©゙’ doubtnut

MATHS

BOOKS - NIKITA MATHS (HINGLISH)

PROBABILITY DISTRIBUTION

Mcqs

1. A random variable is said to be discrete, if
A. it takes infinite values
B. it takes countably infinite values
C. it takes uncountably infinite values
D. it takes any values

D Watch Video Solution

2. A random variable is said to be continuous, if
A. it takes uncountably infinite values
B. it takes countably infinite values
C. it takes countably finite values
D. it takes uncountably finite values

Answer: A

3. If X is the r.v. having values from sample space S and $P(x)$ is the p.m.f. of $\mathrm{X}, x \in S$, then
A. $0<P(x) \leq 1, \quad$ for all $x \in S$
B. $0 \leq P(x)<1, \quad$ fol all $x \in S$
C. $0<P(x)<1$, for all $x \in S$
D. $\sum_{x_{i}=S} P(x)=1$

Answer: D

- Watch Video Solution

4. If X is a r.v., then
A. $\operatorname{Var}(X) \geq 0$
B. $\operatorname{Var}(X)>0$
C. $\operatorname{Var}(X)=0$
D. $\operatorname{Var}(X) \neq 0$

Answer: A

- Watch Video Solution

5. If X is a continuous r.v., then the function $f(x)$ is said to p.d.f. of X, if
A. $f(x)=0$ for all $x \in R$
B. $f(x) \neq 0$ for all $x \in R$
C. $\int_{-\infty}^{\infty} f(x) d x=1$
D. $f(x) \leq 0$ for all $x \in R$

D Watch Video Solution

6. Number of attempts required by a candidate to clear I.A.S. examination.

Then the random variable is
A. continuous
B. discrete
C. not continuous
D. not discrete

Answer: B::C

7. Four cars are selected from a showroom.
$X=$ Number of cars having diesel engine.
Then the random variable is
A. not discrete
B. not continuous
C. discrete
D. continuous

Answer: B::C

- Watch Video Solution

8. A highway-safety group is interested in studying the speed
(in $\mathrm{km} / \mathrm{hour}$) of a car at a check point. Then the random

variable is

A. continuous
B. discrete
C. not continuous
D. not discrete

Answer: A

(D) Watch Video Solution

9. A page in a book can have at most 300 words. $X=$ Number of misprints on a page.

Then the random variable is
A. not discrete
B. not continuous
C. discrete
D. continuous

Answer: B::C

(Watch Video Solution

10. The random variable X is the amount of syrup prescript by a physician.

Then the random variable is
A. discrete
B. continuous
C. not discrete
D. not continuous

Answer: B::C

D Watch Video Solution

11. Number of floors in a building.

Then the random variable is
A. not continuous
B. not discrete
C. continuous
D. discrete

Answer: A::D

12. 20 white rats are available for an experiment. Twelve rats are males and remaining are females. A scientist randomly selected 5 rats and $X=$ Number of female rats selected on a specific day.

Then the random variable is
A. not continuous
B. not discrete
C. continuous
D. discrete

Answer: D

13. A sample of 10 batteries is selected $X=$ Number of batteries that failed within 1000 hours.

Then the random variable is
A. not continuous
B. not discrete
C. continuous
D. discrete

Answer: A: D

(Watch Video Solution

14. Number of students present in a class of 50 students

Then the random variable is
A. not continuous
B. not discrete
C. continuous
D. discrete

Answer: D

D Watch Video Solution

15. A social worker is interested in knowing the number of illiterates in a group of 1000 slum dwellers.

Then the radom variable is
A. discrete
B. continuous
C. not continuous
D. not discrete

Answer: A

- Watch Video Solution

16. A person on a high protein diet is interested in the random variable X, the gain in weight in a week.

Then the random variable is
A. not continuous
B. not discrete
C. continuous
D. discrete

Answer: C

D Watch Video Solution

17. If a RV $X=$ "Height of a sky scrapper" Then the random variable is
A. not continuous
B. not discrete
C. continuous
D. discrete

Answer: C

18. An economist is interested in the random variable X, the number of unemployed graduates in a town of population 1 lakh.

Then the random variable is
A. discrete
B. continuous
C. not continuous
D. not discrete

Answer: A::C

D Watch Video Solution

19. A player goes to gymnasium ragularly. $X=$ Reduction in his
A. continuous
B. discrete
C. not continuous
D. not discrete

Answer: A::D

(D) Watch Video Solution

20. A quality control manager notes down the life times of 10 electronic components.

Then the random variable is
A. discrete
B. continuous
C. not continuous
D. not discrete

Answer: B

D Watch Video Solution

21. If $P(X=x)=\frac{x-5}{4}, x=5.5,6.5,7.5$, then
A. f is a p.m.f.
B. f is not a p.m.f.
C. $\sum_{x_{i}=S} P(X=x)=1$
D. $\sum_{x_{i}=S} P(X=x)=\frac{9}{4}$

Answer: B
22. If $P(X=x)=\left\{\begin{array}{l}\frac{x^{2}}{5}, x=0,1,2 \\ 0, \text { otherwise }\end{array}\right.$, then
A. $\sum_{x_{i}=S} P(X=x) \neq 1$
B. $\sum_{x_{i}=S} P(X=x)=2$
C. f is not a p.m.f.
D. f is a p.m.f.

Answer: D

- Watch Video Solution

23. If $P(X=x)=\left\{\begin{array}{l}\frac{x-1}{3}, x=1,2,3 \\ 0, \text { otherwise }\end{array}\right.$, then
A. $\sum_{x_{i}=S} P(X=x) \neq 1$
B. $\sum_{x_{i}=S} P(X=x)=2$
C. f is a p.m.f.
D. f is not a p.m.f.

Answer: C

- Watch Video Solution

24. A fair die is thrown once. The probability distribution of the number of points appearing on the uppermost face is
25. Obtain the probobility distribution of the number of sixes in two tosses of a fair die.

(D) Watch Video Solution

26. Two fair dice are thrown. The probability distribution of the sum of the numbers appearing on the uppermost face is

- Watch Video Solution

27. Two fair dice are thrown. If X denotes the sum of the numbers appearing on the uppermost face, then
$P(2<X<10)$
A. $\frac{29}{36}$
B. $\frac{31}{36}$
C. $\frac{1}{6}$
D. $\frac{1}{8}$

Answer: A

(D) Watch Video Solution

28. It is know that a box of 8 batteries contains 3 defective pieces and a preson randomly selects 2 batteries form this box. Find the probability distrubtion of the number of defective batteries.

- Watch Video Solution

29. Three balance coins are tossed simultaneoulsy. If X denotes the number of heads, find probaility distribution of X.

- Watch Video Solution

30. Find k ,such that the function
$P(x)=\left\{\left(k\binom{4}{x},, x=0,1,2,3,4, k>0\right),(0\right.$, otherwise. $)$
is a probability mass function (p.m.f.)
A. $\frac{3}{16}$
B. $\frac{1}{16}$
C. $\frac{4}{16}$
D. $\frac{2}{16}$
31. The p.m.f. of a r.v. is
$P(X=x)=\left\{\begin{array}{l}{\frac{1}{2^{5}}}^{5} C_{x}, x=0,1, \ldots, 5 \\ 0, \text { otherwise }\end{array}\right.$, then $P(X \leq 2)=$
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. $\frac{1}{8}$
D. $\frac{1}{16}$

Answer: A
32. The p.m.f. of a r.v. is

$$
P(X=x)=\left\{\begin{array}{l}
{\frac{1}{2^{5}}}^{5} C_{x}, x=0,1, \ldots, 5 \\
0, \text { otherwise }
\end{array}, \text { then } P(X \geq 3)=\right.
$$

A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. $\frac{1}{8}$
D. $\frac{1}{16}$

Answer: B

- Watch Video Solution

33. The p.m.f. of a r.v. is
$P(X=x)=\left\{\begin{array}{l}{\frac{1}{2^{5}}}^{5} C_{x}, x=0,1, \ldots, 5 \\ 0, \text { otherwise }\end{array}\right.$, then
A. $P(X \leq 2)=2 P(X \geq 3)$
B. $P(X \leq 2)<P(X \geq 3)$
C. $P(X \leq 2)=P(X \geq 3)$
D. $P(X \leq 2)>P(X \geq 3)$

Answer: C

- Watch Video Solution

34. The probability distribution of X is

Then $P(\mathrm{X}$ is positive $)=$
A. 0.50
B. 0.70
C. 0.55
D. 0.45

Answer: A

- View Text Solution

35. A fair coin is tossed 4 times. If X denotes the number of heads obtained, then the formula for p.m.f. of X is
A. $f(x)=\left\{\begin{array}{l}\frac{1}{16}^{4} C_{x}, x=0,1,2,3,4 \\ 0, \text { otherwise }\end{array}\right.$
B. $f(x)=\left\{\begin{array}{l}\frac{1}{8}{ }^{4} C_{x}, x=0,1,2,3,4 \\ 0, \text { otherwise }\end{array}\right.$
C. $f(x)=\left\{\begin{array}{l}\frac{1}{4}^{4} C_{x}, x=0,1,2,3,4 \\ 0, \text { otherwise }\end{array}\right.$
D. $f(x)=\left\{\begin{array}{l}\frac{1}{2}{ }^{4} C_{x}, x=0,1,2,3,4 \\ 0, \text { otherwise }\end{array}\right.$

Answer: A

36. The p.m.f. of a r.v. X is as follows :
$P(X=0)=3 k^{3}, P(X=1)=4 k-10 k^{2}, P(X=2)=5 k-1$
$P(X=x)=0$ for any other values of x, then $\mathrm{k}=$
A. 1
B. 2
C. 3
D. $\frac{1}{3}$

Answer: D

37. The p.m.f. of a r.v. X is as follows :

$$
P(X=0)=3 k^{3}, P(X=1)=4 k-10 k^{2}, P(X=2)=5 k-1
$$

$P(X=x)=0$ for any other values of x , then $P(X<1)=$
A. $\frac{1}{9}$
B. $\frac{8}{9}$
C. $\frac{2}{3}$
D. $\frac{1}{3}$

Answer: A

- Watch Video Solution

38. The p.m.f. of a r.v. X is as follows :
$P(X=0)=3 k^{3}, P(X=1)=4 k-10 k^{2}, P(X=2)=5 k-1$
$P(X=x)=0$ for any other values of x , then $P(0<X<3)$
$=$
A. $\frac{1}{9}$
B. $\frac{8}{9}$
C. $\frac{2}{3}$
D. $\frac{1}{3}$

Answer: B

- Watch Video Solution

39. The p.m.f. of a r.v. X is as follows :
$P(X=0)=3 k^{3}, P(X=1)=4 k-10 k^{2}, P(X=2)=5 k-1$
$P(X=x)=0$ for any other values of x , then c.d.f. F (X) is
A.
B.
C.
D.

Answer: C

D View Text Solution

40. The p.m.f. of a r.v. X is $P(x)=\left\{\begin{array}{l}\frac{3-x}{10}, x=-1,0,1,2 \\ 0, \text { otherwise }\end{array}\right.$ then $E(X)=$
A. 0.4
B. -0.4
C. 0
D. -0.2

Answer: C

D Watch Video Solution

41. The p.m.f. of a r.v. X is $P(x)=\left\{\begin{array}{l}\frac{c}{x^{3}}, x=1,2,3 \\ 0, \text { otherwise }\end{array}\right.$, then $\mathrm{E}(\mathrm{X})$ =
A. $\frac{49}{36}$
B. $\frac{98}{251}$
C. $\frac{216}{251}$
D. $\frac{294}{251}$

D Watch Video Solution

42. The expected value of the number of heads obtained when three coins are tossed simultaneously is
A. 1
B. 1.5
C. 0
D. -1

Answer: B
43. A fair coin is tosed 3 times. A person receives Rs. X^{2} if he gets X number of heads in all. His expected gain is
A. Rs. 9
B. Rs. 3
C. Rs. 8
D. Rs. 2

Answer: B

D Watch Video Solution

44. If X denotes the number obtained on the uppermost face when a fair die is thrown, then $E(X)=$
A. $\frac{5}{2}$
B. $\frac{7}{2}$
C. $\frac{3}{2}$
D. $\frac{9}{2}$

Answer: B

- Watch Video Solution

45. The expected value of the sum of the two numbers obtained when two fair dice are rolled is
A. 7
B. 14
C. $\frac{20}{3}$
D. $\frac{50}{9}$

(D) Watch Video Solution

46. A bakerman sells 5 types of cakes. Profit due to the sale of each type of cake is respectively $\operatorname{Rs} 3$, Rs 2.5 , Rs 2 , Rs 1.5 , Rs 1 .
The demands for these cakes are
$10 \%, 5 \%, 25 \%, 45 \%$ and 15% respectively.. What is he expected profit per cake?
A. Rs. 1.275
B. Rs. 1.725
C. Rs. 2.275
D. Rs. 2.725

- Watch Video Solution

47. Two cards are drawn at random from a box which contains

5 cards numbered 1, 1, 2, 2 and 3 . If X denotes the sum of the numbers, then the expected sum is
A. 3.75
B. 4
C. 1.8
D. 2

Answer: A

48. A r.v. X assumes values $1,2,3, \ldots, \mathrm{n}$ with equal probabilities. If $\operatorname{Var}(X)=4 E(X)$, then $n=$
A. 49
B. 23
C. 25
D. 24

Answer: C

- Watch Video Solution

49. A r.v. X assumes values $1,2,3, \ldots, n$ with equal probabilities.

If $\operatorname{Var}(X)=E(X)$, then $n=$
A. 11
B. 5
C. 6
D. 7

Answer: D

D Watch Video Solution

50. The p.m.f. of a r.v. X is $P(x)= \begin{cases}\frac{2 x}{n(n+1)} & x=1,2, \ldots, n \\ 0 & \text { otherwise }\end{cases}$

Then $E(X)=$
A. $\frac{2 n+1}{3}$
B. $\frac{n+2}{3}$
C. $\frac{2 n+1}{6}$
D. $\frac{n+2}{6}$

Answer: A

D Watch Video Solution

51. The p.m.f. of a r.v. X is $P(x)=\left\{\begin{array}{l}\frac{2 x}{n(n+1)}, x=1,2, \ldots, n \\ 0, \text { otherwise }\end{array}\right.$, then $\operatorname{Var}(X)=$
A. $\frac{(n+2)(n-1)}{3}$
B. $\frac{(n+2)(n-1)}{18}$
C. $\frac{(n-2)(n+1)}{3}$
D. $\frac{(n-2)(n+1)}{18}$
52. The p.m.f. of a r.v. X is $P(x)=\left\{\begin{array}{l}k x, x=1,2,3 \\ 0, \text { therwise }\end{array}\right.$, then $\mathrm{k}=$
A. $\frac{1}{2}$
B. $\frac{1}{5}$
C. $\frac{1}{3}$
D. $\frac{1}{6}$

Answer: D

D Watch Video Solution

53. The p.m.f. of a r.v. X is $P(x)=\left\{\begin{array}{l}k x, x=1,2,3 \\ 0, \text { otherwise }\end{array}\right.$, then $\mathrm{E}(\mathrm{X})$
A. $\frac{7}{3}$
B. $\frac{14}{3}$
C. $\frac{7}{6}$
D. $\frac{49}{9}$

Answer: A

(D) Watch Video Solution

54. The p.m.f. of a r.v X is $P(x)=\left\{\begin{array}{l}k x, x=1,2,3 \\ 0, \text { otherwise }\end{array}\right.$, then Var $(X)=$
A. $\frac{25}{81}$
B. $\frac{25}{36}$
C. $\frac{5}{9}$
D. $\frac{5}{6}$

Answer: C

(D) Watch Video Solution

55. If X denotes the number obtained on the uppermost face when a fair die is thrown, then $E(X)=$
A. $\frac{49}{4}$
B. $\frac{70}{12}$
C. $\frac{7}{2}$
D. $\frac{35}{12}$

Answer: C
56. If X denotes the number obtained on the uppermost face when a fair die is thrown, then $\operatorname{Var}(X)=$
A. $\frac{49}{4}$
B. $\frac{70}{12}$
C. $\frac{7}{2}$
D. $\frac{35}{12}$

Answer: D

- Watch Video Solution

57. The p.m.f. of a r.v. X is $P(x)=\left\{\begin{array}{l}k x^{2}, x=1,2,3,4 \\ 0, \text { otherwise }\end{array}\right.$, then E $(X)=$
A. $\frac{10}{3}$
B. $\frac{5}{3}$
C. $\frac{100}{3}$
D. $\frac{50}{3}$

Answer: A

(D) Watch Video Solution

58. The p.m.f. of a r.v. X is $P(x)\left\{\begin{array}{l}k x^{2}, x=1,2,3,4 \\ 0, \text { otherwise }\end{array}\right.$, then Var $(X)=$
A. $\frac{13}{45}$
B. $\frac{31}{45}$
C. $\frac{127}{15}$
D. $\frac{227}{15}$

Answer: B

- Watch Video Solution

59. The p.m.f. of a r.v. X is $P(x)=\left\{\begin{array}{l}2 k x, x=1,2,3 \\ 0, \text { otherwise }\end{array}\right.$, then $\mathrm{k}=$
A. $\frac{1}{3}$
B. $\frac{1}{12}$
C. 0.3
D. 0.12

Answer: B
60. The p.m.f. of a r.v. X is $P(x)=\left\{\begin{array}{l}2 k x, x=1,2,3 \\ 0, \text { otherwise }\end{array}\right.$, then $\mathrm{E}(\mathrm{X})$ $=$
A. $\frac{7}{6}$
B. $\frac{3}{7}$
C. $\frac{7}{3}$
D. $\frac{14}{3}$

Answer: C

(D) Watch Video Solution

61. The p.m.f. of a r.v. X is $P(x)=\left\{\begin{array}{l}2 k x, x=1,2,3 \\ 0, \text { otherwise }\end{array}\right.$, then Var $(X)=$

25
A. $\frac{25}{18}$
B. $\frac{25}{9}$
C. $\frac{5}{18}$
D. $\frac{5}{9}$

Answer: D

D Watch Video Solution

62. The p.m.f. of a r.v. X is $P(x)=\left\{\begin{array}{l}\frac{1}{15}, x=1,2, \ldots, 15 \\ 0, \text { otherwise }\end{array}\right.$, then $E(X)=$
A. $\frac{1}{8}$
B. $\frac{1}{6}$
C. 8
D. 6

Answer: C

D Watch Video Solution

63. The p.m.f. of a r.v. X is $P(x)=\left\{\begin{array}{l}\frac{1}{15}, x=1,2, \ldots, 15 \\ 0, \text { otherwise }\end{array}\right.$, then
$\operatorname{Var}(X)=$
A. $\frac{248}{3}$
B. $\frac{28}{3}$
C. $\frac{224}{3}$
D. $\frac{56}{3}$

Answer: D
64. A players tosses 2 fair coins. He wins Rs. 5 if 2 heads appear, Rs. 2 if 1 head appear and Rs. 1 if no head appears.

Then his expected wining amount is
A. Rs. 1.25
B. Rs. 2.15
C. Rs. 2.5
D. Rs. 2.25

Answer: C

65. A player tosses 2 fair coins. He wins Rs. 5 if 2 heads appear, Rs. 2 if 1 head appear and Rs. 1 if no head appears, then variance of his winning amount is
A. Rs. 1.25
B. Rs. 2.15
C. Rs. 2.5
D. Rs. 2.25

Answer: D

D Watch Video Solution

66. For the p.m.f. $P(X=x)$ of discrete random variable X which takes values $1,2,3,4$ such that
$2 P(X=1)=3 P(X=2)=P(X=3)=4 P(X=4)$, then $E(X)=$
A. $\frac{31}{5}$
B. $\frac{62}{5}$
C. $\frac{31}{25}$
D. $\frac{62}{25}$

Answer: D

- Watch Video Solution

67. The p.d.f. of continuous r.v. X is
$f(x)=\left\{\begin{array}{l}\frac{x}{8}, 0<x<4 \\ 0, \text { otherwise }\end{array}\right.$, then $P(X \leq 2)=$
A. $\frac{1}{4}$
B. $\frac{1}{16}$
C. $\frac{1}{2}$
D. $\frac{1}{8}$

Answer: A

- Watch Video Solution

68. The p.d.f. of continuous r.v. X is
$f(x)=\left\{\begin{array}{l}\frac{x}{8}, 0<x<4 \\ 0, \text { otherwise }\end{array}\right.$, then $P(2<X \leq 3)=$
A. $\frac{9}{16}$
B. $\frac{5}{16}$
C. $\frac{4}{16}$
D. $\frac{13}{16}$

Answer: B

D Watch Video Solution

69. The p.d.f. of continuous r.v. X is
$f(x)=\left\{\begin{array}{l}\frac{x}{8}, 0<x<4 \\ 0, \text { otherwise }\end{array}\right.$, then $P(X>3)=$
A. $\frac{6}{16}$
B. $\frac{9}{16}$
C. $\frac{7}{16}$
D. $\frac{5}{16}$

Answer: C

70. It is known that error in experiment of reaction temperature (in ${ }^{\circ} \mathrm{C}$) in a certain experiment is a continuous
r.v. (X).

If $f(x)=\left\{\begin{array}{l}\frac{x^{2}}{3},-1<x<2 \\ 0, \text { otherwise }\end{array}\right.$, then
A. $f(x)$ is not p.f.
B. $f(x)$ is the p.f.
C. $f(x)$ is not p.d.f.
D. $f(x)$ is the p.d.f.

Answer: D

- Watch Video Solution

71. It is known that error in experiment of reaction temperature (in ${ }^{\circ} \mathrm{C}$) in a certain experiment is a continuous r.v. (X).

If $f(x)=\left\{\begin{array}{l}\frac{x^{2}}{3},-1<x<2 \\ 0, \text { otherwise }\end{array}\right.$, then $P(0<X \leq 1)=$
A. $\frac{1}{9}$
B. $\frac{1}{3}$
C. $\frac{2}{9}$
D. $\frac{2}{3}$

Answer: A

72. It is known that error in experiment of reaction temperature (in ${ }^{\circ} \mathrm{C}$) in a certain experiment is a continuous r.v. (X).

If $f(x)=\left\{\begin{array}{l}\frac{x^{2}}{3},-1<x<2 \\ 0, \text { otherwise }\end{array}\right.$, then $\mathrm{P}(\mathrm{X}$ is negative $)=$
A. $\frac{1}{3}$
B. $\frac{1}{9}$
C. $\frac{-1}{3}$
D. $\frac{-1}{9}$

Answer: B

- Watch Video Solution

73. If $f(x)=\left\{\left(\frac{x}{2}\right.\right.$, for $\left.-2<x<2\right) \cdot(0$, otherwise $)$, then
A. f is a p.f.
B. f is not a p.f.
C. f is a p.d.f.
D. f is not a p.d.f.

Answer: C

D Watch Video Solution

74. If $f(x)=\left\{\begin{array}{l}e^{-x}, 0<x<\infty \\ 0, \text { otherwise }\end{array}\right.$, then
A. f is a p.f.
B. f is not a p.f.
C. f is a p.d.f.
D. f is not a p.d.f.

Answer: B,C

D Watch Video Solution

75. The p.d.f. of a r.v. X is $f(x)=\left\{\begin{array}{l}\frac{1}{x^{2}}, 1<x<\infty \\ 0, \text { otherwise }\end{array}\right.$. If
$C_{1}=\{x: 1<x<2\}$ and $C_{2}=\{x: 4<x<5\}, \quad$ then
$P\left(C_{1} \cup C_{2}\right)=$
A. $\frac{11}{10}$
B. $\frac{11}{20}$
C. $\frac{1}{10}$
D. $\frac{1}{20}$

Answer: B
76. The p.d.f. of a continuous r.v. X is
$f(x)=\left\{\begin{array}{l}\frac{x^{2}}{3},-1<x<2 \\ 0, \text { otherwise }\end{array}\right.$, then $\mathrm{F}(\mathrm{x})=$
A. $\frac{x^{3}}{9}+\frac{1}{9}, \forall x \in R$
B. $\frac{x^{3}}{9}-\frac{1}{9}, \forall x \in R$
C. $\frac{x^{2}}{4}+\frac{1}{4}, \forall x \in R$
D. $\frac{1}{9 x^{3}}+\frac{1}{9}, \forall x \in R$

Answer: A

- Watch Video Solution

77. The p.d.f. of a continuous r.v. X is
$f(x)=\left\{\begin{array}{l}\frac{x^{2}}{3},-1<x<2 \\ 0, \text { otherwise }\end{array}\right.$, then $P(X<1)=$
A. $\frac{1}{9}$
B. $\frac{1}{3}$
C. $\frac{2}{9}$
D. $\frac{2}{3}$

Answer: C

(D) Watch Video Solution

78. The p.d.f. of a continuous r.v. X is
$f(x)=\left\{\begin{array}{l}\frac{x^{2}}{3},-1<x<2 \\ 0, \text { otherwise }\end{array}\right.$, then $P(X \leq-2)=$
A. $\frac{2}{9}$
B. $\frac{1}{9}$
C. 1
D. 0

Answer: D

(D) Watch Video Solution

79. The p.d.f. of a continuous r.v. X is
$f(x)=\left\{\begin{array}{l}\frac{x^{2}}{3},-1<x<2 \\ 0, \text { otherwise }\end{array}\right.$, then $P(X>0)=$
A. $\frac{8}{9}$
B. $\frac{5}{9}$
C. $\frac{1}{9}$
D. $\frac{2}{3}$

Answer: A

D Watch Video Solution

80. The p.d.f. of a continuous r.v. X is
$f(x)=\left\{\begin{array}{l}\frac{x^{2}}{3},-1<x<2 \\ 0, \text { otherwise }\end{array}\right.$, then $P(1<X<2)=$
A. $\frac{8}{9}$
B. $\frac{7}{9}$
C. $\frac{4}{9}$
D. $\frac{1}{3}$

Answer: B
81. The p.d.f. of X is $f(x)=\left\{\begin{array}{l}\frac{x^{2}}{18},-3<x<3 \\ 0, \text { otherwise }\end{array}\right.$, then
$P(X<1)=$
A. $\frac{7}{27}$
B. $\frac{14}{27}$
C. $\frac{9}{14}$
D. $\frac{7}{14}$

Answer: B

- Watch Video Solution

82. The p.d.f. of X is $f(x)=\left\{\begin{array}{l}\frac{x^{2}}{18},-3<x<3 \\ 0, \text { otherwise }\end{array}\right.$, then $P(|X|<1)=$
A. $\frac{1}{3}$
B. $\frac{1}{9}$
C. $\frac{1}{27}$
D. $\frac{1}{54}$

Answer: C

- Watch Video Solution

83. The p.d.f. of a continuous r.v. X is
$f(x)=\left\{\begin{array}{l}\frac{1}{10},-5 \leq x \leq 5 \\ 0, \text { otherwise }\end{array}\right.$, then $P(X<0)=$
A. $\frac{1}{2}$
B. $\frac{1}{10}$
C. $\frac{2}{5}$
D. $\frac{1}{5}$

Answer: A

(D) Watch Video Solution

84. Let $X=$ time (in minutes) that elapses between the bell and the end of the lecture in case of a college professor. If X has p.d.f. $f(x)=\left\{\begin{array}{l}k x^{2}, 0 \leq x \leq 2 \\ 0, \text { otherwise }\end{array}\right.$, then $\mathrm{k}=$
A. $\frac{8}{3}$
B. $\frac{3}{8}$
C. $\frac{4}{3}$
D. $\frac{3}{4}$

Answer: B

D Watch Video Solution

85. Let $X=$ time (in minutes) that lapses between the bell and the end of the lectures in cases of a collge professor. Suppose X has p.d.f
$f(x)= \begin{cases}k x^{2} & 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}$
What is the probability that lecture ends within 1 minute of the bell ringing ?
A. $\frac{1}{4}$
B. $\frac{3}{4}$
C. $\frac{1}{8}$
D. $\frac{3}{8}$

Answer: C

- Watch Video Solution

86. Let the random variable X is defined as time (in minutes) that elapses between the bell and end of the lecture in case of collagen professor whrer pdf is defined as $f(x)=\left\{\begin{array}{l}k x^{2}, 0 \leq x<2 \\ 0, \text { elsewhere }\end{array}\right.$
find the probability that lecture continue for atleast 90 s beyond the bell
A. $\frac{37}{192}$
B. $\frac{37}{32}$
C. $\frac{37}{24}$
D. $\frac{37}{64}$

Answer: D

D Watch Video Solution

87. The p.d.f. of a r.v. X is $f(x)=\left\{\begin{array}{l}\frac{1}{x^{2}}, 1<x<\infty \\ 0, \text { otherwise }\end{array}\right.$, then $\mathrm{F}(\mathrm{x})$ =
A. $\frac{x-2}{x}$
B. $\frac{2-x}{x}$
C. $\frac{x-1}{x}$
D. $\frac{1-x}{x}$

Answer: C

- Watch Video Solution

88. The p.d.f. of a r.v. X is $f(x)=\left\{\begin{array}{l}k x, 0<x<2 \\ 0, \text { otherwise }\end{array}\right.$, then $\mathrm{k}=$
A. 4
B. 2
C. $\frac{1}{4}$
D. $\frac{1}{2}$

Answer: D
89. The p.d.f. of a r.v. X is $f(x)=\left\{\begin{array}{l}k x, 0<x<2 \\ 0, \text { otherwise }\end{array}\right.$, then $P\left(\frac{1}{4}<X<\frac{1}{3}\right)=$
A. $\frac{7}{576}$
B. $\frac{7}{144}$
C. $\frac{7}{288}$
D. $\frac{25}{576}$

Answer: A

- Watch Video Solution

90. The p.d.f. of X is $f(x)=\left\{\begin{array}{l}\frac{x+2}{18},-2<x<4 \\ 0, \text { otheriwse }\end{array}\right.$, then
$P(X<1)=$
A. $\frac{1}{6}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: D

(D) Watch Video Solution

91. The p.d.f. of X is $f(x)=\left\{\begin{array}{l}\frac{x+2}{18},-2<x<4 \\ 0, \text { otherwise }\end{array}\right.$, then $P(|X|<1)=$
A. $\frac{2}{9}$
B. $\frac{1}{9}$
C. $\frac{2}{3}$
D. $\frac{1}{3}$

Answer: A

D Watch Video Solution

92. The p.d.f. of a continuous r.v. X is
$f(x)=\left\{\begin{array}{l}\frac{x}{8}, 0<x<4 \\ 0, \text { otherwise }\end{array}\right.$, then $\mathrm{F}(\mathrm{x})=$
A. $F(x)=\frac{x^{2}}{8}, x \in R$
B. $F(x)=\frac{x^{2}}{16}, x \in R$
C. $F(x)=8 x^{2}, x \in R$
D. $F(x)=16 x^{2}, x \in R$

Answer: B
93. The p.d.f. of a continuous r.v. X is $f(x)=\left\{\begin{array}{l}\frac{x}{8}, 0<x<4 \\ 0, \text { otherwise }\end{array}\right.$, then $F(0.5)=$
A. $\frac{0.25}{64}$
B. 0.25
B. $\frac{}{32}$
C. $\frac{1}{64}$
D. $\frac{1}{32}$

Answer: C
94. The p.d.f. of a continuous r.v. X is $f(x)=\left\{\begin{array}{l}\frac{x}{8}, 0<x<4 \\ 0, \text { otherwise }\end{array}\right.$, then $F(1.7)=$
A. $\frac{1}{32}$
B. $\frac{1}{16}$
C. $\frac{2.89}{32}$
D. $\frac{2.89}{16}$

Answer: D

(D) Watch Video Solution

95. The p.d.f. of a continuous r.v. X is $f(x)=\left\{\begin{array}{l}\frac{x}{8}, 0<x<4 \\ 0, \text { otherwise }\end{array}\right.$, then $F(5)=$
A. 1
B. 0
c. $\frac{25}{16}$
D. $\frac{25}{32}$

Answer: C

D Watch Video Solution

96. The p.d.f. of a r.v. X is $f(x)=\left\{\begin{array}{l}2 x, \quad 0 \leq x \leq 1 \\ 0, \text { otherwise }\end{array}\right.$, then $P\left(\frac{1}{3}<X<\frac{1}{2}\right)=$
A. $\frac{5}{18}$
B. $\frac{13}{18}$
C. $\frac{5}{36}$
D. $\frac{13}{36}$

Answer: C

- Watch Video Solution

97. The p.d.f. of a r.v. X is $f(x)=\left\{\begin{array}{l}0.5 x, 0<x<2 \\ 0, \text { otherwise }\end{array}\right.$, then $P(X \leq 1)=$
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. $\frac{1}{3}$
D. $\frac{3}{4}$

Answer: B
98. The p.d.f. of a r.v. X is $f(x)=\left\{\begin{array}{l}0.5 x, \quad 0<x<2 \\ 0, \text { otherwise }\end{array}\right.$, then $P(0.5 \leq X \leq 1.5)=$
A. $\frac{3}{4}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: C

- Watch Video Solution

99. The p.d.f. of a r.v. X is $f(x)=\left\{\begin{array}{l}0.5 x, \quad 0<x<2 \\ 0, \text { otherwise }\end{array}\right.$, then $P(X>1.5)=$
A. 0.3476
B. 0.4376
C. 0.3475
D. 0.4375

Answer: D

D Watch Video Solution

100. The p.d.f. of a r.v. X is $f(x)=\left\{\begin{array}{l}k x^{2}(1-x), 0<x<1 \\ 0, \text { otherwise }\end{array}\right.$, then $\mathrm{k}=$
A. 12
B. 1
C. $\frac{1}{12}$
D. $\frac{1}{3}$

Answer: A

- Watch Video Solution

101. The p.d.f. of a r.v. X is $f(x)=\left\{\begin{array}{l}\mathrm{ke}^{-\theta x}, 0 \leq x<\infty \\ 0, \text { otherwise }\end{array}\right.$, then $\mathrm{k}=$
A. $\frac{1}{\theta}$
B. $\frac{1}{20}$
C. θ
D. 1

Answer: C
102. The p.d.f. of a r.v. X is $f(x)=\left\{\begin{array}{l}\mathrm{ke}^{-\theta x}, 0 \leq x<\infty \\ 0, \text { otherwise }\end{array}\right.$, then $P\left(X>\frac{1}{\theta}\right)=$
A. 2 e
B. e
C. $\frac{2}{e}$
D. $\frac{1}{e}$

Answer: D

- Watch Video Solution

103. The p.d.f. of a r.v. X is $f(x)=\left\{\begin{array}{l}\mathrm{ke}^{-\theta x}, 0 \leq x<\infty \\ 0, \text { otherwise }\end{array}\right.$, then $P(0<X<M)=\frac{1}{2}$, if $M=$
A. $\frac{1}{\theta} \log 2$
B. $\frac{2}{\theta} \log 2$
C. $\log 2$
D. $2 \log 2$

Answer: A

- Watch Video Solution

104. The p.d.f. of a r.v. X is $f_{X}(x)=\left\{\begin{array}{l}k x(1-x), 0<X<1 \\ 0, \text { otherwise }\end{array}\right.$, then $\mathrm{k}=$
A. $\frac{1}{3}$
B. $\frac{1}{6}$
C. 3
D. 6

Answer: D

(D) Watch Video Solution

105. The p.d.f. of a r.v. X is $f_{X}(x)=\left\{\begin{array}{l}k x(1-x), 0<X<1 \\ 0, \text { otherwise }\end{array}\right.$, then $P\left(X<\frac{1}{2}\right)=$
A. $\frac{1}{2}$
B. $\frac{1}{12}$
C. $\frac{1}{8}$
D. $\frac{1}{24}$

Answer: A

- Watch Video Solution

106. The p.d.f. of a r.v. X is $f_{X}(x)=\left\{\begin{array}{l}k x(1-x), 0<X<1 \\ 0, \text { otherwise }\end{array}\right.$, then $P\left(\frac{1}{4}<X<\frac{1}{2}\right)=$
A. $\frac{11}{16}$
B. $\frac{11}{32}$
C. $\frac{11}{64}$
D. $\frac{11}{192}$

Answer: B
107. The p.d.f. of a r.v. X is $f(x)=\left\{\begin{array}{l}3\left(1-2 x^{2}\right), 0<x<1 \\ 0, \text { otherwise }\end{array}\right.$, then $F(x)=$
A. $\frac{2 x^{3}-3 x}{3}$
B. $\frac{3 x-2 x^{3}}{3}$
C. $2 x^{3}-3 x$
D. $3 x-2 x^{3}$

Answer: D

- Watch Video Solution

108. The p.d.f. of a r.v. X is $f(x)=\left\{\begin{array}{l}3\left(1-2 x^{2}\right), 0<x<1 \\ 0, \text { otherwise }\end{array}\right.$,
then $P\left(\frac{1}{4}<x<\frac{1}{3}\right)=$
A. $\frac{179}{864}$
B. $\frac{179}{432}$
C. $\frac{179}{216}$
D. $\frac{179}{2592}$

Answer: A

- Watch Video Solution

109. The p.d.f. of a r.v. X is $f_{X}(x)=\left\{\begin{array}{l}\frac{k}{\sqrt{x}}, 0<x<4 \\ 0, \text { otherwise }\end{array}\right.$, then $\mathrm{k}=$

$$
\text { A. } \frac{1}{2}
$$

B. $\frac{1}{4}$
C. 2
D. 4

Answer: B

- Watch Video Solution

110. The p.d.f. of a r.v. X is $f_{X}(x)=\left\{\begin{array}{l}\frac{k}{\sqrt{x}}, 0<x<4 \\ 0, \text { otherwise }\end{array}\right.$, then c.d.f. of X is
A. \sqrt{x}
B. $2 \sqrt{x}$
C. $\frac{\sqrt{x}}{2}$
D. $\sqrt{\frac{x}{2}}$

Answer: C

D Watch Video Solution

111. The p.d.f. of a r.v. X is $f_{X}(x)=\left\{\begin{array}{l}\frac{k}{\sqrt{x}}, 0<x<4 \\ 0, \text { otherwise }\end{array}\right.$, then $P(X \leq 2)=$
A. $\frac{1}{2}$
B. $\frac{1}{3 \sqrt{2}}$
C. $\frac{1}{2 \sqrt{2}}$
D. $\frac{1}{\sqrt{2}}$

Answer: D
112. The p.d.f. of a r.v. X is $f_{X}(x)=\left\{\begin{array}{l}\frac{k}{\sqrt{x}}, 0<x<4 \\ 0, \text { otherwise }\end{array}\right.$, then $P(2<X<3)=$
A. $\frac{\sqrt{3}-\sqrt{2}}{2}$
B. $\frac{\sqrt{3}-\sqrt{2}}{4}$
C. $\frac{\sqrt{2}-\sqrt{3}}{2}$
D. $\frac{\sqrt{2}-\sqrt{3}}{4}$

Answer: A

(Watch Video Solution

113. The p.d.f. of a r.v. X is $f_{X}(x)=\left\{\begin{array}{l}\frac{k}{\sqrt{x}}, 0<x<4 \\ 0, \text { otherwise }\end{array}\right.$, then $P(X \geq 1)=$
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. $\frac{3}{4}$
D. $\frac{1}{6}$

Answer: B

(D) Watch Video Solution

114. The p.d.f. of a continuous r.v. X is
$f(x)=\left\{\begin{array}{l}\frac{1}{2 a}, 0<x<2 a,(a>0) \\ 0, \text { otherwise }\end{array}\right.$, then $P\left(X<\frac{a}{2}\right)=$
A. $\frac{1}{4 a}$
B. $\frac{1}{2 a}$
C. $\frac{1}{4}$
D. $\frac{1}{2}$

Answer: C

- Watch Video Solution

115. The p.d.f. of a continuous r.v. X is
$f(x)=\left\{\begin{array}{l}\frac{1}{2 a}, 0<x<2 a,(a>0) \\ 0, \text { otherwise }\end{array}\right.$, then $P\left(X>\frac{3 a}{2}\right)=$
A. $\frac{1}{2 a}$
B. $\frac{1}{4 a}$
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: D
116. The p.d.f. of a continuous r.v. X is
$f(x)=\left\{\begin{array}{l}\frac{1}{2 a}, 0<x<2 a,(a>0) \\ 0, \text { otherwise }\end{array}\right.$, then
A. $P\left(X<\frac{a}{2}\right)=P\left(X>\frac{3 a}{2}\right)$
B. $P\left(X<\frac{a}{2}\right)<P\left(X>\frac{3 a}{2}\right)$
C. $P\left(X<\frac{a}{2}\right)>P\left(X>\frac{3 a}{2}\right)$
D. $P\left(X<\frac{a}{2}\right)=2 P\left(X>\frac{3 a}{2}\right)$

Answer: A
117. Suppose r.v. $X=$ waiting time in minutes for a bus and its p.d.f. is given by $f(x)=\left\{\begin{array}{l}\frac{1}{5}, 0 \leq x \leq 5 \\ 0, \text { otherwise }\end{array}\right.$, then probability that waiting time is between 1 and 3 minutes is
A. $\frac{4}{5}$
B. $\frac{2}{5}$
C. $\frac{3}{5}$
D. $\frac{1}{5}$

Answer: B
118. Suppose r.v. $X=$ waiting time in minutes for a bus and its p.d.f. is given by $f(x)=\left\{\begin{array}{l}\frac{1}{5}, 0 \leq x \leq 5 \\ 0, \text { otherwise }\end{array}\right.$, then probability that waiting time is more than 4 minutes is
A. $\frac{2}{5}$
B. $\frac{3}{5}$
C. $\frac{1}{5}$
D. $\frac{4}{5}$

Answer: C

- Watch Video Solution

119. If a random variable waiting time in minutes for bus and probability density function of x is given by
$f(x)=\left\{\begin{array}{l}\frac{1}{5}, 0 \leq x \leq 5 \\ 0, \text { otherwise }\end{array}\right.$
Then probability of waiting time not more than 4 minutes is equal to
A. 0.3
B. 0.8
C. 0.2
D. 0.5

Answer: B

(D) Watch Video Solution

120. The p.d.f. of a continuous r.v. X is
$f(x)=\left\{\begin{array}{l}k\left(4-x^{2}\right),-2 \leq x \leq 2 \\ 0, \text { otherwise }\end{array}\right.$, then $\mathrm{k}=$
A. $\frac{1}{16}$
B. $\frac{3}{16}$
C. $\frac{1}{32}$
D. $\frac{3}{32}$

Answer: D

(D) Watch Video Solution

121. The p.d.f. of a continuous r.v. X is
$f(x)=\left\{\begin{array}{l}k\left(4-x^{2}\right),-2 \leq x \leq 2 \\ 0, \text { otherwise }\end{array}\right.$, then $P(X>0)=$
A. $\frac{1}{2}$
B. $\frac{3}{8}$
C. $\frac{1}{16}$
D. $\frac{3}{16}$

Answer: A

- Watch Video Solution

122. The p.d.f. of a continuous r.v. X is
$f(x)=\left\{\begin{array}{l}k\left(4-x^{2}\right),-2 \leq x \leq 2 \\ 0, \text { otherwise }\end{array}\right.$, then $P(-1<X<1)$
$=$
A. $\frac{11}{32}$
B. $\frac{11}{16}$
C. $\frac{11}{48}$
D. $\frac{1}{16}$

(D) Watch Video Solution

123. The p.d.f. of a continuous r.v. X is
$f(x)=\left\{\begin{array}{l}k\left(4-x^{2}\right),-2 \leq x \leq 2 \\ 0, \text { otherwise }\end{array}\right.$,
$P(X<-0.5$ or $X>0.5)=$
A. $\frac{9}{132}$
B. $\frac{9}{66}$
C. $\frac{81}{128}$
D. $\frac{27}{64}$

Answer: C
124. The time (in minutes) for a lab assistant to prepare the equipment for a certain experiment is a random variable taking values between 25 and 35 minutes with p.d.f. $f(x)=\left\{\begin{array}{l}\frac{1}{10}, 25 \leq x \leq 35 \\ 0, \text { otherwise }\end{array}\right.$, then the probability that preparation time exceeds 33 minutes is
A. $\frac{1}{5}$
B. $\frac{1}{10}$
C. $\frac{2}{5}$
D. $\frac{3}{10}$

Answer: A

125. The time (in minutes) for a lab assistant to prepare the equipment for a certain experiment is a random variable taking values between 25 and 35 minutes with p.d.f.
$f(x)=\left\{\begin{array}{l}\frac{1}{10}, 25 \leq x \leq 35 \\ 0, \text { otherwise }\end{array}\right.$, then $\mathrm{F}(\mathrm{x})=$
A. $\frac{25-x}{10}$
B. $\frac{x-25}{10}$
C. $\frac{25-x}{5}$
D. $\frac{x-25}{5}$

Answer: B

126. A boy tosses faiir coin 3 times. If he gets Rs $2 X$ for X heads, then his expected gain equals to Rs.....
A. 1
B. $\frac{3}{2}$
C. 3
D. 4

Answer: C

- Watch Video Solution

127. A box contains 6 pens, 2 of which are defective Two pens are taken randomy from the bax .If r,v. X., : Number of defective pens obtained, then standard deviation of $x=$
A. $\pm \frac{4}{3 \sqrt{5}}$
B. $\frac{8}{3}$
C. $\frac{16}{45}$
D. $\frac{4}{3 \sqrt{5}}$

Answer: D

- Watch Video Solution

