

MATHS

BOOKS - NIKITA MATHS (HINGLISH)

THREE DIMENSIONAL GEOMETRY

Multiple Choice Questions

1. All point X-axis have

Answer: C

Watch Video Solution

2. The pairs of rectangular co-ordinate planes have equations

B.
$$x=y=z=0$$

D.
$$xy = yz = zx \neq 0$$

Answer: A

- 3. The direction cosines of any normal to the xy-plane are
 - A. 1, 0, 0
 - B. 0, 1, 0
 - C. 0, 0, 1
 - D. 1, 1, 0

Answer: C

Watch Video Solution

4. The direction cosines of any normal to YZ-plane are

- A. 1, 0, 0
- B. 0, 1, 0
- C. 0, 0, 1
- D. 1, 1, 0

Answer: A

- 5. The direction cosines of any normal to ZX-plane are
- A. 1, 0, 0
 - B. 0, 1, 0
 - C. 0, 0, 1

D. 1, 1, 0

Answer: B

Watch Video Solution

6. If l, m, n are the direction consines of a line, then

A.
$$l + m + n = 0$$

B.
$$l + m + n = 1$$

C.
$$l^2 + m^2 + n^2 = 1$$

D.
$$l^2 + m^2 + n^2 = 0$$

Answer: C

7. If $p\hat{i}+q\hat{j}+r\hat{k}$ is vector along a line, then p, q, r are

A. direction ratios of the line

B. direction cosines of the line

C. components of the line

D. co-ordinates of a point on the line

Answer: A

Watch Video Solution

8. The co-ordinate of the point P are (x, y, z) and the direction cosines of the line OP when O is the origin are I, m, n. If OP = r, then

A.
$$x = l, y = m, z = n$$

B.
$$x = lr, y = mr, z = nr$$

$$\mathsf{C}.\,l=xr,m=yr,n=zr$$

D.
$$x=lr^2, y=mr^2, z=nr^2$$

Answer: B

9. Two lines
$$\frac{x-x_i}{l_i}=\frac{y-y_i}{m_i}=\frac{z-z_i}{n_i}, (i=1,2)$$
 are perpendicular to each other, if their direction ratios satisfy

A.
$$\displaystyle rac{l_1}{l_2} = rac{m_1}{m_2} = rac{n_1}{n_2}$$

B.
$$l_i=m_i=n_i$$

C.
$$l_1 l_2 + m_1 m_2 + n_1 n_2 = -1$$

D.
$$l_1 l_2 + m_1 m_2 + n_1 n_2 = 0$$

Answer: D

Watch Video Solution

10. If α,β,γ are the angles which a line makes with OX,OY and OZ , then $\sin^2\alpha+\sin^2\beta+\sin^2\gamma$

A. 0

B. -1

C. 2

D. 1

Answer: C

Watch Video Solution

11. If a line makes angles $lpha, eta, \gamma$ with co-ordinate axes, then $\cos 2lpha + \cos 2eta + \cos 2\gamma =$

- A. 0
- B. -1
- C. 2
- D. 1

Answer: B

12. If a line makes angles $\frac{\alpha}{2}, \frac{\beta}{2}, \frac{\gamma}{2}$ with co-ordinate axes, then $\cos \alpha + \cos \beta + \cos \gamma =$

Answer: B

Watch Video Solution

13. Two lines with direction cosines $l_1,\,m_1,\,n_1\,\,{
m and}\,\,l_2,\,m_2,\,n_2$ are at right angle of

A.
$$l_1 l_2 - m_1 m_2 - n_1 n_2 = 0$$

B.
$$l_1 l_2 + m_1 m_2 + n_1 n_2 = 0$$

C.
$$l_2=l_2, m_1=m_2, n_1=n_2$$

D.
$$rac{l_1}{l_2}=rac{m_1}{m_2}=rac{n_1}{n_2}$$

Answer: B

Watch Video Solution

14. The straight lines whose direction cosines are given by

are

perpendicular if

A.
$$\frac{f}{a} + \frac{g}{b} + \frac{h}{c} = 1$$

al + bm + cn = 0, fmn + gnl + hlm = 0

$$\operatorname{B.}\frac{f}{a} + \frac{g}{b} + \frac{h}{c} = \ -1$$

C.
$$rac{f}{a}+rac{g}{b}+rac{h}{c}=0$$
D. $rac{a}{f}+rac{b}{g}+rac{c}{h}=0$

Answer: C

Watch Video Solution

15. If the line
$$\overrightarrow{OR}$$
 makes angles $\theta_1, \theta_2, \theta_3$ with the planes

then

$$\cos^2 heta_1+\cos^2 heta_2+\cos^2 heta_3$$
 is equal to

XOY, YOZ, ZOX respectively

- A. 4
- B. 2
- C. 3
 - D. 1

Answer: B

Watch Video Solution

16. If the line passing through origin makes angles $\theta_1,\,\theta_2,\,\theta_3$ with the planes XOY, YOZ and ZOX, then $\sin^2\theta_1+\sin^2\theta_2+\sin^2\theta_3=$

Answer: B

17. If a variable line in two adjacent position has direction cosines l,m,n and $l+\delta l,m+\delta m,n+\delta n$ and $\delta \theta$ is the angel between two positions, then $(\delta l)^2+(\delta m)^2+(\delta n)^2=$

A.
$$2(\delta\theta)^2$$

B.
$$(\delta\theta)^2$$

$$\mathsf{C.}\,3(\delta\theta)^2$$

D.
$$4(\delta\theta)^2$$

Answer: B

18. A line makes angles α , β , γ and δ with the diagonals of a cube, than $\cos^2\alpha + \cos^2\beta + \cos^2\gamma + \cos^2\delta = ?$

- A. $\frac{4}{3}$
- $\mathsf{B.}\;\frac{2}{3}$
- C. 4
- D. 1

Answer: A

Watch Video Solution

19. Find the angle between any two diagonals of a cube.

A.
$$\cos^{-1}\left(\frac{\sqrt{2}}{3}\right)$$

B.
$$\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

C.
$$\cos^{-1}\left(\frac{2}{3}\right)$$
D. $\cos^{-1}\left(\frac{1}{3}\right)$

Answer: D

20. A line makes an angle
$$\alpha,\beta,\gamma,\delta$$
 with the four diagonals of a cube, then $\sin^2\alpha+\sin^2\beta+\sin^2\gamma+\sin^2\delta=$

A.
$$\frac{4}{3}$$

$$\mathsf{B.}\;\frac{8}{3}$$

C.
$$\frac{1}{3}$$

Answer: B

Watch Video Solution

21. If the edges of a rectangular parallelepiped are a,b, c, prove that the angles between the four diagonals are given by $\cos^{-1}\left(\frac{\pm a^2 \pm b^2 \pm c^2}{a^2 + b^2 + c^2}\right)$.

A.
$$\cos^{-1}\left(\frac{a\pm b\pm c}{a+b+c}\right)$$

B.
$$\frac{1}{2}\cos^{-1}\left(\frac{a\pm b\pm c}{a+b+c}\right)$$

C.
$$\cos^{-1}\!\left(rac{a^2\pm b^2\pm c^2}{a^2+b^2+c^2}
ight)$$

D.
$$\frac{1}{2}$$
cos $^{-1}$ $\left(\frac{a^2 \pm b^2 \pm c^2}{a^2 + b^2 + c^2}\right)$

Answer: C

Watch Video Solution

22. If $\cos \alpha = \frac{\sqrt{3}}{2}$, $\cos \gamma = \frac{-1}{2}$, then the direction angle of lines are

A.
$$\frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}$$

B.
$$\frac{5\pi}{6}, \frac{\pi}{2}, \frac{2\pi}{3}$$

$$\mathsf{C.}\,\frac{\pi}{6},\,\frac{\pi}{2},\frac{2\pi}{3}$$

D.
$$\frac{\pi}{6}, \frac{\pi}{2}, \frac{\pi}{3}$$

Answer: C

23. If a line makes angles of measure 45° and 60° with the positive direction of the Y and Z axex respectively, then the angle made by the line with the positive directions of the X-axis is

- A. 30° or 150°
- $\text{B.}\,30^{\,\circ}$ or $120^{\,\circ}$
- C. 60° or 120°
- D. 60° or 150°

Answer: C

24. A line makes angles of measures $\frac{\pi}{6}$ and $\frac{\pi}{3}$ with X-and

Z-axes respectively. Find the angle made by the line with the Y-axis.

A.
$$\frac{\pi}{2}$$

B.
$$\frac{2\pi}{3}$$

C.
$$\frac{5\pi}{6}$$

$$\mathrm{D.}~\frac{3\pi}{4}$$

Answer: A

25. If a line is inclined at 60° and 30° with the X-and Y-axes respectively, then the angle which makes with the Z-axes is

- A. 0
- B. $\frac{\pi}{4}$
- $\operatorname{C.}\frac{\pi}{2}$
- D. $\frac{\pi}{6}$

Answer: C

Watch Video Solution

26. If a line makes angles of measure 60° and 45° with OX and OZ, then the angle made by line with Y-axis is

- A. 45°
- $\text{B.}\,0^{\circ}$
- C. $30\,^\circ$
- D. 60°

Answer: D

Watch Video Solution

27. If a line which makes angle 60° with Y and Z axes, then the angle which it makes with X-axis is

- A. 30°
- B. 45°

C. 60°

D. 90°

Answer: B

Watch Video Solution

28. A line makes angles α, β, γ with X, Y, Z axes respectively.

If lpha=eta and $\gamma=45^{\circ}$, then lpha=

A. 0°

B. 30°

C. 60°

D. 90°

Answer: C

Watch Video Solution

29. A line makes angles α, β, γ with X, Y, Z axes respectively.

If
$$lpha=eta$$
 and $\gamma=45^{\circ}$, then $lpha+eta+\gamma=$

- A. 165°
- B. 180°
- C. 135°
- D. 120°

Answer: A

30. A line makes angles α , $\beta and\gamma$ with the coordinate axes.

If
$$\alpha+\beta=90^0$$
, then find γ .

- A. 0°
- B. 90°
- C. 180°
- D. 300°

Answer: B

Watch Video Solution

31. If direction angles of a line are α, β, γ such that

$$lpha + eta = 90^\circ$$
 , then $\left(\coslpha + \coseta + \cos\gamma
ight)^2 =$

A.
$$1-\cos 2\alpha$$

$${\rm B.}\,1+\cos2\alpha$$

C.
$$1-\sin 2\alpha$$

D.
$$1+\sin 2lpha$$

Answer: D

Watch Video Solution

32. A line lies in XZ-plane and makes an angle 60° with Z-axis, find its inclination with X-axis.

A. 30°

B. 45°

- $\mathsf{C.}\,60^\circ$
- D. 90°

Answer: A

Watch Video Solution

33. A line lies in YZ- plane and makes angle of 30° with Y-axis, then its inclination to Z-axis is

- A. $30^{\circ}~{
 m or}~60^{\circ}$
- $\text{B.}\,30^{\,\circ}\,$ or $150^{\,\circ}\,$
- $\mathsf{C.}\,60^\circ$ or 90°
- D. 60° or 120°

Answer: D

Watch Video Solution

34. If a straight line in space is equally inclined to the corodinate axes, then the cosine of its angle of inclination to any one of the axes is

A.
$$\frac{1}{2}$$

B.
$$\frac{1}{3}$$

C.
$$\frac{1}{\sqrt{2}}$$
D. $\frac{1}{\sqrt{3}}$

D.
$$\frac{1}{\sqrt{3}}$$

Answer: D

35. Which of the following is false?

A. $30^{\circ}, 45^{\circ}, 60^{\circ}$ can be the direction angles of a line in space.

B. 90° , 135° , 45° can be the direction angles of a line in space.

C. $120^{\circ}, 60^{\circ}, 45^{\circ}$ can be the direction angles of a line in space.

D. $60^{\circ}, 45^{\circ}, 60^{\circ}$ can be the direction angles of a line in space.

Answer: A

watch video Solution

36. Which of the following is true?

A. A line can make angle $30^{\circ}\,,\,45^{\circ}\,$ with the X-axis, Y-axis respectively.

B. A line can not make angle $30^{\circ}\,, 60^{\circ}\,$ with the X-axis , Y-axis respectively.

C. A line can not make angle $30^{\circ}\,, 45^{\circ}\,$ with the X-axis ,

Y-axis respectively.

D. A line can not make angle $45^{\,\circ}\,,\,60^{\,\circ}\,$ with the X-axis , Y-axis respectively.

Answer: C

37. If a line makes angles $90^\circ, 135^\circ, 45^\circ$ with X,Y and Z axes respectively , then find its direction cosines.

A.
$$0, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}$$

$$\mathrm{B.}\,0,\,\frac{-1}{\sqrt{2}},\,\frac{-1}{\sqrt{2}}$$

c. 0,
$$\frac{1}{\sqrt{2}}$$
, $\frac{1}{\sqrt{2}}$

$$\mathrm{D.}\,0,\frac{-1}{\sqrt{2}},\frac{1}{\sqrt{2}}$$

Answer: D

38. The direction cosines of the line which bisects the angle between positive direction of Y and Z axis are

A.
$$0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$$

B.
$$0, \frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}$$

$$\mathsf{C.}\,0,\,\frac{1}{\sqrt{2}},\,\frac{-1}{\sqrt{2}}$$

$$\mathrm{D.}\,0,\,\frac{-1}{\sqrt{2}},\,\frac{1}{\sqrt{2}}$$

Answer: A

Watch Video Solution

39. The direction consines of a line equally inclined with the co-ordinate axes are

A.
$$\pm 1$$
, ± 1 , ± 1

B.
$$\pm \frac{1}{3\sqrt{2}}, \ \pm \frac{1}{3\sqrt{2}}, \ \pm \frac{1}{3\sqrt{2}}$$

$$\mathsf{C.} \pm \frac{1}{\sqrt{3}}, \ \pm \frac{1}{\sqrt{3}}, \ \pm \frac{1}{\sqrt{3}}$$

D.
$$\pm \frac{1}{\sqrt{2}}, \ \pm \frac{1}{\sqrt{2}}, \ \pm \frac{1}{\sqrt{2}}$$

Answer: C

Watch Video Solution

40. Of line makes angle 60° , 120° , 45° with X, Y, Z axes

A.
$$\frac{1}{2}$$
, $\frac{-1}{2}$, $\frac{1}{\sqrt{2}}$

B.
$$\frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{\sqrt{3}}{2}$$

C.
$$\frac{1}{2}$$
, $\frac{1}{\sqrt{2}}$, $\frac{-1}{\sqrt{2}}$
D. $\frac{1}{\sqrt{2}}$, $\frac{1}{2}$, $\frac{-1}{\sqrt{2}}$

Answer: A

Watch Video Solution

41. If the line makes angles 45° , 60° , 120° with X, Y, Z axes respectively, then the direction consines of line are

A.
$$\displaystyle \frac{1}{\sqrt{2}}, \displaystyle \frac{-1}{2}, \displaystyle \frac{1}{2}$$

B.
$$\frac{1}{\sqrt{2}}, \frac{-1}{2}, \frac{-1}{2}$$

C.
$$\frac{1}{\sqrt{2}}$$
, $\frac{1}{2}$, $\frac{1}{2}$

D.
$$\frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{-1}{2}$$

Answer: D

Watch Video Solution

42. The direction cosines of a line which makes an angle of 45° with Z-axis and congruent angles with X and Y axes, are

A.
$$\frac{-1}{2}$$
, $\frac{-1}{2}$, $\frac{1}{\sqrt{2}}$

$${\rm B.}\,\frac{1}{2},\,\frac{-1}{2},\,\frac{1}{\sqrt{2}}$$

$$\mathsf{C}.\pm \frac{1}{2},\ \pm \frac{1}{2},\ \frac{1}{\sqrt{2}}$$

D.
$$\frac{1}{2}$$
, $\frac{1}{2}$, $\frac{1}{\sqrt{2}}$

Answer: C

43. The direction consines of a line which lies in XZ-plane and making an angle of 30° with positive Z-axis are

$$\mathsf{A.}\pm\frac{1}{2},\,0,\,\frac{\sqrt{3}}{2}$$

$$\mathsf{B.}\pm\frac{1}{2},\,0,\,\frac{-\sqrt{3}}{2}$$

$$\mathsf{C.} \pm \frac{\sqrt{3}}{2}, 0, \frac{1}{2}$$

D.
$$\pm \frac{\sqrt{3}}{2}$$
, 0, $\frac{-1}{2}$

Answer: A

44. If α, β, γ are the direction angles of a vector and

$$\cos lpha = rac{14}{15}, \cos eta = rac{1}{3}$$
 , then $\cos \gamma =$

A.
$$\pm \frac{2}{15}$$

$$\mathtt{B.}\pmrac{1}{5}$$

$$c. \pm \frac{1}{15}$$

D.
$$\pm \frac{4}{15}$$

Answer: A

Watch Video Solution

45. A line makes the some angle θ with each of the x and z-axes. If the angle β , which it makes with y-axis, is such that

 $\sin^2 eta = 3 \sin^2 heta$ then $\cos^2 heta$ equals

A.
$$\frac{4}{5}$$

$$\mathsf{B.}\;\frac{2}{5}$$

$$\mathsf{C.}\,\frac{3}{5}$$

D.
$$\frac{9}{5}$$

Answer: C

46. If the direction cosines of a line are
$$p, -p, \frac{-p}{2}$$
, then $p =$

A.
$$\pm rac{4}{9}$$

$${\rm B.}\pm\frac{9}{4}$$

$$\mathsf{C.}\pmrac{2}{3}$$

$${\rm D.}\pm\frac{3}{2}$$

Answer: C

47. If
$$\frac{1}{2}$$
, $\frac{1}{3}$, n are direction cosines of a line, then the value of n is

A.
$$\frac{7}{36}$$

B.
$$\frac{7}{6}$$

$$\mathsf{C.}\ \frac{\sqrt{23}}{36}$$

$$\frac{\sqrt{23}}{6}$$

Answer: D

Watch Video Solution

48. If
$$\frac{1}{\sqrt{2}}$$
, $\frac{1}{2}$, n are the direction consines of a line, then n

A.
$$\frac{-1}{2}$$

B.
$$\frac{1}{2}$$

$$\mathsf{C}.\pm\frac{1}{2}$$

$${\rm D.}\pm\frac{1}{\sqrt{2}}$$

Answer: C

- **49.** Line with direction ratios 1, 1, 1 is
 - A. parallel to X-axis
 - B. parallel to Y-axis
 - C. parallel to Z-axis
 - D. equally inclined with co-ordinate axes

Answer: D

50. If A(3, 5, -4), B(-1, 1, 2) and C(-5, -5, -2) are the vertices of

 Δ ABC, then the direction cosines of side AB are

A.
$$\frac{2}{\sqrt{17}}, \frac{2}{\sqrt{17}}, \frac{-3}{\sqrt{17}}$$

B.
$$\frac{2}{\sqrt{17}}$$
, $\frac{3}{\sqrt{17}}$, $\frac{2}{\sqrt{17}}$

$$\text{C.}\ \frac{4}{\sqrt{42}},\,\frac{5}{\sqrt{42}},\,\frac{-1}{\sqrt{42}}$$

D.
$$\frac{-4}{\sqrt{17}}$$
, $\frac{-5}{\sqrt{17}}$, $\frac{1}{\sqrt{17}}$

Answer: A

Watch Video Solution

51. If A(3, 5, -4), B(-1, 1, 2) and C(-5, -5, -2) are the vertices of

 Δ ABC, then the direction cosines of side BC are

A.
$$\frac{2}{\sqrt{17}}$$
, $\frac{2}{\sqrt{17}}$, $\frac{-3}{\sqrt{17}}$

B. $\frac{2}{\sqrt{17}}$, $\frac{3}{\sqrt{17}}$, $\frac{2}{\sqrt{17}}$

C. $\frac{4}{\sqrt{42}}$, $\frac{5}{\sqrt{42}}$, $\frac{-1}{\sqrt{42}}$

D. $\frac{-4}{\sqrt{17}}$, $\frac{-5}{\sqrt{17}}$, $\frac{1}{\sqrt{17}}$

Answer: B

Watch Video Solution

 Δ ABC, then the direction cosines of side AC are

A.
$$\frac{2}{\sqrt{17}}, \frac{2}{\sqrt{17}}, \frac{-3}{\sqrt{17}}$$

B.
$$\frac{2}{\sqrt{17}}$$
, $\frac{3}{\sqrt{17}}$, $\frac{2}{\sqrt{17}}$

C.
$$\frac{4}{\sqrt{42}}, \frac{5}{\sqrt{42}}, \frac{-1}{\sqrt{42}}$$
D. $\frac{-4}{\sqrt{17}}, \frac{-5}{\sqrt{17}}, \frac{1}{\sqrt{17}}$

Answer: C

Watch Video Solution

53. If A(3, 5, -4), B(-1, 1, 2) and C(-5, -5, -2) are the vertices of

 Δ ABC, then the triangle is

A. scalane

B. right angled

C. equilateral

D. isosceles

Answer: D

Watch Video Solution

54. Which of the following is true?

- A. $\frac{2}{\sqrt{3}}, \frac{-2}{\sqrt{3}}, \frac{-1}{\sqrt{3}}$ are the direction consines of a directed line.
- B. $\frac{-2}{\sqrt{3}}, \frac{-2}{\sqrt{3}}, \frac{-1}{\sqrt{3}}$ are the direction consines of a directed line.
- C. $\frac{2}{\sqrt{3}}, \frac{-2}{\sqrt{3}}, \frac{-1}{\sqrt{3}}$ are not the direction consines of a directed line.
- D. $\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}$ are not the direction consines of a directed line.

Answer: C

Watch Video Solution

55. Which of the following represents direction consines of the line ?

A.
$$0, \frac{1}{\sqrt{2}}, \frac{1}{2}$$

B.
$$0, \frac{-\sqrt{3}}{2}, \frac{1}{\sqrt{2}}$$

c. 0,
$$\frac{\sqrt{3}}{2}$$
, $\frac{1}{2}$

D.
$$\frac{1}{2}$$
, $\frac{1}{2}$, $\frac{1}{2}$

Answer: C

56. Which of the triplet can not represent direction cosines of a line ?

$$\mathsf{A.}\left(\frac{2}{5},\frac{3}{5},\frac{4}{5}\right)$$

$$\mathsf{B.}\left(\frac{1}{\sqrt{3}},\,\frac{1}{\sqrt{3}},\,\frac{1}{\sqrt{3}}\right)$$

C.
$$\left(\frac{3}{\sqrt{50}}, \frac{3}{\sqrt{50}}, \frac{3}{\sqrt{50}}\right)$$

$$\mathsf{D.}\left(\frac{4}{\sqrt{77}},\,\frac{4}{\sqrt{77}},\,\frac{4}{\sqrt{77}}\right)$$

Answer: A

Watch Video Solution

57. If $P\equiv (3,4,\,-12)$, then the direction cosines of \overline{OP}

are

B.
$$\frac{1}{5}$$
, $\frac{6}{5}$, $\frac{7}{5}$

$$\mathsf{C.}\,\frac{-2}{7},\frac{3}{7},\frac{6}{7}$$

D.
$$\frac{3}{13}$$
, $\frac{4}{13}$, $\frac{-12}{13}$

Answer: D

Watch Video Solution

58. The direction cosine of vector $3\hat{i} + 4\hat{j} + 5\hat{k}$ in the direction of X-axis is

A.
$$\frac{1}{\sqrt{2}}$$

A.
$$\frac{1}{\sqrt{2}}$$
B. $\frac{4}{5\sqrt{2}}$

C.
$$\frac{3}{5\sqrt{2}}$$
D. $\frac{3}{\sqrt{2}}$

Answer: C

59. If the vector
$$2\hat{i}-3\hat{j}+7\hat{k}$$
 makes angles α,β,γ with the co-ordinate axes respectively, then the direction cosine of vector are

A.
$$\frac{-2}{\sqrt{62}}, \frac{3}{\sqrt{62}}, \frac{-7}{\sqrt{62}}$$

B.
$$\frac{2}{\sqrt{62}}$$
, $\frac{-3}{\sqrt{62}}$, $\frac{7}{\sqrt{62}}$

C.
$$\frac{-2}{\sqrt{31}}$$
, $\frac{3}{\sqrt{31}}$, $\frac{-7}{\sqrt{31}}$
D. $\frac{2}{\sqrt{31}}$, $\frac{-3}{\sqrt{31}}$, $\frac{7}{\sqrt{31}}$

Answer: B

Watch Video Solution

60. The position vectors of points A and B are $\hat{i}+3\hat{j}-7\hat{k}$ and $5\hat{i}-2\hat{j}+4\hat{k}$ respectively, then the direction cosine of \overline{AB} along Y-axis is

A.
$$\frac{-5}{\sqrt{162}}$$

$$B. \frac{4}{\sqrt{162}}$$

C.
$$\frac{11}{\sqrt{162}}$$

D.
$$\frac{5}{\sqrt{162}}$$

Answer: A

61. The direction cosines of a line parallel to the line

$$rac{x+1}{2}=rac{y}{-3}=rac{z-5}{6}$$
 are

A.
$$1, \frac{-3}{2}, 3$$

B.
$$\frac{-2}{3}$$
, 1, -2

$$\mathsf{c.}\,\frac{1}{3},\frac{-1}{2},1$$

D.
$$\frac{2}{7}, \frac{-3}{7}, \frac{6}{7}$$

Answer: D

62. The line joining the points -2, 1, -8) and (a, b, c) is parallel to the line whose direction ratios are 6, 2, and 3.

Find the values of a, band \cdot

C.
$$a = 3, b = 5, c = 11$$

Answer: B

63. If the line segment joining the points A(7, p, 2) and B(q,

- -2, 5) be parallel to the line segment joining the points C(2,
- -3, 5) and D(-6, -15,11), find the value of p and q.

A.
$$a=4$$
, $b=-3$

B.
$$a=-4$$
, $b=3$

C.
$$a=4$$
, $b=3$

Answer: C

64. The line joining the points (4, 1, 2) and (5, p, 0) is parallel to the lne joining the points (2, 1, 1) and (3, 3, -1), then p =

A. -1

B. 1

C. -3

D. 3

Answer: D

65. If A(-1, 2, -3), B(5, 0, -6) and C(0, 4, -1) are the vertices of triangle ABC, then the direction ratios of the internal bisector of $\angle BAC$ are

- A. (5, 6, 7)
- B. (4, -3, 9)
- C. (25, 8, 5)
- D. (5, 8, 25)

Answer: C

View Text Solution

66. A line passes through the points (3, 1, 2) and (5, -1, 1) .

Then the direction ratios of the line are

- A. 2, -2, -1
- B. 2, 2, -1
- C. 2, 2, 1
- D. -2, -2, 1

Answer: A

Watch Video Solution

67. A line passes through the point (3,1,2) and $(5,\,-1,1)$, find the direction cosines of the line.

A.
$$\pm \frac{2}{9}$$
, $\pm \frac{-2}{9}$, $\pm \frac{-1}{9}$
B. $\pm \frac{2}{9}$, $\pm \frac{2}{9}$, $\pm \frac{-1}{9}$

C.
$$\pm \frac{2}{3}, \ \pm \frac{-2}{3}, \ \pm \frac{-1}{3}$$
D. $\pm \frac{2}{3}, \ \pm \frac{2}{3}, \ \pm \frac{-1}{3}$

Answer: C

68. Direction cosines of the line passing through the points
$$A(-4,2,3)$$
 and $B(1,3,-2)$ are

A.
$$-5, 1, -5$$

B.
$$5, 1, -5$$

 $\mathsf{C.}\,5,\;-1,5$

D. 5, 1, 5

Answer: B

Watch Video Solution

69. Direction cosines of the line passing through the points

$$A(-4,2,3)$$
 and $B(1,3,-2)$ are

A.
$$\pm \frac{1}{\sqrt{51}}, \ \pm \frac{5}{\sqrt{51}}, \ \pm \frac{1}{\sqrt{51}}$$

$${
m B.}\pmrac{5}{\sqrt{51}},\ \pmrac{1}{\sqrt{51}},\ \pmrac{-5}{\sqrt{51}}$$

$$\mathsf{C}.\pm 5,\ \pm 1,\ \pm 5$$

$$\mathsf{D.}\pm\sqrt{51},\ \pm\sqrt{51},\ \pm\sqrt{51}$$

Answer: B

Watch Video Solution

70. If a line has the direction ratios 4, -12, 18, then its direction cosines are

A.
$$\frac{2}{11}$$
, $\frac{6}{11}$, $\frac{-9}{11}$

B.
$$\frac{2}{11}$$
, $\frac{-3}{11}$, $\frac{9}{11}$

$$\mathsf{C.}\,\frac{2}{22},\frac{-6}{22},\frac{9}{22}$$

D.
$$\frac{2}{11}$$
, $\frac{-6}{11}$, $\frac{9}{11}$

Answer: D

71. If a line has the direction ratios -1, 2, 3, then its direction cosines are

A.
$$\frac{-1}{\sqrt{14}}$$
, $\frac{2}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$

$$\text{B.}\ \frac{1}{\sqrt{14}},\,\frac{-2}{\sqrt{14}},\,\frac{3}{\sqrt{14}}$$

$$\text{C.}\,\,\frac{1}{\sqrt{14}},\,\frac{2}{\sqrt{14}},\,\frac{-3}{\sqrt{14}}$$

$$\text{D.} \ \frac{1}{\sqrt{14}}, \, \frac{2}{\sqrt{14}}, \, \frac{3}{\sqrt{14}}$$

Answer: A

Watch Video Solution

72. The direction cosines of a line whose direction ratios are 1, -2, 3 are

A.
$$\frac{1}{2\sqrt{14}}$$
, $\frac{-1}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$

B.
$$\frac{1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$$
C. $\frac{1}{2}, -1, \frac{3}{2}$

D.
$$\frac{1}{3}, \frac{-2}{3}, 1$$

Answer: B

Watch Video Solution

axes, then
$$ar{r}=$$

73. If $|\bar{r}|=9$ and \bar{r} is equally inclined to the co-ordinate

A.
$$\pm 3 \Big(\hat{i} + \hat{j} + \hat{k}\Big)$$

B.
$$\pm 9 \Big(\hat{i} + \hat{j} + \hat{k} \Big)$$

C.
$$\pm\sqrt{3}\Big(\hat{i}+\hat{j}+\hat{k}\Big)$$

D.
$$\pm 3\sqrt{3}ig(\hat{i}+\hat{j}+\hat{k}ig)$$

Answer: D

74. If
$$|ar{u}|=3$$
 and $ar{u}$ is equally inclined to the unit vectors

$$\hat{i},\hat{j},\hat{k}$$
, then $ar{u}=$

A.
$$\pm 3 \Big(\hat{i} + \hat{j} + \hat{k} \Big)$$

B.
$$\pm\sqrt{3}\Big(\hat{i}+\hat{j}+\hat{k}\Big)$$

C.
$$\pm rac{1}{3} \Big(\hat{i} + \hat{j} + \hat{k} \Big)$$

D.
$$\pm \frac{1}{\sqrt{3}} \Big(\hat{i} + \hat{j} + \hat{k} \Big)$$

Answer: B

Watch Video Solution

75. If OP=8 and OP makes angles 45° and 60° with OX-axis and OY-axis respectively, then OP is equal to

A.
$$12\Big(\sqrt{2}i+\hat{j}\pm\hat{k}\Big)$$

B.
$$6\Big(\sqrt{2}\hat{i}+\hat{j}\pm\hat{k}\Big)$$

C.
$$3ig(\sqrt{2}\hat{i}+\hat{j}\pm\hat{k}ig)$$

D.
$$2ig(\sqrt{2}i+\hat{j}\pm\hat{k}ig)$$

Answer: B

76. If vector r wiith dc's l,m,n is equally inclined to the coordinate axes, then the total number of such vectors is

- A. 4
- B. 6
- C. 8
- D. 2

Answer: C

Watch Video Solution

77. The number of lines which are equally inclined to the axes is:

- A. 4
- B. 2
- C. 8
- D. 6

Answer: A

- **78.** The direction ratios of AB are -2,2,1. If $A\equiv (4,1,5)$ and I(AB) = 6 units, find coordinates of B.
 - A. (8, 5, 7) or (0, -3, 3)
 - B. (0, 5, 7) or (8, -3, 3)

C. (0, 5, 7) or (8, 3, -3)

D. (8, 5, 7) or (0, 3, -3)

Answer: B

Watch Video Solution

79. If the direction cosines of \overline{AB} are $\frac{-2}{\sqrt{17}},\frac{3}{\sqrt{17}},\frac{-2}{\sqrt{17}}$ such that $A\equiv(3,\,-6,\,10)$ and $l(AB)=\sqrt{17}$, then the co-ordinates of point B are

A. (1, 3, -8) or (5, -9, 12)

B. (1, -3, 8) or (5, -9, 12)

C. (1, -3, 8) or (5, 9, -12)

D. (1, 3, -8) or (5, 9, -12)

Answer: B

View Text Solution

80. If OP = 21 and direction cosines of \overline{OP} are $\frac{2}{7}$, $\frac{6}{7}$, $\frac{-3}{7}$, then the co-ordinates of P are

- A. (6, 18, -9)
- B. (-6, -12, 9)
- C. (-6, 18, -9)
- D. (6, 18, 9)

Answer: A

View Text Solution

81. The ratio in which the line joining points (2, 4, 5) and (3,

5, -4) divide YZ-plane is

- A. -2:3
- B. 2:3
- C. -3:2
- D.3:2

Answer: A

Watch Video Solution

82. XY-plane divides the line joining the points (2, 4, 5)

and (-4, 3, -2) in the ratio

- A. 3:5
- B. 5:2
- C. 5:3
- D. 2:5

Answer: B

Watch Video Solution

 $(1,\;-1,5)\;{
m and}\;(2,3,4)$ in the ratio of $\lambda\!:\!1$, then λ is

83. The plane XOZ divides the join

of

- A. 3
- B. -3

c.
$$\frac{1}{3}$$

D.
$$\frac{-1}{3}$$

Answer: C

Watch Video Solution

84. उस बिंदु के निर्देशांक ज्ञात कीजिए जहाँ बिंदुओं A(3,4,1) और B(5,1,6) को मिलाने वाली रेखा XY-तल को काटती है |

A.
$$\left(\frac{-13}{5}, \frac{-23}{5}, 0\right)$$

$$\mathsf{B.}\left(\frac{-13}{5},\frac{23}{5},0\right)$$

$$\mathsf{C.}\left(\frac{13}{5}, \frac{-23}{5}, 0\right)$$

D.
$$\left(\frac{13}{5}, \frac{23}{5}, 0\right)$$

Answer: D

Watch Video Solution

85. The co-ordinate of the point in which the line joining the points (3, 5, -7) and (-2, 1, 8) is inscribed by YZ-plane are

A.
$$\left(0, \frac{13}{5}, -2\right)$$

B.
$$\left(0, \frac{13}{5}, 2\right)$$

$$\mathsf{C.}\left(0,\frac{-13}{5},2\right)$$

D.
$$\left(0, \frac{-13}{5}, -2\right)$$

Answer: B

86. The point which divides the line joining the points (2, 4,

5) and (3, 5, -4) in the ratio -2: 3, lies on

A. XOY plane

B. YOZ plane

C. ZOX plane

D. XYZ plane

Answer: B

Watch Video Solution

87. The distance of point (1, 2, 3) from X-axis is

A. $\sqrt{14}$

- B. $\sqrt{13}$
- C. $\sqrt{10}$
- D. $\sqrt{5}$

Answer: B

Watch Video Solution

88. Perpendicular distance of point (3, 4, 5) from Y-axis is

- A. 4
- B. 5
- $\mathsf{C.}\,\sqrt{34}$
- D. $\sqrt{41}$

Answer: C

Watch Video Solution

89. The points (2, -1, -1), (4, -3, 0) and (0, 1, -2) are

- A. collinear
- B. non-coplanar
- C. non-collinear
- D. non-collinear and non-coplanar

Answer: A

View Text Solution

90. The points (-7, 4, -2), (-2, 1, 0) and (3, -2, 2) are

A. non-collinear

B. non-coplanar

C. non-collinear and non-coplanar

D. collinear

Answer: D

91. If the points $(6,-1,2),(8,-7,\lambda)$ and (5,2,4) are collinear then $\lambda=$

A. 4

- B. 2
- C. -2
- D. -4

Answer: C

- **92.** If the points (5, 2, 4), (6, -1, 2) and (8, -7, k) are collinear, then k =
 - A. -2
 - B. 2
 - C. -10

Answer: A

Watch Video Solution

collinear, then the values of λ and μ are

93. If the points $A(\,-1,3,\lambda),\,B(\,-2,0,1)$ and $C(\,-4,\mu,\,-3)$ are

A.
$$\lambda=3, \mu=-6$$

B.
$$\lambda=-3, \mu=6$$

$$\mathsf{C.}\,\lambda=\,-\,6,\mu=3$$

D.
$$\lambda=6, \mu=-3$$

Answer: A

Watch Video Solution

94. ABC is a triangle and $A=(235)\dot{B}=(-1,3,2)andC=(\lambda,5,\mu)$. If the median through A is equally inclined to the axes, then find the value of $\lambda and\mu$.

A. 10, 7

B. 9, 10

C. 7, 9

D. 7, 10

Answer: D

95. ABC is a triangle and $A=(235)\dot{B}=(-1,3,2)andC=(\lambda,5,\mu)$. If the median through A is equally inclined to the axes, then find the value of $\lambda and\mu$.

Answer: D

96. If a line drawn from point (1, 2, 1) is perpendicular to the line joining points (1, 4, 6) and (5, 4, 4), then the foot of the perpendicular is

- A. (2, 4, 5)
- B.(3,4,1)
- C.(3,4,5)
- D. (3, 0, 5)

Answer: C

97. If a line drawn from point (2, 4, 3) is perpendicular to the line joining points (1, 2, 4) and (3, 4, 5) then the foot of the perpendicular is

A.
$$\left(\frac{11}{9}, \frac{28}{9}, \frac{41}{9}\right)$$

B.
$$\left(\frac{19}{9}, \frac{28}{9}, \frac{41}{9}\right)$$

$$C.\left(\frac{19}{9}, \frac{11}{9}, \frac{41}{9}\right)$$

D.
$$\left(\frac{19}{9}, \frac{28}{9}, 1\right)$$

Answer: B

98. If a line drawn from point (4, 3, 2) is perpendicular to the line joining points (2, 4, 1) and (4, 5, 3), then the foot of the perpendicular is

A.
$$\left(\frac{28}{9}, 1, \frac{19}{9}\right)$$

$$\mathsf{B.}\left(\frac{28}{9},\,\frac{41}{9},\,\frac{11}{9}\right)$$

$$C.\left(\frac{4}{3}, \frac{41}{9}, \frac{19}{9}\right)$$

D.
$$\left(\frac{28}{9}, \frac{41}{9}, \frac{19}{9}\right)$$

Answer: D

99. If A(1, 2, 3), B(4, 5, 6) are two points, then the foot of the perpendicular from point B to the line joining the origin and point A is

A.
$$\left(\frac{8}{7}, \frac{16}{7}, \frac{24}{7}\right)$$

B.
$$\left(\frac{16}{7}, \frac{32}{7}, \frac{48}{7}\right)$$

$$\mathsf{C.}\left(\frac{1}{7},\frac{2}{7},\frac{3}{7}\right)$$

D.
$$\left(\frac{4}{7}, \frac{8}{7}, \frac{12}{7}\right)$$

Answer: B

100. If the line with direction ratios 2, -1, 2 is perpendicular to the line with direction ratios 1, k, -3, then k =

- A. -4
- B. 4
- C. -8
- D. 8

Answer: A

Watch Video Solution

101. If the line with direction ratios 5, 3k, 7 is perpendicular to the line with direction ratios k, 1, -8, then k =

- A. 7
- B. 8
- C. 14
- D. 16

Answer: A

Watch Video Solution

102. If the line with direction ratios k, -4, -1 is perpendicular to the line with direction ratios k, 5, -4 then k =

- A. $\pm\,16$
- $\mathsf{B}.\pm 2$

C.
$$\pm 4$$

D.
$$\pm 1$$

Answer: C

Watch Video Solution

103. If a line passing through (4, 1, 2) and (5, k, 0) is perpendicular to the line passing through (2, 1, 1) and (3, 3, -1), then k =

A.
$$\frac{1}{2}$$

$$\operatorname{B.}\frac{-1}{2}$$

$$\mathsf{C.}\;\frac{3}{2}$$

D.
$$\frac{-3}{2}$$

Answer: D

Watch Video Solution

104. Find the measure of a acute angle between the line direction ratios are 5, 12, -13 and 3, -4, 5.

A.
$$\cos^{-1}\left(\frac{7}{65}\right)$$

B.
$$\cos^{-1}\left(\frac{-7}{65}\right)$$

$$\mathsf{C.}\cos^{-1}\!\left(\frac{49}{65}\right)$$

D.
$$\cos^{-1}\left(\frac{-49}{65}\right)$$

Answer: D

105. Find the angles between the line whose direction ratios are 4, -3, 5 and 3, 4, 5.

- A. 30°
- B. 45°
- C. 60°
- D. 90°

Answer: C

Watch Video Solution

106. The acute angle between the lines whose direction ratios are 3, 2, 6 and -2, 1, 2 is

A.
$$\cos^{-1}\left(\frac{8}{21}\right)$$

B.
$$\cos^{-1}\left(\frac{12}{21}\right)$$

$$\mathsf{C.}\cos^{-1}\!\left(\frac{2}{21}\right)$$
 $\mathsf{D.}\cos^{-1}\!\left(\frac{2}{3}\right)$

Answer: A

Watch Video Solution

ratios are 1, 2, 2 and -3, 6, -2 is

107. The acute angle between the lines whose direction

A.
$$\cos^{-1}\left(\frac{13}{21}\right)$$

$$\mathsf{B.}\cos^{-1}\!\left(\frac{5}{21}\right)$$

C.
$$\cos^{-1}\left(\frac{11}{21}\right)$$
D. $\cos^{-1}\left(\frac{5}{9}\right)$

Answer: B

- **108.** The acute angle between the lines whose direction ratios are 1, 1, 2 and $\sqrt{3}-1,\ -\sqrt{3}-1,4$ is
 - A. $45^{\,\circ}$
 - B. 30°
 - C. 90°
 - D. 60°

Answer: D

Watch Video Solution

109. An angle between the lines whose direction number are 1, -2, 1 and -6, -1, 4 is

- A. $\frac{\pi}{6}$
- B. $\frac{\pi}{4}$
- $\mathsf{C.}\,\frac{\pi}{3}$
- D. $\frac{\pi}{2}$

Answer: D

110. If the angle between the lines with direction ratios a, 3,

5 and 2, -1, 2 is 45° , then a =

- A. 2, 26
- B. 4, 52
- C. 2, 104
- D. 8, 26

Answer: B

Watch Video Solution

111. If the angle between the vectors \bar{a} and \bar{b} having direction ratios 1, 2, 1 and 1, 3k, 1 is $\frac{\pi}{4}$, then k =

A.
$$\frac{2\pm3\sqrt{2}}{3}$$

B.
$$\dfrac{-2\pm3\sqrt{2}}{3}$$
C. $\dfrac{4\pm3\sqrt{2}}{3}$

D.
$$\frac{-4\pm3\sqrt{2}}{3}$$

Answer: D

Watch Video Solution

112. If the angle between the lines with direction ratios 2, -1,

- 1 and 1, k, 2 is 60° , then k =
 - A. 1, 17
 - B. -1, 17

C. 1, -17

D. -1, -17

Answer: C

Watch Video Solution

113. The two values of k for which the lines with direction ratios $k,\,-6,\,-2$ and $k-1,\,k,\,4$ are perpendicular to each other are

A. 1, 8

B. 1, -8

C. -1, 8

D. -1, -8

Answer: C

Watch Video Solution

114. If the cosine of the angle between the lines with direction ratios 1, -1, 2 and 0, 1, k is $\frac{\sqrt{3}}{2}$, then k =

A.
$$-1, -7$$

B.
$$1, -7$$

$$C. -1, 7$$

Answer: A

115. The acute angle between the lines joining points (2, 1,

3) and (1, -1, 2) and the line having direction ratios 2, 1, -1 is

A. 30°

B. 45°

C. 60°

D. 120°

Answer: C

Watch Video Solution

116. If $A \equiv (3,4-2), B \equiv (1,\,-1,2), C \equiv (0,3,2)$ and

 $D\equiv (3,5,6)$, then the angle between \overline{AB} and \overline{CD} is

A.
$$45^{\circ}$$

B. 90°

C. 30°

D. 60°

Answer: B

is

Watch Video Solution

where
$$A \equiv (1,2-1), B \equiv (2,1,1), C \equiv (2,1,-2), D \equiv (3,2,1)$$

117. The acute angle between the vectors \overline{AB} and \overline{CD} ,

A.
$$\cos^{-1}\sqrt{rac{6}{11}}$$

B.
$$\cos^{-1}\sqrt{\frac{3}{11}}$$
C. $\cos^{-1}\left(\frac{6}{\sqrt{11}}\right)$
D. $\cos^{-1}\left(\frac{3}{\sqrt{11}}\right)$

Answer: A

Watch Video Solution

and C(8,2,x), then find the value of x.

118. If $\triangle ABC$ is right angled at B , where A(5,6,4), B(4,4,1)

- A. 0
- B. -1
- C. 1

D. 3

Answer: C

Watch Video Solution

119. If ΔABC is right angled at A, where

$$A\equiv (4,2,3), B\equiv (3,1,8)$$
 and $C\equiv (x,\,-1,2)$, then x =

- A. -4
- B. -2
- C. 2
- D. 4

Answer: C

120. If
$$\Delta ABC$$
, if $A\equiv (3,2,6), B\equiv (1,4,5)$ and

$$C\equiv (3,5,3)$$
, then $m\angle ABC=$

- A. 90°
- B. 60°
- C. 45°
- D. 30°

Answer: A

121. If A (0, 7, 10), B(-1, 6, 6) and C(-4, 9, 6) are the vertices of

 ΔABC , then ΔABC is right angled at vertex

- A. A
- B. B
- C. C
- D. either A or C

Answer: B

Watch Video Solution

122. If \bar{a},\bar{b},\bar{c} are three mutually perpendicular vectors of equal magnitude, then the angle made by $\bar{a}+\bar{b}+\bar{c}$ with

each of $ar{a},\,ar{b},\,ar{c}$ is

A.
$$\cos^{-1}\left(\frac{1}{3}\right)$$

$$\mathsf{B.}\cos^{-1}\!\left(\frac{2}{3}\right)$$

$$\mathsf{C.}\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

D.
$$\cos^{-1}\!\left(rac{2}{\sqrt{3}}
ight)$$

Answer: C

Watch Video Solution

123. The angle between the lines whose direction cosines satisfy the equations l+m+n=0 and $l^2=m^2+n^2$ is (1) $\frac{\pi}{3}$ (2) $\frac{\pi}{4}$ (3) $\frac{\pi}{6}$ (4) $\frac{\pi}{2}$

A.
$$\frac{\pi}{3}$$

B.
$$\frac{\pi}{4}$$

C.
$$\frac{\pi}{6}$$

D. $\frac{\pi}{2}$

Answer: A

Watch Video Solution

124. Find the direction cosines of the two lines which are connected by th relations.

$$l - 5m + 3n = 0 and 7l^2 + 5m^2 - 3n^2 = 0$$

C. 1, 2, 3 and 1, -1, 2

D. 1, 2, 3 and 1, 1, -2

Answer: B

Watch Video Solution

125. Find the acute angle between the two straight lines whose direction cosines are given by l+m+n=0 and $l^2+m^2-n^2=0$

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{4}$$

$$\mathsf{C.}\;\frac{\pi}{3}$$

D.
$$\frac{\pi}{2}$$

Answer: C

Watch Video Solution

126. The direction cosines I, m and n of two lines are connected by the relations l+m+n=0 and lm=0, then the angle between the lines is

- A. 0°
- B. 45°
- C. 60°
- D. 90°

Answer: C

127. If the direction ratio of two lines are given by $3lm-4\ln+mn=0$ and l+2m+3n=0, then the angle between the lines, is

- A. 0°
- B. 45°
- C. 60°
- D. $90\,^\circ$

Answer: D

128. The angle between the lines whose direction cosines l, m, n satisfy the equations 5l+m+3n=0 and 5mn-2nl+6lm=0 is

A.
$$\cos^{-1}\left(\frac{1}{\sqrt{6}}\right)$$

$$\mathsf{B.}\cos^{-1}\!\left(\frac{1}{\sqrt{3}}\right)$$

$$\mathsf{C.}\cos^{-1}\!\left(\frac{1}{6}\right)$$

D.
$$\cos^{-1}\left(\frac{1}{3}\right)$$

Answer: C

129. Find the angle between the lines whose direction cosines are given by the equations 3l+m+5n=0 and 6mn-2nl+5lm=0

A.
$$\cos^{-1}\left(\frac{-1}{6}\right)$$

$$\mathsf{B.}\cos^{-1}\!\left(\frac{1}{2}\right)$$

$$\mathsf{C.}\cos^{-1}\!\left(\frac{-1}{3}\right)$$

D.
$$\cos^{-1}\left(\frac{1}{3}\right)$$

Answer: A

130. Direction ratios of two lines satisfy the relations 2a-b+2c=0 and ab+bc+ca=0. Then the angle between two lines is

- A. 60°
- B. 30°
- C. 90°
- D. 145°

Answer: C

131. IF the direction ratios of two vectors are connected by the relations p+q+r=0 and $p^2+q^2-r^2=0$. Find the angle between them.

- A. 90°
- B. 60°
- C. 45°
- D. 30°

Answer: B

132. The angle between diagonal of a cube and diagonal of a face of the cube will be

A.
$$\cos^{-1}\left(\frac{2}{3}\right)$$

B.
$$\cos^{-1}\left(\frac{1}{3}\right)$$

$$\mathsf{C.}\cos^{-1}\sqrt{\frac{2}{3}}$$

D.
$$\cos^{-1}\sqrt{\frac{1}{3}}$$

Answer: C

Watch Video Solution

133. Let $l_1, m_1, n_1, l_2, m_2, n_2$ and l_3, m_3, n_3 are direction cosine of three mutually perpendicular line OA, OB and OC.

If the direction cosines of OP are proportional to $l_1 + l_2 + l_3, m_1 + m_2 + m_3, n_1 + n_2 + n_3$ and angle made by OP with lines OA, OB, OC are respectively $\theta_1, \theta_2, \theta_3$, then

A.
$$heta_1 < heta_2 < heta_3$$

B.
$$heta_1= heta_2= heta_3$$

C. $\theta_1 > \theta_2 > \theta_3$

D.
$$heta_1 = heta_2 + heta_3$$

Answer: B

View Text Solution

134. The direction cosines of a line equally inclined to three mutually perpendiclar lines having direction cosines as $l_1,\,m_1,\,l_2,\,m_2,\,n_2$ and $l_3,\,m_3,\,n_3$ are

A.
$$l_1 + l_2 + l_3, m_1 + m_2 + m_3, n_1 + n_2 + n_3$$

B.
$$\frac{l_1+l_2+l_3}{\sqrt{3}}, \frac{m_1+m_2+m_3}{\sqrt{3}}, \frac{n_1+n_2+n_3}{\sqrt{3}}$$

C.
$$\frac{l_1+l_2+l_3}{3}, \frac{m_1+m_2+m_3}{3}, \frac{n_1+n_2+n_3}{3}$$

D.
$$rac{l_1+l_2+l_3}{3}, rac{m_1+m_2+m_3}{-3}, rac{n_1+n_2+n_3}{3}$$

Answer: B

135. Find the direction cosines of the two lines which are

connected by th relations.

$$l-5m+3n=0$$
 and $7l^2+5m^2-3n^2=0$

A.
$$\pm \frac{-1}{\sqrt{6}}, \ \pm \frac{1}{\sqrt{6}}, \ \pm \frac{2}{\sqrt{6}}$$

B.
$$\pm \frac{1}{\sqrt{6}}, \ \pm \frac{1}{\sqrt{6}}, \ \pm \frac{-2}{\sqrt{6}}$$

C.
$$\pm \frac{2}{\sqrt{6}}, \pm \frac{2}{\sqrt{6}}, \pm \frac{-1}{\sqrt{6}}$$

D.
$$\pm \frac{2}{\sqrt{6}}, \ \pm \frac{2}{\sqrt{6}}, \ \pm \frac{1}{\sqrt{6}}$$

Answer: A

136. If l_1, m_1, n_1 and l_2, m_2, n_2 are the direction cosines of two lines and l, m, n are the direction cosines of a line perpendicular to the given two lines, then

$$\begin{array}{l} \mathsf{A.} \, \frac{l}{\left| m_1 \quad n_1 \right|} = \frac{-m}{\left| l_1 \quad n_1 \right|} = \frac{n}{\left| l_1 \quad n_1 \right|} \\ \mathsf{B.} \, \frac{l}{\left| m_1 \quad n_1 \right|} = \frac{-m}{\left| l_1 \quad n_1 \right|} = \frac{-n}{\left| l_1 \quad n_1 \right|} \\ \mathsf{C.} \, \frac{-l}{\left| m_1 \quad n_1 \right|} = \frac{-m}{\left| l_1 \quad n_1 \right|} = \frac{n}{\left| l_1 \quad n_1 \right|} \\ \mathsf{C.} \, \frac{-l}{\left| m_1 \quad n_1 \right|} = \frac{m}{\left| l_1 \quad n_1 \right|} = \frac{n}{\left| l_1 \quad n_1 \right|} \\ \mathsf{D.} \, \frac{l}{\left| m_2 \quad m_2 \right|} = \frac{m}{\left| l_1 \quad n_1 \right|} = \frac{n}{\left| l_1 \quad n_1 \right|} \\ \end{array}$$

Answer: A

137. The direction ratios of vector perpendicular to the two

lines whose direction ratios are -2, 1, -1 and -3, -4, 1 are

- A. -3, 5, 11
- B. 3, -5, 11
- C. 3, 5, 11
- D.3, 5, -11

Answer: A

Watch Video Solution

138. The direction ratios of a vector perpendicular to the two lines whose direction ratios are 1, 3, 2 and -1, 1, 2 are

A.
$$-1, 1, 1$$

B.
$$1, 1, -1$$

C.
$$1, -1, 1$$

Answer: C

$$4, 1, 3 \text{ and } 2, -3, 1.$$

A.
$$\pm \frac{5}{5\sqrt{3}}, \ \pm \frac{1}{5\sqrt{3}}, \ \pm \frac{7}{5\sqrt{3}}$$
B. $\pm \frac{1}{\sqrt{3}}, \ \pm \frac{1}{5\sqrt{3}}, \ \pm \frac{-7}{5\sqrt{3}}$

C.
$$\pm \frac{5}{\sqrt{3}}$$
, $\pm \frac{1}{\sqrt{3}}$, $\pm \frac{7}{\sqrt{3}}$
D. $\pm \frac{5}{\sqrt{3}}$, $\pm \frac{1}{\sqrt{3}}$, $\pm \frac{-7}{\sqrt{3}}$

Answer: B

- **140.** Direction ratios of the line which is perpendicular to the lines with direction ratios (-1,2,2) and (0,2,1) are
 - A. 1, 1, 2
 - B. 2, -1, 2
 - C. -2, 1, 2
 - D. 2, 1, -2

Answer: B

Watch Video Solution

141. The direction cosines of the line which is perpendicular to the lines with direction ratios -1, 2, 2 and 0, 2, 1 are

A.
$$\frac{2}{9}$$
, $\frac{-1}{9}$, $\frac{-2}{9}$

B.
$$\frac{2}{3}$$
, $\frac{-1}{3}$, $\frac{-2}{3}$

c.
$$\frac{2}{9}$$
, $\frac{-1}{9}$, $\frac{2}{9}$

$$\text{D.}\,\frac{2}{3},\frac{-1}{3},\frac{2}{3}$$

Answer: D

142. The direction ratios of a line which is perpendicular to the two lines whose direction ratios are 3, -2, 4 and 1, 3, -2 is

- A. 8, 10, 11
- B. 8, -10, 11
- C. 8, 10, -11
- D. 8, 10, 11

Answer: A

143. The direction ratios of a line which is perpendicular to the two lines whose direction ratios are 3, -2, 1 and 2, 4, -2 is

- A. 0, 2, 1
- B. 0, -1, 2
- C. 0, 1, 2
- D. 0, 1, -2

Answer: C

- A. collinear
- B. vertices of an equilateral triangle
- C. vertices of an isosceles triangle
- D. vertices of a scalene triangle

Answer: A

- **145.** If the points (-1, 3, 3), (-2, 0, 1), (-4, -6, -3) and (2, 12, 9) are
 - A. vertices of square
 - B. vertices of rhombus
 - C. vertices of rectangle

D. collinear

Answer: D

Watch Video Solution

146. prove that point `A(5, -1, 1), B(7, -4, 7), C(1, -6, 10) and

D(-1, -3, 4) are vertices of a rhombus

A. square

B. rhombus

C. rectangle

D. parallelogram

Answer: B

147. The points (5, -4, 2), (4, -3, 1), (7, -6, 4) and (8, -7, 5) are the vertices of a

A. square

B. rectangle

C. rhombus

D. parallelogram

Answer: D

View Text Solution

148. The points (5, 0, 2), (2, -6, 0), (4, -9, 6) and (7, -3, 8) are the vertices of a

A. square

B. rectangle

C. rhombus

D. parallelogram

Answer: A

View Text Solution

149. The points (0, 7, 10), (-1, 6, 6), (-4, 9, 6) form

A. an isosceles triangle

- B. an equilateral triangle
- C. a right angled triangle
- D. a right angled isoceles triangle

Answer: D

Watch Video Solution

150. If the points A(4, 7, 6), B(2, 3, 2), C(-1, -2, -1) and D form a parallelogram, then $D \equiv$

- A. (3, 2, 1)
- B. (1, 2, 3)
- C.(3,1,2)

D. (2, 3, 1)

Answer: B

