{2}{3}, \frac{-5}{3}\right) \\
& \text { С. }\left(\frac{5}{3}, \frac{-2}{3}\right) \\
& \text { D. }\left(\frac{-5}{3}, \frac{2}{3}\right)
\end{aligned}
$$

Answer: A

- Watch Video Solution

246. The point of intersection of the lines given by

$$
6 x^{2}+x y-40 y^{2}-35 x-83 y+11=0 \text { is }
$$

A. $(-3,-1)$
B. $(-3,1)$
C. $(3,-1)$
D. $(3,1)$

Answer: C

D Watch Video Solution

247. The point of intersection of the lines represented

$$
(x-3)^{2}+(x-3)(y-4)-2(y-4)^{2}=0 \text { is }
$$

A. $(4,3)$
B. $(-4,-3)$
C. $(3,4)$
D. $(-3,-4)$

Answer: C

248. If $\lambda x^{2}-5 x y+6 y^{2}+x-3 y=0$ represents a pair of staight lines, then their point of intersection is:

$$
\begin{aligned}
& \text { A. }(-3,-1) \\
& \text { B. }(-3,1) \\
& \text { C. }(3,-1) \\
& \text { D. }(3,1)
\end{aligned}
$$

Answer: A

- Watch Video Solution

249. If $(1, k)$ is the point of intersection of the lines
given by $2 x^{2}+5 x y+3 y^{2}+6 x+7 y+4=0$, then $\mathrm{k}=$
A. -2
B. -1
C. 1
D. 2

Answer: A

- Watch Video Solution

250.

If
the
lines
$x^{2}-y^{2}-2 x+2 y=0$ and $x+2 y+k=0 \quad$ are concurrent, then $\mathrm{k}=$
A. -1
B. -3
C. 1
D. 3

Answer: B

251.

$2 x^{2}-5 x y+3 y^{2}+8 x-9 y+6=0$ and
$k x-y-5=0$ are concurrent, then $\mathrm{k}=$

$$
\text { A. }-9
$$

B. 9
C. -3
D. 3

Answer: D

252. The point of intersection of lines represented by $2 x^{2}+4 x y-2 y^{2}+4 x+8 y+1=0$
A. $\left(\frac{-3}{2}, \frac{-1}{2}\right)$
B. $\left(\frac{-3}{2}, \frac{1}{2}\right)$
C. $\left(\frac{3}{2}, \frac{-1}{2}\right)$
D. $\left(\frac{3}{2}, \frac{1}{2}\right)$

Answer: B

- Watch Video Solution

253. The distance btween the parallel lines

$$
9 x^{2}-6 x y+y^{2}+18 x-6 y+8=0 \text {, is }
$$

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{10}} \\
& \text { B. } \frac{2}{\sqrt{10}} \\
& \text { C. } \frac{6}{\sqrt{10}} \\
& \text { D. } \frac{2}{\sqrt{90}}
\end{aligned}
$$

Answer: B

- Watch Video Solution

254. The distance between the parallel lines given by $x^{2}+2 \sqrt{2} x y+2 y^{2}+4 x+4 \sqrt{2} y+1=0$ is
A. 2
B. $2 \sqrt{3}$
C. $\frac{1}{2}$
D. $\frac{1}{2 \sqrt{3}}$

Answer: A

- Watch Video Solution

255. The distance between the pair of parallel lines

$$
x^{2}+2 x y+y^{2}-8 a x-8 a y-9 a^{2}=0 \quad \text { is } \quad 25 \sqrt{2}
$$

then $a=$
A. $5 a$
B. $10 a$
C. $2 \sqrt{5} a$
D. $5 \sqrt{2} a$

Answer: D

- Watch Video Solution

256. If the distance between two parallel lines given

$$
\text { by } 2 x^{2}+4 x y+2 y^{2}+2 k x-3 y+12=0 \text { is } \frac{5}{\sqrt{2}},
$$ then find the value of k

A. 5
B. 7
C. 1
D. 9

Answer: B
257. The distance between the lines given by $(x-2 y)^{2}+k(x-2 y)=0$ is 3 , then $\mathrm{k}=$
A. $\pm 6 \sqrt{5}$
B. $\pm 3 \sqrt{5}$
C. $\pm 2 \sqrt{5}$
D. $\pm 9 \sqrt{5}$

Answer: B

- Watch Video Solution

258. Select and write the correct answer from the alternatives in each of the following :

If an equation hxy $+g x+f y+c=0$ represents a pair of lines, then
A. $f g=c h$
B. $g h=c f$
C. $f h=c g$
D. $h f=-c g$

Answer: A

259. If the equation $a x^{2}+b y^{2}+c x+x y=0$ represents a pair of line, then
A. $a+b=0$
B. $a+b-c=0$
C. $a+b=0, c=0$
D. $a+b+c=2$

Answer: C

- Watch Video Solution

260. If the equation $a y^{2}+b x y+e x+d y=0$ represents a pair of line, then

$$
\text { A. } e=0, a=b
$$

$$
\text { B. } e=0, b d=a c
$$

C. $e=0, d=e$

$$
\text { D. } e=0, b e=a d
$$

Answer: B
$A x^{2}+2 B x y+C y^{2}+D x+E y+F=0$
represents a pair of lines, then $B^{2}-A C=$
A. 0
B. >0
C. <0
D. $\neq 0$ or $=0$

Answer: D

262. If $k x y+10 x+6 y+4=0$ represents a pair of lines, then $k=$
A. 0
B. -15
C. 5
D. 15

Answer: D

- Watch Video Solution

263. If the equation $4 x^{2}+k y^{2}+8 x y-9=0$ represents a pair of line, then $k=$
A. -4
B. 4
C. -9
D. 9

Answer: B
264. If the equation $k x^{2}-y^{2}+4 x-y=0$ represents a pair of line, then $k=$
A. 4
B. -4
C. 16
D. -16

Answer: C
$3 x^{2}+3 y^{2}+10 x y+16 y+k=0$ represents a pair of line, then $\mathrm{k}=$
A. -16
B. 192
C. -12
D. 12

Answer: C

- View Text Solution

266. If the equation $x^{2}-y^{2}-x-k y-2=0$ represents a pair of line, then $k=$
A. ± 3
B. ± 1
C. $\pm 2 \sqrt{2}$
D. $\pm \sqrt{3}$

Answer: A

- View Text Solution

267.

$2 x^{2}+4 x y-2 y^{2}+4 x+8 y+k=0$ represents a pair of line, then $k=$
A. 1
B. -1
C. 8
D. -8

Answer: A

- Watch Video Solution

268.

$x^{2}+3 x y+2 y^{2}+x-y+k=0$ represents a pair of line, then $k=$
A. -12
B. -6
C. 6
D. 12

Answer: B

- Watch Video Solution

269. The value of k so that the equation
$12 x^{2}-10 x y+2 y^{2}+11 x-5 y+k=0$
represents a pair of lines is -2 (b) 2 (c) 7 (d) -7
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

270.

$3 x^{2}+x y-y^{2}-3 x+6 y+k=0 \quad$ represents a pair of straight lines, then the value of k, is
A. 4
B. -4
C. 9
D. -9

Answer: D

- Watch Video Solution

271.

If
the
equation
$2 x^{2}-3 x y+y^{2}-k x+5 y+6=0$ represents a pair of line, then $k=$
A. 7,8
B. $-7,-8$
C. $-7,8$
D. $7,-8$

Answer: B

- Watch Video Solution

272.

$2 x^{2}+8 x y+p y^{2}+q x+2 y-15=0$ represents a pair of parallel lines, then

$$
\begin{aligned}
& \text { A. } p=-8, q=-1 \\
& \text { B. } p=8, q=-1 \\
& \text { C. } q=8, q=1 \\
& \text { D. } p=8, q=1
\end{aligned}
$$

Answer: D

273. If $2 x^{2}+4 x y-p y^{2}+4 x+q y+1=0$ represents a pair of mutually perpendicular lines then

$$
\begin{aligned}
& \text { A. } p=2, q=0,4 \\
& \text { B. } p=2, q=0,-4 \\
& \text { C. } p=2, q=0,8 \\
& \text { D. } p=2, q=0,-8
\end{aligned}
$$

Answer: C

- Watch Video Solution

274.

$p x^{2}-8 x y+3 y^{2}+14 x+2 y+q=0$ represents a pair of perpendicular lines, then

$$
\text { A. } p=-3, q=-8
$$

B. $p=3, q=-8$
C. $p=-3, q=8$
D. $p=3, q=8$

Answer: A

- Watch Video Solution

275. If the equation $x^{2}+p y^{2}+q y-a^{2}=0$ represents a pair of parallel lines, then

$$
\begin{aligned}
& \text { A. } p=-1, q= \pm 1 \\
& \text { B. } p=1, q= \pm 1 \\
& \text { C. } p=-1, q= \pm a \\
& \text { D. } p=1, q= \pm a
\end{aligned}
$$

Answer: C

- Watch Video Solution

276. $\mathrm{O}(0,0), \mathrm{A}(1,2), \mathrm{B}(3,4)$ are the vertices of $\triangle O A B$.

The joint equation of the altitude and median drawn from O is
A. $x^{2}+7 x y-y^{2}=0$
B. $x^{2}+7 x y+y^{2}=0$
C. $3 x^{2}-x y-2 y^{2}=0$
D. $3 x^{2}+x y-2 x y=0$

Answer: D

- Watch Video Solution

