

MATHS

BOOKS - NIKITA MATHS (HINGLISH)

PAIR OF STRAIGHT LINES

MULTIPLE CHOICE QUESTIONS

1. Second degree homogeneous equation in x and y

always represents

A. a circle

B. a parabola

C. an ellipse

D. a pair of straight lines

Answer: D

2. The condition of representing the coincident lines by the general quadratic equation f(x, y) = 0, is

A.
$$\Delta=0,\,h^2=ab$$

B.
$$\Delta = o, a + b = 0$$

C.
$$\Delta=0, h^2=ab, g^2=ac, f^2=bc$$

D.
$$h^2=ab, g^2=ac, f^2=bc$$

Answer: C

3. If in the general quadratic equation
$$f(x,y)=0, \Delta=0$$
 and $h^2=ab$, then the equation represents.

A. two straight lines

- B. two parallel lines
- C. two perpendicular lines
- D. two intersecting lines

Answer: B

4. If m_1 and m_2 are the slopes of the lines represented by $ax^2+2hxy+by^2=0$, then $m_1+m_2=$

A.
$$\frac{2h}{a}$$

B.
$$\frac{-2h}{a}$$

C. $\frac{2h}{b}$
D. $\frac{-2h}{b}$

Answer: D

5. If m_1 and m_2 are the slopes of the lines represented by $ax^2 + 2hxy + by^2 = 0$, then $m_1m_2 =$

A.
$$\frac{a}{b}$$

B.
$$\frac{-a}{b}$$

C. $\frac{b}{a}$
D. $\frac{-b}{a}$

Answer: A

6. If θ is the angle between the lines represented by

$$ax^2+2hxy+by^2=0$$
, then $an heta=$

A.
$$\pm rac{\sqrt{h^2-ab}}{a+b}$$

B. $\pm rac{\sqrt{h^2-4ab}}{a+b}$

$$\begin{array}{l} \mathsf{C.}\pm \frac{2\sqrt{h^2-ab}}{a+b}\\ \mathsf{D.}\pm \frac{2\sqrt{h^2-4ab}}{a+b}\end{array}$$

Answer: C

7. The lines represents by $ax^2 + 2hxy + by^2 = 0$ are perpendicular to each other , if

A.
$$h^2=ab$$

B.ab = 1

$$C. a = -b$$

$\mathsf{D}.\,a=b$

Answer: C

8. The product of perpendiculars let fall from the point (x_1, y_1) upon the lines represented by $ax^2 + 2hxy + by^2$, is

A.
$$egin{array}{c} A. \ \hline rac{ax_1^2+2hx_1y_1+by_1^2}{\sqrt{\left(a-b
ight)^2-4h^2}} \ B. \ \hline rac{ax_1^2+2hx_1y_1+by_1^2}{\sqrt{\left(a-b
ight)^2+4h^2}} \end{array}$$

Answer: B

9. If
$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$

represents parallel straight lines, then

A.
$$abc+2gfh-af^2-bg^2-ch^2=0$$

B.
$$h^2-ab=0$$

 $\mathsf{C}.\,h^2>ab$

 $\mathsf{D}.\,h^2 < ab$

Answer: A

Watch Video Solution

10. If the equation
$$ax^2+2hxy+by^2+2gx+2fy+c=0$$

represents a pair of parallel lines, then

A.
$$\frac{a}{h} = \frac{b}{h} = \frac{f}{g}$$

B. $\frac{a}{b} = \frac{b}{h} = \frac{g}{f}$

C.
$$\frac{a}{h} = \frac{h}{b} = \frac{g}{f}$$

D. $\frac{h}{a} = \frac{b}{h} = \frac{g}{f}$

Answer: C

11. If the equation
$$ax^2+2hxy+by^2+2gx+2fy+c=0$$

represents a pair of parallel lines, then

A.
$$2\sqrt{rac{g^2-ac}{h^2+a^2}}$$
B. $\sqrt{rac{g^2-ac}{h^2+a^2}}$

C.
$$2\sqrt{rac{g^2+ac}{h^2+a^2}}$$

D. $\sqrt{rac{g^2+ac}{h^2+a^2}}$

Answer: A

12. Lines represented by $4x^2 + 4xy + y^2 = 0$ are

A. real and distinct

B. real and coincident

C. imaginary

D. perpendicular

Answer: B

A. real and distinct

B. real and coincident

C. imaginary

D. parallel

Answer: A

14. Lines represented by $x^2+7xy+2y^2=0$ are

A. real and distinct

B. real and coincident

C. imaginary

D. perpendicular

Answer: A

15. Lines represented by $x^2 + 2xy - y^2 = 0$ are

A. real and distinct

B. real and coincident

C. imaginary

D. parallel

Answer: A

Watch Video Solution

16. If the lines represented by $ax^2 + 4xy + 4y^2 = 0$

are real distinct, then

A.
$$a = 0$$

B. a = 1

 $\mathsf{C}.\,a<1$

 $\mathsf{D}.\,a>1$

Answer: C

17. if lines represented by equation $px^2 - qy^2 = 0$

are distinct, then

A. pq>0

 $\mathsf{B.}\,pq<0$

C. pq = 0

D. p + q = 0

Answer: A

Watch Video Solution

18. Lines represented by $px^2 - qy^2 = 0$ are real and coincident, if

A. p and q have same sign

B. p and q have opposite sign

C. p and q is zero

D.
$$p
eq |q|$$

Answer: C

Watch Video Solution

19. Lines represented by $px^2 - qy^2 = 0$ are imaginary, if

A. p and q have same sign

B. p and q have opposite sign

C. p and q is zero

D. p
eq |q|

20. Which of the following equation does not represent a pair of lines ?

A.
$$x^2-x=0$$

B.
$$xy - x = 0$$

$$\mathsf{C}.\,y^2-x+1=0$$

D.
$$xy + x + y + 1 = 0$$

Answer: C

21. If I, m, n are in AP, then the line lx+my+n=0` will always pass through the point

A.
$$(\,-1,\,2)$$

B. $(1,\,-2)$
C. $(2,\,4)$

D.(3, 2)

Answer: B

22. The separate equations of the lines represented by the equation $x^2-4y^2=0$ are

A.
$$x - 2y = 0 ext{ and } 2x + y = 0$$

B. 2x - y = 0 and x + 2y = 0

C. x - 2y = 0 and x + 2y = 0

D.
$$2x - y = 0$$
 and $2x + y = 0$

Answer: C

23. The separate equations of the lines represented by the equation $3x^2 - y^2 = 0$ are A. $\sqrt{3}x + 2y = 0$ and $\sqrt{3} - 2y = 0$ B. $\sqrt{3}x - y = 0$ and $\sqrt{3}x + y = 0$

C. 3x - y = 0 and x + y = 0

D. 3x + y = 0 and x - y = 0

Answer: B

24. The separate equations of the lines represented by the equation $5x^2 - 9y^2 = 0$ are A. 5x - 3y = 0 and 5x + 3y = 0B. 5x - 3y = 0 and 5x + 9y = 0C. $\sqrt{3}x - 3y = 0$ and $\sqrt{5}x + 3y = 0$ D. $\sqrt{5}x - 9y = 0$ and $\sqrt{5}x + 9y = 0$

Answer: C

25. The separate equations of the lines represented by the equation $5x^2 - 3y^2 = 0$ are

A.
$$\sqrt{5}x-\sqrt{3}y=0 \, ext{ and } \sqrt{5}x+\sqrt{3}y=0$$

$$\texttt{B.}\ \sqrt{5}x - \sqrt{3}y = 0 \ \text{and} \ \sqrt{3}x + \sqrt{5}y = 0$$

$$C. 5x - 3y = 0 \text{ and } x + y = 0$$

D.
$$x - y = 0$$
 and $5x - 3y = 0$

Answer: A

26. The separate equations of the lines given by

$$(x-4)^2 - 16(y-5)^2 = 0$$
 are
A. $x + 4y + 16 = 0$ and $x - 4y - 24 = 0$
B. $x + 4y - 16 = 0$ and $x - 4y - 24 = 0$
C. $x + 4y - 16 = 0$ and $x - 4y + 24 = 0$
D. $x + 4y + 16 = 0$ and $x - 4y + 24 = 0$

Answer: A

27. Equation
$$y^2 - x^2 + 2x - 1 = 0$$
 represents

A. a circle

B. a parabola

C. an ellipse

D. a pair of straight lines

Answer: D

Watch Video Solution

represents

A. Two mutually perpendicular lines

B. two parallel lines

C. Two lines

D. a circle

Answer: A

Watch Video Solution

29. One of the lines represented by $x^2 + 6xy = 0$ is

A. X-axis

B. Y-axis

C. parallel to X-axis

D. parallel to Y-axis

Answer: B

30. The separate equations of the lines represented by the equation $x^2 - 4xy = 0$ are

$$\mathsf{A.}\ x=0 \ \text{and} \ x-2y=0$$

B.
$$x = 0 \, ext{ and } \, x + 2y = 0$$

C.
$$x = 0$$
 and $x - 4y = 0$

D.
$$x = 0$$
 and $x + 4y = 0$

Answer: C

31. The separate equations of the lines represented by the equation $y^2 + 7xy = 0$ are

A.
$$y = 0$$
 and $3x - 7y = 0$

B.
$$y = 0$$
 and $3x + 7y = 0$

C.
$$y = 0$$
 and $7x - 3y = 0$

D.
$$y = 0$$
 and $7x + 3y = 0$

Answer: D

32. Separate equations of the two lines jointly given by $ab(x^2-y^2)+(a^2-b^2)xh=0$ are A. ax + by = 0 and bx + ay = 0B. ax + by = 0 and bx - ay = 0C. ax - by = 0 and bx + ay = 0 $\mathsf{D}.\,ax-by=0 \,\,\mathrm{and}\,\,bx-ay=0$ Answer: C

33. Statement -1 : If a > b > c, then the lines represented by $(a - b)x^2 + (b - c)xy + (c - a)y^2 = 0$ are real and distinct. Statement-2 : Pair of lines represented by $ax^2 + 2hxy + by^2 = 0$ are real and distinct if

 $h^2 > ab.$

$$\mathsf{A.}\ a(b-c)x+c(a-b)y=0 \ \text{and} \ x+y=0$$

B.
$$a(b-c)x - c(a-b)y = 0 \text{ and } x - y = 0$$

$$\mathsf{C}.\, a(b-c)x+c(a-b)y=0 \ \text{and} \ x-y=0$$

D. a(b-c)x - c(a-b)y = 0 and x + y = 0

Answer: B

34. The equation of the lines represented by $3x^2 - 7xy + 4y^2 = 0$ are

A.
$$x + 2y = 0$$
 and $3x + 2y = 0$

B. 3x - y = 0 and x - 4y = 0

C.
$$x - 2y = 0$$
 and $3x - 2y = 0$

D.
$$x - y = 0$$
 and $3x - 4y = 0$

Answer: D

35. The equation of the lines represented by $3x^2 - 10xy - 8y^2 = 0$ are A. x - 2y = 0 and 3x + 4y = 0B. x - 4y = 0 and 3x + 2y = 0C. x + 2y = 0 and 3x - 4y = 0D. x + 4y + 16 = 0 and 3x - 2y = 0

Answer: B

36. The equation of the lines represented by

$$6x^2 - 5xy - 6y^2 = 0$$
 are
A. $2x + 3y = 0$ and $3x + 2y = 0$
B. $2x - 3y = 0$ and $3x - 2y = 0$
C. $2x - 3y = 0$ and $3x + 2y = 0$
D. $2x + 3y = 0$ and $3x - 2y = 0$

Answer: C

37. The equation of the lines represented by

$$3x^2 - 2\sqrt{3}xy - 3y^2 = 0$$
 are
A. $x - \sqrt{3}y = 0$ and $\sqrt{3}x + y = 0$
B. $x + \sqrt{3}y = 0$ and $\sqrt{3}x - y = 0$
C. $x - 3y = 0$ and $3x + y = 0$
D. $x + 3y = 0$ and $3x + y = 0$

Answer: A

38. The equation of the lines represented by $x^2 + 2xy - y^2 = 0$ are

$$\left(1+\sqrt{2}
ight)x-y=0 \hspace{0.1cm} ext{and} \hspace{0.1cm} \left(1-\sqrt{2}
ight)x+y=0$$

A.

$$ig(1+\sqrt{2}ig)x-y=0 ext{ and } ig(1-\sqrt{2}ig)x-y=0$$
 C.

$$\left(\sqrt{2}+1
ight)x-y=0 ext{ and } \left(\sqrt{2}-1
ight)x-y=0$$
 D.

$$ig(1+\sqrt{2}ig)x-y=0 \,\, ext{and} \,\, ig(\sqrt{2}-1ig)x-y=0$$
Answer: B

39. The equation of the lines represented by $2x^2+2xy-y^2=0$ are

$$ig(1+\sqrt{3}ig)x+y=0 \hspace{0.1cm} ext{and}\hspace{0.1cm}ig(1-\sqrt{3}ig)x+y=0$$

Β.

$$ig(1+\sqrt{3}ig)x-y=0 \hspace{0.1cm} ext{and}\hspace{0.1cm}ig(1-\sqrt{3}ig)x-y=0$$

$$x - (1 - \sqrt{3})y = 0$$
 and $x - (1 - \sqrt{3})y = 0$
D.

$$x-ig(1+\sqrt{3}ig)y=0 \hspace{0.1cm} ext{and}\hspace{0.1cm} x+ig(1-\sqrt{3}ig)y=0$$

Answer: B

40. The equation of the lines represented by $x^2 + 2(\cos ec lpha) xy + y^2 = 0$ are

A.
$$(1\pm\sinlpha)x+2(\coslpha)y=0$$

B.
$$(1\pm\coslpha)x+2(\sinlpha)y=0$$

C.
$$(1\pm\sinlpha)x+(\coslpha)y=0$$

D. $(1\pm\coslpha)x+(\sinlpha)y=0$

Answer: D

Watch Video Solution

41. The separate equation of the lines represented by the equation $x^2 + 2(an lpha)xy - y^2 = 0$ are

A.
$$(1\pm\coslpha)x-\sinlpha y=0$$

B.
$$(1\pm\coslpha)x+\sinlpha y=0$$

C.
$$(an lpha \pm \sec lpha) x - y = 0$$

D.
$$(an lpha \pm \sec lpha) x + y = 0$$

Answer: C

Watch Video Solution

42. The equation of the whose sum of the intercepts on the axes is 7 and is parallel to the common line of the lines represented by the equation

 $6x^2 - xy - 12y^2 = 0$ and $15x^2 + 14xy - 8y^2 = 0$

A. 3x + 4y + 12 = 0

B.
$$3x - 4y - 12 = 0$$

C.
$$3x-4y+12=0$$

D.
$$3x+4y-12=0$$

Answer: D

Watch Video Solution

43. The separate equations of the lines represented

by the equation
$$\left(x-2
ight)^2-3(x-2)(y+1)-3(y+1)^2=0$$
 are

A.
$$x - 2y - 4 = 0$$
 and $x - y - 3 = 0$

B.
$$x - 2y + 4 = 0$$
 and $x - y + 3 = 0$

$${\sf C}.\, x+2y-4=0 \, ext{ and } \, x+y-3=0$$

D. x + 2y + 4 = 0 and x + y + 3 = 0

Answer: A

View Text Solution

44. The separate equations of the lines represented

by the line equation
$$\left(x+1
ight)^2+(x+1)(y-2)-2(y-2)^2=0$$
 are

A. 2x + y - 4 = 0 and 5x - 3y + 1 = 0

B. 2x - y + 4 = 0 and 5x + 3y - 1 = 0

C. 2x + y + 4 = 0 and 5x - 3y - 1 = 0

D. 2x - y - 4 = 0 and 5x + 3y + 1 = 0

Answer: B

View Text Solution

45. The separate equations of the lines represented

by the line equation $8(x-1)^2+10(x-1)(y-3)-3(y-3)^2=0$

A. 4x + 3y + 13 = 0 and 2x + y + 5 = 0

B. 4x + 3y - 13 = 0 and 2x + y - 5 = 0

C. 4x + 3y - 13 = 0 and 2x + y + 5 = 0

D. 4x + 3y + 13 = 0 and 2x + y - 5 = 0

Answer: B

represents

A. two lines

B. two lines passing through origin

C. two lines passing through the point (6, 5)

D. two passing through the point (5, 6)

Answer: D

47. The joint equation of the line
$$2x + y = 0$$
 and $3x - 5y = 0$ is

A.
$$6x^2 + 3xy - 5y^2 = 0$$

B.
$$6x^2 - 10xy - 5y^2 = 0$$

$$\mathsf{C.}\, 6x^2 + 7xy - 5y^2 = 0$$

D.
$$6x^2 - 7xy - 5y^2 = 0$$

Answer: D

48. The joint equation of the line
$$x - y = 0$$
 and $x + y = 0$ is
A. $x^2 - xy + y^2 = 0$
B. $x^2 - xy - y^2 = 0$

$$\mathsf{C}.\,x^2+y^2=0$$

$$\mathsf{D}.\,x^2-y^2=0$$

Answer: D

A.
$$15x^2 - 19xy + 6y^2 - 25x - 15y = 0$$

 $\mathsf{B}.\,15x^2 - 19xy + 6y^2 + 25x - 15y = 0$

 $\mathsf{C}.\,15x^2 - xy + 6y^2 + 25x - 15y = 0$

D.
$$15x^2 + xy + 6y^2 + 25x - 15y = 0$$

Answer: B

Answer: C

 $\mathsf{C.}\,2x^2 + xy + 6y^2 + 4y - 2 = 0$

D.
$$2x^2 - xy + 6y^2 - 4y - 2 = 0$$

Answer: A

52. Find the joint equation of the lines x+y-3 =0 and 2x+y-1 =0

A.
$$2x^2 + 3xy + y^2 - 4x - 7y + 3 = 0$$

B.
$$2x^2 + 3xy + y^2 - 7x - 4y + 3 = 0$$

C.
$$2x^2 + 3xy + y^2 + 7 - 4y + 3 = 0$$

D.
$$2x^2 + 3xy + y^2 - 7x + 4y + 3 = 0$$

Answer: B

53. The combine equation of the lines passing through the origin and having slopes 3 and 2 is

A.
$$6x^2+5xy+y^2=0$$

B.
$$6x^2-5xy+y^2=0$$

$$\mathsf{C.}\,x^2+5xy+6y^2=0$$

D.
$$x^2-5xy+6y^2=0$$

Answer: B

54. The combine equation of the lines passing through the origin and having slopes $1 + \sqrt{3}$ and $1 - \sqrt{3}$ is

A.
$$x^2+xy-2y^2=0$$

B.
$$x^2+2xy-2y^2=0$$

C.
$$2x^2+xy-y^2=0$$

D.
$$2x^2+2xy-y^2=0$$

Answer: D

55. Find the combined equation of the lines passing

through the origin and having inclinations $\frac{\pi}{3}$ and $\frac{5\pi}{3}$.

A.
$$x^2+3y^2=0$$

$$\mathsf{B.}\,x^2+y^2=0$$

$$\mathsf{C.}\, 3x^2-y^2=0$$

D.
$$x^2-3y^2=0$$

Answer: C

56. The combine equation of the lines passing through the origin and having inclinations 60° and 120° with X-axis is

A.
$$3x^2-y^2=0$$

B.
$$3x^2+y^2=0$$

C.
$$x^2-3y^2=0$$

D.
$$x^2+3y^2=0$$

Answer: A

57. The joint equation of pair of lines passing through the origin and inclined at 30° and 60° with X-axis is

A.
$$2x^2-2xy+3y^2=0$$

B. $2x^2-2xy+\sqrt{3}y^2=0$
C. $\sqrt{3}(x^2+y^2)=4xy$
D. $4(x^2+y^2)=\sqrt{3}xy$

Answer: C

58. The combine equation of the lines passing through the origin and each of which makes an angle of 60° with the Y-axis is

A.
$$x^2-3y^2=0$$

B.
$$3x^2-y^2=0$$

C.
$$x^2-\sqrt{3}y^2=0$$

D.
$$\sqrt{3}x^2-y^2=0$$

Answer: A

59. The joint equation of lines passing through the origin and bisecting the angles between co-ordinate axes is

A.
$$x^2 - xy + y^2 = 0$$

B. $x^2 - xy + y^2 = 0$
C. $x^2 - y^2 = 0$

D.
$$x^2 + y^2 = 0$$

Answer: C

60. The joint equation of lines passing through the origin and trisecting the first quadrant is

A.
$$x^2+\sqrt{3}xy-y^2=0$$

B.
$$x^2-\sqrt{3}xy-y^2=0$$

C. $\sqrt{3}x^2-4xy+\sqrt{3}y^2=0$

D.
$$3x^2-y^2=0$$

Answer: C

61. The joint equation of lines passing through the origin and trisecting the second and fourth quadrant is

A.
$$\sqrt{3}x^2 + 4xy + \sqrt{3}y^2 = 0$$

B. $x^2 - \sqrt{3}xy - y^2 = 0$
C. $\sqrt{3}x^2 - 4xy + \sqrt{3}y^2 = 0$
D. $3x^2 - y^2 = 0$

62. The combine equation of the lines passing through the origin and which are at a distance of 9 units from the Y-axis is

A.
$$y^2-81=0$$

B.
$$y^2 + 81 = 0$$

C.
$$x^2-81=0$$

D.
$$x^2+81=0$$

Answer: C

View Text Solution

63. The joint equation of pair of lines through point (a, b) parallel to the co-ordinate axes is

A.
$$(x+a)(y+b)=0$$

$$\mathsf{B.}\,(x+a)(y-b)=0$$

$$\mathsf{C.}\,(x-a)(y-b)=0$$

D.
$$(x-a)(y+b)=0$$

Answer: D

64. Combined equation of pair of lines, through (1,2)

and parallel to co-ordinate axes is

A.
$$xy-2x-y+2=0$$

B. xy - x - 2y + 2 = 0

C. xy + 2x + y + 2 = 0

D.
$$xy+x+2y+2=0$$

Answer: A

65. The combined equations of lines passing through (2, 3) and parallel to the co-ordinate axes is

A.
$$xy - 3x - 2y + 2 = 0$$

B.
$$xy+3x+2y+6=0$$

$$\mathsf{C}. xy = 0$$

D.
$$xy-3x-2y-6=0$$

Answer: A

66. The combined equations of lines passing through (3, 2) and parallel to the co-ordinate axes is

A.
$$xy+2x+3y+6=0$$

B.
$$xy+3x+2y+6=0$$

C.
$$xy-3x-2y+6=0$$

D.
$$xy-2x-3y+6=0$$

Answer: D

67. The joint equation of bisectors of angles between lines x = 5 and y = 3 is

A.
$$(x-5)(y-3) = 0$$

B.
$$x^2 - y^2 - 10x + 6y + 16 = 0$$

 $\mathsf{C}. xy = 0$

D.
$$xy - 5x - 3y + 15 = 0$$

Answer: B

68. The joint equation of pair of lines passing through the origin and parallel to the lines $y=m_1x+c_1$ and $y=m_2x+c_2$ is

A.
$$m_1m_2x^2 + (m_1+m_2)xy + y^2 = 0$$

B.
$$m_1m_2x^2 - (m_1+m_2)xy + y^2 = 0$$

C.
$$m_1m_2y^2 + (m_1+m_2)xy + x^2 = 0$$

D.
$$m_1m_2y^2 - (m_1+m_2)xy + x^2 = 0$$

Answer: B

69. The combine equation of the lines passing through the origin and perpendicular to the lines x + 2y = 19 and 3x + y = 18 is

A.
$$3x^2 - 7xy + 2y^2 = 0$$

B.
$$2x^2-7xy+3y^2=0$$

C.
$$3x^2+7xy+2y^2=0$$

D.
$$2x^2 + 7xy + 3y^2 = 0$$

Answer: B

70. Joint equation of pair of lines passing through origin of which one is perpendicular and other is parallel to line 6x - 4y + 5 = 0 is

A.
$$3x^2 + 5xy - 6y^2 = 0$$

B.
$$6x^2 + 5xy - 6y^2 = 0$$

C.
$$x^2+2xy+6y^2=0$$

D.
$$x^2-5xy+y^2=0$$

Answer: B

71. The joint equation of pair lines passing through the origin of which one is parallel and other is perpendicular to 5x + 3y = 7 is

A.
$$x^2 - xy - y^2 = 0$$

B. $3x^2 - 16xy + 3y^2 = 0$
C. $15x^2 - 16xy - 15y^2 = 0$

D.
$$15x^2 + 16xy + 15y^2 = 0$$

Answer: C

72. The joint equation of pair lines passing through the origin of which one is parallel3x - y = 7 and other is perpendicular to 2x + y = 8 is

A.
$$3x^2 + xy + 2y^2 = 0$$

B. $3x^2 - xy + 2y^2 = 0$
C. $3x^2 + 7xy + 2y^2 = 0$

D.
$$3x^2 - 7xy + 2y^2 = 0$$

Answer: D

73. The combined equation of pair of lines through point (2, -1) and parallel to the lines given by $3x^2 - 4xy + 2y^2 = 0$ is

A.
$$3x^2 - 4xy + 2y^2 + 16x + 12y - 22 = 0$$

B.
$$3x^2 - 4xy + 2y^2 + 16x + 12y + 22 = 0$$

C.
$$3x^2 - 4xy + 2y^2 + 16x - 12y + 22 = 0$$

D.
$$3x^2 - 4xy + 2y^2 + 16x + 12y + 22 = 0$$

Answer: B

View Text Solution

Answer: D
75. The joint equation of pair of lines through

$$(2, -3)$$
 and parallel to $x^2 + xy - y^2 = 0$ is
A. $x^2 + xy - y^2 - x - 8y - 11 = 0$
B. $x^2 + xy - y^2 - 8x - y - 11 = 0$
C. $x^2 + xy - y^2 - x - 8y + 11 = 0$
D. $x^2 + xy - y^2 - 8x - y + 11 = 0$

Answer: A

76. The combined equation of lines passing through
the point
$$(1, 2)$$
 and perpendicular to the lines
 $3x + 2y - 5 = 0ad2x - 5y + 1 = 0$ is
A. $10x^2 + 11xy - 6y^2 + 2x - 35y - 36 = 0$
B. $10x^2 + 11xy - 6y^2 - 2x + 3y - 36 = 0$
C. $10x^2 - 11xy - 6y^2 + 2x - 35y - 36 = 0$
D. $10x^2 - 11xy - 6y^2 + 2x + 35y - 36 = 0$

Answer: D

77. The combined equation of lines passing through the point (2, 3) and perpendicular to the lines 3x + 2y - 1 = 0 and x - 3y + 2 = 0 is

A.
$$6x^2 - 7xy + 3y^2 - 3x - 32y - 45 = 0$$

B.
$$6x^2 - 7xy - 3y^2 - 3x + 32y - 45 = 0$$

C.
$$6x^2 - 7xy - 3y^2 + 3x + 32y - 45 = 0$$

D.
$$6x^2 - 7xy + 3y^2 - 3x + 32y - 45 = 0$$

Answer: B

78. The combined equation of lines passing through the point (-1, 2) and perpendicular to the lines x + 2y + 3 = 0 and 3x - 4y - 5 = 0 is A. $8x^2 + 2xy - 3y^2 - 12x + 14y + 8 = 0$ B. $8x^2 + 2xy - 3y^2 + 12x + 14y - 8 = 0$ $\mathsf{C}.\,8x^2+2xy-3y^2+12x-14y-8=0$ D. $8x^2 + 2xy - 3y^2 - 12x - 14y + 8 = 0$

Answer: B

79. The combined equation of lines passing through the point (3, 2) of which one is parallel to x - 2y = 2 and other is perpendicular to y = 3 is

A.
$$x^2 - 2xy - 2x + 6y - 3 = 0$$

B.
$$x^2 - 2xy - 4x + 6y + 3 = 0$$

C.
$$x^2 - 2xy - 6x + 2y - 3 = 0$$

D.
$$x^2 - 2xy - 6x + 4y + 3 = 0$$

Answer: A

80. The combined equation of lines passing through the point (-1, 2) of which one is parallel to x + 3y - 1 = 0 and other is perpendicular to 2x - 3y - 1 = 0 is

A.
$$3x^2 + 11xy + 6y^2 + 16x + 13y + 5 = 0$$

B.
$$3x^2 + 11xy + 6y^2 + 13x + 16y + 5 = 0$$

$$\mathsf{C.}\, 3x^2 + 11xy + 6y^2 - 16x - 13y + 5 = 0$$

D. $3x^2 + 11xy + 6y^2 - 13x - 16y - 5 = 0$

Answer: C

81. The joint equation of lines passing through point (2, 3) of which one is parallel to 2x + 3y = 5 and other is perpendicular to x - 4y = 7 is

A.
$$(2x+3y+13)(4x+y+11)=0$$

B.
$$(2x+3y-13)(4x+y-11)=0$$

C.
$$(2x + 3y - 13)(4x + y - 11) = 0$$

D.
$$(2x+3y-13)(4x+y+11)=0$$

Answer: B

82. The combined equation of the pair of lines through the origin and perpendicular to the pair of lines given by $ax^2 + 2hxy + by^2 = 0$, is

A.
$$a^2-2hxy+by^2=0$$

B.
$$bx^2+2hxy+ay^2=0$$

C.
$$bx^2-2hxy+ay^2=0$$

D.
$$bx^2 + hxy + ay^2 = 0$$

Answer: C

83. The joint equation of linespassing through the origin and perpendicular to lines represented by $5x^2 - 8xy + 3y^2 = 0$ is

A.
$$3x^2 + 8xy + 5y^2 = 0$$

B.
$$3x^2-8xy+5y^2=0$$

C.
$$3x^2+4xy+5y^2=0$$

D.
$$3x^2 - 4xy + 5y^2 = 0$$

Answer: A

84. The joint equation of lines passing through the origin and perpendicular to lines represented by $5x^2 + 2xy - 3y^2 = 0$ is

A.
$$3x^2 - 4xy - 5y^2 = 0$$

B.
$$3x^2 + 4xy - 5y^2 = 0$$

C.
$$3x^2-2xy-5y^2=0$$

D.
$$3x^2 + 2xy - 5y^2 = 0$$

Answer: D

85. The joint equation of lines passing through the origin and perpendicular to lines represented by $x^2 + 4xy - 5y^2 = 0$ is

A.
$$5x^2 + 4xy + y^2 = 0$$

B.
$$5x^2 + 4xy - y^2 = 0$$

C.
$$5x^2-4xy+y^2=0$$

D.
$$5x^2-4xy-y^2=0$$

Answer: B

86. The joint equation of lines passing through the origin and perpendicular to lines represented by $2x^2 - 3xy - 9y^2 = 0$ is

A.
$$9x^2 - 3xy - 2y^2 = 0$$

B.
$$9x^2-3xy+2y^2=0$$

C.
$$9x^2 + 3xy - 2y^2 = 0$$

D.
$$9x^2 + 3xy + 2y^2 = 0$$

Answer: A

87. The joint equation of lines passing through the origin and perpendicular to lines represented by $x^2 + xy - y^2 = 0$ is A. $x^2 - xy - y^2 = 0$ B. $x^2 - xy + y^2 = 0$ C. $x^2 + xy - y^2 = 0$

D.
$$x^2+2xy-y^2=0$$

Answer: C

88. The combined equation of pair of lines passing through origin and perpendicular to the lines given by $2x^2 - 3xy + y^2 = 0$ is A. $x^2 + 3xy + 2y^2 = 0$ B. $x^2 - 3xy + 2y^2 = 0$ C. $2x^2 + 3xy + y^2 = 0$ D. $2x^2 - 3xy + y^2 = 0$

Answer: A

89. The combined equation of pair of lines passing through origin and perpendicular to the lines given by $5x^2 + 3xy - 2y^2 = 0$ is A. $2x^2 + 3xy + 5y^2 = 0$ B. $2x^2 \pm xy + 5y^2 = 0$ C. $2x^2 + 3xy - 5y^2 = 0$

D.
$$2x^2 - 3xy - 5y^2 = 0$$

Answer: C

90. The joint equation of lines passing through the origin and perpendicular to lines represented by
$$2x^2 + 5xy + 2y^2 + 10x + 5y = 0$$
 is
A. $2x^2 - 5xy + 2y^2 = 0$

B.
$$2x^2 + 5xy - 2y^2 = 0$$

C.
$$2x^2 - 5xy - 2y^2 = 0$$

D.
$$2x^2 + 5xy + 2y^2 = 0$$

Answer: A

91. The joint equation of pair of lines through point (1, 2) and perpendicular to the lines given by $2x^2 - 5xy + 3y^2 = 0$ is

A.
$$3x^2 + 5xy + 2y^2 - 16x + 13y - 21 = 0$$

B.
$$3x^2 + 5xy + 2y^2 + 16x - 13y - 21 = 0$$

C.
$$3x^2 + 5xy + 2y^2 - 16x - 13y - 21 = 0$$

D.
$$3x^2 + 5xy + 2y^2 - 16x - 13y + 21 = 0$$

Answer: D

92. The equation $ax^2 + 2hxy + ay^2 = 0$ represents a pair of coincident lines through origin, if

- A. h = 2a
- $\mathsf{B.}\,2h=a$

$$\mathsf{C}.\,h=\,\pm\,a$$

D.
$$2h^2=a$$

Answer: C

93. The equation $4x^2 + hxy + y^2 = 0$ represents a pair of coincident lines through origin, if h=

A. ± 2

 $\mathsf{B.}\pm16$

 $C.\pm4$

D. ± 3

Answer: C

94. If the equation $k(x^2 + y^2) = 8xy$ represents a

pair of coincident lines, If k=

A. ± 1

 $\mathsf{B.}\pm16$

 $\mathsf{C}.\pm 2$

 $\mathsf{D.}\pm 4$

Answer: D

95. If the equation $(k+1)x^2-6xy+(k-7)y^2=0$ represents a pair of coincident lines, If k=

A. 8, -2B. -8, 2C. -8, -2

D. 8, 2

Answer: A

96. If the equation $a^2x^2 + bxy^2 = a(b+c)xy$ represents a pair of coincident lines, then

- A. b = a
- $\mathsf{B}.\, b=c$
- C.c = a
- D. a + b = 0

Answer: B

97. Which of the following pair of straight lines intersect at right angle?

A.
$$y=~\pm 2x$$

B.
$$2y(x+y)=xy$$

C.
$$\left(x+y
ight)^2=x(3x+y)$$

D.
$$2x^2=y(x+2y)$$

Answer: D

98. The equation $x^2 + lpha xy + eta y^2 = 0$ represents a pair of perpendicular lines , if

A. lpha=2eta

- $\mathsf{B.}\,\beta=\,-\,1$
- $\mathsf{C.}\,2\alpha=\beta$

D.
$$\alpha\beta = -1$$

Answer: B

99. If the equation $K(x^2 + y^2) = (3x - y)^2$ represents a pair of coincident lines, then k=

A. − 5

 $\mathsf{B.}\,5$

 $\mathsf{C.}-9$

 $\mathsf{D.}-1$

Answer: B

100. If the equation $(kx+y)^2 = k(x^2+y^2)$ represents a pair of perpendicular lines, then k=

 $\mathsf{A.}-2$

 $\mathsf{B.}-1$

C. 1

 $\mathsf{D.}\,2$

Answer: C

101. If the lines represented by $\sin^2 \alpha \left(x^2 + y^2\right) = \left((\cos \alpha)x - (\sin \alpha)y\right)^2$ are perpendicular to each other, then $\alpha =$

A. 0 B. $\frac{\pi}{3}$ C. $\frac{\pi}{2}$ D. $\frac{\pi}{4}$

Answer: D

102. If $ax^2 + 6xy + 3y^2 - 10x + 10y - 6 = 0$ represents a pair of perpendicular lines, then |a| =A. ± 3 **B**. 0 C. -3D. 3 Answer: D Watch Video Solution

103. The sum of the slopes of the lines given by

$$x^2 - 7xy + 12y^2 = 0$$
 is

A.
$$\frac{-7}{12}$$

B. $\frac{7}{12}$
C. $\frac{-1}{12}$
D. $\frac{1}{12}$

Answer: B

104. The product of the slopes of the line given by

$$x^2-xy-6y^2=0$$
 is

Answer: C

105. If the sum of the slopes of the lines given by

 $3x^2+kxy-y^2=0$ is zero, then k=

A. - 1

B.0

C. 3

 $\mathsf{D.}-3$

Answer: B

106. If the lines represented by $6x^2+41xy-7y^2=0$ makes angle lpha and eta with X-axis, then an lpha imes an eta

A.
$$\frac{-6}{7}$$

B. $\frac{6}{7}$
C. $\frac{-7}{6}$
D. $\frac{7}{6}$

Answer: A

107. If the lines represented by $ax^2 - bxy - y^2 = 0$ makes angle lpha and eta with X-axis, then an(lpha+eta) =

A.
$$\frac{-a}{1+b}$$
B.
$$\frac{a}{1+b}$$
C.
$$\frac{-b}{1+a}$$
D.
$$\frac{b}{1+a}$$

Answer: C

108. If the lines represented by $x^2-4xy+y^2=0$ makes angle lpha and eta with X-axis, then $an^2lpha+ an^2eta=$

$\mathsf{A.}\,2$

- B.-2
- **C**. 14
- $\mathsf{D.}-14$

Answer: C

109. If the sum of the square of slopes of the lines represented by $kx^2 - 3xy + y^2 = 0$ is 5, then k=

A. 1

 $\mathsf{B.}\,2$

C. 3

 $\mathsf{D.}\,4$

Answer: B

110. If the slope of one of the lines given by $kx^2 + (3k+1)xy + 3y^2 = 0$ is reciprocal of the slope of the other line, then k=

 $\mathsf{A.}\ 2$

- $\mathsf{B.}-2$
- C. 3

 $\mathsf{D.}-3$

Answer: C
111. If the slope of one of the lines given by $ax^2+2hxy+by^2=0$ is k times the slope of other, then

A.
$$kh^2 = 4ab(1+k)^2$$

B. $kh^2 = 2ab(1+k)^2$
C. $4xh^2 = ab(1+k)^2$
D. $2kh^2 = ab(1+k)^2$

Answer: C

112. If the sum of the slopes of the lines given by $2x^2 + kxy - 3y^2 = 0$ is equal to their product, then k=

A. -2B. 2 C. $\frac{-2}{3}$ D. $\frac{-2}{9}$

Answer: A

113. If sum of the slopes of the lines represented by $x^2+kxy-3y^2=0$ is twice their product, then k= A. -2**B**. 2 $\mathsf{C}.\,\frac{-2}{3}$ D. $\frac{2}{3}$

Answer: A

114. If the sum of the slopes given by $ax^2 + 8xy + 5y^2 = 0$ is twice their product, then a=

A.-8

 $\mathsf{B.}\,2$

 $\mathsf{C.}\,4$

 $\mathsf{D}.-4$

Answer: D

115. if $\frac{X^2}{a} + \frac{y^2}{b} + \frac{2xy}{h} = 0$ represent pair of straight lies and slope one line is twice the other line then $ab: h^2$.

A. 1:2

B.2:1

C. 8:9

D. 9:8

Answer: D

116. If the slopes of the line given by $6x^2 + 2hxy + y^2 = 0$ are in the ratio 1:2, then h=

A.
$$\frac{3\sqrt{3}}{2}$$

B.
$$\frac{3}{2\sqrt{3}}$$

C.
$$\frac{3}{2}$$

D.
$$\frac{27}{4}$$

Answer: A

117. If the slopes of one of the line given by $ax^2 + 2hxy + by^2 = 0$ is three times the other, then

A.
$$4h^2=3ab$$

B.
$$2h^2=3ab$$

$$\mathsf{C.}\,3h^2 = 4ab$$

D.
$$3h^2=2ab$$

Answer: C

118. If the slopes of one of the line given by $3x^2 + 4xy + ky^2 = 0$ is three times the other, then k=

A. 0

B.1

C. 3

 $\mathsf{D.}-1$

Answer: B

119. If the ratio of gradients of the line given by $ax^2 + 2hxy + by^2 = 0$ is 1:3, then $h^2 : ab =$ A. $\frac{1}{3}$ B. 1

C.
$$\frac{3}{4}$$

D.
$$\frac{4}{3}$$

Answer: D

120. If the slope of one of the line given by $ax^2 + 2hxy + by^2 = 0$ is four times the other, then

A.
$$4h+5ab=0$$

- B.4h 5ab = 0
- $C.16h^2 + 25ab = 0$

D.
$$16h^2-25ab=0$$

Answer: D

121. If the slope of one of the lines given by $4x^2 + kxy + y^2 = 0$ is four times the other, then k=

 $\mathsf{A.}\,25$

 $\mathsf{B.}\,5$

C.-5

D. ± 5

Answer: D

122. If the sum of slopes of the lines given by $3x^2 + kxy - 9y^2 = 0$ is 5 times their product, then k=

- **A.** 10
- $\mathsf{B}.-2$
- C. -10
- $\mathsf{D.}-5$

Answer: C

123. The difference of the slopes of the lines given

by $3x^2 - 4xy + y^2 = 0$ is

A. 1

 $\mathsf{B.}\,2$

C. 3

 $\mathsf{D.}\,4$

Answer: B

124. The slopes of the lines given by $12x^2 + bxy - y^2 = 0$ differ by 6, Then value of b is

 $\mathsf{A.}\,2$

 $\mathsf{B.}\pm 2$

 ${\rm C.}\pm 1$

 $\mathsf{D.}\,1$

Answer: C

125. If slopes of lines represented by $kx^2+5xy+y^2=0$ differ by 1, then k= A. 2 **B**. 3 C. 6 D. 8 Answer: C

126. If the slopes of the lines represented by $3x^2 + kxy - y^2 = 0$ differ by 4, then k=

 $\mathsf{A.}\,2$

- $\mathsf{B.}-2$
- $\mathsf{C}.\pm 2$
- $\mathsf{D.}\,4$

Answer: C

127. If the slope of one of the lines given by $kx^2 + 4xy - y^2 = 0$ exceeds the slope of the other by 8, then k=

 $\mathsf{A.}\,4$

B.16

C. 48

 $\mathsf{D}.\,12$

Answer: D

128. If two lines represented by $x^2ig(an^2 heta+ an^2 hetaig)-2xy an heta+y^2\sin^2 heta=0$ make angles lpha,eta with x-axis then

 $\mathsf{A.}-2$

 $\mathsf{B.}\,2$

 $\mathsf{C}.-4$

 $\mathsf{D.}\,4$

Answer: B

129. The difference of the slopes of the lines represented by $x^2ig(\sec^2 heta - \sin^2 hetaig) - (2 an heta)xy + y^2\sin^2 heta = 0$ A. 1 **B**. 2 C. 3 D. 4

Answer: B

130. If two lines represented by $x^2 (an^2 heta+ ext{cos}^2 heta) - 2xy an heta+y^2 ext{sin}^2 heta=0$ make angles lpha,eta with x-axis then

A. 0

 $\mathsf{B.}\,2$

C. 3

D. $2 \tan \theta$

Answer: B

131. If $4ab = 3h^2$, then the ratio of the slopes of the lines represented by $ax^2 + 2hxy + by^2 = 0$ is

A. $\sqrt{3}:1$

 $\mathsf{B.}\,\sqrt{2}\!:\!1$

C. 1: 3

D. 2:1

Answer: C

132. The ratio of the slopes of the lines represented by $ax^2 + 2hxy + by^2 = 0$ is 2:3, then $h^2 : ab =$

A. 6:5

B. 5:6

C.24:25

D. 25:24

Answer: D

133. If the slope of one of the lines represented by $ax^2 + 2hxy + by^2 = 0$ is square of the slope of the other line, then

A.
$$a^2b + ab^2 + 8h^3 + 6abh = 0$$

B. $a^2b + ab^2 - 8h^3 + 6abh = 0$
C. $a^2b + ab^2 - 8h^3 - 6abh = 0$
D. $a^2b + ab^2 + 8h^3 - 6abh = 0$

Answer: D

134. If the slope of one of the lines given by $3x^2 - 4xy + ky^2 = 0$ is 1, then k=

A. 3

 $\mathsf{B.}-4$

C. 1

 $\mathsf{D.}-1$

Answer: C

135. If the slope of one of the line given by $2px^2 - 16xy + qy^2 = 0$ is 2, then the equation of the other line, is

Watch Video Solution

136. If 2x + y = 0 is one of the lines given by $3x^2 + kxy + 2y^2 = 0$, then k=

A.
$$\frac{1}{2}$$

B. $\frac{11}{2}$
C. $\frac{5}{2}$

$$\mathsf{D}.\,\frac{-11}{2}$$

Answer: B

 $\mathsf{C.}\,5$

$\mathsf{D.}-5$

Answer: C

138. If one of the lines given by $6x^2 - xy + 4cy^2 = 0$ is 3x + 4y = 0 ,then value of $|\mathsf{c}|$ is

 $\mathsf{A.}\,12$

 $\mathsf{B.}-12$

C. 3

D.-3

Answer: D

139. If the line x+2=0 coincides with one of the lines represented by $x^2+2xy+4y+k$, then k=

 $\mathsf{B.4}$

$$\mathsf{C}.\,\frac{-1}{4}$$
$$\mathsf{D}.\,\frac{1}{4}$$

Answer: A

140. If the line 3x - 2y = 0 coincide with one of the lines given by $ax^2 + 2hxy + by^2 = 0$, then

A. 4a + 12h + 9b = 0

B. 4a + 12h - 9b = 0

C. 4a - 12h + 9b = 0

D. 4a - 12h - 9b = 0

Answer: A

141. If the line 4x + 5y = 0 coincide with one of the lines given by $ax^2 + 2hxy + by^2 = 0$, then

A.
$$25a + 40h + 16b = 0$$

 $\mathsf{B.}\, 25a + 40h - 16b = 0$

C.25a - 40h + 16b = 0

D.
$$25a - 40h - 9b = 0$$

Answer: C

142. If the line 4x - 5y = 0 coincide with one of the lines given by $ax^2 + 2hxy + by^2 = 0$, then

A.
$$25a - 40h - 9b = 0$$

 $\mathsf{B.}\, 25a + 40h - 16b = 0$

C.25a - 40h + 16b = 0

D.
$$25a + 40h + 16b = 0$$

Answer: B

143. If one of the lines given by $kx^2 - 5xy - 3y^2 = 0$ is perpendicular to the line x - 2y + 3 = 0, then k=

 $\mathsf{A.}\,2$

B. 3

C.
$$\frac{11}{2}$$

D. $\frac{2}{3}$

Answer: A

144. If one of the lines given by $3x^2 - kxy + 5y^2 = 0$ is perpendicular to the line 5x+3y=0`, then k=

- $\mathsf{A.}\,24$
- B.-3
- C. 8
- D. 8

Answer: D

145. If one of the lines given by

$$ax^2 + 2hxy + by^2 = 0$$
 is perpendicular to
 $px + qy = 0$, show that $ap^2 + 2hpq + bq^2 = 0$
A. $ap^2 - 2hpq + bq^2 = 0$
B. $ap^2 + 2hpq + bq^2 = 0$
C. $aq^2 - 2hpq + bp^2 = 0$
D. $aq^2 + 2hpq + bp^2 = 0$

Answer: B

146. If the line 3x + y = 0 is perpendicular to one of the lines represented by $ax^2 + 2hxy + by^2 = 0$, then

A.
$$9a-6h-b=0$$

B.
$$9a+6h-b=0$$

$$\mathsf{C}.\,9a-6h+b=0$$

D.
$$9a+6h+b=0$$

Answer: D

147. If two lines $ax^2 + 2hxy + by^2 = 0$ make equal

angles with a co-ordinate axis, then

A. $ab=\pm 1$

 $\mathsf{B.}\,a=b$

- $\mathsf{C}.\,a=\,-\,b$
- $\mathsf{D}.\,a=~\pm\,b$

Answer: D

148. If the line given by $ax^2 + 2hxy + by^2 = 0$ are equally inclined to the co-ordinate axes, then

A. h=0

B. a + b = 0

$$\mathsf{C}.\,h^2-ab=0$$

$$\mathsf{D}.\,h=a$$

Answer: A

149. If one of the lines of $ax^2 + 2hxy + by^2 = 0$ bisects the angle between the axes, in the first quadrant, then

A.
$$(a + b)^2 = 2h$$

B. $(a - b)^2 = 2h$
C. $(a + b)^2 = 4h^2$
D. $(a - b)^2 = 4h^2$

Answer: C

150. If one of the lines given by $kx^2 + xy - y^2 = 0$ bisects the angle between the co-ordinate axes, then k=

- A. 1, -1
- B. 0, 1
- C.0, -2
- D.0, 2

Answer: C

151. If one of the lines given by $kx^2 + 2hxy + by^2 = 0$ bisects the angle between the axes in the first qaudrant, then

A.
$$(a+b)^2=2h^2$$

B. $(a+b)^2=4h^2$
C. $h^2-ab=0$

D.
$$h^2+ab=0$$

Answer: B

152. If one of the lines given by $kx^2 + 2hxy + by^2 = 0$ bisects the angle between the axes in the first qaudrant, then

Watch Video Solution

153. If the pair of lines $x^2 + 2xy + ay^2 = 0$ and $ax^2 + 2xy + y^2 = 0$ have exactly one line in common, then a =

A.
$$(ab' + a'b)^2 = 4(ah' + a'h)(b'h + ah')$$

B.
$$(ab' + a'b)^2 = 2(ah' + a'h)(b'h + ah')$$

C.
$$(ab' - a'b)^2 = 4(ah' - a'h)(b'h - bh')$$

D.
$$(ab' - a'b)^2 = 2(ah' - a'h)(b'h - bh')$$

Answer: C

154. If the pair of lines $x^2 + 2xy + ay^2 = 0$ and $ax^2 + 2xy + y^2 = 0$ have exactly one line in common, then a =

A.
$$a^2 + a + 1 = 0$$

B. $a^2 - a - 1 = 0$
C. $a^2 + a - 1 = 0$

D.
$$a^2-a+1=0$$

Answer: C

A. 2,
$$\frac{25}{4}$$

B. $-2, \frac{25}{4}$
C. 2, $\frac{-25}{4}$

D.
$$-2, -\frac{25}{4}$$

Answer: C

Watch Video Solution

156. If the pairs of lines $x^2 + 2xy + ay^2 = 0$ and $ax^2 + 2xy + y^2 = 0$ have exactly one line in common, then the joint equation of the other two lines is given by $3x^2 + 8xy - 3y^2 = 0$ $3x^2 + 10xy + 3y^2 = 0$ $y^2 + 2xy - 3x^2 = 0$ $x^2 + 2xy - 3y^2 = 0$

A. $3x^2 + 10xy + 3y^2 = 0$

B.
$$3x^2 - 10xy + 3y^2 = 0$$

C.
$$3x^2 + 10xy - 3y^2 = 0$$

D.
$$3x^2 - 10xy - 3y^2 = 0$$

Answer: A

Watch Video Solution

157. The angle between the lines xy = 0 is

A. $45^{\,\circ}$

B. 30°

C. 90°

D. 180°

Answer: C

158. Find the angle between the lines represented by $3x^2 + 4xy - 3y^2 = 0$ A. 30°

B. 60°

C. 45°

Answer: D

159. The acute angle heta between the lines represented by $x^2 - 4xy + y^2 = 0$ is

A. 30°

 $\mathsf{B.}\,60^{\,\circ}$

C. 45°

D. 90°

Answer: C

160. The acute angle heta between the lines represented by $3x^2 - 4\sqrt{3}xy + 3y^2 = 0$ is

A. 30°

 $\text{B.}\,60^{\,\circ}$

C. 45°

D. 90°

Answer: A

161. The acute angle heta between the lines represented by $2x^2 + 7xy + 3y^2 = 0$ is

A. 30°

B. 60°

C. 45°

D. 90°

Answer: B

162. Find the measure of the acute angle between lines represented the by $ig(a^2-3b^2ig)x^2+8abxy+ig(b^2-3a^2ig)y^2=0.$ A. 30° $B.60^{\circ}$ $C.45^{\circ}$ D. 90° Answer: C

163. The acute angle θ between the lines given by

$$3y^2=x(7y-2x)$$
 is

A. $30^{\,\circ}$

 $\text{B.}\,60^{\,\circ}$

C. $45^{\,\circ}$

D. 90°

Answer: B

164. The acute angle heta between the lines represented by $3x^2 + 2xy - y^2 = 0$ is

A.
$$\tan^{-1}\left(\frac{1}{2}\right)$$

B. $\tan^{-1}\left(\frac{3}{2}\right)$
C. $\tan^{-1}\left(\frac{2}{3}\right)$

$$D. \tan^{-1} 2$$

Answer: D

165. The acute angle heta between the lines represented by $2x^2 - 6xy + y^2 = 0$ is

A.
$$\tan^{-1}\left(\frac{\sqrt{7}}{2}\right)$$

B. $\tan^{-1}\left(\frac{2\sqrt{7}}{3}\right)$
C. $\tan^{-1}\left(\frac{3\sqrt{7}}{2}\right)$
D. $\tan^{-1}\left(\frac{2\sqrt{7}}{3}\right)$

Answer: B

166. The acute angle heta between the lines represented by $4x^2 + 5xy + y^2 = 0$ is

A.
$$\tan^{-1}\left(\frac{1}{5}\right)$$

B. $\tan^{-1}\left(\frac{1}{3}\right)$
C. $\tan^{-1}\left(\frac{3}{5}\right)$
D. $\tan^{-1}\left(\frac{5}{3}\right)$

Answer: C

167. The angle between the lines $ay^2 - (1 + \lambda^2))xy - ax^2 = 0$ is same as the angle between the line:

A.
$$xy = 0$$

B. $5x^2 + 2xy - 3y^2 = 0$
C. $5x^2 + 16xy + 5y^2 = 0$
D. $x^2 - 2xy - 3y^2 = 0$

Answer: A

168. The acute angle between the lines given by $(\sin^2 \theta - 1)x^2 - (\cos^2 \theta)xy + (\cos^2 \theta)y^2 = 0$ is

A. 30°

B. 60°

C. 45°

D. 90°

Answer: D

169. The acute angle between the lines given by $x^2 + 2(\cos ec\theta)xy + y^2 = 0$ is

A. α

B. 90°

C. 90 $^{\circ}-lpha$

D. 90° + lpha

Answer: C

170. The acute angle between the lines given by $x^2 + 2(\cot heta)xy + y^2 = 0$ is

A. 0°

B. 60°

C. 90°

D.
$$an^{-1} igl(\cos e c lpha \sqrt{\cos 2 lpha} igr)$$

Answer: D

171. The angle between the pair of lines represented by $(\sin^2 lpha) (x^2 + y^2) = (x \cos lpha - y \sin lpha)^2$ is

A. α

 $\mathrm{B.}\,2\alpha$

 $\mathsf{C}.-\alpha$

 $\mathrm{D.}-2\alpha$

Answer: B

172. If the angle θ is acute, then the angle between pair of lines given the by $(\cos heta-\sin heta)x^2+2(\cos heta)xy+(\cos heta+\sin heta)y^2=0$ is

Α. θ

 $B.2\theta$

 $\mathsf{C}.\,\frac{\theta}{2}$ $\mathsf{D}.\,\frac{\theta}{3}$

Answer: A

173. If the angle between the lines given by $(an^2 A)x^2 - kxy - y^2 = 0$ is 2A, then k=

B.1

 $\mathsf{C.}\,2$

D. $\tan A$

Answer: A

174. If θ is the acute angle between the lines represented by $\ln^2 - 4\pi m \ln^2 = 0$ and $\tan \theta = \frac{1}{2}$ then by

 $kx^2-4xy+y^2=0 ~~{
m and}~~ an heta=rac{1}{2}$, then k=

- A. -21, -3
- B. 21, 3
- C. 21, -3
- D. 21, 3

Answer: B

175. If the angle between the lines given by $6x^2+xy+ky^2=0$ is $45^{\,\circ}$, then k= A. 1, 35 B. -1, 35C. 1, -35D. -1, -35Answer: D

176. If the angle between the lines given by $x^2-2kxy+y^2=0$ is $60^{\,\circ}$, then k= A. $\pm\sqrt{3}$ $B.\pm\sqrt{2}$ $C.\pm 2$ $D.\pm 1$

Answer: C

177. If $heta_1$ and $heta_2$ are the acute angle between the lines given by $3x^2 - 7xy + 4y^2 = 0$ and $6x^2 - 5xy + y^2 = 0$, then

A.
$$heta_1= heta_2$$

$$\mathsf{B}.\,\theta_1=2\theta_2$$

$$\mathsf{C}.\,\theta_2=2\theta_1$$

D.
$$2 heta_2=3 heta_1$$

Answer: A

178. If the angle between the lines given by $ax^2+2hxy+by^2=0$ is equal to the angle between lines given by $2x^2-5xy+3y^2=0$, then

A.
$$100(h^2 - ab) = (a + b)^2$$

B. $100(h^2 - ab) = (a - b)^2$

$$\mathsf{C.}\,25\big(h^2-ab\big)=(a+b)^2$$

D.
$$25ig(h^2-abig)=ig(a-b)^2$$

Answer: A

179. If the acute angle between the lines $ax^2+2hxy+by^2=0$ is congruent to the acute angle between the lines $3x^2-7xy+4y^2=0$, then

A.
$$4ig(h^2-abig)=(a+b)^2$$

$${\tt B.7}\big(h^2-ab\big)=\left(a+b\right)^2$$

$$\mathsf{C.}\,49\big(h^2-ab\big)=\left(a+b\right)^2$$

D.
$$196ig(h^2-abig)=ig(a+b)^2$$

Answer: D

180. If $x^2 + 2hxy + y^2 = 0$ represents the equation of the straight lines through the origin which make an angle α with the straight line $y + x = 0 \ \sec 2\alpha = h \ \cos \alpha = \sqrt{\frac{(1+h)}{(2h)}} \ 2\sin \alpha$ $= \sqrt{\frac{(1+h)}{h}} \ (d) \ \cot \alpha = \sqrt{\frac{(1+h)}{(h-1)}}$

A. $\sin 2\alpha$

B. $\cos 2\alpha$

C. $\cos ec2\alpha$

D. $\sec 2\alpha$

Answer: D

181. The joint equation of pair of lines passing through the origin and making an angle of 45° with the line 3x + y = 0 is

A.
$$x^2-2\cos ec2lpha xy+y^2=0$$

B.
$$x^2+2\cos ec2lpha xy+y^2=0$$

C.
$$x^2-2\sec 2lpha xy+y^2=0$$

D.
$$x^2+2\sec 2lpha xy+y^2=0$$

Answer: D

182. The equation of the pair of straight lines, each of which makes an angle α with the line y = x is

A.
$$x^2-2xy+y^2=0$$

B. $x^2-2\cos eclpha xy+y^2=0$
C. $x^2-\seclpha xy+y^2=0$

D.
$$x^2-2\sec 2lpha xy+y^2=0$$

Answer: D

183. The joint equation of pair of lines passing through the origin and making an angle of 45° with the line 3x + y = 0 is

A.
$$x^2 + 3xy + y^2 = 0$$

B. $2x^2 + 3xy + y^2 = 0$
C. $2x^2 + 3xy - 2y^2 = 0$

D.
$$3x^2 + 2xy - 2y^2 = 0$$

Answer: C

184. The joint equation of pair of lines through the origin and making an angle of $\frac{\pi}{6}$ with the line 3x + y - 6 = 0 is

A.
$$3x^2 - 12xy - 13y^2 = 0$$

B.
$$3x^2 + 12xy - 3y^2 = 0$$

C.
$$3x^2 - 12xy - 3y^2 = 0$$

$$\mathsf{D}.\,3x^2 + 12xy - 13y^2 = 0$$

Answer: B

View Text Solution
185. Find the joint equaiton of the pair of the lines through the origin each of which is making an angle of 30° with the line 3x + 2y - 11 = 0.

A.
$$23x^2 + 48xy + 3y^2 = 0$$

B. $3x^2 + 48xy + 23y^2 = 0$

$$\mathsf{C.}\, 23x^2 + 24xy + 3y^2 = 0$$

D.
$$3x^2 + 24xy + 23y^2 = 0$$

Answer: A

186. Joint equation of two lines through the origin each making angle of 60° with line x - y = 0, is

A.
$$x^2-4xy+y^2=0$$

B.
$$x^2+4xy+y^2=0$$

C.
$$x^2-3xy+y^2=0$$

D.
$$x^2+3xy+y^2=0$$

Answer: B

187. Joint equation of two lines, through the origin, each making an angle of 30° with the Y-axis is

A.
$$3x^2-y^2=0$$

- $\mathsf{B.}\,x^2-3y^2=0$
- $\mathsf{C.}\, 3x^2+y^2=0$

D.
$$x^2+3y^2=0$$

Answer: A

188. Find the joint equation of the pair of lines through the origin and making an equilateral triangle with the line x = 3.

A.
$$x^2+3y^2=0$$

B.
$$x^2-3y^2=0$$

C.
$$3x^2+y^2=0$$

D.
$$3x^2-y^2=0$$

Answer: B

189. Find the joint equation of the pair of lines through the origin and making an equilateral triangle with the line x = 3.

A.
$$x^2+3y^2=0$$

B.
$$x^2-3y^2=0$$

C.
$$3x^2+y^2=0$$

D.
$$3x^2-y^2=0$$

Answer: D

190. The joint equation of pair of lines through the origin and making an equilateral triangle with the line x+y=10, is

A.
$$x^2 - 4xy + y^2 = 0$$

B. $x^2 + 4xy + y^2 = 0$
C. $x^2 - 2xy + y^2 = 0$
D. $x^2 + 2xy + y^2 = 0$

Answer: A

View Text Solution

191. The joint equation of pair of lines through the origin and making an equilateral triangle with the line 3x + 4y = 5, is

A.
$$39x^2 + 48xy + 11y^2 = 0$$

B.
$$39x^2 - 48xy + 11y^2 = 0$$

C.
$$39x^2 + 96xy + 11y^2 = 0$$

D.
$$39x^2 - 96xy + 11y^2 = 0$$

Answer: D

View Text Solution

192. If the slope of one of the lines given by $ax^2 + 2hxy + by^2 = 0$ is 5 times the other, then

A. - 2h

 $\mathsf{B.}\,2h$

 $C. -4h^2$

D. $4h^2$

Answer: D

193. The line $x + y = \sqrt{6}$, forms an equilateral triangle with the lines $x^2 - 4xy + y^2 = 0$, The perimeter of the triangle is :

A.
$$x^2 - 4xy + y^2 = 0$$

B. $x^2 + 4xy + y^2 = 0$
C. $x^2 - 2xy + y^2 = 0$
D. $x^2 + 2xy + y^2 = 0$

Answer: A

194. The line $x + y = \sqrt{6}$, forms an equilateral triangle with the lines $x^2 - 4xy + y^2 = 0$, The perimeter of the triangle is :

A. $2\sqrt{3}$ sq.units

B.
$$\sqrt{3}$$
sq.units

C.
$$\frac{2}{\sqrt{3}}$$
 sq.units
D. $\frac{1}{\sqrt{3}}$ sq. units

Answer: B

195. The line $x + y = \sqrt{6}$, forms an equilateral triangle with the lines $x^2 - 4xy + y^2 = 0$, The perimeter of the triangle is :

A. $3\sqrt{3}$ units

B. 3 units

C.2 units

D. 6 units

Answer: D

196. The line 3x - 4y + 5 = 0 and $3(3y + 4x)^2 - (3x - 4y)^2 = 0$ forms a triangle which is (i) isosceles (ii) Equilateral (iii) Right Angled Triangle (iv) Right Angled isosceles

A. an equilateral

B. a right angled isosceles

C. a right angled with one angle 30°

D. an isosceles with base angl 30°

Answer: A

197. If the lines $kx^2 + 6xy + 2y^2 = 0$ and x + 3y = 9 form an isosceles triangle, then k=

A. - 8

B. 8

C. 6

 $\mathsf{D.}-6$

Answer: D

View Text Solution

198. Triangle formed by $x^2 - 3y^2 = 0$ and x = 4 is

A. an equilateral

B. an isosceles

C. a right angled

D. a scalene

Answer: A

199. The triangle formed by the lines $10x^2 + 21xy - 10y^2 = 0$ and 7x + 3y = 4 l s

A. an equilateral

B. an isosceles with base angl 30°

C. a right angled with one angle 30°

D. a right angled isoscels

Answer: D

Watch Video Solution

200. the area formed by the lines $x^2 - y^2 = 0$ and

x + 8 = 0 is

A. 8 sq.units

B. 16 sq.units

C. 32 sq.units

D. 64 sq.units

Answer: D

Watch Video Solution

201. Show that the lines $x^2 - 4xy + y^2 = 0$ and x + y = 10 contain the sides of an equilateral triangle.

A.
$$\frac{100}{\sqrt{3}}$$
 sq.units

B.
$$\frac{75}{\sqrt{3}}$$
 sq.units
C. $\frac{50}{\sqrt{3}}$ sq.units
D. $\frac{25}{\sqrt{3}}$ sq.units

Answer: C

202. Show that the lines
$$x^2 - 4xy + y^2 = 0$$
 and $x + y = 1$ form an

equilateral triangle and find its area.

A.
$$\frac{1}{\sqrt{2}}$$
 sq.units

B.
$$\frac{1}{\sqrt{3}}$$
 sq.units
C. $\frac{2}{\sqrt{3}}$ sq.units
D. $\frac{\sqrt{3}}{2}$ sq.units

Answer: D

203. The coordinates of the orthocentre of the triangle formedby the lines $2x^2 - 3xy + y^2 = 0$ and x + y = 1 are

A.
$$\frac{\sqrt{13}}{6}$$
 sq.units

B.
$$\frac{\sqrt{13}}{4}$$
 sq.units
C. $\frac{\sqrt{13}}{2}$ sq.units
D. $\frac{\sqrt{13}}{5}$ sq.units

Answer: A

204. The area of the triangle formed by the lines

$$3x^2-4\sqrt{2}xy+y^2=0 \, ext{ and } \, x+\sqrt{2}y+7=0$$
 l s

A.
$$\frac{49\sqrt{5}}{3}$$
 sq.units
B. $\frac{98\sqrt{5}}{3}$ sq.units

C.
$$\frac{49\sqrt{5}}{15}$$
 sq.units
D. $\frac{98\sqrt{5}}{15}$ sq.units

Answer: C

205. If a + b = 2h, then the area of the triangle formed by the lines $ax^2 + 2hxy + by^2 = 0$ and the

line x - y + 2 = 0, in sq. units is

A.
$$\left|rac{a^2+b^2}{a-b}
ight|$$

B. $\left|rac{a^2+b^2}{a+b}
ight|$

C.
$$\left| \frac{a-b}{a+b} \right|$$

D. $\left| \frac{a-b}{a+b} \right|$

Answer: C

206. The length of each perpendicular side of an isoscele right angled triangle formed by $4x^2 + 6xy - 4y^2 = 0$ and x - 3y + 7 = 0 is A. $\frac{7}{\sqrt{5}}$ B. $\frac{4}{\sqrt{5}}$

C.
$$\frac{3}{\sqrt{5}}$$

D. $\frac{2}{\sqrt{5}}$

Answer: A

207. Show that the straight lines
$$x^2 + 4xy + y^2 = 0$$
 and the line x-y=4 form an

equilateral triangle.

A.
$$\frac{4}{\sqrt{3}}$$
 sq.units
B. $\frac{2}{\sqrt{3}}$ sq.units

C.
$$\frac{16}{\sqrt{3}}$$
 sq.unts
D. $\frac{8}{\sqrt{3}}$ sq.units

Answer: D

208. Show that straight lines
$$(A^2 - 3b^2)x^2 + 8ABxy(b^2 - 3A^2)y^2 = 0$$
 form with the line $Ax + By + C = 0$ an equilateral triangle of area $rac{C^2}{\sqrt{3(A^2 + B^2)}}$.

B. $2\sqrt{3}$

C.3

 $\mathsf{D}.\,12$

Answer: A

209. The area of triangle (in sq units) formed by the

lines $x^2 - 4y^2 = 0$ and x = a, is

A. $2a^2$ sq.units

B.
$$rac{a^2}{2}$$
 sq. units

C.
$$\frac{\sqrt{3}a^2}{2}$$
 sq.units
D. $\frac{2a^2}{\sqrt{3}}$ sq.units

Answer: B

210. If the area of the triangle formed by the pair of lines $8x^2 - 6xy + y^2 = 0$ and the line 2x + 3y = a is 7 then a =

B.14

 $C.\,112$

 $\mathsf{D.}\,28$

Answer: D

211. The joint equation of pair of lines which bisects

angle between the lines given by
$$x^2+3xy+y^2=0$$
 is

A.
$$3x^2 + 2xy + 3y^2 = 0$$

B.
$$3x^2 - 2xy - 3y^2 = 0$$

$$\mathsf{C.}\, 3x^2-2xy+y^2=0$$

D.
$$3x^2 - 2xy + 3y^2 = 0$$

Answer: C

212. The joint equation of bisectors of the angles between the lines given by $5x^2 + 6xy - y^2 = 0$, is

A.
$$x^2+2xy+y^2=0$$

B.
$$x^2+2xy-y^2=0$$

C.
$$x^2-2xy+y^2=0$$

D.
$$x^2 - 2xy - y^2 = 0$$

Answer: D

213. If the lines $x^2 + 2hxy - y^2 = 0$ bisect the angle between the lines $2x^2 + 10xy - y^2 = 0$ then h =

A.
$$\frac{3}{10}$$

B. $\frac{-3}{10}$
C. $\frac{3}{5}$

D.
$$\frac{-3}{5}$$

Answer: B

Watch Video Solution

214. If $7x^2 - kxy - 7y^2 = 0$ represents the joint equation of the bisectors of the angles between the lines given by $2x^2 - 7xy + 4y^2 = 0$, then k=

 $\mathsf{A.}\,4$

B. - 4

 $\mathsf{C.}\,2$

 $\mathsf{D}.-2$

Answer: A

Watch Video Solution

215. The pair of lines $h(x^2 - y^2) + pxy = 0$ bisects the angle between the pair of lines $ax^2 + 2hxy + by^2 = 0$, then p=

A. a + bB. -(a + b)C. a - b

$$\mathsf{D}.-(a-b)$$

Answer: D

Watch Video Solution

216. If the two pairs of line
$$x^2 - 2mxy - y^2 = 0$$
 and $x^2 - 2nxy - y^2 = 0$ are such that one of them represent the bisector of the angles between the other, then: (A) mn + 1 = 0 (B) mn - 1 = 0 (C) 1/m + 1/n = 0 (D) 1/m - 1/n = 0

A. mn = -1

 $\mathsf{B.}\,mn=1$

C.
$$rac{1}{m}+rac{1}{n}=0$$

D. $rac{1}{m}-rac{1}{n}=0$

Answer: A

angle between the lines xy = 0, then m is

A. 2

$$\mathsf{C}.\,\frac{-1}{2}$$

D. 1

Answer: D

218. The product of lenghts of the perpendicular from point (2, 3) on the lines given by $2x^2 + 6xy - y^2 = 0$ is

A.
$$\frac{7}{9\sqrt{5}}$$

B.
$$\frac{7}{3\sqrt{5}}$$

C.
$$\frac{7\sqrt{5}}{9}$$

D. $\frac{7\sqrt{5}}{3}$

Answer: D

219. The product of legths of the perpendicular from point (4, 1) on the lines given by $3x^2 - 4xy - y^2 = 0$ is A. $\frac{31\sqrt{2}}{4}$ B. $\frac{31\sqrt{2}}{8}$

C.
$$\frac{31}{4}$$

D. $\frac{31}{8}$

Answer: B

220. The equation of the bisectors of angle between the lines $x^2 - 4xy + y^2 = 0$ is

A.
$$x+y=0$$

B. x - y = 0

C. 7x + 8y = 0

D.
$$7x - 8y = 0$$

Answer: B

221. $\triangle OAB$ is formed by the lines $x^2 - 4xy + y^2 = 0$ and the line AB. The equation of line AB is 2x + 3y - 1 = 0. Find the equation of the median of the triangle drawn from the origin.

A.
$$x + y = 0$$

B. x - y = 0
$$\mathsf{C.}\,7x+y=0$$

D.
$$7x - 8y = 0$$

Answer: D

222. 9.y If two sides of a triangle are represented by $x^2 - 7xy + 6y^2 = 0$ and the centroid is (1,0) then

the equation of third side is

A.
$$2x - 7y + 3 = 0$$

$$\mathsf{B.}\, 2x+7y-3=0$$

C.
$$2x - 7y - 3 = 0$$

D.
$$2x + 7y + 3 = 0$$

Answer: C

223. Orthocentre of the triangle formed by the lines

xy = 0 and x + y = 1 is

A. (-1, 1)

B.(0,0)

C.(1,0)

D.(0,1)

Answer: B

Watch Video Solution

224. Orthocentre of the triangle formed by the lines

$$3x^2 + 8xy - y^2 = 0$$
 and $x + 2y - 3 = 0$ is

A.
$$\left(\frac{3}{5}, \frac{6}{5}\right)$$

B. $\left(\frac{6}{5}, \frac{3}{5}\right)$
C. $\left(\frac{-6}{5}, \frac{-12}{5}\right)$
D. $\left(\frac{12}{5}, \frac{6}{5}\right)$

225. The angle between the lines
$$xd^2 + 4xy + y^2 = 0$$
 is

A.
$$\left(\frac{-1}{3}, \frac{1}{3}\right)$$

B. $\left(\frac{1}{3}, \frac{-1}{3}\right)$
C. $\left(\frac{1}{3}, \frac{1}{3}\right)$
D. $(3, 3)$

Answer: C

226. The coordinates of the orthocentre of the triangle formedby the lines $2x^2 - 3xy + y^2 = 0$ and x + y = 1 are

A.
$$\left(\frac{35}{36}, \frac{25}{36}\right)$$

B. $\left(\frac{25}{36}, \frac{35}{36}\right)$
C. $\left(\frac{35}{36}, \frac{25}{18}\right)$
D. $\left(\frac{25}{18}, \frac{35}{36}\right)$

Answer: C

227. The orthocentre of the triangle formed by the lines xy=0 and x+y=1 is

A. (0, 0)B. (1, 0)C. (0, 1)D. $\left(\frac{1}{2}, \frac{1}{2}\right)$

Answer: D

228. The diagonal of the rectangle formed by the lines $x^2 - 7x + 6 = 0$ and $y^2 - 14y + 40 = 0$ is A. 6x - 5y - 14 = 0B. 6x - 5y + 14 = 0C. 5x - 6y = 0

D.
$$5x + 6y = 0$$

229. If pairs of opposite sides of a guadrilateral are $x^2 - 7x + 6 = 0$ and $y^2 - 14y + 40 = 0$ then equations of its diagonals are A. $36x^2 - 25y^2 - 252x - 350y + 784 = 0$ B. $36x^2 + 25y^2 - 252x - 350y - 784 = 0$ $\mathsf{C.}\, 36x^2 - 25y^2 - 252x + 350y - 784 = 0$ D. $36x^2 - 25y^2 + 252x + 350y - 784 = 0$

Answer: C

230. If the lines represented by $2x^2 - 5xy + 2y^2 = 0$ be the sides of a parallelogram and the line 5x + 2y = 1 be one of its diagonal. Find the equation of the other diagonal, and area of the parallelogram .

A.
$$\frac{1}{72}$$
 sq.units
B. $\frac{1}{54}$ sq.units
C. $\frac{1}{36}$ sq.units
D. $\frac{1}{18}$ sq.units

Answer: C

231. The centre of circle inscribed in a square formed by lines $x^2 - 8x + 12 = 0$ and $y^2 - 14y + 45 = 0$ is (4, 7) (7, 4) (9, 4) (4, 9)

A. $\left(1, \frac{5}{2}\right)$ B. $\left(3, \frac{9}{2}\right)$ C. (4, 7)

D.(7,4)

Answer: C

232. The angle between the pair of lines xy - 6x + 5y - 30 = 0A. 30° $\mathrm{B.\,60}^{\,\circ}$ C. 45° D. 90° **Answer: D**

233. The angle between the pair of lines
$$3(x-4)^2 + 4\sqrt{3}(x-4)(y+2) - 2(y+2)^2 = 0$$

İS

234. The angle between the pair of lines

$$(x-3)^2 + (x-3)(y-4) - 2(y-4)^2 = 0$$
 is
A. $\tan^{-1}(2\sqrt{2})$
B. $\tan^{-1}(2\sqrt{3})$
C. $\tan^{-1} 3$
D. $\tan^{-1}(-3)$

235. The acute angle between the line represented by $9x^2 - 6xy + y^2 + 18x - 6y + 8 = 0$ is

A. 30°

 $\mathrm{B.\,60}^{\,\circ}$

C. 45°

D. 90°

Answer: D

Answer: A

237. The acute angle between the line represented
by
$$2x^2 - xy - 3y^2 - 6x + 19y - 20 = 0$$
 is
A. $\tan^{-1}(-5)$
B. $\tan^{-1}(5)$
C. $\tan^{-1}(\frac{5}{2})$
D. $\tan^{-1}(\frac{5}{4})$

238. The acute angle between the line represented

by $x^2 - 6xy + 5y^2 + 10x - 4y + 9 = 0$ is

A.
$$\tan^{-1}\left(\frac{3}{2}\right)$$

B. $\tan^{-1}\left(\frac{3}{4}\right)$
C. $\tan^{-1}\left(\frac{2}{3}\right)$
D. $\tan^{-1}\left(\frac{4}{3}\right)$

Answer: C

239. The angle between the pair of lines
$$2x^2 + 5xy + 2y^2 - 3x - 3y + 1 = 0$$
 is A. $\tan^{-1}\left(\frac{4}{5}\right)$

$$B. \sin^{-1}\left(\frac{4}{5}\right)$$
$$C. \cos^{-1}\left(\frac{4}{5}\right)$$
$$D. \tan^{-1}\left(\frac{3}{4}\right)$$

Answer: C

240. The angle between the pair of lines $2x^2 + 4xy - 2y^2 + 4x + 8y + 1 = 0$ is

A. $45^{\,\circ}$

B. 90°

C. 30°

D. $60^{\,\circ}$

 $x^2-3xy+\lambda y^2+3x-5y+2=0, \qquad \lambda \in R$,

represents a pair of straight lines. If heta is the angle between these lines, then $\cos ec^2 heta =$

A. 10

 $\mathsf{B.}\,9$

C. 1

 $\mathsf{D.}\,5$

Answer: A

242. The acute angle between the line represented

by $9x^2 - 6xy + y^2 + 18x - 6y + 8 = 0$ is

A. parallel

B. perpendicular

C. intersecting

D. intersecting and perpendicular

Answer: A

243. The acute angle between the line represented by $x^2 - 6xy + 5y^2 + 10x - 4y + 9 = 0$ is A. (2, 1)B. (1, 2) C.(2, -1)D. (-1, 2)

244. The point of intersection of the linesrepresentedby

$$2x^2 - xy - 3y^2 - 6x + 19y - 20 = 0$$
 is

$$A.\left(\frac{14}{25},\frac{11}{25}\right)$$
$$B.\left(\frac{11}{25},\frac{14}{25}\right)$$
$$C.\left(\frac{14}{5},\frac{11}{5}\right)$$
$$D.\left(\frac{11}{5},\frac{14}{5}\right)$$

Answer: D

245. The point of intersection of the lines represented by $2x^2 + xy - y^2 + x + 4y - 3 = 0$ is

$$A.\left(\frac{-2}{3},\frac{5}{3}\right)$$
$$B.\left(\frac{2}{3},\frac{-5}{3}\right)$$
$$C.\left(\frac{5}{3},\frac{-2}{3}\right)$$
$$D.\left(\frac{-5}{3},\frac{2}{3}\right)$$

Answer: A

246. The point of intersection of the lines given by $6x^2 + xy - 40y^2 - 35x - 83y + 11 = 0$ is A. (-3, -1)B. (-3, 1)C.(3, -1)D. (3, 1)

Answer: C

247. The point of intersection of the lines represented by $(x-3)^2 + (x-3)(y-4) - 2(y-4)^2 = 0$ is A. (4, 3) B. (-4, -3)C. (3, 4) D. (-3, -4)

Answer: C

248. If $\lambda x^2 - 5xy + 6y^2 + x - 3y = 0$ represents a pair of staight lines, then their point of intersection is:

A.
$$(-3, -1)$$

B. $(-3, 1)$
C. $(3, -1)$

Answer: A

249. If (1, k) is the point of intersection of the lines given by $2x^2 + 5xy + 3y^2 + 6x + 7y + 4 = 0$, then k=

 $\mathsf{A.}-2$

B. -1

C. 1

 $\mathsf{D.}\,2$

Answer: A

250. If the lines $x^2 - y^2 - 2x + 2y = 0$ and x + 2y + k = 0 are concurrent, then k=

- $\mathsf{A.}-1$
- B.-3
- **C**. 1
- D. 3

252. The point of intersection of lines represented by $2x^2 + 4xy - 2y^2 + 4x + 8y + 1 = 0$

A.
$$\left(\frac{-3}{2}, \frac{-1}{2}\right)$$

B. $\left(\frac{-3}{2}, \frac{1}{2}\right)$
C. $\left(\frac{3}{2}, \frac{-1}{2}\right)$
D. $\left(\frac{3}{2}, \frac{1}{2}\right)$

253. The distance between the parallel lines $9x^2 - 6xy + y^2 + 18x - 6y + 8 = 0$, is

A.
$$\frac{1}{\sqrt{10}}$$

B.
$$\frac{2}{\sqrt{10}}$$

C.
$$\frac{6}{\sqrt{10}}$$

D.
$$\frac{2}{\sqrt{90}}$$

254. The distance between the parallel lines given by $x^2 + 2\sqrt{2}xy + 2y^2 + 4x + 4\sqrt{2}y + 1 = 0$ is

A. 2

Answer: A

255. The distance between the pair of parallel lines $x^2 + 2xy + y^2 - 8ax - 8ay - 9a^2 = 0$ is $25\sqrt{2}$ then a =

A. 5a

 $\mathsf{B.}\,10a$

C. $2\sqrt{5}a$

D. $5\sqrt{2}a$

Answer: D

256. If the distance between two parallel lines given by $2x^2+4xy+2y^2+2kx-3y+12=0$ is $rac{5}{\sqrt{2}}$,

then find the value of k

A. 5

B.7

C. 1

D. 9

Answer: B

257. The distance between the lines given by ${(x-2y)}^2+k(x-2y)=0$ is 3, then k= A. $\pm 6\sqrt{5}$ $B.\pm 3\sqrt{5}$ C. $\pm 2\sqrt{5}$ D. $\pm 9\sqrt{5}$ **Answer: B**

258. Select and write the correct answer from the alternatives in each of the following : If an equation hxy + gx + fy + c = 0 represents a pair of lines, then

A.
$$fg = ch$$

$$\mathsf{B.}\,gh=cf$$

$$\mathsf{C}.\,fh=cg$$

D.
$$hf = -cg$$

Answer: A
259. If the equation $ax^2 + by^2 + cx + xy = 0$ represents a pair of line, then

A.
$$a+b=0$$

B. a + b - c = 0

$$\mathsf{C.}\,a+b=0, c=0$$

$$\mathsf{D}.\,a+b+c=2$$

Answer: C

260. If the equation $ay^2 + bxy + ex + dy = 0$ represents a pair of line, then

A.
$$e=0, a=b$$

B.
$$e=0, bd=ac$$

C.
$$e = 0, d = e$$

$$\mathsf{D}.\,e=0,be=ad$$

261. If the equation $Ax^2 + 2Bxy + Cy^2 + Dx + Ey + F = 0$ represents a pair of lines, then $B^2 - AC =$

- **A.** 0
- B. > 0
- $\mathsf{C.} < 0$
- $\mathsf{D.} \neq 0 \ \mathrm{or} \ = 0$

Answer: D

262. If kxy + 10x + 6y + 4 = 0 represents a pair

of lines, then k =

A. 0

 $\mathsf{B.}-15$

 $\mathsf{C.}\,5$

D. 15

Answer: D

263. If the equation $4x^2 + ky^2 + 8xy - 9 = 0$ represents a pair of line, then k=

A. -4

 $\mathsf{B.4}$

 $\mathsf{C}.-9$

 $\mathsf{D}.\,9$

264. If the equation $kx^2 - y^2 + 4x - y = 0$ represents a pair of line, then k=

A. 4

 $\mathsf{B.}-4$

C. 16

 $\mathsf{D.}-16$

Answer: C

If equation 265. the $3x^2+3y^2+10xy+16y+k=0$ represents a pair of line, then k= A. - 16**B**. 192 C. - 12D. 12 **Answer: C View Text Solution**

266. If the equation $x^2 - y^2 - x - ky - 2 = 0$ represents a pair of line, then k=

A. ± 3

- $\mathsf{B.}\pm 1$
- ${\rm C.}\pm 2\sqrt{2}$
- D. $\pm\sqrt{3}$

Answer: A

267. If the equation $2x^2 + 4xy - 2y^2 + 4x + 8y + k = 0$ represents a pair of line, then k=

A. 1

B. -1

C. 8

D.-8

Answer: A

268. lf the equation $x^2+3xy+2y^2+x-y+k=0$ represents a pair of line, then k= A. - 12 $B_{.}-6$ C. 6 D. 12 **Answer: B** Watch Video Solution

269. The value of k so that the equation $12x^2 - 10xy + 2y^2 + 11x - 5y + k = 0$ represents a pair of lines is -2 (b) 2 (c) 7 (d) -7

- **A.** 1
- $\mathsf{B.}\,2$
- C. 3
- $\mathsf{D.}\,4$

270. If the equation $3x^2 + xy - y^2 - 3x + 6y + k = 0$ represents a pair of straight lines, then the value of k, is

- $\mathsf{A.}\,4$
- B. 4
- **C**. 9
- $\mathsf{D.}-9$

Answer: D

271. If the equation $2x^2 - 3xy + y^2 - kx + 5y + 6 = 0$ represents a pair of line, then k= A. 7, 8 B. -7, -8 C. -7, 8

D. 7, -8

lf 272. the equation $2x^2+8xy+py^2+qx+2y-15=0$ represents a pair of parallel lines, then A. p = -8, q = -1B. p = 8, q = -1C.q = 8, q = 1D. p = 8, q = 1Answer: D

View Text Solution

273. If $2x^2 + 4xy - py^2 + 4x + qy + 1 = 0$ represents a pair of mutually perpendicular lines then

A.
$$p=2, q=0, 4$$

B. $p=2, q=0, -4$
C. $p=2, q=0, 8$
D. $p=2, q=0, -8$

Answer: C

274. If the equation $px^2 - 8xy + 3y^2 + 14x + 2y + q = 0$ represents a pair of perpendicular lines, then

A.
$$p = -3, q = -8$$

B.
$$p=3, q=-8$$

C.
$$p=\ -3, q=8$$

D.
$$p=3, q=8$$

Answer: A

275. If the equation $x^2 + py^2 + qy - a^2 = 0$ represents a pair of parallel lines, then

A.
$$p=~-1, q=~\pm 1$$

B.
$$p=1, q=\pm 1$$

$$\mathsf{C}.\, p=\ -1, q=\ \pm \, a$$

D.
$$p=1, q=~\pm a$$

Answer: C

276. O(0,0), A(1,2), B(3,4) are the vertices of ΔOAB . The joint equation of the altitude and median drawn from O is

A.
$$x^2 + 7xy - y^2 = 0$$

B. $x^2 + 7xy + y^2 = 0$
C. $3x^2 - xy - 2y^2 = 0$

D.
$$3x^2+xy-2xy=0$$

Answer: D