

MATHS

BOOKS - NIKITA MATHS (HINGLISH)

VECTOR

MULTIPLE CHOICE QUESTIONS

- 1. Direction of zero vector
 - A. does not exist
 - B. is towards origin
 - C. is indeterminate
 - D. is determinate

Answer: C

ward water calculation

2. The system of vector \hat{i} , \hat{j} , \hat{k} is

A. orthogonal

B. coplanar

C. collinear

D. parallel

Answer: A

View Text Solution

3. If \bar{a} and \bar{b} are tow parallel vectors wth equal magnitude, then

A. a=b

B.ab = 0

 $\mathsf{C.}\, a \neq b$

D. a and b may or may not equal

Answer: D

View Text Solution

- **4.** If $ar{a}$ is a non-zero vector and k is a scalar such that $|kar{a}|=1, \,$ then k=
 - A. $|ar{a}|$
 - B. 1
 - C. $\frac{1}{|\bar{a}|}$
 - D. $\pm \frac{1}{|ar{a}|}$

Answer: D

5. If \bar{a} is a non-zero vector of modulus a and m is non-zero scalar, then $m\bar{a}$

is a unit vector, if

A.
$$m=\pm 1$$

B.
$$m=|ar{a}|$$

C.
$$m=rac{1}{|ar{a}|}$$

D. $m=\pm 2$

Answer: C

Watch Video Solution

6. Two vectors $ar{a}$ and $ar{b}$ are collinear or parellel of coincident vectors, if

A. $ar{a} \; ext{and} \; ar{b}$ are negatives of each other

B. $ar{a} \ {
m and} \ ar{b}$ are squares of each other

C. $ar{a} \ ext{and} \ ar{b}$ are scalar multiple of each other

D. $ar{a} \ ext{and} \ ar{b}$ are projections of each other

Answer: C

Watch Video Solution

7. If \overrightarrow{a} and \overrightarrow{b} are non-collinear vectors and x, y are some scalars such that $x\overrightarrow{a}+y\overrightarrow{b}=\overrightarrow{0}$, then

A.
$$x=0,y
eq 0$$

B.
$$x \neq 0, y \neq 0$$

C.
$$x \neq 0, y = 0$$

D.
$$x = 0, y = 0$$

Answer: D

Watch Video Solution

8. If ar a, ar b, ar c are non-collinear vectors such that for some scalars x,y,z,xar a+yar b+zar c=ar 0, then

A.
$$x=0,y
eq 0,z
eq 0$$

$$\mathtt{B.}\,x\neq 0,y=0,z\neq 0$$

C.
$$x
eq 0, y
eq 0, z = 0$$

D.
$$x = 0, y = 0, z = 0$$

Answer: D

View Text Solution

are scalars represents a vector which is

9. If $ar{a}$ and $ar{b}$ are two non-collinear vectors, then $xar{a}+yar{b}$, where x and y

A. parallel to $ar{b}$

B. parallel to \bar{a}

C. coplanar with $\bar{a} \; {
m and} \; \bar{b}$

D. coplanar with $\bar{a} \ {
m or} \ \bar{b}$

Answer: C

10.
$$[\,ar{a}\ \ ar{b}\ \ ar{c}\,]$$
 is the scalar triple product of three vectors $ar{a}, ar{b}, ar{c}$ then

$$\left[ar{a} \quad ar{b} \quad ar{c}\,
ight] =$$

A.
$$[\,ar{b}\quadar{a}\quadar{c}\,]$$

B.
$$[\,ar{c}\ ar{b}\ ar{a}\,]$$

C.
$$[\,ar{b}\ ar{c}\ ar{a}\,]$$

D.
$$[\,ar{a}\ ar{c}\ ar{b}\,]$$

Answer: C

Watch Video Solution

11. Let the vectors $ar u, \, ar v, \, \overline w$ be coplanar, , then $ar u \cdot (ar v imes \overline w)$ =

A. 0

B. $ar{v}$

C. a unit vectors

D. $ar{u}$

Answer: A

Watch Video Solution

12. The vectors \bar{a} lies in the plane of vectors \bar{b} and \bar{c} . Which of the following is correct?

A.
$$ar{a}\cdot\left(ar{b} imesar{c}
ight)=0$$

B.
$$ar{a}\cdot\left(ar{b} imesar{c}
ight)=1$$

$$\mathsf{C.}\,ar{a}\cdotig(ar{b} imesar{c}ig)=\,-\,1$$

D.
$$ar{a}\cdot\left(ar{b} imesar{c}
ight)=3$$

Answer: A

13. Which of the following represents the volume of paralleloP1ped. If

$$\overline{OA}=ar{a}, \overline{OB}=ar{b}, \overline{OC}=ar{c}$$
 are its co-terminous edges?

- A. $\frac{1}{2}[\bar{a}\ \bar{b}\ \bar{c}]$
- B. $\frac{1}{6}[\bar{a}\ \bar{b}\ \bar{c}]$
- C. $[\,ar{a}\quadar{c}\quadar{b}\,]$
- D. $[\,ar{a}\ ar{b}\ ar{c}\,]$

Answer: D

Watch Video Solution

14. The volume of the tetrahedron with $ar{a}, ar{b}, ar{c}$ as its co-terminous as is given by

- A. $\frac{1}{2}[\bar{a}\ \bar{b}\ \bar{c}]$
 - $\mathsf{B.}\,\frac{1}{3}[\,\bar{a}\quad\bar{b}\quad\bar{c}\,]$
 - C. $\frac{1}{6}$ [\bar{a} \bar{b} \bar{c}]

D.
$$[\,ar{a}\ ar{b}\ ar{c}\,]$$

Answer: D

Watch Video Solution

15. The volume of the tetrahedron with $\bar{a}, \bar{b}, \bar{c}$ as its co-terminous as is given by

A.
$$\frac{1}{6}$$
 $[\bar{a}\ \bar{b}\ \bar{c}]$

B.
$$[\,ar{a}\ ar{b}\ ar{c}\,]$$

C.
$$\frac{1}{3}[\bar{a} \ \bar{b} \ \bar{c}]$$

$$\mathrm{D.}\; \frac{1}{2}[\; \bar{a} \quad \bar{b} \quad \bar{c}\;]$$

Answer: A

16. If $\bar{p}, \bar{q}, \bar{r}$ are any three vectors, which of the following statements is not true?

A.
$$(ar{q} imesar{r})\cdotar{p}=ar{p}\cdot(ar{q} imesar{r})$$

B.
$$(ar{p} imesar{q})\cdotar{r}=ar{r}\cdot(ar{p} imesar{q})$$

C.
$$(ar{p} imesar{q})\cdotar{r}=(ar{q} imesar{p})\cdotar{r}$$

D. $(ar p imesar q)\cdotar r$ represents the volume of the paralleloP1ped with coterminous edges ar p, ar q, ar r

Answer: C

Watch Video Solution

17. If $\bar{p}, \bar{q}, \bar{r}$ are any three vectors, which of the following statements is not true?

A.
$$ar{p}\cdot(ar{q} imesar{r})=(ar{q} imesar{r})\cdotar{p}$$

B.
$$ar p \cdot (ar q imes ar r) = (ar p imes ar q) \cdot ar r$$

C.
$$ar{p}\cdot(ar{q} imesar{r})=(ar{p} imesar{r})\cdotar{p}$$

D.
$$ar{p}\cdot(ar{q} imesar{r})=(ar{r} imesar{p})\cdotar{q}$$

Answer: C

- **18.** If $\bar{a} \ {
 m and} \ \bar{b}$ are parallel vectors $[\ \bar{a} \ \ \bar{b} \ \ \bar{c}\]$ =
 - **A.** 0
 - **B**. 1
 - C. 2
 - D. 4

Answer: A

The unit vectors parallel to the resultant vectors 19. of $2\hat{i}+4\hat{j}-5\hat{k}$ and $\hat{i}+2\hat{j}+3\hat{k}$ is

A.
$$rac{3\hat{i}+6\hat{j}-2\hat{k}}{7}$$

B.
$$\dfrac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$$

C.
$$\frac{\hat{i}+\hat{j}+2\hat{k}}{\sqrt{6}}$$

D.
$$\dfrac{-\,\hat{i}\,-\,\hat{j}\,+\,8\hat{k}}{\sqrt{69}}$$

Answer: A

Watch Video Solution

20. If
$$\widehat{e_1}$$
, $\widehat{e_2}$ and $\widehat{e_1}$ + $\widehat{e_2}$ are unit vectors, then angle between $\widehat{e_1}$ and $\widehat{e_2}$.

is

A.
$$90^\circ$$

B.
$$120^{\circ}$$

C.
$$450^{\circ}$$

D. 135°

Answer: B

Watch Video Solution

21.
$$\left(ar{a}\cdot\hat{i}
ight)\hat{i}+\left(ar{a}\cdot\hat{j}
ight)\hat{j}+\left(ar{a}\cdot\hat{k}
ight)\hat{k}
ight)=$$

A. $ar{a}$

B. $2ar{a}$

C. $3ar{a}$

D. 0

Answer: A

Watch Video Solution

22. If $ar{a}\cdot\hat{i}=ar{a}\cdot\left(2\hat{i}+\hat{j}
ight)=ar{a}\cdot\left(\hat{i}+\hat{j}+3\hat{k}
ight)=$ 1, then $ar{a}=$

A.
$$\hat{i}-\hat{j}+\hat{k}$$

B. $3\hat{i}-3\hat{j}+3\hat{k}$

 $\mathsf{C.}\,\frac{\hat{i}+\hat{j}+2\hat{k}}{3}$

D.
$$rac{3\hat{i}-3\hat{j}+\hat{k}}{3}$$

D.
$$\frac{3t-3f+}{3}$$

Answer: D

Watch Video Solution

23. If $ar{c}=5ar{a}-4ar{b} \ \ {
m and} \ \ ar{a}$ is perpendicular to $ar{b}$, then $c^2=$

A. $5a^2 + 4b^2$

$$\mathsf{B.}\,5a^2+16b^2$$

$$\mathsf{C.}\,25a^2+16b^2$$

Answer: C

24. If
$$ar c=2ar a+5ar b,$$
 $|ar a|=a,$ $|ar b|=b$ and the angle between $ar a$ and $ar b$ is $\frac{\pi}{3}$, then c^2 =

A.
$$4a^2 + 10ab + 25b^2$$

B.
$$a^2 + 10ab + 5b^2$$

C.
$$4a + 10ba + 25b^2$$

$$\mathsf{D.}\,4a+10ab+b^2$$

Answer: A

Watch Video Solution

25. If the angle between $ar{b}$ and $ar{c}$ is $\dfrac{\pi}{3}$ and $ar{a}=ar{b}+4ar{c}$, then $a^2=$

A.
$$b^2 + bc + c^2$$

$$\mathsf{B.}\,b^2+4bc+5b^2$$

$$\mathsf{C.}\,b^2 + 4bc + 16c^2$$

D.
$$b^2 + 8bc + 16c^2$$

Answer: C

Watch Video Solution

- **26.** If the angle between $ar{a}$ and $ar{b}$ is $rac{P1}{4}$ and $ar{c}=3ar{a}-3ar{b}$, then $c^2=$
 - A. $9a^2+\sqrt{2}ab+4b^2$
 - B. $9a^2-6\sqrt{2}ab+4b^2$
 - C. $9a^2 6ab + 4b^2$
 - $\mathsf{D.}\,9a^2+b^2+6ab$

Answer: B

View Text Solution

27. If the angle between \overrightarrow{a} and \overrightarrow{b} is $\frac{\pi}{6}$ and $\overrightarrow{c}=\overrightarrow{a}+3\overrightarrow{b}$, then $c^2=$

A.
$$a^2+\sqrt{3}ab+ab^2$$

B. $a^2+2\sqrt{3}ab+b^2$

$$\mathsf{C.}\,a^2+3ab+b^2$$

D.
$$a^2+3\sqrt{3}ab+9b^2$$

Answer: D

Watch Video Solution

28. If $\bar{b}=\bar{a}-4\bar{c}$ and angle between \bar{a} and \bar{c} is $\frac{\pi}{6}$ and a=2, c=1

then $b^2 =$

A.
$$20-\sqrt{3}$$

B.
$$20-8\sqrt{3}$$

C.
$$16-4\sqrt{3}$$

D.
$$15-\sqrt{3}$$

Answer: B

29. If the position vectors of the vertices of a triangle be

$$2\hat{i}+4\hat{j}-\hat{k},4\hat{i}+5\hat{j}+\hat{k}\ \ {
m and}\ \ 3\hat{i}+6\hat{j}-3\hat{k}$$
 , then the triangle is

- A. right angled
- B. isosceles
- C. equilateral
- D. right angled isosceles

Answer: D

Watch Video Solution

30. If $7\hat{j}+10\hat{k},~-\hat{i}+6\hat{j}+6\hat{k}$ and $-4\hat{i}+9\hat{j}+6\hat{k}$ are vertices of a triangle, then it is

A. only isosceles

B. only right angled

C. equilateral

D. isosceles right angled

Answer: D

Watch Video Solution

31. Let α, β, γ be distinct real numbers. The points with position vectors

$$lpha\hat{i}+eta\hat{j}+\gamma\hat{k},eta\hat{i}+\gamma\hat{j}+lpha\hat{k},\gamma\hat{i}+lpha\hat{j}+eta\hat{k}$$

A. are collinear

B. form an equilateral triangle

C. form a right angled triangle

D. form a scalene triangle

Answer: B

perimeter

the

triangle with sides

 $3\hat{i}+4\hat{j}+5\hat{k},4\hat{i}-3\hat{j}+5\hat{k}$ and $7\hat{i}+\hat{j}$ is

The

- A. $\sqrt{450}$
- B. $\sqrt{150}$
- C. $\sqrt{50}$
- D. $\sqrt{200}$

Answer: A

Watch Video Solution

33. The perimeter of the triangle whose vertices have the position vectors

$$\hat{i}+\hat{j}+\hat{k}, 5\hat{i}+3\hat{j}-3\hat{k}$$
 and $2\hat{i}+5\hat{j}+9\hat{k}$ is

- A. $15 + \sqrt{157}$
- B. $16 + \sqrt{157}$

C.
$$15 - \sqrt{157}$$

D.
$$\sqrt{15}-\sqrt{157}$$

Answer: A

Watch Video Solution

34. Let $ar{\lambda}=ar{a} imesig(ar{b}+ar{c}ig), \overline{\mu}=ar{b} imes(ar{c}+ar{a}), ar{\gamma}=ar{c} imesig(ar{a}+ar{b}ig)$, then

A.
$$ar{\lambda}+\overline{\mu}=ar{\gamma}$$

B. $ar{\lambda}, \overline{\mu}, ar{\gamma}$ are coplanar

C.
$$ar{\lambda}+ar{\gamma}=2\overline{\mu}$$

D.
$$ar{\lambda}+ar{\gamma}=\overline{\mu}$$

Answer: B

35.
$$\left|egin{array}{ccc} ar{a}\cdotar{a} & ar{a}\cdotar{b} \ ar{a}\cdotar{b} & ar{b}\cdotar{b} \end{array}
ight|=$$

C.
$$\left|ar{a} imesar{b}
ight|^2$$

B. $a^{2}b^{2}$

D.
$$\left(ar{a}\cdotar{b}
ight)$$

Answer: C

36. The value of
$$\begin{vmatrix} \bar{a}\cdot\bar{a} & \bar{a}\cdot\bar{b} & \bar{a}\cdot\bar{c} \\ \bar{b}\cdot\bar{a} & \bar{b}\cdot\bar{b} & \bar{b}\cdot\bar{c} \\ \bar{c}\cdot\bar{a} & \bar{c}\cdot\bar{b} & \bar{c}\cdot\bar{c} \end{vmatrix} =$$

A.
$$- [\,ar{a} \quad ar{b} \quad ar{c}\,]$$

B.
$$2[\,ar{a}\quadar{b}\quadar{c}\,\,]$$

C.
$$\left[ar{a} \ ar{b} \ ar{c}
ight]^2$$

D.
$$[ar{a} \ ar{b} \ ar{c}]$$

Answer: C

then

View Text Solution

37. If ar a,ar b,ar c be three vecotrs such that ar a imesar b=ar c,ar b imesar c=ar a,ar c imesar a=ar b,

A.
$$|ar{a}|=\left|ar{b}\right|$$

B.
$$|ar{b}|=|ar{c}|$$

C.
$$|ar{a}|=|ar{c}|$$

D.
$$|ar{a}|=ig|ar{b}ig|=ig|ar{c}ig|$$

Answer: D

Watch Video Solution

38. If $|\bar{a}|=50$ and $\bar{b}=6\hat{i}-8\hat{j}-\frac{15}{2}\hat{k}$ are collinear vectors such that the angle made by \bar{a} with positive Z-axis is acute , then $\bar{a}=$

A.
$$-12\hat{i}+16\hat{j}+15\hat{k}$$

B.
$$12\hat{i}-16\hat{j}-15\hat{k}$$

C.
$$-24\hat{i}\,+32\hat{j}\,+30\hat{k}$$

D.
$$24\hat{i}-32\hat{j}-30\hat{k}$$

Answer: C

Watch Video Solution

39. If
$$ar{a}$$
 and $ar{b}$ are the position vectors of the points $(1,-1),(-2,m)$ and $ar{a},ar{b}$ are collinear, then m=

- A.-2
 - B. 2
 - C. 3
 - D.-3

Answer: B

40. If the vectors $3\hat{i}-5\hat{j}+\hat{k}$ and $9\hat{i}-15\hat{j}+p\hat{k}$ are collinear, then find the value p.

$$A.-3$$

B. 3

$$\mathsf{C.}\,\frac{-1}{3}$$

D. $\frac{1}{3}$

Answer: B

Watch Video Solution

41. If the vectors $2\hat{i}-q\hat{j}+3\hat{k}$ and $4\hat{i}-5\hat{j}+6\hat{k}$ are collinear, then of q is

A. 5

$$\mathsf{C.}\ \frac{5}{2}$$

D.
$$\frac{5}{4}$$

Answer: C

Watch Video Solution

42. The value of k for which the vectors $ar{a}=\hat{i}-\hat{j}$ and $ar{b}=-2\hat{i}+k\hat{j}$ are colllinear is

A. 2

B. 3 c. $\frac{1}{3}$

 $\mathsf{D.}\,\frac{1}{2}$

Answer: A

Let

 $ar{a} \ ext{and} \ ar{b}$

be

non-collinear.

lf

 $ar{c}=(x-2)ar{a}+ar{b} \ \ {
m and} \ \ ar{d}=(2x+1)ar{a}-ar{b}$ are collinear, then x=

- A. $\frac{-2}{3}$
- $\mathsf{B.}\;\frac{2}{3}$
- $C. \frac{-1}{3}$ $D. \frac{1}{3}$

Answer: D

View Text Solution

44. If the points A(3,2,-4), B(9,8,-10) and C(-2,-3,p) are collinear, then p=

A. 9

 $\mathsf{B.}-9$

C. 1

D. -1

Answer: C

Watch Video Solution

45. If the points $A(4,5,2),\,B(3,2,p)\,$ and $\,C(5,8,0)$ are collinear , then

p=

A. -4

B. 4

C. 0

D. 2

Answer: B

46. If the points A(2,1,1,), B(0,-1,4) and C(k,3,-2) are collinear, then k=

A. 0

B. 1

C. 4

D.-4

Answer: C

Watch Video Solution

47. If the points $A(5,\,-6,\,-2), B(p,2,4)$ and $C(3,\,-2,1)$ are collinear, then p=

A.-4

B. 4

 $\mathsf{C.}-1$

Answer: D

Watch Video Solution

- **48.** If the points A(1, -2, 3), B(2, 3, -4) and C(0, -p, 10) are collinear, then p=
 - A. 7
 - B. 7
 - **C**. 5
 - D.-5

Answer: A

49. If the points $A(1,\;-2,2),\,B(3,1,1)\;\;\mathrm{and}\;\;C(\;-1,p,3)$ are collinear, then p=

50. If $P(5,6,\,-1),\,Q(2,\,-7,\beta)$ and $R(\,-1,\,-20,7)$ are collinear ,

B.-5

D.
$$-1$$

Answer: B

A. 2

then $\beta =$

- В. 3
- **C**. 5

Answer: B

Watch Video Solution

51. If the points A(3,0,p),B(-1,q,3) and C(-3,3,0) are collinear, then find

- (1) the ratio in which the points C divides the line segment AB
- (2) the value of p and q.

A.
$$p = 9, q = 2$$

B.
$$p = 9, q = -2$$

C.
$$p = -9$$
, $q = -2$

D.
$$p = -9, q = 2$$

Answer: A

52. If the points with position vectors $60\hat{i}+2\hat{j}, 40\hat{i}-8\hat{j}anda\hat{i}-52\hat{j}$ are collinear, find the value of a.

A.
$$a = -40$$

$$\mathsf{B.}\,a=40$$

$$C. a = 20$$

D.
$$a = 30$$

Answer: A

53. The points with position vectors ar a+ar b, ar a-ar b and ar a+kar b are collinear for

A. all real values of k

B. all positive values of k

C. all negative values of k

D.
$$k=\pm 1$$

Answer: A

Watch Video Solution

54. If the position vectors of the points A,B and C be a,b and 3a-2b respectively, then prove that the points A,B and C are collinear.

A. collinear

B. non-collinear

C. form a right angled triangle

D. non-coplanar

Answer: A

55. If position vectors of four points A, B, C, D are
$$\hat{i}+\hat{j}+\hat{k},2\hat{i}+3\hat{j},3\hat{i}+5\hat{j}-2\hat{k},-\hat{j}+\hat{k}$$
 respectively,

 $ar{a} = \hat{i} - 2\hat{j} + 3\hat{k}, \, ar{b} = 2\hat{i} + 3\hat{j} - 4\hat{k}, \, ar{c} = 4\hat{i} + 13\hat{j} - 18\hat{k} \, ext{ and } \, ar{c} = ar{a}x + yar{b}$

If

$$\overline{AB}$$
 and \overline{CD} are related as

B. parallel

C. independent

D.
$$\overline{AB}\cdot\overline{CD}=6$$

Answer: B

56.

, then

Watch Video Solution

A. x = 2, y = 3

B. x = -2, y = -3

$$\mathsf{C.}\,x=2,y=\,-\,3$$

D.
$$x = -2, y = 3$$

Answer: D

, then

Watch Video Solution

If

$$ar{a} = \, -\, \hat{i} \, -\, \hat{j} + 2\hat{k}, \, ar{b} = 3\hat{i} \, +\, \hat{j} - \hat{k}, \, ar{c} = 9\hat{i} \, +\, \hat{j} + 2\hat{k} \, ext{ and } \, ar{c} = xar{a} + yar{b}$$

A. x = 3, y = 4

B. x = 3, y = -4

C. x = -3, y = 4

D. x = -3, y = -4

Answer: A

58. If
$$ar{a}=\hat{i}-\hat{j}-2\hat{k}, ar{b}=2\hat{i}-\hat{j}-\hat{k}, ar{c}=3\hat{i}-\hat{k} \ ext{and} \ ar{c}=mar{a}+nar{b},$$

59. If $ar a=\hat i+3\hat j,$ $ar b=2\hat i+5\hat j,$ $ar c=4\hat i+2\hat j$ and $ar c=t_1ar a+t_2ar b$, then

then m+n=

B. 1

C.2

D.
$$-1$$

Answer: A

A.
$$t_1 = -16, t_2 = -10$$

B.
$$t_1 = -16, t_2 = 10$$

 $\mathsf{C.}\,t_1=16,t_2=\,-\,10$

D. $t_1 = 16, t_2 = 10$

Answer: B

Watch Video Solution

60. If $ar{a}=\hat{i}+2\hat{j},$ $ar{b}=-2\hat{i}+\hat{j},$ $ar{c}=4\hat{i}+3\hat{j}$ and $ar{c}=xar{a}+yar{b}$, then

A.
$$x = 2, y = 1$$

B.
$$x = -2, y = 1$$

$$\mathsf{C.}\, x = 2, y = \,-1$$

D.
$$x = -2, y = -1$$

Answer: C

B. x=2,y=3,z=1

C. x = 1, y = 2, z = 3

D. x = 1, y = 3, z = 2

A. x = 3, y = 2, z = 1

 $ar{a} = 2\hat{i} - \hat{j} + 3\hat{k}, \, ar{b} = \hat{i} - 2\hat{j} + 4\hat{k}, \, ar{c} = -\hat{i} + 3\hat{j} - 5\hat{k} \, ext{ and } \, ar{d} = \hat{i} + 4\hat{j} - \hat{j} + \hat{j$

 $ar{a} = 2\hat{i} + \hat{j} - 4\hat{k}, \, ar{b} = 2\hat{i} - \hat{j} + 3\hat{k}, \, ar{c} = 3\hat{i} + \hat{j} - 2\hat{k} \, ext{ and } \, ar{d} = - \, \hat{i} - 3\hat{j} + \hat{j} +$

If

If

61.

, then

Answer: C

62.

, then

Average vertical and a feature of

Watch Video Solution

A. $x=2, y=\,-2, z=3$

B. x = 2, y = 2, z = -3

C. x = -2, y = 2, z = 3

D. x = 2, y = 2, z = 3

Answer: B

63.

Watch Video Solution

 $ar{a} = 2\hat{i} - \hat{j} + \hat{k}, ar{b} = \hat{i} + 3\hat{j} - 2\hat{k}, ar{c} = -2\hat{i} + \hat{j} - 3\hat{k} ext{ and } ar{d} = 3\hat{i} + 2\hat{j} - \hat{j}$

, then

A. y, x, z are in AP

B. y, x/2, z are in AP C. x, y, z are in AP

D. x, y, z are in GP

lf

64. If
$$\bar{a}$$
, \bar{b} , \bar{c} are three coplanar vectors, the $\begin{vmatrix} \bar{a} & \bar{b} & \bar{c} \\ \bar{a} \cdot \bar{a} & \bar{a} \cdot \bar{b} & \bar{a} \cdot \bar{c} \\ \bar{b} \cdot \bar{a} & \bar{b} \cdot \bar{b} & \bar{b} \cdot \bar{c} \end{vmatrix}$ =

A.
$$-1$$

$$\mathsf{B}.\,\bar{0}$$

Answer: B

View Text Solution

$$ar p=ar a-ar b+ar c, ar q=ar a+ar b-3ar c, ar r=ar a+4ar b+mar c$$
 are collinear then m=

the

vectors

65. If $\bar{a}, \bar{b}, \bar{c}$ are non-coplanar and

A.
$$-9$$

B.9

C. - 11

D. 11

Answer: D

View Text Solution

66. If $ar{a}, ar{b}, ar{c}$ are non-coplanar and the vectors ar p=2ar a-4ar b+4ar c, ar q=ar a+mar b+4ar c, ar r=-ar a+2ar b+4ar c are collinear then m=

A. 6

B.-6

C. 2

D.-2

Answer: C

67. If
$$ar a, ar b, ar c$$
 are non-coplanar and the vectors $ar p=3ar a+ar b+4ar c, ar q=2ar a+2ar b+3ar c, ar r=ar a+3ar b+mar c$ are collinear then m=

$$\mathsf{B.}-3$$

$$\mathsf{D.}-5$$

Answer: A

View Text Solution

68. If $\bar{p}=\hat{i}-2\hat{j}+\hat{k}$ and $\bar{q}=\hat{i}+4\hat{j}-2\hat{k}$ are position vectors points P and Q. find the position vector of the points R which divides segment PQ internally in the ratio 2:1.

A.
$$\hat{i}-2\hat{j}-\hat{k}$$

B.
$$\hat{i}-2\hat{j}+\hat{k}$$

C.
$$\hat{i}-2\hat{j}-\hat{k}$$

D.
$$\hat{i} + 2\hat{j} + \hat{k}$$

Answer: D

- **69.** If $\bar{p}=\hat{i}-2\hat{j}+\hat{k}$ and $\bar{q}=\hat{i}+4\hat{j}-2\hat{k}$ are position vectors points P and Q. find the position vector of the points R which divides segment PQ internally in the ratio 2:1.
 - A. (1, 2, 1)
 - B. (1, -2, -1)
 - C. (1, -2, 1)
 - D. (1, 2, -1)

Watch Video Solution

70. If $ar{a}=2\hat{i}-\hat{j}+5\hat{k},$ $ar{b}=-3\hat{i}+2\hat{j}$ are the position vectors of points

A, B respectively and points C(ar c) divides the line segment AB internallly in the ratio 1:4 , then ar c=

A.
$$\hat{i}-rac{2}{5}\hat{j}-4\hat{k}$$

B.
$$\hat{i}-rac{2}{5}\hat{j}+4\hat{k}$$

C.
$$\hat{i}+rac{2}{5}\hat{j}-4\hat{k}$$

D.
$$\hat{i}+rac{2}{5}\hat{j}+4\hat{k}$$

Answer: C

71. Find the corrdinates of the point which divides the line segment joining the points A(2,-6,8) and B(-1,3,-4) externally in the ratio 1:3.

$$\mathsf{A.}\left(\frac{1}{4},\frac{-3}{4},1\right)$$

B.
$$\left(\frac{1}{4},\frac{-3}{4},-1\right)$$
C. $\left(\frac{5}{4},\frac{-15}{4},5\right)$

D.
$$\left(\frac{5}{4}, \frac{-15}{4}, -5\right)$$

Answer: A

Watch Video Solution

72. If the point C divides the line segment joining the points A(4, -2, 5) and B(-2, 3, 7) externally in the ratio 8:5, then points C

is

A.
$$\left(-12, \frac{34}{3}, \frac{31}{3}\right)$$

B.
$$\left(-12, \frac{31}{3}, \frac{34}{3}\right)$$

C.
$$\left(-12, \frac{14}{3}, \frac{31}{3}\right)$$
D. $\left(-12, \frac{31}{3}, \frac{14}{3}\right)$

Answer: C

Watch Video Solution

73. If the point C divides the line segment joining the points A(2, -1, -4) and B(3, -2, 5) externally in the ratio 3:2, then points

C is

A. (5, -4, -23)

B. (5, 4, -23)

C. (5, -4, 23)

D. (5, 4, 23)

Answer: D

74. Find the corrdinates of the point which divides the line segment joining the points A(2,-6,8) and B (-1,3,-4) externally in the ratio 1:3.

A.
$$\left(\frac{-7}{2}, \frac{-21}{2}, 14\right)$$

B.
$$\left(\frac{7}{2}, \frac{-21}{2}, -14\right)$$

c.
$$\left(\frac{-7}{2}, \frac{21}{2}, -14\right)$$

D.
$$\left(\frac{7}{2}, \frac{-21}{2}, 14\right)$$

Answer: C

Watch Video Solution

75. The co-ordinates of the points which trisects the line segment joining the points $A(2,1,4) \ {
m and} \ B(\,-1,3,6)$ are

A.
$$\left(-1, \frac{5}{3}, \frac{14}{3}\right), \left(0, \frac{7}{3}, \frac{16}{3}\right)$$

B.
$$\left(1, \frac{5}{3}, \frac{14}{3}\right), \left(0, \frac{-7}{3}, \frac{16}{3}\right)$$

C.
$$\left(1, \frac{5}{3}, \frac{14}{3}\right), \left(0, \frac{7}{3}, \frac{16}{3}\right)$$
D. $\left(-1, \frac{5}{3}, \frac{14}{3}\right), \left(0, \frac{-7}{3}, \frac{16}{3}\right)$

Answer: D

Watch Video Solution

76. If the position vectors of points P, Q, R and

 $\overline{P},ar{q},ar{r}$ are $ar{r}=rac{5ar{p}-3ar{q}}{2}$, then

A. R divides QP in internally in the ratio 5:3

B. R divides QP in externally in the ratio 5:3

C. R divides QP in internally in the ratio 5:3

D. R divides QP in externally in the ratio 5:3

Answer: A

77. If the position vectors of points P, Q, R and \overline{P} , $ar{q}$, $ar{r}$ are $ar{r}=rac{2ar{p}+ar{q}}{3}$,

then

A. R divides QP in internally in the ratio 2:2

B. R divides QP in externally in the ratio 2:2

C. R divides QP in internally in the ratio 3:2

D. R divides QP in externally in the ratio 3:2

Answer: B

View Text Solution

- **78.** If the position vectors of points A, B, C and ar a, ar b, ar c are $ar c = rac{7ar a 3ar b}{4}$, then
- A. C divides BA in internally in the ratio 7:3
 - B. C divides BA in externally in the ratio 7:3
 - C. C divides AB in internally in the ratio 7:3

D. C divides AB in internally in the ratio 7:3

Answer: B

Watch Video Solution

79. If the position vectors of points A, B, C and $ar{a}, ar{b}, ar{c} ~~{
m are} ~~ ar{c} = 5ar{a} - 4ar{b}$,

then

A. C divides BA in internally in the ratio 5:4

B. C divides BA in externally in the ratio 4:5

C. C divides AB in internally in the ratio 5:4

D. C divides AB in externally in the ratio 5:4

Answer: D

80. If the points A(ar a), B(ar b), C(ar c) are collinear and 2ar a+3ar b-5ar c=ar 0,

then

A. C divides BA in internally in the ratio 2:3

B. C divides BA in externally in the ratio 2:3

C. C divides AB in internally in the ratio 3:2

D. C divides AB in externally in the ratio 3:2

Answer: C

Watch Video Solution

81. If $ar{a}, \, ar{b}, \, ar{c}$ are position vectors of points A, B, C respectively such that

 $3ar{a}+5ar{b}=8ar{c}$, then C divides AB,

A. externally in the ratio 3:5

B. internally in the ratio 3:5

C. externally in the ratio 5:3

D. internally in the ratio 5:3

Answer: D

Watch Video Solution

- **82.** If $\bar{a}, \bar{b}, \bar{c}$ are position vectors of points A, B, C respectively such that
- $3ar{a}+5ar{b}=8ar{c}$ then A divides BC

A. externally in the ratio 5:8

B. internally in the ratio 5:8

C. externally in the ratio 8:5

D. internally in the ratio 8:5

Answer: C

83. If $ar{a}, \, ar{b}, \, ar{c}$ are position vectors of points A, B, C respectively such that

$$5ar{a}-3ar{b}-2ar{c}=0$$
, then

- A. C divides BA in internally in the ratio 5:3
- B. C divides BA in externally in the ratio 5:3
- C. C divides AB in internally in the ratio 5:3
- D. C divides AB in internally in the ratio 5:3

Answer: B

Watch Video Solution

84. If the points A(ar a), B(ar b), C(ar c) are collinear and 3ar a+2ar b-5ar c=ar 0, then

A. Three points forms triangles ABC

- B. C is the mid-point of seq. AB
- C. C divides AB internally in ratio 2:3

D. C divides AB externally in ratio 3:2

Answer: C

Watch Video Solution

85. Find the position vector of the point which divides the join of the points $\left(2\overrightarrow{a}-3\overrightarrow{b}\right)$ and $\left(3\overrightarrow{a}-2\overrightarrow{b}\right)$ (i) internally and (ii) externally in the ratio 2: 3.

A. $12ar{a}$

B. $-12ar{a}$

C. $5 \bar{b}$

D. $-5ar{b}$

Answer: D

86. If the points $A(3,0,p),\,B(\,-1,q,3),\,C(\,-3,3,0)$ are collinear, then

A. C divides AB externally in ratio 1:3

B. C divides AB internally in ratio 1:3

C. C divides AB externally in ratio 3:1

D. C divides AB internally in ratio 3:1

Answer: C

Watch Video Solution

87. If the points $A(2,p,1),\,B(1,2,q),\,C(3,2,1)$ are collinear, then

A. C divides AB externally in ratio 1:2

B. C divides AB internally in ratio 1:2

C. C divides AB externally in ratio 2:1

D. C divides AB internally in ratio 2:1

Answer: A

Watch Video Solution

88. If the points $A(2,p,1),\,B(1,2,q),\,C(3,2,1)$ are collinear, then

A.
$$p = 1, q = 2$$

B.
$$p = 2, q = 1$$

C.
$$p = -1$$
, $q = -2$

D.
$$p = -2, q = -1$$

Answer: B

Watch Video Solution

89. If the points $A(3,2,p),\,B(q,8,\,-10),\,C(\,-2,\,-3,1)$ are collinear, then

A. C divides BA in internally in the ratio 11:5

B. C divides BA in externally in the ratio 11:5

C. C divides AB in internally in the ratio 5:11

D. C divides AB in externally in the ratio 5:11

Answer: D

Watch Video Solution

90. If the points $A(3,2,p),\,B(q,8,\,-10),\,C(\,-2,\,-3,1)$ are collinear, then

A.
$$p = -4$$
, $q = -9$

B. p = -4, q = 9

C.
$$p = 4, q = 9$$

D.
$$p=4, q=9$$

Answer: B

91. In \triangle ABC, D divides BC in the ratio l:m, G divides AD in the ratio

A.
$$rac{mar{c}+lar{b}}{m+l}$$

B.
$$rac{mar{c}-lar{b}}{m+l}$$

C.
$$rac{lar{c}+mar{b}}{m+l}$$

D.
$$rac{lar{c}-lar{b}}{m-l}$$

Answer: C

Watch Video Solution

92. In $\triangle ABC$, D divides BC in the ratio l:m, G divides AD in the ratio

(l+m):n then the position vector of G is

A.
$$rac{mar{c}+nar{b}+lar{a}}{m+n+l}$$

B.
$$rac{lar{a}+mar{b}+nar{c}}{m+n+l}$$

C.
$$\dfrac{nar{c}+lar{b}+mar{a}}{m+n+l}$$
D. $\dfrac{lar{c}+mar{b}+nar{a}}{m+n+l}$

Answer: D

Watch Video Solution

The positon vectors of points P, Q, R are given by ar p=ar a-2ar b+3ar c, ar q=-2ar a+3ar b+2ar c, ar r=-8ar a+13ar b. If the points

P, Q, R are collinear, then the ratio in which point P divides the line segment RQ is

A.
$$-3:1$$

B.3:1

C. -1:3

D. 1:3

Answer: A

Watch Video Solution

94. In $\triangle ABC$, if the points P, Q, R divides the sides BC, CA, AB in the ratio 1:4, 3:2, 3:7 respectively and the point S divides side AB in the ratio 1:3, then $(\overline{AP} + \overline{BQ} + \overline{CR}) : (\overline{CS})$ =

- A. 2:5
- B.5:2
- C.4:5
- D.5:4

Answer: A

95. If the origin is the centroid of the triangle whose vertices are A (2,p,-3),

B(q,-2,5) and C(-5,1,r), then find the values of p,q and r.

A.
$$p=1,\,q=\,-\,3,\,r=\,-\,2$$

B.
$$p=1, q=3, r=\ -2$$

$$\mathsf{C.}\, p=1, q=3, r=2$$

D.
$$p=\,-1, q=\,-3, r=\,-2$$

Answer: B

Watch Video Solution

96. If G(a,2,-1) is the centroid of the triangle with vertices P(1,3,2),Q(3,b,-4) and R(5,1,c), then find the values of a,b and c.

A.
$$a = 3, b = 2, c = -1$$

B.
$$a = 3, b = -2, c = 1$$

$$\mathsf{C.}\,a=3,b=2,c=1$$

D.
$$a = 3, b = -2, c = -1$$

Answer: A

Watch Video Solution

97. If $G\left(r, \frac{-4}{3}, \frac{1}{3}\right)$ is centroid of the triangle having vertices

$$A(5,1,p),\,B(1,q,p),\,C(1,-2,3),$$
 then

A.
$$p=\ -1, q=\ -3, r=rac{7}{3}$$

B.
$$p=1, q=-3, r=rac{7}{3}$$

C.
$$p = -1, q = 3, r = \frac{7}{3}$$

D.
$$p = 1, q = 3, r = \frac{7}{3}$$

Answer: A

98. If G(-1,2,1) is the centroid triangle ABC whose two vertices are

$$A(3,1,4), B(\,-4,5,\,-3)$$
, then the third vertex is

A.
$$(2, 0, -2)$$

B.
$$(-2, 0, 2)$$

C.
$$(-2, 0, -2)$$

D.
$$(2, 0, 2)$$

Answer: B

Watch Video Solution

99. If A(2, -2, 3), B(x, 4, -1), C(3, x, -5) are the vertices and $G(2,1,\;-1)$ is the centroid of $\; riangle \; ABC$, then x=

A.
$$-3$$

$$B. -1$$

$$-1$$

C. 1

Answer: C

Watch Video Solution

100. If A(1,4,2), B(-2,3,-5) are two vertices A and B and $G\left(\frac{4}{3},0,\frac{-2}{3}\right)$ is the centroid of the \triangle ABC, then the mid-point of side BC is

A.
$$\left(\frac{3}{2}, -2, -2\right)$$

$$\mathsf{B.}\left(2,1,\frac{3}{2}\right)$$

$$C. (-3, 1, -1)$$

Answer: A

D.(0,6,9)

Answer: B

Watch Video Solution

103. The incentre of triangle whose vertices are

$$P(0, 2, 1), Q(-2, 0, 0), R(-2, 0, 2)$$

A.
$$\left(\frac{-3}{2}, \frac{1}{2}, 1\right)$$

$$\operatorname{B.}\left(\frac{3}{2},\frac{-1}{2},1\right)$$

$$\mathsf{C.}\left(\frac{-3}{2},\frac{-1}{2},1\right)$$

D.
$$\left(\frac{3}{2}, \frac{1}{2}, 1\right)$$

Answer: A

104.
$$\overline{PQ} - \overline{TQ} + \overline{PS} + \overline{ST} =$$

A. $2\overline{PT}$

B. $2\overline{ST}$

 $\operatorname{C.}2\overline{QS}$

D. \overline{PT}

Answer: A

Watch Video Solution

105. $\overline{AB} - \overline{CB} + \overline{DA} + 2\overline{CD} =$

A. \overline{CB}

B. $6\overline{OC}$

 $\operatorname{C.} \overline{CD}$

D. \overline{AC}

Answer: C

Watch Video Solution

106. If A, B, C, D, E are five coplanar points, then $\overline{DA} + \overline{DB} + \overline{DC} + \overline{AE} + \overline{BE} + \overline{CE} =$

- A. \overline{DE}
- B. $3\overline{DE}$
- C. $2\overline{DE}$
- D. $4\overline{ED}$

Answer: B

Watch Video Solution

107. If ar a and ar b are position verctors of A and B respectively, then the position vector of point C in produced AB such that $\overline{AC}=3\overline{AB}$ is

B.
$$3ar{b}-ar{a}$$

C. $3ar{a}-2ar{b}$

A. $3ar{a}-ar{b}$

Answer: D

D. $3\bar{b}-2\bar{a}$

Watch Video Solution

A. \overline{OC}

B. $6\overline{OC}$

 $\mathsf{C.}\,\overline{BC}$

D. \overline{CD}

Answer: B

109. If D, E, F are the mid points of the side BC, CA and AB respectively of a triangle ABC, write the value of $\overrightarrow{A}D + \overrightarrow{B}E + \overrightarrow{C}F$.

- A. \overline{OA}
- $\operatorname{B.} \overline{AC}$
- C. \overline{AF}
- $\operatorname{D}_{\boldsymbol{\cdot}} \overline{O}$

Answer: D

Watch Video Solution

110. In triangle ABC, if $2\overline{AC}=3\overline{CB}$, then $2\overline{OA}+3\overline{OB}=$

- A. $5\overline{OC}$
- $\mathsf{B.} \overline{OC}$

 $\mathsf{C}.\,\overline{OC}$

 $\mathrm{D.}\,3\overline{OC}$

Answer: A

Watch Video Solution

111. If C is the mid-point of AB and P is any point outside AB, then

A.
$$\overline{PA} + \overline{PB} = \overline{PC}$$

$$\operatorname{B.} \overline{PA} + \overline{PB} + \overline{PC} = 0$$

C.
$$\overline{PA} + \overline{PB} = 2\overline{PC}$$

$$\mathrm{D.}\, \overline{PA} + \overline{PB} + 2\overline{PC} = 0$$

Answer: C

112. If $A,\,B,\,C$ are the vertices of a triangle whose position vectros are

$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} and G is the centroid of the ΔABC , then

A.
$$\overline{O}$$

 $\overline{GA} + \overline{GB} + \overline{GC} =$

B. $3\overline{GA}$

 $\mathsf{C.}\,3\overline{GA}$

D. $3\overline{GC}$

Answer: A

Watch Video Solution

113. D, E, F are the midpoints of the sides BC, CA and AB respectively of

riangle ABC and O is any point in the plane of riangle ABC. Show that

(1)
$$\overline{AD}+\overline{BE}+\overline{CF}=ar{0}$$

(2)
$$\overline{AD} + \frac{1}{3}\overline{BE} + \frac{1}{3}\overline{CF} = \frac{1}{2}\overline{AC}$$
.

A.
$$\overline{AB}=2\overline{ED}$$

B.
$$\overline{AB}=2\overline{DE}$$

C.
$$\overline{AB}=\overline{ED}$$

D.
$$\overline{AB}=\overline{DE}$$

Answer: A

Watch Video Solution

of the $\Delta ABCa \cap dO$ be any points, then prove that OA + OB + OC = OD + OE + OF

114. if D,E and F are the mid-points of the sides BC,CA and AB respectively

A. \overline{OA}

 $B. \overline{OB}$

C. \overline{EF}

D. \overline{DE}

Watch Video Solution

115. X and Y are points on the sides AB and BC respectively of \triangle ABC such that XY||AC and XY divides \triangle ABC into two parts in area , find $\frac{AX}{AB}$

A.
$$\overline{EF}=2\overline{BC}$$

B.
$$\overline{EF}=\overline{BC}$$

$$\operatorname{C.}\overline{EF}=\frac{1}{2}\overline{BC}$$

D.
$$\overline{EF}=rac{1}{3}\overline{BC}$$

Answer: C

116. If D, E, F are the mid-points of the sides BC, CA and AB respectively of

$$\triangle \ ABC$$
, then $\overline{AD} + rac{2}{3}\overline{BE} + rac{1}{3}\overline{CF} =$

A.
$$\overline{AC}$$

B. \overline{CA}

C. $2\overline{AC}$

D. $\frac{1}{2}\overline{AC}$

Answer: D

Watch Video Solution

117. If A, B, C, D are four non-collinear points in the plane such that

 $\overline{AD}+\overline{BD}+\overline{CD}=\overline{O}$, then the point D is the ... of triangle ABC.

A. incentre

B. centroid

C. orthocentre

D. circumcentre

Answer: B

Watch Video Solution

- 118. Which of the following is trues?
 - A. The perpendicular bisectors of the sides of triangle are perpendicular to each other
 - B. The perpendicular bisectors of the sides of a triangle are congruent
 - C. The perpendicular bisectors of the sides of the triangle are concurrent
 - D. The perpendicular bisectors of the sides of a triangle are not concurrent

Answer: C

119. If G_1 and G_2 are the centroid of $\triangle ABC$ and $\triangle PQR$

respectively, then $\overline{AP}+\overline{BQ}+\overline{CR}=$

A.
$$\overline{G_1G_2}$$

$$\operatorname{B.} 2\overline{G_1G_2}$$

$$\mathsf{C.}\, 3\overline{G_1G_2}$$

D.
$$6\overline{G_1G_2}$$

Answer: C

Watch Video Solution

120. P, Q, R are the mid-points of the sides BC, AC, and AB respectively of

$$riangle$$
 ABC . If $G_1(\overline{g_1})$ and $G_2(\overline{g_2})$ are the centroids of the

$$\triangle$$
 ABC and \triangle PQR respectively, then

A.
$$\overline{g_1}=3\overline{g_2}$$

B.
$$\overline{g_2}=3\overline{g_1}$$

 $\mathsf{C}.\,\overline{g_1}=\ -\overline{g_2}$

D. $\overline{g_1} = \overline{g_2}$

Answer: D

Watch Video Solution

121. If G is the point of concurrence of the median of $\triangle ABC$, then

 $\overline{GA} + \overline{GB} + \overline{GC} =$

A. $3\bar{q}$

B. $6ar{q}$

 $\mathsf{C}.\overline{O}$

D. $ar{q}$

Answer: C

122. Let G be the centroid of a triangle PQR and S be any other point, the

$$\overline{SP} + \overline{SQ} + \overline{SR} =$$

- A. \overline{O}
- в. \overline{SG}
- $\operatorname{C.}3\overline{SG}$
- D. $2\overline{GS}$

Answer: C

Watch Video Solution

123. If G is the centroid of triangle ABC and L is a point on BC, such that

$$BL=2LC$$
, then $\overline{GB}+2\overline{GC}=$

A. \overline{GL}

B. $2\overline{GL}$

$$\mathsf{C}.\,\overline{OG}$$

D. $3\overline{GL}$

Answer: D

Watch Video Solution

124. If G is the point of concurrence of the median of $\triangle ABC$, then

$$\overline{GA} + \overline{GB} + \overline{GC} =$$

A. $3\overline{OG}$

 $B. \overline{AB}$

 $C. \overline{OG}$

 D, \overline{O}

Answer: D

125. D, E and F are the mid-points of the sides BC, CA and AB respectively of ΔABC and G is the centroid of the triangle, then $\overrightarrow{GD}+\overrightarrow{GE}+\overrightarrow{GF}=$

A.
$$\overline{O}$$

B.
$$2ig(ar{a}+ar{b}+ar{c}ig)$$

C.
$$ar{a}+ar{b}+ar{c}$$

D. $3ar{g}$

Answer: A

Watch Video Solution

126. If P is the orthocentre and Q is the circumcentre of \triangle (ABC), then

$$\overline{QA} + \overline{QB} + \overline{QC} =$$

A.
$$2\overline{PQ}$$

B.
$$2\overline{QP}$$

C.
$$\overline{PQ}$$

 $\operatorname{D.} \overline{QP}$

Answer: D

Watch Video Solution

127. If P is the orthocentre and Q is the circumcentre of \triangle ABC, then

$$\overline{PA} + \overline{PB} + \overline{PC} =$$

A.
$$\overline{PQ}$$

 $\operatorname{B.} \overline{PQ}$

 $\mathsf{C.}\,2\overline{PQ}$

D. \overline{PQ}

Answer: C

128. IF G(ar g), H(ar h) and p(ar p) are centroid orthocenter and circumenter of a triangle and xar p+yar h+zar g=ar 0 then (x,y,z)=

A.
$$(1, 1, -2)$$

B.
$$(2, 1, -3)$$

C.
$$(1, 3, -4)$$

D.
$$(2, 3, -5)$$

Answer: B

Watch Video Solution

129. If O is the circumcentre, G is the centroid and O' is orthocentre or triangle ABC then prove that: $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OO'}$

A.
$$3\overline{Q}\overline{G}$$

B.
$$\overline{QG}$$

C.
$$\overline{GQ}$$

D.
$$3\overline{GQ}$$

Answer: A

Watch Video Solution

130. The vector $\overline{AB}=3\hat{i}+4\hat{k}$ and $\overline{AC}=5\hat{i}-2\hat{j}+4\hat{k}$ are the sides of a triangle ABC. The length of the median through A is

- A. $\sqrt{18}$
- B. $\sqrt{72}$
- C. $\sqrt{33}$
- D. $\sqrt{288}$

Answer: C

131. In an isosceles $\ \triangle \ ABC$, If AB=AC and AD is the median, then

$$\overline{AD} \cdot \overline{BC} =$$

- A. \overline{AC}
- в. \overline{BD}
- **C**. 1
- **D**. 0

Answer: D

132. In a triangle $OAB, \ \angle AOB = 90^{0}.$ If $P\ and\ Q$ are points of trisection of AB prove that $OP^{2} + OQ^{2} = \frac{5}{9}AB^{2}.$

- A. $\frac{1}{3}(AB)^2$
- B. $\frac{5}{3}(AB)^2$
- C. $\frac{1}{9}(AB)^2$

D. $\frac{5}{9}(AB)^2$

Answer: D

Watch Video Solution

- **133.** In parallelogram ABCD, if P is the mid-point of side AB, then
 - A. DP bisects diagonal AC
 - B. DP bisects diagonal BD
 - C. DP trisects diagonal BD
 - D. DP trisects diagonal AC and trisected by AC

Answer: D

View Text Solution

134. In parallelogram ABCD, if $\overline{AB}=\bar{a}$ and $\overline{AD}=\bar{b}$, then the diagonals interm of \bar{a} and \bar{b} are

A.
$$ar{a}+ar{b},ar{a}-ar{b}$$

В.
$$ar{a},\,ar{b}$$

C.
$$ar{a}+ar{b},$$
 $ar{b}-ar{a}$

D.
$$2ar{a},\,2ar{b}$$

Answer: C

View Text Solution

135. If the two adjacent sides of a parallelogram are given by $\hat{i}+2\hat{j}+3\hat{k}$ and $-3\hat{i}-2\hat{j}+\hat{k}$, then the lengths of the diagonals are

A.
$$2, 6\sqrt{5}$$

B.
$$2\sqrt{5}$$
, 6

$$\mathsf{C.}\,2,\,6$$

D.
$$2, \sqrt{5}$$

Answer: B

View Text Solution

136. Let $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = 10\overrightarrow{a} + 2$ and $\overrightarrow{OC} = \overrightarrow{b}$ where O,A and C are non-collinear points . Let P denotes the area of the quadrilateral OABC and let q denots the area of the parallelogram with OA and OC as adjacent sides. If p =kq, then h=......

- A. 4
- B. 6
- C. $\dfrac{\left|ar{a}-ar{b}\right|}{\left|2ar{a}\right|}$ D. $\dfrac{\left|ar{a}+ar{b}\right|}{\left|2ar{a}\right|}$

Answer: B

B. trapezium

C. kite

D. rhombus

Answer: A

138. The lie segments joining the midpoints of the ajdacent sides of a quadirlateral form

A. trapezium

B. parallelogram

C. rectangle

D. square

Answer: B

Watch Video Solution

139. Which of the following is true?

A. A quadrilateral is a square if and only if diagonal are congruent and bisects each other at right angle

B. A quadrilateral is a square if and only if diagonal are not congruent and bisects each other at right angle

C. A quadrilateral is a square if and only if diagonal are congruent

D. A quadrilateral is a square if and only ifdiagonals bisects each other at right angle

Answer: A

140. Which of the following is true?

A. A quadrilateral is a rectangle if and only if diagonal are not congruent and bisect each other at right angle

B. A quadrilateral is a rectangle if and only if diagonal are congruent and bisect each other at right angle

C. A quadrilateral is a rectangle if and only if diagonal are congruent

D. A quadrilateral is a rectangle if and only if diagonals bisect each other at right angle

Answer: B

Watch Video Solution

141. Which of the following is trues?

- A. A quadrilateral is a rhombus if and only if diagonal are congruent and bisects each other at right angle
- B. A quadrilateral is a rhombus if and only if diagonal are not congruent and bisects each other at right angle
- C. A quadrilateral is a rhombus if and only if diagonal bisect each other
- D. A quadrilateral is a rhombus if and only if diagonal are at right angle

Answer: A

142. Which of the following is true regarding the diagonals of a parallelogram?

- A. If diagonals of a parallelogram are of equal length, then the parallelogram is a square
- B. If diagonals of a parallelogram are of equal length, then the parallelogram is a rectangle
- C. If diagonals of a parallelogram are of equal length, then the parallelogram is a rhombus
- D. If diagonals of a parallelogram are of equal length, then the parallelogram is not a rectangle

Answer: B

143. ABCD is a rhombus and P,Q,R,S are the mid-points of

AB, BC, CD, DA respectively. Prove that PQRS is a rectangle.

A. trapezium

B. rhombus
C. kite
D. parallelogram
Answer: D
Watch Video Solution
144. In quadrilateral ABCD, if $\overline{AB}=\overline{CD}$, then it is
A. trapezium
B. parallelogram
C. kite
D. rhombus
Answer: B
View Text Solution

145. In the quadrilateral ABCD:

A.
$$rac{1}{2}ig(\overline{AC} imes\overline{BD}ig)$$

$$\operatorname{B.}\frac{1}{2}\big(\overline{AC}\times\overline{BD}\big)$$

C.
$$\overline{AC} imes \overline{DB}$$

D.
$$\overline{AC} imes\overline{BD}$$

Answer: B

Watch Video Solution

146. Let $\Box PQRS$ be a quadrilateral. If M and N are the mid-points of the sides PQ and RS respectively, then PS+QR=

A.
$$4\overline{MN}$$

$${\rm B.}\,3\overline{MN}$$

C.
$$2\overline{MN}$$

D.
$$\overline{MN}$$

Answer: C

Watch Video Solution

147. ABCD is a quadrilateral and E is the point of intersection of the lines joining the mid-points of opposite sides. If O be any point in the plane, then show that $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 4\overrightarrow{OE}$.

- A. 3
- B.4
- C. 7
- D. 9

Answer: B

148. If $\hat{i}+\hat{j}-\hat{k}, 2\hat{i}+3\hat{j}, 3\hat{i}+5\hat{j}-2\hat{k}$ and $-\hat{j}+\hat{k}$ are the position vectors of vertices of a quadrilateral, then it is a

A. parallelogram

B. trapezium

C. rectangle

D. square

Answer: B

View Text Solution

149. E and F are mid-points of sides of AD and BC respectively of quadrilateral ABCD having vertices

 $A(1,2,1),\,B(\,-2,4,\,-1),\,C(\,-1,3,2),\,D(5,\,-1,6)$, then

A. EF is parallel to AB

B. EF is parallel to CD

- C. EF is a parallel to AB and CD
- D. EF is not a parallel to AB and CD

Answer: C

View Text Solution

150. Which of the following is trues?

- A. The diagonal of a kite bisect each other
- B. The diagonal of a kite are at right angle
- C. The diagonal of a kite are congruent
- D. The diagonal of a kite bisect each at right angle

Answer: B

View Text Solution

151. OABC is a tetrahedron D and E are the mid points of the edges \overrightarrow{OA} and \overrightarrow{BC} . Then the vector \overrightarrow{DE} in terms of \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC}

A.
$$\overline{OC}\perp \overline{AB}$$

B.
$$\overline{OC}=\overline{AB}$$

C.
$$\overline{OC}=2\overline{AB}$$

D.
$$\overline{OC}=\overline{AB}$$

Answer: A

152. If M and N are the mid-points of the diagonals AC and BD respectively of a quadrilateral ABCD, then the of $\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{CB}+\overrightarrow{CD}$ equals

A.
$$2\overline{MN}$$

B.
$$2\overline{NM}$$

C.
$$4\overline{MN}$$

		_
D.	4NI	M

Answer: C

Watch Video Solution

153. ABCD is a rhombus and P, Q, R and S are with mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.

A. \overline{BD}

 $\operatorname{B.} \overline{PQ}$

 $\operatorname{C.} \overline{RS}$

D. \overline{AC}

Answer: D

154. If P, Q are the mid-points of the diagonals AC and BD of a quadrilateral aBCD and R is the mid-points of PQ, $\overline{RA} + \overline{RB} + \overline{RC} + \overline{RD} =$

then

A.
$$4\overline{OR}$$

B.
$$\overline{OR}$$

C.
$$2\overline{RS}$$

D.
$$\overline{O}$$

Answer: D

155. If ABCD is a quadrilateral,
$$2\overline{AB} + 3\overline{BC} + 2\overline{CD} + \overline{DA} + \overline{CA} + \overline{DB} =$$

A.
$$\overline{AC}$$

B.
$$2\overline{AC}$$

C.
$$\overline{AD}$$

 $\operatorname{D}.\overline{O}$

Answer: D

Watch Video Solution

156. If ABCD is a square, then

$$\overline{AB} + 2\overline{BC} + 3\overline{CD} + 4\overline{DA}$$
 =

A. \overline{AC}

 $\mathsf{B}.\,\overline{O}$

 $\mathsf{C}.\overline{\mathit{CA}}$

D. $2\overline{CA}$

Answer: D

157. ABCD is a parallelogram with AC and BD as diagonals. Then,

$$\overrightarrow{AC} - \overrightarrow{BD} =$$

A.
$$4\overline{AB}$$

$$\operatorname{B.}3\overline{AB}$$

C.
$$2\overline{AB}$$

$$\operatorname{D.} \overline{AB}$$

Answer: C

Watch Video Solution

158. Let ABCD is a parallelogram and $\overrightarrow{A}C, \overrightarrow{B}D$ be its diagonal, then $\overrightarrow{A}C + \overrightarrow{B}D$ is

A.
$$2\overline{AB}$$

$$\operatorname{B.}2\overline{BC}$$

$$\mathsf{C}.\,\overline{AB}$$

D. \overline{BC}

Answer: B

Watch Video Solution

159. ABDC is a parallelogram and P is the point of intersection of its diagonals. If O is any point, then $\overline{OA} + \overline{OB} + \overline{OC} + \overline{OD} =$

A. \overline{OP}

B. $4\overline{OP}$

 $\mathsf{C}.\overline{O}$

D. $2\overline{OP}$

Answer: B

160. ABCD is a parallelogram and O is the point of intersection of its diagonals. If points P, Q, R, S are the mid-points of OA, PB, QC, RD respectively, then the points Q, O, S

A. forms a triangle

B. are non-coplanar

C. are collinear

D. are non-collinear

Answer: C

View Text Solution

161. In parallelogram ABCD, if P, Q are mid-points of BC and CD respectively, then $\overline{AP} + \overline{AQ} =$

A.
$$\frac{3}{2} \left(\overline{AC} \right)$$
 B. $\frac{5}{4} \left(\overline{AC} \right)$

C.
$$(\overline{AC})$$

D.
$$2(\overline{AC})$$

Answer: A

Watch Video Solution

162. If ABCD is a rhombus whose diagonals cut at the origin O, then proved that $\overset{
ightarrow}{O}A + \overset{
ightarrow}{O}B + \overset{
ightarrow}{O}C + \overset{
ightarrow}{O}D + \overset{
ightarrow}{O}.$

A.
$$\overline{AB}+\overline{AC}$$

$${\tt B.}\,2\big(\overline{AB}+\overline{AC}\big)$$

C.
$$\overline{AC}+\overline{BD}$$

D. \overline{O}

Answer: D

- A. $4\overline{AC}$
- B. $2\overline{AC}$
- C. $3\overline{AC}$

D. $5\overline{AC}$

Answer: C

Watch Video Solution

- **165.** If ABCDE is a pentago, then $\overline{AB}+\overline{BC}+\overline{CD}+\overline{DE}-\overline{AE}=$
 - A. $2\overline{AC}$
 - B. $2\overline{AE}$
 - $\mathsf{C}.\overline{O}$
 - D. \overline{AC}

Answer: C

166. \bar{a},\bar{b} are vectors, $\overline{AB},\overline{BC}$ determined by two adjacent sides of a regular hexagon ABCDEF.The vector represented by \overline{EF} is

A.
$$ar{a}-ar{b}$$

B.
$$ar{a}+ar{b}$$

C.
$$2ar{a}$$

D.
$$-ar{b}$$

Answer: D

Watch Video Solution

167. If ABCDEF is a regular hexagon inscribed in a circle with centre O, then $\overline{AB}+\overline{AC}+\overline{AD}+\overline{AE}+\overline{AF}=$

A.
$$\overline{AO}$$

B.
$$5\overline{AO}$$

$$\mathsf{C.}\,6\overline{AO}$$

 ${\rm D.}\, 8\overline{AO}$

Answer: C

Watch Video Solution

- **168.** If ABCDEF is a regular hexagon, then $\overline{AB}+\overline{AC}+\overline{AE}+\overline{AF}=$
 - A. \overline{AD}
 - $\operatorname{B.}3\overline{AD}$
 - $\operatorname{C.}2\overline{AD}$
 - D. \overline{O}

Answer: C

Watch Video Solution

169. In a regular hexagon ABCDEF, \overrightarrow{AE}

A.
$$\overline{AC} + \overline{AB} + \overline{AF}$$

B.
$$\overline{AC-+\overline{AB}+\overline{AF}}$$

C.
$$\overline{AC} + \overline{AB} - \overline{AF}$$

$$\mathrm{D.} - \overline{AC} + \overline{AB} + \overline{AF}$$

Answer: B

Watch Video Solution

170. If \bar{a} and \bar{b} represent the sides \overline{AB} and \overline{BC} of a regular hexagon

A.
$$ar{b}-ar{a}$$

ABCDEF, then $\overline{FA} =$

B.
$$ar{a}-ar{b}$$

C. $ar{a}+ar{b}$

D.
$$-\left(ar{a}+ar{b}
ight)$$

Answer: B

171. If \overrightarrow{a} , \overrightarrow{b} are the vectors forming consecutive sides of a regular of a regular hexagon ABCDEF, then the vector representing side CD is

$$\overrightarrow{a} + \overrightarrow{b}$$
 b. $\overrightarrow{a} - \overrightarrow{b}$ c. $\overrightarrow{b} - \overrightarrow{a}$ d. $-\left(\overrightarrow{a} + \overrightarrow{b}\right)$

A.
$$ar{a}-ar{b}$$

В.
$$ar{b}$$

C.
$$ar{a}+ar{b}$$

D.
$$ar{b} - ar{a}$$

Answer: D

Watch Video Solution

172. If A(3,-2,2) and B(2,9,5) are end points of a diameter of a circle, then points C(5,6,-1)

- A. is centre of the circle
- B. lies on the circumference of the circle
- C. lies outside the circle
- D. lies inside the circle

Answer: B

View Text Solution

173. If AB and CD are two chord of a circle intersecting at right angles in P and O is centre, then $\overline{PA}+\overline{PB}+\overline{PC}+\overline{PD}=$

- A. $2\overline{PO}$
- B. $2\overline{OP}$
- C. \overline{OP}
- D. \overline{PO}

Answer: A

174.
$$\hat{i}\cdot\left(\hat{j} imes\hat{k}
ight)+\hat{j}\cdot\left(\hat{k} imes\hat{i}
ight)+\hat{k}\cdot\left(\hat{i} imes\hat{j}
ight)=$$

B. 1

C. 2

D. 3

Answer: D

Watch Video Solution

175. If \hat{i},\hat{j},\hat{k} are the unit vectors and mutually perpendicular, then

$$\left[egin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \end{array}
ight]$$
 =

A. 0

B.-1

C. 1

D. 2

Answer: C

Watch Video Solution

176. If $\hat{i},\,\hat{j},\,\hat{k}$ are the unit vectors and mutually perpendicular, then

A.
$$-1$$

B. 0

C. 1

D. 2

Answer: D

177. If \hat{i},\hat{j},\hat{k} are the unit vectors and mutually perpendicular, then

178. If $ar{a}, ar{b}, ar{c}$ are three non-zero, non-coplanar, mutually perpendicular

$$\left[egin{array}{cccc} \hat{i} - \hat{j} & \hat{j} - \hat{k} & \hat{k} - \hat{i} \end{array}
ight]$$
 =

- $\mathsf{A.}-1$
- **B**. 0
- **C**. 1
- D. 2

Answer: B

- vectors, then $[\,ar{a}\ \ ar{b}\ \ ar{c}\,] =$
 - **A.** -1
 - **B**. 0
 - **C**. 1

Answer: C

View Text Solution

179. If $ar a\cdotar b=ar b\cdotar c=ar c\cdotar a=0$, then $ar a\cdotig(ar b imesar cig)=$

A. a non-zero vector

B. 1

 $\mathsf{C.}-1$

D. $|ar{a}|ar{b}||ar{c}|$

Answer: D

View Text Solution

A.
$$ar{a}\cdotar{b}=0,$$
 $ar{b}\cdotar{c}=0,$ $ar{c}\cdotar{a}
eq0$

B.
$$ar{a}\cdotar{b}
eq 0,$$
 $ar{b}\cdotar{c}=0,$ $ar{c}\cdotar{a}=0$

C.
$$ar{a}\cdotar{b}=0,$$
 $ar{b}\cdotar{c}
eq0,$ $ar{c}\cdotar{a}=0$

D.
$$ar{a}\cdotar{b}=0,$$
 $ar{b}\cdotar{c}=0,$ $ar{c}\cdotar{a}=0$

Answer: D

Watch Video Solution

181. For non-zero vectors $ar a, ar b, ar c, ig(ar a imes ar big) \cdot ar c = |ar a| |ar b| |ar c|$ holds, iff

A.
$$ar{a}\cdotar{b}=0,$$
 $ar{b}\cdotar{c}=0,$ $ar{c}\cdotar{a}
eq0$

B.
$$ar{a}\cdotar{b}=0,$$
 $ar{b}\cdotar{c}=0,$ $ar{c}\cdotar{a}=0$

C.
$$ar{a}\cdotar{b}=0,$$
 $ar{b}\cdotar{c}
eq0,$ $ar{c}\cdotar{a}=0$

D.
$$ar{a}\cdotar{b}
eq 0,\,ar{b}\cdotar{c}=0,\,ar{c}\cdotar{a}=0$$

Answer: B

182. If
$$ar x\cdot ar a=0,$$
 $ar x\cdot ar b=0,$ $ar x\cdot ar c=0$ for some non-zero vectors $ar x$, then

 $[\,ar{a}\ \ ar{b}\ \ ar{c}\,]=0$ is

A. true

B. false

C. cannot say anything

D. either true or false

Answer: A

Watch Video Solution

183. If vectors $ar{a}=2\hat{i}+3\hat{j}+4\hat{k}, ar{b}=\hat{i}+\hat{j}+5\hat{k}$ and $ar{c}$ form a left handed system, then $ar{c}$ is

A.
$$11\hat{i}-6\hat{j}-\hat{k}$$

$$\mathrm{B.}-11\hat{i}\,+6\hat{j}+\hat{k}$$

C.
$$11\hat{i}-6\hat{j}+\hat{k}$$

D.
$$-11\hat{i}+6\hat{j}-\hat{k}$$

Answer: B

Watch Video Solution

1. If
$$ar a=3\hat i-2\hat j+7\hat k,$$
 $ar b=5\hat i+\hat j-2\hat k,$ $ar c=\hat i+\hat j-\hat k$, then

$$ar{a}\cdot\left(ar{b} imesar{c}
ight)=$$

$$A.-25$$

C.25

B. 37

D. 31

Answer: C

185. If $ar{a}=3\hat{i}-\hat{j}+4\hat{k},$ $ar{b}=2\hat{i}+3\hat{j}-2\hat{k},$ $ar{c}=-5\hat{i}+2\hat{j}+3\hat{k},$ then $ar{a}\cdot ig(ar{b} imesar{c}ig)=$

If $ar{a} = 7\hat{i} - \hat{j} + 2\hat{k}, ar{b} = \hat{i} + 3\hat{j} - \hat{k}, ar{c} = 4\hat{i} + 5\hat{k},$

then

A. 100

B. 101

C. 111

D. 109

Answer: C

186.

Watch Video Solution

 $ar{a}\cdot ig(ar{b} imesar{c}ig)=$

A. 120

B.72

C.138

D.90

Answer: D

Watch Video Solution

- **187.** If $ar{a}=2\hat{i}+3\hat{j}-\hat{k}, ar{b}=4\hat{i}+2\hat{j}+3\hat{k}, ar{c}=2\hat{i}-5\hat{j}+9\hat{k}$, then
- $ar{a}\cdot\left(ar{b} imesar{c}
 ight)=$

A. 66

B. 0

C. 24

D. - 90

Answer: B

188. If
$$ar{a}=\hat{i}+2\hat{k},$$
 $ar{b}=2\hat{i}+\hat{j},$ $ar{c}=\hat{j}+2\hat{k}$, then $ar{a}\cdot\left(ar{b} imesar{c}
ight)=$

189. If $ar{a}=2\hat{i}+3\hat{j}-\hat{k}, ar{b}=5\hat{i}-6\hat{j}+2\hat{k}$ and $ar{c}=\hat{i}+\hat{j}+\hat{k}$, then

- **A.** 1
- B. 2
- C. 4

D. 6

Answer: D

Watch Video Solution

A. 35 B. 9

 $[\, \bar{a} \quad \bar{b} \quad \bar{c} \,] =$

- C. 17
- $\mathsf{D.}-36$

Answer: D

Watch Video Solution

190. If $\bar{a}, \bar{b}, \bar{c}$ are unit vectors such that $\bar{a} \cdot \bar{b} = \frac{1}{2}, \bar{b} \cdot \bar{c} = \frac{1}{\sqrt{2}}$ and $ar{c}\cdotar{a}=rac{\sqrt{3}}{2}$, then $ar{a}\cdot\left(ar{b} imesar{c}
ight)=$

A.
$$\dfrac{\sqrt{\sqrt{6}-2}}{2}$$

$$\text{B.}\,\frac{\sqrt{\sqrt{6}+2}}{2}$$

C.
$$\dfrac{\sqrt{6}-2}{2}$$
 D. $\dfrac{\sqrt{6}+2}{2}$

Answer: A

View Text Solution

lf

- A. 3
- B.-3
- **C**. 9
- D. -9

Answer: A

Watch Video Solution

 $ar{a}=\hat{i}+\hat{j}+\hat{k}, ar{b}=2\hat{i}+\lambda\hat{j}+\hat{k}, ar{c}=\hat{i}-\hat{j}+4\hat{k} ext{ and } ar{a}\cdot\left(ar{b} imesar{c}
ight)=10$

lf

, then λ is equal to

192.

- **A.** 6
- в. 7
- **C**. 9

D. 10

Answer: A

Watch Video Solution

- **193.** If the vectors $ar a=\hat i+\hat j+\hat k, ar b=\hat i-\hat j+\hat k, ar c=2\hat i+3\hat j+m\hat k$ are coplanar, then m=
 - A. 2
 - B.-4
 - C. 2
 - D. 4

Answer: C

194. If the vectors $ar a=\hat i-\hat j-6\hat k,$ $ar b=\hat i+p\hat j+4\hat k,$ $ar c=2\hat i-5\hat j+3\hat k$ are coplanar, then p=

195. If the vectors $ar a=-3\hat i+4\hat j-2\hat k, ar b=\hat i+2\hat j, ar c=\hat i-p\hat j$ are

$$A. - 9$$

B. 9

 $\mathsf{C.}-3$

D. 3

Answer: C

- coplanar, then p=
 - A.-2
 - B. 1
 - C. -1

Answer: D

Watch Video Solution

196.

If

the

 $ar{a}=4\hat{i}+13\hat{j}-18\hat{k}, ar{b}=\hat{i}-2\hat{j}+3\hat{k}, ar{c}=p\hat{i}+3\hat{j}-4\hat{k}$ are coplanar,

vectors

then p=

A.-4

B. 4

 $\mathsf{C.}-2$

D.2

Answer: D

В

B. - 3

A. 3

are coplanar, then p=

C. 11 D. – 11

Answer: A

Watch Video Solution

197. If the vectors $ar a=\hat i-2\hat j+\hat k,$ $ar b=2\hat i-5\hat j+p\hat k,$ $ar c=5\hat i-9\hat j+4\hat k$

198. If the vectors $ar a=\hat i-2\hat j+\hat k,$ $ar b=p\hat i-5\hat j+3\hat k,$ $ar c=5\hat i-9\hat j+4\hat k$

are coplanar, then p=

A. -12

В. 12

 $\mathsf{C.}-2$

Answer: D

Watch Video Solution

- **199.** If the vectors $ar a=\hat i+\hat j+\hat k, ar b=\hat i-\hat j+\hat k, ar c=2\hat i+3\hat j+\lambda\hat k$ are coplanar, then $\lambda =$
 - A. 2
 - B.-2
 - C. 4
 - D.-4

Answer: A

 $ar a=4\hat i+11\hat j+m\hat k,$ $ar b=7\hat i+2\hat j+6\hat k,$ $ar c=\hat i+5\hat j+4\hat k$ are coplanar, then m=

the

vectors

If

B. -10

D.0

Answer: A

200.

201.
$$\bar{a}=\hat{i}-2\hat{j}+\hat{k}, \bar{b}=x\hat{i}-5\hat{j}+3\hat{k}, \bar{c}=5\hat{i}-9\hat{j}+4\hat{k} \,\, \mathrm{and}\,\, [\,\bar{a}\ \ \, \bar{b}\ \ \, \bar{c}\,]=0$$
 , then x=

A. 3

B. 4

C. 2

D. -1

Answer: C

Watch Video Solution

202.

Let

 $ar{a}=\hat{i}-\hat{k},ar{b}=x\hat{i}+\hat{j}+(1-x)\hat{k},ar{c}=y\hat{i}+x\hat{j}+(1+x-y)\hat{k}.$ Then

 $[\,ar{a}\ \ ar{b}\ \ ar{c}\,]$ depends on

- A. only x
 - B. only y
 - C. neither x nor y
 - D. both x and y

Answer: C

203. If the vectors
$$a\hat{i}+\hat{j}+\hat{k},\,\hat{i}+b\hat{j}+\hat{k},\,\hat{i}+\hat{j}+c\hat{k}$$
, where a, b, c are coplanar, then $a+b+c-abc=$

204. If the vectors $a\hat{i}+\hat{j}+\hat{k},\,\hat{i}+b\hat{j}+\hat{k},\,\hat{i}+\hat{j}+c\hat{k},\,(a
eq b
eq c)$ are

$$\mathsf{A.}-2$$

$$B. -1$$

Answer: C

Watch Video Solution

coplanar, then $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} =$

B. - 1

 $\mathsf{C}.-2$

D. 5

Answer: A

Watch Video Solution

205. If $\overrightarrow{a}=\hat{i}+\hat{j}+\hat{k}, \overrightarrow{b}=4\hat{i}+3\hat{j}+4\hat{k}$ and $\overrightarrow{c}=\hat{i}+\alpha\hat{i}+\beta\hat{k}$ are linearly dependent vectors and $\left|\overrightarrow{c}\right|=\sqrt{3}$. then

A.
$$lpha=1,eta=1$$

B.
$$lpha=2, eta=\pm 2$$

C.
$$lpha=\ -2, eta=\ \pm 2$$

D.
$$lpha=~\pm 1, eta=1$$

Answer: D

206. If
$$ar a=\hat i+\hat j, ar b=\hat j+\hat k, ar c=lphaar a+etaar b$$
 and the vectors

$$\hat{i}-2\hat{j}+\hat{k},3\hat{i}+2\hat{j}-\hat{k},ar{c}$$
 are coplanar, then $rac{lpha}{eta}=$

A. 0

B.-2

 $\mathsf{C.}-3$

D. -1

Answer: C

View Text Solution

207. Let a,b,c be distinct non- negative numbers . If the vectors

 $a\hat{i}+a\hat{j}+c\hat{k},\,\hat{i}+\hat{k}\;\; ext{and}\;\;\;c\hat{i}+c\hat{j}+b\hat{k}$ lie in a plane then c is

A. the arithemetic mean of a and b

B. the geometric mean of a and b

C. the harmonic mean of a and b

D. equal to zero

Answer: B

Watch Video Solution

208. Given vectors

then

the

 $ar{a}=3\hat{i}-6\hat{j}-\hat{k}, ar{b}=\hat{i}+4\hat{j}-3\hat{k}, ar{c}=3\hat{i}-4\hat{j}-12\hat{k},$

projection of $ar{a} imes ar{b}$ on vector $ar{c}$ is

A. 14

B. - 14

C. 12

D. 15

Answer: B

209. If the points $A(2,1,-1), B(0,-1,0), C(\lambda,0,4), D(2,0,1)$ are coplanar, then $\lambda =$

210. If the points $P(1, -1, -1), Q(3, 1, \lambda), R(0, 2, 1), S(-2, 0, 1)$

A. 2

B.-2

C. 4

D.-4

Answer: C

Watch Video Solution

are coplanar, then $\lambda =$

A. 1

B. - 1

C. 8

D.-8

Answer: B

Watch Video Solution

lf 211. the points

 $A(\,-\,6,\,3,\,2),\,B(3,\,-\,2,\,4),\,C(5,\,7,\,3),\,D(\,-\,13,\,\lambda,\,\,-\,1)$ are coplanar,

then $\lambda =$

A. 17

B. - 17

C.12

D. - 12

Answer: A

212. If the points $A(3,9,4), B(0,-1,-1), C(\lambda,4,4), D(4,5,1)$ are coplanar, then $\lambda =$

A.-2

B. 2

 $\mathsf{C.}-4$

D. 4

Answer: C

Watch Video Solution

If the points $A(4,5,1), B(5,3,4), C(4,1,6), D(3,\lambda,3)$ 213. are coplanar, then $\lambda =$

A. - 3

B.3

$$\mathsf{C.}-5$$

D. 5

Answer: B

Watch Video Solution

214. If the points

 $A(2,\;-1,0),B(\;-3,\lambda,4),C(\;-1,\;-1,4),D(0,\;-5,2)$ are coplanar,

then $\lambda =$

A. 16

B. - 16

C. 17

D. - 17

Answer: D

215. If the points A(2, -1, 1), B(4, 0, p), C(1, 1, 1), D(2, 4, 3)coplanar, then p=

A. -3

B. 3

C. -1

D. 1

Answer: B

Watch Video Solution

216. If the origin and the points $P(2,3,4),\,Q(1,2,3)\,$ and $\,R(x,y,z)$ are coplanar, then

A. x - 2y - z = 0

B. x + 2y + z = 0

C.
$$x - 2y + z = 0$$

D.
$$2x + 2y - z = 0$$

Answer: C

Watch Video Solution

217. If the origin and the points $A(1,2,\,-2),\,B(1,\,-2,3),\,C(x,y,z)$ are coplanar, then

$$\mathsf{A.}\,2x+5y+4z=0$$

$$\mathsf{B.}\,2x-5y-4z=0$$

C.
$$2x + 5y - 4z = 0$$

D.
$$2x - 5y + 4z = 0$$

Answer: B

218. If O(0,0,0), A(x,1,-1), B(0,y,2) and C(2,3,z) are coplanar,

A.
$$6x + 2y + 4 = 0$$

$$B. xyz - 6y + 4 = 0$$

$$\mathsf{C.}\,xyz + 2y - 6z = 0$$

D.
$$xyz - 6x + 2y + 4 = 0$$

Answer: D

then

Watch Video Solution

219. The position vectors of the point A, B , C and D are

$$3\hat{i}-2\hat{j}-\hat{k},2\hat{i}+3\hat{j}-4\hat{k},\;-\hat{i}+\hat{j}+2\hat{k}\; ext{and}\;4\hat{i}+5\hat{j}+\lambda\hat{k}$$

respectively. If A, B, C, D are coplanar, then $\lambda =$

A.
$$\frac{-146}{17}$$

$$\text{B.}\ \frac{146}{17}$$

C.
$$\frac{146}{15}$$
D. $\frac{-146}{15}$

Answer: A

Watch Video Solution

If 220. the points $A(2,\ -1,0), B(\ -3,\lambda,4), C(\ -1,\ -1,4), D(0,\ -5,2)$ are

non-

collinear, then $\lambda \neq$

$$\mathsf{A.}-17$$

B. 17

C. - 18

D. 18

Answer: A

221. If the points $A(1,-1,1),B(-1,1,1),C(\lambda,1,1),D(2,-3,4)$ are non-coplanar, then $\lambda\neq =$

A. 3

B.-3

C. -1

D. 1

Answer: C

Watch Video Solution

222. If $\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ a^3+1 & b^3+1 & c^2+1 \end{vmatrix}=0$ and the vectors given by

 $Aig(1,a,a^2ig), Big(1,b,b^2ig), Cig(1,c,c^2ig)$ are non-collinear, then abc=

A. 1

B. - 1

C.0

D. 3

Answer: B

Watch Video Solution

223. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non-coplanar vectors and λ is a real number then then vectors $\overrightarrow{a}+2\overrightarrow{b}+3\overrightarrow{c}$, $\lambda\overrightarrow{b}+4\overrightarrow{c}$ and $(2\lambda-1)\overrightarrow{c}$ are non-coplanar for

A. no value of λ

B. all except one value of λ

C. all except two values of λ

D. all values of λ

Answer: C

224. If $ar{a}, ar{b}, ar{c}$ are non-coplanar vectors and λ is a real number, then

$$\left[egin{array}{ccc} \lambda \left(ar{a} + ar{b}
ight) & \lambda^2 ar{b} & \lambda ar{c} \end{array}
ight] = \left[ar{a} & ar{b} + ar{c} & ar{b} \end{array}
ight]$$
 for

- A. exactly three values of λ
- B. exactly two values of λ
- C. exactly one values of λ
- D. no real values of λ

Answer: D

View Text Solution

225. If ar a, ar b, ar c are non-coplanar vectors and the points with position vectors $3ar a+4ar b-2ar c, ar a+\lambdaar b+3ar c, ar a-6ar b+6ar c$ and 2ar a+3ar b-ar c are coplanar, the $\lambda=$

$$A.-2$$

B. 2

 $\mathsf{C.}-3$

 $\mathsf{D.}\,3$

Answer: A

View Text Solution

226. If ar a, ar b, ar c are non-coplanar vectors and the points with position vectors $2ar a+2ar b, ar a+\lambdaar b+ar c$ and 4ar a+4ar b-5ar c are coplanar, then $\lambda=$

Watch Video Solution

227. If ar a, ar b, ar c are non-coplanar vectors and the vectors ar p=2ar a-5ar b+2ar c, ar q=ar a+5ar b-6ar c and ar r=3ar a-4ar c are coplanar such that ar p=mar q+nar r, then

A. m = 1, n = 1

B. m = 1, n = -1

C. m = -1, n = 1

D. m = -1, n = -1

Answer: C

View Text Solution

228. If ar a, ar b, ar c are non-coplanar vectors and the vectors ar p=-ar a+3ar b-5ar c, ar q=-ar a+ar b+ar c and ar r=2ar a-3ar b+ar c are

coplanar such that ar p = mar q + nar r , then

A. $m=3,\,n=2$

 $\mathtt{B.}\,m=\,-\,3,n=2$

 $\mathsf{C.}\,m=3,n=\,-\,2$

D. m = -3, n = -2

Answer: D

229. If
$$ar a, ar b, ar c$$
 are non-coplanar vectors, then the vectors given by $ar p=2ar a-2ar c, ar q=3ar a+ar b+5ar c$ and $ar r=2ar a-4ar b+3ar c$ are

230. If lig(ar b imesar cig)+m(ar c imesar a)+nig(ar a imesar big)=0 and at least one of the I, m,

Answer: C

View Text Solution

n is not zero , then the vectors $ar{a},\,ar{b},\,ar{c}$ are

A. parallel

B. coplanar

C. mutually perpendicular

D. non-coplanar

Answer: B

View Text Solution

231. The volume of the paralleloP1ped with co-terminous edges given by

the vectors $3\hat{i}+5\hat{j},4\hat{i}+2\hat{j}-3\hat{k},3\hat{i}+\hat{j}+4\hat{k}$ is

A. 23cu. Units

B. 33cu. Units

C. 10cu. Units

D. 43cu. Units

Answer: A

232. The volume of the paralleloP1ped with co-terminous edges given by the vectors $2\hat{i}+5\hat{j}-4\hat{k}, 5\hat{i}+7\hat{j}+5\hat{k}, 4\hat{i}+5\hat{j}-2\hat{k}$ is

- A. 60cu. Units
- B. 84cu. Units
- C. 150cu. Units
- D. 230cu. Units

Answer: B

Watch Video Solution

233. The volume of the paralleloP1ped with co-terminous edges given by the vectors $\hat{j}+\hat{k},\,\hat{i}+3\hat{k},\,\hat{i}+\hat{j}$ is

- A. 3cu. Units
- B. 4cu. Units

C. 1cu. units

D. 2cu. Units

Answer: D

Watch Video Solution

234. The volume of the paralleloP1ped with co-terminous edges given by the vectors $3\hat{i}-\hat{j}+4\hat{k}, 6\hat{i}+2\hat{j}-5\hat{k}, 2\hat{i}+\hat{j}-3\hat{k}$ is

A. 3cu. Units

B. -3cu. Units

C. 13cu. Units

D. 19cu. Units

Answer: A

235. The volume of the paralleloP1ped with co-terminous edges given by the vectors $12\hat{i}+4\hat{j}+3\hat{k}, 8\hat{i}-12\hat{j}-9\hat{k}, 33\hat{i}-4\hat{j}-24\hat{k}$ is

- A. 3696cu. Units
- B. 4536cu. Units
- C. 2352cu. Units
- D. 1512cu. Units

Answer: A

Watch Video Solution

236. The volume of the paralleloP1ped with co-terminous edges

$$ar{a}=2\hat{i},ar{b}=3\hat{j},ar{c}=4\hat{k}$$
 is

- A. 2cu. Units
- B. 1cu. Units
- C. 24cu. Units

D. 8cu. Units

Answer: C

Watch Video Solution

237. The volume of the paralleloP1ped whose co-terminous edges are $\bar{a}, \bar{b}, \bar{c}$, where $\bar{a}, \bar{b}, \bar{c}$ are non-coplanar units vectors each inclined with other at an angle of 60° is

- A. 2cu. Units
- B. $\sqrt{2}$ cu. Units
- C. $\frac{1}{2}$ cu. Units
- D. $\frac{1}{\sqrt{2}}$ cu. Units

Answer: D

View Text Solution

238. If $\overline{AC}=3\hat{i}+\hat{j}-2\hat{k}, \overline{DB}=\hat{i}-3\hat{j}-4\hat{k}$ are the vectors along the diagonals of a parallelogram ABCD and $\overline{AE}=\hat{i}+2\hat{j}+3\hat{k}$ is another vector, then the volume of the paralleloP1ped whose co-terminous edges are represented by the vectors \overline{AB} , \overline{AD} , \overline{AE} is

- A. 2cu. Units
- B. 10cu. Units
- C. 6cu. Units
- D. 12cu. Units

Answer: B

View Text Solution

- 239. If A,B,C,D are (1,1,1), (2,1,3), (3,2,2),(3,3,4) respectively, then find the volume of the parallelopiped with AB,AC and AD as the concurrent edges.
 - A. 1cu. Units
 - B. 4cu. Units

C. 5cu. Units

D. 3cu. Units

Answer: C

Watch Video Solution

240. If A,B,C and D are {3,7,4),(5,-2,-3),(-4,5,6) and (1,2,3) respectively, then the value of the parallelopiped with AB, AC and AD as the co-terminus edges, is ... Cubic units.

A. 154cu. Units

B. 106cu. Units

C. 44cu. Units

D. 92cu. Units

Answer: D

241. If A(4,2,1), B(2,1,0), C(3,1,-1), D(1,-1,2), then the volume of the paralleloP1ped with segments AB, AC, AD as a concurrent edges is

A. 7cu. Units

B. 6cu. Units

C. 3cu. Units

D. 5cu. Units

Answer: A

Watch Video Solution

242. If $[\bar{a}\ \bar{b}\ \bar{c}\]=2$ then the volume of the paralleloP1ped whose coterminous edges are $2\bar{a}+\bar{b}, 2\bar{b}+\bar{c}\ {
m and}\ 2\bar{c}+\bar{a}$

A. 9cu. Units

B. 8cu. Units

C. 18cu. Units

D. 16cu. Units

Answer: C

Watch Video Solution

243. If $[\bar{a} \ \bar{b} \ \bar{c}]=4$ then the volume of the paralleloP1ped with

 $ar{a}+ar{b},\,ar{b}+ar{c}\ \ {
m and}\ \ ar{c}+ar{a}$ as co-terminous edges is

A. 6cu. Units

B. 7cu. Units

C. 8cu. Units

D. 4cu. Units

Answer: C

244. If the three co-terminous edges of a paralleloP1ped are represented

by $ar{a}-ar{b},\,ar{b}-ar{c},\,ar{c}-ar{a}$, then its volume is

- A. $[\,ar{a}\ \ ar{b}\ \ ar{c}\,]$
- B. $2[\,ar{a}\quad ar{b}\quad ar{c}\,\,]$
- C. $\left[ar{a} \quad ar{b} \quad ar{c} \,
 ight]^2$
- **D**. 0

Answer: D

Watch Video Solution

245. The volume of paralleloP1ped with vector ar a+2ar b+ar c, ar a-ar b and ar a-ar b-ar c is equal to $k[\ ar a \ \ ar b \ \ ar c\]$. Then k=

A. -3

- B. 3

 $\mathsf{C.}\,2$

Answer: B

Watch Video Solution

246. The volume of the tetrahedron whose co-terminous edges are

$$\hat{j}+\hat{k},\hat{k}+\hat{i},\hat{i}+\hat{j}$$
 is

- A. $\frac{1}{6}$ cu. Units
- B. $\frac{1}{3}$ cu. Units
- C. $\frac{1}{2}$ cu. Units
- D. $\frac{2}{3}$ cu. Units

Answer: B

247. Find the volume tetrahedron whose coterminus edges are

$$7\hat{i} + \hat{k}, 2\hat{i} + 5\hat{j} - 3\hat{k} \text{ and } 4\hat{i} + 3\hat{j} + \hat{k}.$$

- A. 28cu. Units
- B. 14cu. Units
- C. 21cu. Units
- D. 7cu. Units

Answer: B

248. The volume of the tetrahedron whose co-terminous edges are $\bar{a}, \bar{b}, \bar{c}$, where $\bar{a}, \bar{b}, \bar{c}$ are non-coplanar units vectors each inclined with other at an angle of 30° is

A.
$$\frac{3\sqrt{3}-5}{12}$$
 cu. units

B.
$$\frac{3\sqrt{3}-5}{144}$$
 cu. Units

C.
$$\dfrac{\sqrt{3\sqrt{3}-5}}{12}$$
 cu. Units D. $\dfrac{\sqrt{3\sqrt{3}-5}}{144}$ cu. Units

Answer: C

249.

View Text Solution

tetrahedron (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) is

of

with

vertices

at

A. $\frac{1}{6}$ cu. Units

Volume

- B. $\frac{1}{4}$ cu. Units
- C. $\frac{1}{3}$ cu.units
- D. $\frac{1}{5}$ cu. Units

Answer: A

250. The volume of the tetrahedron whose vertices are

$$A(-1,2,3), B(3,-2,1), C(2,1,3)$$
 and $C(-1,-2,4)$

- A. $\frac{2}{3}$ cu. Units
- B. $\frac{32}{3}$ cu. Units
- C. $\frac{8}{3}$ cu. Units
- D. $\frac{16}{(3)}$ cu. Units

Answer: D

- **251.** The volume of the tetrahedron whose vertices are (3,7,4),(5,-2,3),(-4,5,6) and (1,2,3) are
 - A. $\frac{42}{3}$ cu. Units
 - B. $\frac{41}{3}$ cu. Units
 - C. $\frac{46}{3}$ cu. Units

D.
$$\frac{45}{2}$$
 cu. Units

Answer: C

Watch Video Solution

252. If
$$ar{a}\cdot\hat{i}=4,\,\, ext{then}\,\left(ar{a} imes\hat{j}
ight)\cdot\left(2\hat{j}-3\hat{k}
ight)=$$

A. 12

B. 2

C.0

D. - 12

Answer: D

 $\mathsf{C.}-3$ D.-1**Answer: A** Watch Video Solution

- Watch Video Solution
- **254.** $\begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \end{bmatrix} + \begin{bmatrix} \hat{k} & \hat{j} & \hat{i} \end{bmatrix} + \begin{bmatrix} \hat{j} & \hat{k} & \hat{i} \end{bmatrix} =$

A. 4

B. 3

C. 6

D. 2

Answer: C

- **A.** 1
- B. 3

If
$$ar u=\hat i-2\hat j+\hat k, ar v=3\hat i+\hat k, ar w=\hat j-\hat k$$
,

 $ar{u}=\hat{i}-2\hat{j}+\hat{k},ar{v}=3\hat{i}+\hat{k},ar{w}=\hat{j}-\hat{k},$

then

then

$$(ar{u}+\overline{w})\cdot((ar{u} imesar{v}) imes(ar{v} imesar{w}))$$
=

- **A.** 0
- B. 24
- C. 12
- D. 12

Answer: C

Watch Video Solution

lf

 $[\,ar u imesar v\,\,\,\,\,ar u imesar w\,\,\,\,\,\,ar v imesar w\,\,]=$

256.

A. 0

B.24

C. - 12

D. 12

Answer: A

Watch Video Solution

257. If $ar{a}=\hat{i}+5\hat{k}, ar{b}=2\hat{i}+3\hat{k}, ar{c}=4\hat{i}-\hat{j}+2\hat{k}, ar{d}=\hat{i}-\hat{j},$

$$(ar{c} - ar{a})ig) \cdot ig(ar{b} imes ar{d}ig) =$$

A. 15

B. 6

 $\mathsf{C}.0$

D. 12

Answer: D

258. If
$$ar u=-\hat i-2\hat j+\hat k, ar r=3\hat i+\hat k, \overline w=4\hat j+5\hat k$$
, $(ar u+\overline w)\cdot ((ar u imesar r) imes (ar r imesar w))$ =

then

A. 66

258.

B.330

C.198D.138

Answer: D

Watch Video Solution

259. If $ar{c}=3ar{a}-2ar{b}$, then $[\,ar{a}\ \ ar{b}\ \ ar{c}\,]=$

A. 0

B. 3

C. 2

D. 1

Answer: A

Watch Video Solution

- **260.** $[\, ar{a} \ \ ar{b} \ \ ar{a} imes ar{b} \,] =$
 - A. $\left|ar{a} imesar{b}
 ight|$
 - В. $\left|ar{a} imesar{b}
 ight|^2$
 - **C**. 0
 - D. 1

Answer: B

- 261. Which of the following is trues?
 - A. $[\,ar{a}-ar{b}\quadar{b}-ar{c}\quadar{c}-ar{a}\,]=0$

B.
$$[\,ar{a}+ar{b}\quadar{b}+ar{c}\quadar{c}+ar{a}\,]=0$$

C.
$$[\,ar{a}+ar{b}\ \ ar{c}+ar{a}\ \ ar{b}+ar{c}\,\,]=0$$

D.
$$[\,ar{a} imesar{b}\ \ ar{b} imesar{c}\ \ ar{c} imesar{a}\,]=0$$

Answer: A

Watch Video Solution

262.
$$[\, \bar{a} - \bar{b} \quad \bar{b} - \bar{c} \quad \bar{c} - \bar{a} \,] =$$

A.
$$[\,ar{a}\quadar{b}\quadar{c}\,]$$

B.
$$2[\,ar{a}\quad ar{b}\quad ar{c}\,\,]$$

D.
$$3[\,ar{a}\ ar{b}\ ar{c}\,]$$

Answer: C

263. If
$$ar a, ar b$$
 and $ar c$ are unit coplanar vectors, then $[\,2ar a-ar b\,\,\,\,2ar b-ar c\,\,\,\,\,2ar c-ar a\,\,]=$

A. 0

B. 1

 $\mathsf{C.}-\sqrt{3}$

D. $\sqrt{3}$

Answer: A

Watch Video Solution

 $\left(ar{a}+ar{b}
ight)\cdot\left(\left(ar{a}+ar{c}
ight) imesar{b}
ight)=$

264. If $ar{a}, ar{b}$ and $ar{c}$ are three non-coplanar vectors, then

A. $[\,ar{a}\ \ ar{b}\ \ ar{c}\,]$

B. $2[\,ar{a}\quad ar{b}\quad ar{c}\,\,]$

C. 0

D.
$$-[\,ar{a}\ ar{b}\ ar{c}\,]$$

Answer: D

Watch Video Solution

265.
$$[\,ar{a} + ar{b} \quad ar{b} + ar{c} \quad ar{c} + ar{a}\,] =$$

A. 0

B.
$$2[\,ar{a}\ ar{b}\ ar{c}\,]$$

C. $[\,ar{a}\ \ ar{b}\ \ ar{c}\,]$

D. $- [\, \bar{a} \quad \bar{b} \quad \bar{c} \,\,]$

Answer: B

A. $[\bar{a} \ \bar{b} \ \bar{c}]$

 ${\rm B.} - [\,\bar{a} \quad \bar{b} \quad \bar{c}\,\,]$

D. $2[\,ar{a}\ ar{b}\ ar{c}\,]$

 $\mathsf{C}.\,0$

Answer: C

267.
$$ar{a}\cdot\left(\left(ar{a}+ar{b}+ar{c}
ight) imes\left(ar{b}+ar{c}
ight)
ight)=$$

B. 1

D. $- [\, \bar{a} \quad \bar{b} \quad \bar{c} \,]$

C. $[\,ar{a}\ \ ar{b}\ \ ar{c}\,]$

Answer: A

268. Value of
$$\left(\left(ar{a}+ar{b}+ar{c}
ight) imes\left(ar{b}-ar{a}
ight)
ight)\cdotar{c}$$
 is

A.
$$[\,ar{a}\quadar{b}\quadar{c}\,\,]$$

C.
$$3[\,ar{a}\ ar{b}\ ar{c}\,]$$

D.
$$2[\,ar{a}\ ar{b}\ ar{c}\,]$$

Answer: D

Watch Video Solution

 $[\,ar{a}+ar{b}+ar{c}\quadar{a}-ar{c}\quadar{a}-ar{b}\,]=$

269. If $ar{a}, ar{b}$ and $ar{c}$ are three non-coplanar vectors, then

A.
$$-3[\,ar{a}\quadar{b}\quadar{c}\,\,]$$

B.
$$-2[\,ar{a}\quadar{b}\quadar{c}\,]$$

C.
$$4[\,ar{a}\ ar{b}\ ar{c}\,]$$

D.
$$2[\,ar{a}\ ar{b}\ ar{c}\,]$$

Answer: A

Watch Video Solution

- **270.** If $ar{a}, ar{b}$ and $ar{c}$ are three non-coplanar vectors, then $\left(ar{a}+2ar{b}-ar{c}
 ight)\cdot\left(\left(ar{a}-ar{b}
 ight) imes\left(ar{a}-ar{b}-ar{c}
 ight)
 ight)=$
 - A. $[\,ar{a}\ ar{b}\ ar{c}\,]$

 - B. $2[\,ar{a}\quad ar{b}\quad ar{c}\,\,]$
 - C. $3[\,ar{a}\ ar{b}\ ar{c}\,]$
 - D. $4[\,ar{a}\ \ ar{b}\ \ ar{c}\,]$

Answer: C

$$\left(ar{a}+2ar{b}-ar{c}
ight)\cdot\left(\left(ar{a}-ar{b}
ight) imes\left(ar{a}-ar{b}-ar{c}
ight)
ight)=$$

271. If \bar{a}, \bar{b} and \bar{c} are three non-coplanar vectors, then

272. If $ar{a}, ar{b}$ and $ar{c}$ are three non-coplanar vectors,

 $(ar{a}-2ar{b}-ar{c})\cdot((ar{a}+ar{b}-ar{c}) imes(ar{a}-ar{b}+ar{c}))=$

then

A.
$$[\,ar{a}\quadar{b}\quadar{c}\,\,]$$

B.
$$3[\,ar{a}\quadar{b}\quadar{c}\,]$$

C.
$$2[\,ar{a}\quadar{b}\quadar{c}\,\,]$$

Answer: B

A.
$$[\,ar{a}\ ar{b}\ ar{c}\,]$$

$$A = \begin{bmatrix} a & b & c \end{bmatrix}$$

B.
$$3[\,ar{a}\quad ar{b}\quad ar{c}\,\,]$$

C.
$$6[\bar{a} \ \bar{b} \ \bar{c}]$$

D.
$$-6[\,ar{a}\ \ ar{b}\ \ ar{c}\,]$$

Answer: C

Watch Video Solution

- **273.** If $ar{a}, ar{b}$ and $ar{c}$ are three coplanar vectors, then $(\bar{a}+\bar{b})\cdot (((\bar{b}+\bar{c}) imes \bar{a}+(\bar{b}+(\bar{a}) imes \bar{b}))=$
 - **A.** 0

B.
$$[\,ar{a}\quad ar{b}\quad ar{c}\,\,]$$

C.
$$2[\,ar{a}\ ar{b}\ ar{c}\,]$$

$$\mathrm{D.} - [\,\bar{a} \quad \bar{b} \quad \bar{c}\,\,]$$

Answer: A

View Text Solution

 $(ar u + ar v - \overline w) \cdot ((ar u - ar v) imes (ar v - ar w)) =$

274. If $\bar{u}, \bar{v}, \overline{w}$ are three non-coplanar vectors, then

A. 0

B.
$$ar{u}\cdot(ar{v} imes \overline{w})$$

C.
$$ar{u}\cdot(\overline{w} imesar{v})$$

D. $3ar{u}\cdot(\overline{w} imesar{v})$

Answer: B

275. If four points $A(ar{a}), B(ar{b}), C(ar{c})$ and $D(ar{d})$ are coplanar, then

 $[\bar{a}\ \bar{b}\ \bar{d}\]+[\bar{b}\ \bar{c}\ \bar{d}\]+[\bar{c}\ \bar{a}\ \bar{d}\]=$

A. $[\,ar{a}\ ar{c}\ ar{d}\,\,]$

B. $[\,ar{a}\ ar{b}\ ar{c}\,]$

C. $[ar{c} \ ar{b} \ ar{d}]$

D.
$$[\,ar{d}\quadar{b}\quadar{c}\,]$$

Answer: B

Watch Video Solution

276. For vectors \bar{a} and \bar{b} and $\bar{a}+\bar{b}\neq 0$ and \bar{c} is a non-zero vector,

then
$$\left(ar{a}+ar{b}
ight) imes\left(ar{c}-\left(ar{a}+ar{b}
ight)
ight)=$$

A.
$$ar{a}+ar{b}$$

B.
$$\left(ar{a}+ar{b}
ight) imesar{c}$$

C. $\lambda ar{c}$ where is non-zero scalar

D.
$$\lambdaig(ar{a}+ar{b}ig), \lambda
eq 0$$
 is a scalar

Answer: B

277. If $ar{a}, ar{b}, ar{c}$ are non-coplanar and m, n are real numbers, the

$$egin{bmatrix} [\,mar{a} & mar{b} & 3ar{c}\,\,] - [\,mar{b} & ar{c} & nar{a}\,\,] - [\,nar{c} & nar{a} & 2ar{b}\,\,] = 0 \, ext{is true for} \end{split}$$

- A. exactly one value of m, n
- B. exactly two value of m, n
- C. exactly three values of m, n
- D. all values of m, n

Answer: A

View Text Solution

278. The number of distinct real values of λ , for which the vectors

$$-\lambda^2\hat{i}+\hat{j}+\hat{k},\,\hat{i}-\lambda^2\hat{j}+\hat{k}\, ext{ and }\,\hat{i}+\hat{j}-\lambda^2\hat{k}$$
 are coplanar, is

- A. exactly three values of λ
- B. exactly two value of λ
- C. exactly one values of λ

D. all values of λ

Answer: B

Watch Video Solution

- **279.** If $[\,ar a\quad ar b\quad ar c\,]=12$, then $[\,ar a+ar b\quad ar b+ar c\quad ar c+ar a\,]=12$
 - A.24
 - B. 36
 - C.48
 - D. 26

Answer: A

280. If
$$[2\bar{a}+\bar{b}\ \bar{c}\ \bar{d}\]=\lambda[\bar{a}\ \bar{c}\ \bar{d}\]+\mu[\bar{b}\ \bar{c}\ \bar{d}\],$$
 then $\lambda+\mu=$

$$\mathsf{B.}-6$$

Answer: A

D. 8

Watch Video Solution

281. If $[\;3ar{a}+5ar{b}\;\;ar{c}\;\;ar{d}\;]=p[\;ar{a}\;\;ar{c}\;\;ar{d}\;]+q[\;ar{b}\;\;ar{c}\;\;ar{d}\;]$, then p+q=

B.-8

D.0

Answer: A

Watch Video Solution

- **282.** If $ar{a}, ar{b} \ ext{and} \ ar{c}$ are non-coplanar and $\left(ar{a}+2ar{b}-ar{c}
 ight)\cdot\left(\left(ar{a}-ar{b}
 ight) imes\left(ar{a}+ar{b}-ar{c}
 ight)
 ight)=\lambda[\,ar{a}\,\,\,\,ar{b}\,\,\,\,ar{c}\,\,]$ then $\lambda=$
 - A. 2
 - B. 1
 - C. 4
 - D. 5

Answer: B

- **283.** If \bar{a}, \bar{b} and \bar{c} are unit vectors perpendicular to each other, the
- $\left[ar{a} \ ar{b} \ ar{c} \,
 ight]^2 =$

B. 3
C. 4
D. 2

Answer: A

Watch Video Solution

284. The value of
$$[\bar{a}-\bar{b}\ \bar{b}-\bar{c}\ \bar{c}-\bar{a}]$$
 where $|\bar{a}|=1, |\bar{b}|=2$ and $|\bar{c}|=3$ is

A. 1
B. 6
C. 0
D. 3

Answer: C

A. 1

285. If $|\bar{a}|=5, |\bar{b}|=3, |\bar{c}|=4$ and $|\bar{a}|$ is perpendicular to $|\bar{b}|$ and $|\bar{c}|$ such that the angle between $|\bar{b}|$ and $|\bar{c}|$ is $\frac{5\pi}{6}$, then $[\bar{a} \ \bar{b} \ \bar{c}]=$

- A. 25
- B. 20
- **C**. 30
- D. 10

Answer: C

Watch Video Solution

286. If $ar{a}$ is perpendicular to $ar{b}$ and $ar{c}$, $|ar{a}|=2$, $|ar{b}=3$, $|ar{c}|=4$ and the angle between $ar{b}$ and $ar{c}$ is $\frac{2\pi}{3}$, then $|[\,ar{a}\ \ ar{b}\ \ ar{c}\,]|=$

A. 12

B.
$$12\sqrt{3}$$

$$\mathsf{C.}\ \frac{12}{\sqrt{3}}$$

D.
$$12\sqrt{2}$$

Answer: B

Watch Video Solution

287. If $|ar{c}|=1$ and $ar{c}$ is perpedicular to $ar{a}$ and $ar{b}$ such that the angle

between
$$ar{a} \ ext{and} \ ar{b} \ ext{is} \ rac{\pi}{4}$$
 , then $[\, ar{a} \ \ ar{b} \ \ ar{c} \,] =$

A.
$$\frac{1}{\sqrt{2}}|\bar{a}||\bar{b}|$$

B.
$$\frac{1}{2}|ar{a}|^2ig|ar{b}ig|^2$$

D.
$$|ar{a}|^2 ig| ar{b} ig|^2$$

C. $|ar{a}| |ar{b}|$

Answer: A

A.
$$\frac{1}{\sqrt{2}}|\bar{a}|\big|\bar{b}\big|$$

B.
$$\frac{1}{2}|\bar{a}|^2|\bar{b}|^2$$

C.
$$|ar{a}| |ar{b}|$$

D.
$$\pm rac{\hat{i}+\hat{j}-2\hat{k}}{\sqrt{6}}$$

Answer: D

Watch Video Solution

289. If $ar b=2\hat i+\hat j-\hat k,$ $ar c=\hat i+3\hat k$ and ar a is a unit vectors, then the maximum value of $[\,ar a\quad ar b\quad ar c\,]$ is

A.
$$\sqrt{59}$$

B. 1

C. 3

D. 7

Answer: A

Watch Video Solution

290. If $ar{a}, ar{b}, ar{c}$ are linearly independent, the

$$\frac{[\,2\bar{a}\,+\,\bar{b}\,\ \ 2\bar{b}\,+\,\bar{c}\,\ \ 2\bar{c}\,+\,\bar{a}\,\,]}{[\,\bar{a}\,\ \bar{b}\,\ \bar{c}\,\,]}=$$

A. 9

B. 8

C. 7

D. 3

Answer: A

291. If
$$\overline{A}$$
, \overline{B} , \overline{C} are three non-coplanar vector,
$$\frac{\overline{A} \cdot \overline{B} \times \overline{C}}{\overline{C} \cdot \overline{A} \times \overline{B}} + \frac{\overline{B} \cdot \overline{A} \times \overline{C}}{\overline{C} \cdot \overline{A} \times \overline{B}} =$$

the

C. 1

Answer: B

Watch Video Solution

292. If ar a, ar b, ar c are non-coplanar vectors and $ar d = \lambda ar a + \mu ar b + \gamma ar c$, then $\lambda =$

$$\begin{array}{c} \mathsf{A.} \ \frac{\left[\, \bar{d} \quad \bar{b} \quad \bar{c} \, \right]}{\left[\, \bar{b} \quad \bar{a} \quad \bar{c} \, \right]} \\ \mathsf{B.} \ \frac{\left[\, \bar{b} \quad \bar{c} \quad \bar{d} \, \right]}{\left[\, \bar{b} \quad \bar{c} \quad \bar{a} \, \right]} \\ \mathsf{C.} \ \frac{\left[\, \bar{b} \quad \bar{d} \quad \bar{c} \, \right]}{\left[\, \bar{a} \quad \bar{b} \quad \bar{c} \, \right]} \\ \mathsf{D.} \ \frac{\left[\, \bar{c} \quad \bar{b} \quad \bar{d} \, \right]}{\left[\, \bar{a} \quad \bar{b} \quad \bar{c} \, \right]} \end{array}$$

Answer: B

293.

View Text Solution

non-coplanar

vectors

and

If $ar{a},ar{b},ar{c}$ are

$$ar{a}=\lambdaig(ar{b} imesar{c}ig)+\mu(ar{c} imesar{a})+\gammaig(ar{a} imesar{b}ig)$$
 then $\lambda=0$

A.
$$rac{ar{a}\cdotar{b}}{[ar{a}\ ar{b}\ ar{c}\,]}$$
B. $rac{ar{b}\cdotar{c}}{[ar{a}\ ar{b}\ ar{c}\,]}$

$$\begin{bmatrix} \bar{a} & b & \bar{c} \end{bmatrix}$$
C.
$$\frac{\bar{c} \cdot \bar{a}}{[\bar{a} & \bar{b} & \bar{c}]}$$

D.
$$rac{ar{a}\cdotar{a}}{[ar{a}\ ar{b}\ ar{c}\,]}$$

Answer: D

View Text Solution

294. If $ar{b} \ {
m and} \ ar{c}$ are any two perpendicular unit vectors and $ar{a}$ is any vector,

then
$$ig(ar{a}\cdotar{b}ig)ar{b}+(ar{a}\cdotar{c})ar{c}+igg(ar{a}\cdotrac{ar{b} imesar{c}}{\left|ar{b} imesar{c}
ight|}igg)ig(ar{b} imesar{c}ig)=$$

A.
$$ar{b}$$

B. \bar{a}

C. $ar{c}$

D. $ar{b}+ar{c}$

Answer: B

View Text Solution

295. If
$$\bar{a}, \bar{b}, \bar{c}$$
 are three non-coplanar vectors and $\bar{p}, \bar{q}, \bar{r}$ are vectors defined by the relations

$$egin{aligned} ar{p} &= rac{ar{b} imes ar{c}}{\left[\,ar{a} \quad ar{b} \quad ar{c}\,\,
ight]}, ar{q} &= rac{ar{c} imes ar{a}}{\left[\,ar{a} \quad ar{b} \quad ar{c}\,\,
ight]}, ar{r} &= rac{ar{a} imes ar{b}}{\left[\,ar{a} \quad ar{b} \quad ar{c}\,\,
ight]}, \ ar{(ar{a} + ar{b}) \cdot ar{p} + (ar{b} + ar{c}) \cdot ar{q} + (ar{c} + ar{a}) \cdot ar{r}} &= \end{aligned}$$

$$ar{c} + ar{a}) \cdot ar{r} =$$

then

B. 1

C.2

D. 3

Answer: D

Watch Video Solution

296. If $ar{a}, ar{b}, ar{c}$ are three non-coplanar vectors and $ar{p}, ar{q}, ar{r}$ are vectors

defined

by

the

relations

$$ar{p}=rac{ar{b} imesar{c}}{\lceilar{a}\ ar{b}\ ar{c}
ceil}, ar{q}=rac{ar{c} imesar{a}}{\lceilar{a}\ ar{b}\ ar{c}
ceil}, ar{r}=rac{ar{a} imesar{b}}{\lceilar{a}\ ar{b}\ ar{c}
ceil},$$

then

$$\left(ar{a}+ar{b}
ight)\cdotar{p}+\left(ar{b}+ar{c}
ight)\cdotar{q}+\left(ar{c}+ar{a}
ight)\cdotar{r}=$$

A. 0

B. 1

C. 2

D.3

Answer: D

297. If
$$\bar{p}=\frac{\bar{b}\times\bar{c}}{[\;\bar{a}\;\;\bar{b}\;\;\bar{c}\;]}, \bar{q}=\frac{\bar{c}\times\bar{a}}{[\;\bar{a}\;\;\bar{b}\;\;\bar{c}\;]}, \bar{r}=\frac{\bar{a}\times\bar{b}}{[\;\bar{a}\;\;\bar{b}\;\;\bar{c}\;]}$$
, where \bar{a},\bar{b},\bar{c} are three non-coplanar vectors, then $(\bar{a}+\bar{b}+\bar{c})\cdot(\bar{p}+\bar{q}+\bar{r})=$

Answer: A

Watch Video Solution

are three non-coplanar vectors,
$$\left(ar{a}-ar{b}-ar{c}
ight)\cdotar{p}-\left(ar{b}-ar{c}-ar{a}
ight)\cdotar{q}-\left(ar{c}-ar{a}-ar{b}
ight)\cdotar{r}=$$

298. If $\bar{p}=\frac{\bar{b}\times\bar{c}}{[\bar{z},\bar{b},\bar{z}]}, \bar{q}=\frac{\bar{c}\times\bar{a}}{[\bar{z},\bar{b},\bar{z}]}, \bar{r}=\frac{\bar{a}\times\bar{b}}{[\bar{z},\bar{b},\bar{z}]}$, where \bar{a},\bar{b},\bar{c}

then

C. -1

D. 0

Answer: C

Watch Video Solution

299. If $ar{a}, ar{b}, ar{c}$ are three non-coplanar vectors, then

$$ar{a}\cdot\left(rac{ar{b} imesar{c}}{3[\,ar{b}\,\,\,\,ar{c}\,\,\,\,ar{a}\,]}
ight)-ar{b}\cdot\left(rac{ar{c} imesar{a}}{2[\,ar{c}\,\,\,\,ar{a}\,\,\,ar{b}\,]}
ight)=$$

A.
$$\frac{-1}{6}$$

B.
$$\frac{-5}{6}$$

$$\mathsf{C.}\,\frac{1}{6}$$

D.
$$\frac{5}{6}$$

Answer: A

300. If z_1 and z_2 are z co-ordinates of the point of trisection of the segment joining the points A(2,1,4), B(-1,3,6) then $z_1+z_2=$

301. Let $\square PQRS$ be a quadrilateral. If M and N are the mid-points of the

- **A.** 1
- B.4
- **C**. 5
- D. 10

Answer: D

sides PQ and RS respectively, then PS+QR=

- A. $3\overline{MN}$
- ${\rm B.}\,4\overline{MN}$
- C. $2\overline{MN}$

D. $2\overline{NM}$

Answer: C

