©゙ doubtnut

India's Number 1 Education App

MATHS

BOOKS - MARVEL MATHS (HINGLISH)

BERNOULLI TRIALS AND BINOMIAL

DISTRIBUTION

Multiple Choice Questions

1. Let p be the probability of happening of an event, and q of its non- happening then the
total chance of r successes in n trials $0 \leq r \leq n$, is
A. ${ }^{n} C_{r} . p^{r} . q^{n-r}$
B. ${ }^{n} C_{r} . p^{r-1} . q^{r+1}$
C. ${ }^{n} C_{r} . P^{r+1} \cdot q^{r-1}$
D. ${ }^{n} C_{r} . P^{r} . q^{r}$

Answer: A

- Watch Video Solution

2. If $X \rightarrow B(n=10, p)$ and $E(X)=5$ then p
and $\operatorname{Var}(x)$ are \qquad
A. 0.2
B. 0.8
C. 0.1
D. none of these

Answer: B
3. IF $X \rightarrow B(n=10, p)$ and $E(X)=5$
then P and $\mathrm{V}(\mathrm{x})$ are .
A. $\frac{5}{2}, \frac{7}{2}$
B. $\frac{1}{2}, \frac{5}{2}$
C. $\frac{3}{2}, \frac{9}{2}$
D. none of these

Answer: B

4. Let $X \sim B(n, P)$. I f $E(X)=5$ and $\operatorname{Var}(x)=2.5$ find

 n and pA. $10,0.5$
B. 20,0.4
C. 10,0.4

D. none of these

Answer: A
5. A die is tossed 5 times. Getting and odd number is cosidered a success. Then, the variance of distribution of success, is

$$
\begin{aligned}
& \text { A. } \frac{8}{3} \\
& \text { B. } \frac{3}{8} \\
& \text { C. } \frac{4}{5} \\
& \text { D. } \frac{5}{4}
\end{aligned}
$$

Answer: D

6. In tossing 10 coins, the probability of getting exactly 5 heads is

$$
\begin{aligned}
& \text { A. } \frac{193}{256} \\
& \text { B. } \frac{9}{128} \\
& \text { C. } \frac{1}{2} \\
& \text { D. } \frac{63}{256}
\end{aligned}
$$

Answer: D
7. The probability that an event A happens in one trial of an experiment, is 0.4 There independent trials of the experiments are performed. The probability that the event A happens atleast once, is
A. 0.936
B. 0.216
C. 0.784
D. 0.064

- Watch Video Solution

8. Mean and variance of a binomial variate X are

4 and 2 respectively Then $P(X=1)=\ldots \ldots$

$$
\begin{aligned}
& \text { A. } \frac{1}{32} \\
& \text { B. } \frac{1}{16} \\
& \text { C. } \frac{1}{8} \\
& \text { D. } \frac{1}{4}
\end{aligned}
$$

Answer: A

- Watch Video Solution

9. Mean and variance of a binomial distribution

are 4 and 2 respectively. Then probability of 3
successes is

$$
\begin{aligned}
& \text { A. } \frac{128}{256} \\
& \text { B. } \frac{219}{256} \\
& \text { C. } \frac{7}{64} \\
& \text { D. } \frac{28}{256}
\end{aligned}
$$

Answer: C
10. If the mean and the variance of a binomial
variable X are 2 and 1 respectively, then the probability that X takes a value greater than one is equal to:

$$
\begin{aligned}
& \text { A. } \frac{5}{16} \\
& \text { B. } \frac{9}{16} \\
& \text { C. } \frac{11}{16} \\
& \text { D. none of these }
\end{aligned}
$$

- Watch Video Solution

11. A contest consist of predicting the result win, draw or defeat of 7 football matches. A sent his entry predicting at random. The probability that his entry will contain exactly 4 correct predictions is

$$
\begin{aligned}
& \text { А. } \frac{8}{3^{7}} \\
& \text { в. } \frac{16}{3^{7}} \\
& \text { с. } \frac{280}{3^{7}} \\
& \text { D. } \frac{560}{3^{7}}
\end{aligned}
$$

Answer: C

D Watch Video Solution

12. Six ordinary dice are rolled. The probability
that at least half of them will show at least 3 is
A. $41 \times \frac{2^{4}}{3^{6}}$
B. $\frac{2^{4}}{3^{6}}$
C. $20 \times \frac{2^{4}}{3^{6}}$
D. none of these

Answer: A

D Watch Video Solution

13. Given $X \rightarrow B(n=5, p)$

IF
$P(X=1)=0.4096$ and $P(X=2)=0.2048$,
then : $P=\ldots$...
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{1}{5}$

Answer: D

D Watch Video Solution

14. If X follows the binomial distribution with parameters $n=6$ and p and $9 p(X=4)=P(X=2)$, then p is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \\
& \text { B. } \frac{1}{3}
\end{aligned}
$$

C. $\frac{1}{4}$

D. none of these

Answer: C

D Watch Video Solution

15. If in a binomial distribution
$n=4, P(X=0)=\frac{16}{81}$, then $P(X=4)$
equals $\frac{1}{16}$ b. $\frac{1}{81}$ c. $\frac{1}{27}$ d. $\frac{1}{8}$
A. $\frac{1}{16}$
B. $\frac{1}{81}$
C. $\frac{1}{27}$
D. $\frac{1}{8}$

Answer: B

Watch Video Solution

16. For a binomial vareiate X if $n=5$ and $P(X=1)=8 P(X=3)$, then $p=$
A. $\frac{4}{5}$
B. $\frac{1}{5}$
C. $\frac{1}{3}$
D. $\frac{2}{3}$

Answer: B

Watch Video Solution

17. One hundred identical coins, each with probability p, of showing up heads are tossed once. If `o

A. $\frac{1}{2}$
 B. $\frac{49}{101}$
 C. $\frac{50}{101}$

D. none of these

Answer: D

D Watch Video Solution

18. A fair coin is tossed a fixed number of times.

If the probability of getting seven heads is
equal to that of getting nine heads, the probability of getting two heads, is

$$
\begin{aligned}
& \text { A. } \frac{15}{2^{8}} \\
& \text { B. } \frac{2}{15} \\
& \text { C. } \frac{15}{2^{13}}
\end{aligned}
$$

D. none of these

Answer: C

D Watch Video Solution
19. If a coin is tossed 6 times, then probability of getting 4 or more haeads is

$$
\begin{aligned}
& \text { A. } \frac{10}{32} \\
& \text { B. } \frac{11}{32} \\
& \text { C. } \frac{12}{32} \\
& \text { D. } \frac{13}{32}
\end{aligned}
$$

Answer: B

$$
\text { 20. If } X \rightarrow B(n=10, p=0.8)
$$

then : P (at most 3 successes $)=$...

$$
\begin{aligned}
& \text { A. } \frac{7680}{5^{10}} \\
& \text { B. } \frac{720}{5^{10}} \\
& \text { C. } \frac{8361}{5^{10}}
\end{aligned}
$$

D. none of these

Answer: D

21. IF $X \rightarrow B(n=9, p=0.8)$,
then : $P(X \geq 6)=\frac{4^{7}}{5^{9}}(k)$ where $\mathrm{k}=$
A. 109
B. 110
C. 111
D. 112

Answer: A

D Watch Video Solution
22. IF $X \rightarrow B(n=20, p=0.1)$ then : P $(X \geq 1)=.$.

$$
\text { A. }(0.1)^{20}
$$

$$
\text { B. } 1-(0.1)^{20}
$$

$$
\text { C. } 1-(0.9)^{20}
$$

$$
\text { D. }(0.9)^{20}
$$

Answer: C
23. If $X \rightarrow B(n=10, p=0.5)$ then

$$
p(X \geq 9)=\ldots
$$

> A. $\frac{120}{1024}$
> B. $\frac{45}{1024}$
> C. $\frac{10}{1024}$
D. none of these

Answer: D

- Watch Video Solution

24. If $X \rightarrow B(n=10, p=0.5)$ then

$$
p(X \geq 9)=\ldots
$$

$$
\begin{aligned}
& \text { A. } \frac{10}{1024} \\
& \text { B. } \frac{1}{1024} \\
& \text { C. } \frac{11}{1024}
\end{aligned}
$$

D. none of these

Answer: C
25. A coin is tossed 5 times. What is the probability of getting at least 3 heads.

$$
\begin{aligned}
& \text { A. } \frac{11}{16} \\
& \text { B. } \frac{15}{16} \\
& \text { C. } \frac{13}{16} \\
& \text { D. none of these }
\end{aligned}
$$

Answer: D

26. Workers in an industry have a 10% chance of
sufering from an occupational disease
,Probability that, out of 6 workers, at least 5
will catch the discease is

$$
\begin{aligned}
& \text { A. } \frac{11}{2,00,000} \\
& \text { B. } \frac{11}{2,000} \\
& \text { C. } \frac{11}{200}
\end{aligned}
$$

D. none of these

Answer: A
27. Hens of a certain breed lay eggs 5 days 5 days a weak one an average .A poulatry keeper with 5 hens of this breed expects to get at least

4 eggs per day, then ,in a season of 100 days,
his wish will be fulfilled on.....
[Given : $\left(\frac{5}{7}\right)^{5}=0.1859$]
A. 55 days
B. 56 days
C. 57 days
D. none of these

Answer: B

- View Text Solution

28. As an answer to a question, two options are given only one of which is correct, then the propbability of correctly answering at least 6 of the 10 questions is
A. $\frac{210}{512}$
B. $\frac{120}{512}$
C. $\frac{193}{512}$

D. none of these

Answer: C

D Watch Video Solution

29. Jui's chance of winning a single game aginst Vrushali is $\frac{3}{4}$ probability that, in a series of 5 games ,jui wins at least 3 games is

[^0]C. $\frac{324}{512}$

D. none of these

Answer: B

D Watch Video Solution

30. A fair coin is tossed 9 times. The probability
that it shows heads in the first four tosses and
tails in the last five tosses is
A. $\frac{1}{512}$
B. $\frac{16}{512}$
C. $\frac{64}{512}$

D. none of these

Answer: A

D Watch Video Solution

31.

$x \rightarrow B(n=6, P=0.3)$ and $(0.3)^{6}=0.000729$
then : $P(x \leq 4)=\ldots$
A. 0.9890
B. 0.9739
C. 0.9980
D. none of these

Answer: A

D Watch Video Solution

32.

$X \rightarrow B(n=20, p=0.03)$ and $(0.97)^{20}=0.5437$
then : $P(X \geq 1)=$

A. 0.5463

B. 0.6453

C. 0.4563
D. none of these

Answer: C

D Watch Video Solution

33. A coin is tossed n times. The probability that
head will turn up an odd number of times , is

> A. $\frac{1}{3}$
> B. $\frac{1}{2}$
> C. $\frac{2}{3}$
D. none of these

Answer: B

D Watch Video Solution

34. A man takes a step forward with probability
0.4 and backward with probability 0.6 . The
probability that at the end of eleven steps he is
just one step away from the starting point, is
A. 0.37
B. 0.32
C. 0.54
D. none of these

Answer: A

D Watch Video Solution
35. If n toys are distributed among N boys
randomly, then the probability that a particular boy gets $r(<n)$ toys is
A. $\frac{r}{n}$
B. ${ }^{n} C_{6}\left(\frac{1}{N}\right)^{r}$
C. ${ }^{n} C_{r} \cdot\left(\frac{1}{N}\right)^{r} \cdot\left(\frac{N-1}{N}\right)^{n-r}$
D. none of these

Answer: C

36. If X follows a binomial distribution with
parameters $n=8$ and $p=1 / 2, \quad$ then
$p(|X-4| \leq 2)$ equals

> A. $\frac{119}{128}$
> B. $\frac{116}{128}$
> C. $\frac{29}{128}$
D. none of these

Answer: A

37. A coin is rolled n times. If the probability of getting head at least once is greater than 90% then the minimum value of n is
A. 3
B. 4
C. 5
D. none of these

Answer: B
38. If X is a binomial variate with parameters n
and p , where $0>p>$ such that $\frac{P(X=r)}{P(X=n-r)}$ is independent of n and r , then p equals.
A. $\frac{1}{3}$
B. $\frac{1}{2}$
C. $\frac{1}{4}$
D. none of these

Answer: B
39. Number of times a fair coin must be tossed
so that the probabaility of getting at least one head is at least 0.95 is
A. 5
B. 6
C. 7
D. 12

Answer: A
40. An unbiased coin is tossed n times. Let X denote the number of times head occurs. If
$P(X=4), P(X=5)$ and $P(X=6)$ are in
A.P, then the value of n can be
A. 7
B. 10
C. 12
D. 24

(D) Watch Video Solution

41. If A and B toss 3 coins each, The probability
that both get equal number of heads is
A. $\frac{3}{8}$
B. $\frac{1}{9}$
C. $\frac{5}{16}$
D. none of these

Answer: C
42. IF X and Y are independent binomial variables such that
$X \rightarrow B(5,0.5)$ and $Y \rightarrow B(7.0 .5)$. then

$$
p[(X+y)>1]=\ldots .
$$

A. $\frac{4095}{4096}$
B. $\frac{3.9}{4096}$
C. $\frac{4032}{4096}$
D. none of these

- View Text Solution

43. If X and Y are independent binomial
vatiates $B\left(5, \frac{1}{2}\right)$ and $B\left(7, \frac{1}{2}\right)$ and the
value of $P(X+Y=3)$ is

$$
\begin{aligned}
& \text { A. } \frac{55}{1024} \\
& \text { B. } \frac{55}{4098} \\
& \text { C. } \frac{55}{2048} \\
& \text { D. } \frac{55}{128}
\end{aligned}
$$

(D) Watch Video Solution

44. If 10 coins are tossed simultaneoiusly, then probability of getting at least 7 heads is

$$
\begin{aligned}
& \text { A. } \frac{120}{1024} \\
& \text { B. } \frac{45}{1024} \\
& \text { C. } \frac{10}{1024} \\
& \text { D. } \frac{176}{1024}
\end{aligned}
$$

Answer: D

45. If a fair coin is tossed 8 times, then the probability that it shows heads larger number of times than tails is

$$
\begin{aligned}
& \text { A. } \frac{56}{256} \\
& \text { B. } \frac{93}{256} \\
& \text { C. } \frac{28}{256} \\
& \text { D. } \frac{8}{256}
\end{aligned}
$$

Answer: B
46. If the chance of a gushot hitting a target is 0.2 then the probability that at least 2 shots out of 10 will hit the target is

$$
\begin{aligned}
& \text { A. } 1-\left(\frac{4}{5}\right)^{10} \\
& \text { В. } 1-7\left(\frac{4}{5}\right)^{10} \\
& \text { C. } 1+\frac{7}{2}\left(\frac{4}{5}\right)^{10}
\end{aligned}
$$

D. none of these

Answer: D

47. Numberse are selected at random, one at a
time, from the two-digit numbers 00,01,02,.... 99
with replacement. An event E occurs if and only
if the product of the two digits of a selected
number is 18 . If four numbers are selected, find probability that the event E occurs at least 3 times.

$$
\begin{aligned}
& \text { A. } \frac{68}{(25)^{4}} \\
& \text { B. } \frac{72}{(25)^{4}} \\
& \text { C. } \frac{97}{(25)^{4}}
\end{aligned}
$$

D. none of these

Answer: C

D Watch Video Solution

48. A boy is throwing stones at a target. The probability of hitting the target at any trial is $\frac{1}{2}$ The probability of hitting the target 5th time at the 10th throw is

$$
\begin{aligned}
& \text { A. } \frac{5}{2^{10}} \\
& \text { B. } \frac{63}{2^{9}}
\end{aligned}
$$

C. $\frac{{ }_{10} C_{5}}{2^{10}}$

D. none of these

Answer: B

D Watch Video Solution

49. From a box containing 20 tickets marked with numbers 1 to 20 , four tickets are drawn one by one. After each draw, the ticket is replaced. The probability that the largest value of tickets drawn is 15 is.

> A. $\left(\frac{3}{4}\right)^{4}$
> B. $\frac{27}{320}$
> C. $\frac{27}{1280}$

D. none of these

Answer: B

D Watch Video Solution

50. In a box containg 100 bulbs, 64 are defective probabaility that in a sample of 5 bulbs , none is defective, is
A. $\left(\frac{9}{25}\right)^{5}$
B. $\frac{9}{10}$
C. $\frac{1}{10^{5}}$
D. $\left(\frac{1}{2}\right)^{2}$

Answer: A

D Watch Video Solution

51. Iterms produced by a compary are supposed
to contain 5\% defective items .probability that a
sample of 8 items will contain less than 2 defective items is

$$
\begin{aligned}
& \text { A. } \frac{27}{20}\left(\frac{19}{20}\right)^{7} \\
& \text { B. } \frac{541}{400}\left(\frac{19}{20}\right)^{6} \\
& \text { C. } \frac{153}{20}\left(\frac{1}{20}\right)^{7} \\
& \text { D. } \frac{35}{16}\left(\frac{1}{20}\right)^{6}
\end{aligned}
$$

Answer: A
52. IF $X \rightarrow B(n, p)$ and $Y=n-X$ then : $Y \rightarrow$
A. $B(p, n)$
B. $B(n, 1,-p)$
C. $N(0,1)$
D. none of these

Answer: B
53. A binomial probability distribution is
symmertrial .If the probability p of success in a single trial is
A. greater than $1 / 2$
B. Less than $1 / 2$
C. less than $q=1-p$
D. equal to $1 / 2$

Answer: D

View Text Solution
54. The probability that a marksman will hit a target is given is $1 / 5$. Then the probability that at least once hit in 10 shots is $1-(4 / 5)^{10} \mathrm{~b}$.

$$
1 / 5^{10} \text { c. } 1-(1 / 5)^{10} \text { d. }(4 / 5)^{10}
$$

A. $\left(\frac{1}{5}\right)^{10}$

$$
\begin{aligned}
& \text { B. } 1-\left(\frac{1}{5}\right)^{10} \\
& \text { C. } 1-\left(\frac{4}{5}\right)^{10}
\end{aligned}
$$

D. none of these

Answer: C
55. Five coins are tossed simultaneously. The probability that at least on head turning up, is

$$
\begin{aligned}
& \text { A. } \frac{1}{32} \\
& \text { B. } \frac{5}{32} \\
& \text { C. } \frac{7}{16} \\
& \text { D. } \frac{31}{32}
\end{aligned}
$$

Answer: D

56. एक प्रयोग के सफल होने का संयोग उसके असफल होने

से दो गुना है। प्रायिकता ज्ञात कीजिए कि अगले छः परीक्षणों में कम से कम 4 सफल होंगे।
A. $\frac{496}{729}$
B. $\frac{233}{729}$
C. $\frac{432}{729}$
D. $\frac{256}{729}$

Answer: A
57. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting points 0,1 and 2 are $0.45,0.05$ and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is (a) 0.8750 (b) 0.0875 (c) 0.0625 (d) 0.0250
A. $\frac{1}{80}$
B. $\frac{7}{80}$
C. $\frac{7}{8}$
D. $\frac{1}{8}$

Answer: B

D Watch Video Solution

58. The probability of India winning a test match againest England is $\frac{2}{3}$. Assuming independence from match to match, the probability that in a 7 match series India's third win occurs at the fifth match, is
A. $\frac{8}{27}$
B. $\frac{16}{81}$
C. $\frac{8}{81}$
D. $\frac{32}{81}$

Answer: B

(D) Watch Video Solution

59. A die is thrown 100 times, getting an even number is considered a success. The variance of the number of successes is
A. 50
B. 25
C. 10
D. 100

Answer: B
60. If turning up 1 or 3 is considered a success,
then the S.D of number of successes in 8 throws is

> A. $\frac{16}{9}$
> B. $\frac{8}{3}$
> C. $\frac{4}{3}$
> D. $\frac{2}{3}$

Answer: C

D Watch Video Solution

61. A die is tossed 5 times. Getting and odd number is cosidered a success. Then, the
variance of distribution of success, is

> A. $\frac{8}{3}$
> B. $\frac{3}{8}$
> C. $\frac{4}{5}$
> D. $\frac{5}{4}$

Answer: D

D Watch Video Solution

62. A box contains 100 bulbs out of which 10 are defective. A sample of 5 bulbs is drawn. The probability that none is defective , is
A. $\left(\frac{1}{10}\right)^{5}$
B. $\frac{9}{10}$
C. $\left(\frac{1}{2}\right)^{2}$
D. $\left(\frac{9}{10}\right)^{5}$

Answer: D

D Watch Video Solution

63. If in a binomial distribution
$n=4, P(X=0)=\frac{16}{81}$, then $P(X=4)$
equals $\frac{1}{16}$ b. $\frac{1}{81}$ c. $\frac{1}{27}$ d. $\frac{1}{8}$

> A. $\frac{1}{16}$
> B. $\frac{1}{81}$
> C. $\frac{1}{27}$
> D. $\frac{1}{8}$

Answer: B

D Watch Video Solution

64. A biased coin with probability $\mathrm{p}, 0<p<1$
of heads is tossed until a head appears for the
first time. If the probability that the number of
tosses required is even is $2 / 5$, then p equals
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $\frac{2}{5}$
D. $\frac{3}{5}$

Answer: A

D Watch Video Solution
65. A fair coin is tossed repeatedly. If tail appears on first four tosses, them the probability of head appearing that 2 white and 1 black balls will be drawn, is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \\
& \text { B. } \frac{1}{32} \\
& \text { C. } \frac{31}{32} \\
& \text { D. } \frac{1}{16}
\end{aligned}
$$

Answer: D
66. A coin is tossed $2 n$ times. The change that
the number of times one gets head is not equal
to the number of times one gets tail is
A. ${ }^{2 n} C_{n} \cdot\left(\frac{1}{2}\right)^{2 n}$
B. $1-{ }^{2 n} C_{n}$
C. $1-{ }^{2 n} \cdot\left(\frac{1}{4}\right)^{n}$
D. none of these

Answer: C

67. Two cards are drawn successively with replacement from a well shuffled deck of 52 cards, then the meanof the number of aces is

$$
\begin{aligned}
& \text { A. } \frac{1}{13} \\
& \text { B. } \frac{3}{13} \\
& \text { C. } \frac{2}{13} \\
& \text { D. none of these }
\end{aligned}
$$

Answer: C
68. The sum of of the mean and variance of a binomial distribution is 15 and the sum of their squares is 117. the mean of the distribution is
A. 6
B. 9
C. 3
D. 12

Answer: B
69. Two coins are tossed five times. The probability that an odd number of heads are obtained, is
A. $\left(\frac{1}{2}\right)^{5}$
B. $\frac{3}{5}$
C. $\frac{2}{5}$
D. none of these

Answer: D
70. A fair coin is tossed n times. if the probability that head occurs 6 times is equal to
the probability that head occurs 8 times, then
find the value of n.
A. 7
B. 14
C. 16
D. 19

(D) Watch Video Solution

71. The mean and variance of a random variable

X having a binomial distribution are 4 and 2
respectively. The $P(X=1)$ is

$$
\begin{aligned}
& \text { A. } \frac{1}{32} \\
& \text { B. } \frac{1}{16} \\
& \text { C. } \frac{1}{8} \\
& \text { D. } \frac{1}{4}
\end{aligned}
$$

72. The mean and the variance of a binomial distribution are 4 and 2 respectively. Then, the probability of 2 successes is

$$
\begin{aligned}
& \text { А. } \frac{37}{256} \\
& \text { B. } \frac{219}{256} \\
& \text { C. } \frac{128}{256} \\
& \text { D. } \frac{28}{256}
\end{aligned}
$$

- Watch Video Solution

73. A pair of fair dice is thrown independently
three times. The probability of getting a score of exactly 9 twice is (1) $1 / 729$ (2) $8 / 9$ (3) $8 / 729$ (4) 8/243
A. $\frac{1}{729}$
B. $\frac{8}{9}$
C. $\frac{8}{729}$
D. $\frac{8}{243}$

Answer: D

- Watch Video Solution

74. In a binomial distribution $B\left(n, p=\frac{1}{4}\right)$, if the probability of at least one success is greater 9 than or equal to $\frac{9}{10}$, then n is greater than (1)

$$
\frac{1}{\frac{(\log)_{10}^{4}-(\log)_{10}^{3}}{(\log)_{10}^{4}-(\log)_{10}^{3}}} \text { (4) } \frac{1}{(\log)_{10}^{4}-(\log)_{10}^{3}}
$$

1
A.

$$
\overline{\log (10) 4-\log _{10} 3}
$$

B. $\frac{1}{\log _{10} 4+\log _{10} 3}$
C. $\frac{\log _{10} 4-\log _{10} 3}{}$

9

D. $\frac{\log _{10}-\log _{10} 3}{}$

Answer: A

D Watch Video Solution

75. Numbers are selected at random, one at a
time, from the two-digit numbers 00,01,02,.... 99
with replacement. An event E occurs if and only
if the product of the two digits of a selected number is 18 . If four numbers are selected, find
probability that the event E occurs at least 3 times.

$$
\begin{aligned}
& \text { A. } \frac{24}{(25)^{4}} \\
& \text { B. } \frac{25}{(25)^{4}} \\
& \text { C. } \frac{49}{(25)^{4}} \\
& \text { D. } \frac{97}{(25)^{4}}
\end{aligned}
$$

Answer: D

- Watch Video Solution

76. The probability that an event A happens in one trial of an experiment, is 0.4 There independent trials of the experiments are performed. The probability that the event A happens atleast once, is
A. 0.936
B. 0.784
C. 0.904
D. none of these

- Watch Video Solution

77. One hundred identical coins, each with probability p, of showing up heads are tossed once. If `o
A. $\frac{1}{2}$
B. $\frac{49}{101}$
C. $\frac{50}{101}$
D. $\frac{51}{101}$

- Watch Video Solution

78. A fair coin is tossed repeatedly. If tail appears on first four tosses, them the probability of head appearing that 2 white and 1 black balls will be drawn, is
A. $\frac{1}{2}$
B. $\frac{1}{32}$
c. $\frac{31}{32}$
D. $\frac{1}{5}$

Answer: A

D Watch Video Solution

79. A die is thrown a fixed number of times. If probability of getting even number 3 times is same as the probability of getting even number

4 times, then probability of getting even number exactly once is $1 / 6 \mathrm{~b} .1 / 9 \mathrm{c} .5 / 36 \mathrm{~d}$.
$7 / 128$

$$
\text { A. } \frac{1}{6}
$$

B. $\frac{1}{9}$
C. $\frac{5}{36}$
D. $\frac{7}{128}$

Answer: D

D Watch Video Solution

[^0]: 135
 A. $\overline{512}$
 B. $\frac{459}{512}$

