© ${ }^{\prime}$ doubtnut

India's Number 1 Education App

MATHS

BOOKS - MARVEL MATHS (HINGLISH)

CIRCLE AND CONICS

ILLUSTRATIVE EXAMPLES

1. Find the equation of the circle having centre at $(2,-3)$, and passing through (1,2).

- Watch Video Solution

2. Find the equation of the circle having
centre at $(7,-2)$, and touching the X -axis

(D) Watch Video Solution

3. Find the equation of the circle having
centre at (3,2), and touching the line

$$
4 x+3 y-8=0
$$

(D) Watch Video Solution

4. Find the equation of the circle, centred at $(1,4)$, which cuts off of a chord of length 4 units on the line

$$
3 x+4 y+1=0
$$

5. Find the equation of the circle which passes through the two points (6,4), ($8,-4$) and has centre on the X-axis

- Watch Video Solution

6. Find the equation of the circle passing through the point
$(1,9)$, and touching the line $3 x+4 y+6=0$ at the point $(-2,0)$

- Watch Video Solution

7. Find the equation of the circle which touches the line $x+8=0$ at the point $(-8,4)$, and passes through the origin.

(D) Watch Video Solution

8. Show that the four point $(4,6),(-3,5),(5,-1)$ and $(1,7)$ are concyclic.

- Watch Video Solution

9. Find the equation of the circle passing through the three points (0,0),(a,0) and (0,b).

(D) Watch Video Solution

10. Find the co-ordinates of the centre and radius of the circle
$3 x^{2}+3 y^{2}+6 x+4 y-3=0$
11. Find the equation of the circle which is concentric with the circle $x^{2}+y^{2}-6 x-4 y-3=0$, and has radius 5.

- Watch Video Solution

12. Show that the x - and y -intercepts of the circle $x^{2}+y^{2}$
$+2 g x+2 f y+c=0$ are $2 \sqrt{g^{2}-c}$ and $2 \sqrt{f^{2}-e}$
Hence, find the condition that the (i) X-axis (ii) Y-axis
(iii) both X , and Y -axes touch the circle .

Also, find the equation of the locus of the centre of the circle which makes intercepts 2 a and 2 b on the X - and Y -axis respectively .
13. Find the equations of the circles which touch Y-axis at the point $(0,3)$, and make an intercept of 8 units on the X-axis

- Watch Video Solution

14. Show that the two circles $x^{2}+y^{2}-4 x+10 y+20=0$ and $x^{2}+y^{2}+8 x-6 y-24=0$ touch each other. Also , find co-ordinates of their point of contact .

- Watch Video Solution

15. Show that the two circles $x^{2}+y^{2}+4 x-12 y+4=0$ and $x^{2}+y^{2}-2 x-4 y+4=0$ touch each other. Also, find the co-ordinates of the point of contact .

- Watch Video Solution

16. Find the equation of the circle, centred at $(-1,4)$, which touches the circle $x^{2}+y^{2}-6 x-2 y+1=0$ externally

- Watch Video Solution

17. If the two circle
$x^{2}+y^{2}-10 x-14 y+k=0$
and $x^{2}+y^{2}-4 x-6 y+4=0$
are orthogonal , find k.

- Watch Video Solution

18. Find k , if the line $\mathrm{y}=2 \mathrm{x}+\mathrm{k}$ touches the circle $x^{2}+y^{2}$
$-4 x-2 y=0$

- Watch Video Solution

19. Find the equation of the tangent to the circle $x^{2}+y^{2}+5 x-3 y-4=0$ at the point $(1,2)$.
A. $x+7 y=9$
B. $x+y=9$
C. $7 x+y=9$
D. $x+7 y=12$

Answer: C

20. Find the co-ordinates f the fouces, equation of the directrix, co-ordinates of the ends and length of the latus rectum of the parabola :
$3 y^{2}=16 x$

(D) Watch Video Solution

21. Find the co-ordinates f the fouces, equation of the directrix, co-ordinates of the ends and length of the latus rectum of the parabola :
$x^{2}+16 y=0$

- Watch Video Solution

22. Find the equation of the parabola having $(3,-6)$ and $(3,6)$ as the extremities of the latus rectum .

(D) Watch Video Solution

23. Find the measure of the angle subtended by the latus rectum of the parabola $y^{2}=4 a x$ at the vertex of the parabola.

(D) Watch Video Solution

24. A line perpendicular to the axis of the parabola $y^{2}=16 x$ intersects the parabola in two points A and B. If $A B=32$, show that $\angle A O B$ is a right angle. Also, find the area of $\triangle A O B$.

(D) Watch Video Solution

25. Find the co-ordinates of the point on the parabola $2 y^{2}=7 x$, whose parameter is (-2). Also find its focal distance .

- Watch Video Solution

26. If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are the ends of a focal chord of the parabola $y^{2}=4 a x$, evaluate : $x_{1} x_{2}+y_{1} y_{2}$.

- Watch Video Solution

27. If PSQ is a focal chord of the parabola $y^{2}=4 a x$ such that $\mathrm{SP}=3$ and $\mathrm{SQ}=2$, find the latus rectum of the parabola.
28. If t is the parameter of one end of a focal chord of the parabola $y^{2}=4 a x$, show that the length of this focal chord is $\left(t+\frac{1}{t}\right)^{2}$.

- Watch Video Solution

29. If θ is the inclination of a chord of $y^{2}=4 a x$ drawn from its vertex, show that its length is
$4 a \cdot \csc \theta \cdot \cot \theta$.

- Watch Video Solution

30. Find the eccentricity and co-ordinates of foci of the ellipse $\frac{x^{2}}{5}+\frac{y^{2}}{2}=1$

- Watch Video Solution

31. Find the eccentricity, co-ordinates of foci, lengths of axes and length of latus-rectum of the ellipse
$\left(x^{2} / 25\right)+\left(y^{2} / 9\right)=1$

- Watch Video Solution

32. Find the lengths of the axes, eccentricity, co-ordinates of foci, equations of directrices and langth of latus rectum of the ellipse $9 x^{2}+4 y^{2}=36$.
33. Find the equation of the ellipse, referred to is principal axes, for which eccentricity is $(1 / 3)$ and foci are $(\pm 4,0)$
A. $\frac{x^{2}}{144}+\frac{y^{2}}{128}=1$
B. $\frac{x^{2}}{128}+\frac{y^{2}}{144}=1$
C. $\frac{x^{2}}{128}-\frac{y^{2}}{144}=1$
D. $\frac{x^{2}}{144}-\frac{y^{2}}{128}=1$

Answer: A

(D) Watch Video Solution

34. Find the equation of the ellipse, referred to is principal axes, for which
minor axis $=8$ and eccentricity $=3 / 5$

- Watch Video Solution

35. Find the equation of the ellipse, referred to is principal axes, for which
semi-minor axis $=3$, and passes through $(-2 \sqrt{5}, 2)$

D Watch Video Solution

36. Find the equation of the ellipse, referred to is principal axes, for which
eccentricity $=2 / 3$, and passes through $(2,-5 / 3)$

- Watch Video Solution

37. Find the equation of the ellipse, referred to is principal axes, for which
focus is at $(1,0)$ and equation of directrix is $x=4$

- Watch Video Solution

38. Find the equation of the ellipse, referred to is principal axes, for which
distance between foci= minor axis, and latus rectum $=10$.

- Watch Video Solution

39. An ellipse meets the line $\frac{x}{7}+\frac{y}{2}=1$ on the X -axis, and the line $\frac{x}{3}-\frac{y}{5}=1$ on the Y -axis. If its principle axes lie along the co-ordinate axes, find its eccentricity.
40. An ellipse, centred at the origin, has major axis $2 a$. If it passes through a given $\left(x_{1}, y_{1}\right)$, show that its
eccentricity is $\sqrt{\frac{x_{1}^{2}+y_{1}^{2}-a^{2}}{x_{1}^{2}-a^{2}}}$

(D) Watch Video Solution

41. Any point whose x and y co-ordinates satisfy the equations $\frac{1-(x / a)}{t^{2}}=\frac{1+(x / a)}{1}=\frac{y / b}{t}$, where t is an non-zero parameter, lies on a / m
42. The focus of the parabola $y^{2}=8 x$ is one of the vertices of the hyperbola $\left(x^{2} / a^{2}\right)-\left(y^{2} / b^{2}\right)=1$. If length of the conjugate axis of this hyperbola is 2. find the equation, eccentricity and length of the latus rectum of the hyperbola

(D) Watch Video Solution

43. Focus of a parabola $y^{2}=4 a x$ coincides with the focus of the hyperbola $9 x^{2}-16 y^{2}=144$ which is on the positive direction of X -axis. Find the equation of the tangent line to the parabola at the end of the latus rectum I which lies in the first quadrant.

- Watch Video Solution

44. Find the equation of the hyperbola in standard form , if : conjugata axis $=5$ and distance between foci $=13$

(D) Watch Video Solution

45. Find the equation of the hyperbola in standard form , if :
eccentricity $=3 / 2$ and distance between directrices $=8 / 3$

D Watch Video Solution

46. Find the equation of the hyperbola in standard form , if :
it is confocal with the ellipse $\left(x^{2} / 9\right)+\left(y^{2} / 5\right)=1$
and its eccentricity is $(5 / 6)+$ eccentricity of the parabola $5 y^{2}=9 x$
47. The abscissa of a point can be expressed as 3 times the sum of a non-zero number and its reciprocal. If its ordinate
can be written as 2 times the difference of that number and its reciprocal, find equation of locus of the point and identify the curve

D Watch Video Solution

MULTIPLE CHOICE QUESTIONS

1. Equation of circle centred at $(2,-3)$, and passing through
$(-1,2)$, is
A. $x^{2}+y^{2}-4 x-6 y-34=0$
B. $X^{2}+y^{2}+4 x-6 y+34=0$
C. $X^{2}+y^{2}+4 x+6 y+21=0$
D. $X^{2}+y^{2}-4 x+6 y-21=0$

Answer: D

- Watch Video Solution

2. Equation of circle centred at $(1,-1)$, and passing through
$(3,2)$, is
A. $x^{2}+y^{2}-2 x-2 y-11=0$
B. $x^{2}+y^{2}-2 x+2 y-11=0$
C. $x^{2}+y^{2}+2 x+2 y-11=0$
D. $x^{2}+y^{2}-2 x+2 y+11=0$

(D) Watch Video Solution

3. Equation of circle cnetred at $(5,-2)$, and touching X-axis is
A. $x^{2}+y^{2}+10 x+4 y+25=0$
B. $x^{2}+y^{2}+10 x-4 y+25=0$
C. $x^{2}+y^{2}-10 x+4 y+25=0$
D. $x^{2}+y^{2}-10 x-4 y-25=0$

Answer: C

- Watch Video Solution

4. Find the equation of the circle having
centre at $(7,-2)$, and touching the X -axis
A. $x^{2}+y^{2}-14 x+4 y+49=0$
B. $(x+7)^{2}+(y-2)^{2}=4$
C. $(x-7)^{2}+(y-2)^{2}=49$
D. $x^{2}+y^{2}+14 x-4 y+4=0$

Answer: A

- Watch Video Solution

5. Equation of of circle centred at $(-4,3)$, and tangent to Y-axis , is

$$
\text { A. } x^{2}+y^{2}-8 x-6 y-9=0
$$

B. $x^{2}+y^{2}-8 x+6 y+9=0$
C. $x^{2}+y^{2}+8 x-6 y+9=0$
D. $x^{2}+y^{2}-8 x-6 y-9=0$

Answer: C

- Watch Video Solution

6. Equation of circle centred at $(-g,-f)$, and tangent to Y axis ,is
A. $x^{2}+y^{2}+2 g x+2 f y+f^{2}=0$
B. $x^{2}+y^{2}-2 g x-2 f y-f^{2}=0$
C. $x^{2}+y^{2}-2 g x+2 f y+g^{2}=0$
D. $x^{2}+y^{2}-2 g x-2 f y-g^{2}=0$

D Watch Video Solution

7. Equation of circle centred at $(0,-3)$, and tanged to X-axis, is
A. $x^{2}+y^{2}-6 y=0$
B. $x^{2}+y^{2}-6 x=0$
C. $x^{2}+y^{2}+6 y=0$
D. $x^{2}+y^{2}+6 x=0$

Answer: C

- Watch Video Solution

8. Equation of circle centred at $(2,0)$, and touching Y-axis is
A. $x^{2}+y^{2}+4 x=0$
B. $x^{2}+y^{2}-4 x=0$
C. $x^{2}-y^{2}-4 t=0$
D. $x^{2}+y^{2}+4 t=0$

Answer: B

- Watch Video Solution

9. Equation of circle centred at origin, and touching the line $3 x-4 y+20=0$ is

$$
\text { A. } x^{2}+y^{2}=4
$$

B. $x^{2}+y^{2}=9$
C. $x^{2}+y^{2}=25$
D. $x^{2}+y^{2}=16$

Answer: D

- Watch Video Solution

10. Equation of circle centred at $(3,1)$, and touching the line
$8 x-15 y+25=0$, is
A. $x^{2}+y^{2}-6 x-2 y-6=0$
B. $x^{2}+y^{2}-6 x-2 y+6=0$
C. $x^{2}+y^{2}+6 x+2 y+6=0$
D. $x^{2}+y^{2}+6 x+2 y-6=0$

(D) Watch Video Solution

11. Find the equation of the circle whose centre is at $(3,-1)$ and which cuts off a chord of length 6units on the line $2 x-5 y+18=0$.
A. $x^{2}+y^{2}-6 x+2 y-38=0$
B. $x^{2}+y^{2}-6 x-2 y-38=0$
C. $x^{2}+y^{2}+6 x-2 y+38=0$
D. $x^{2}+y^{2}+6 x-2 y-38=0$

Answer: A

12. Equation of circle centred at $(3,-2)$, which cuts off a chord of length 6 from the line $4 x-3 y+2=0$, is
A. $(x-3)^{2}+(y+2)^{2}=5$
B. $(x+3)^{2}+(y-2)^{2}=5$
C. $x^{2}+y^{2}-6 x+4 y-12=0$
D. $x^{2}+y^{2}-4 x+6 y+12=0$

Answer: C

- Watch Video Solution

13. Equation of circle centred on X-axis, and passing through $(6,4)$ and $(8,-4)$, is

$$
\text { A. } x^{2}+y^{2}+14 x+32=0
$$

B. $x^{2}+y^{2}+14 y+32=0$
C. $x^{2}+y^{2}-14 y+32=0$
D. $x^{2}+y^{2}-14 x+32=0$

Answer: D

- Watch Video Solution

14. Equation of circle centred on Y-axis, and passing through
$(4,6)$ and $(6,11)$, is
A. $x^{2}+y^{2}-21 y+74=0$
B. $x^{2}+y^{2}-21 x+74=0$
C. $x^{2}+y^{2}+21 y-74=0$
D. $x^{2}+y^{2}-21 y=0$

(D) Watch Video Solution

15. Equation of circle centred on the line $x-2 y+9=0$, and passing throught $(1,-4)$ and (5,2), is
A. $x^{2}+y^{2}+6 x+6 y+47=0$
B. $x^{2}+y^{2}-6 x+6 y+47=0$
C. $x^{2}+y^{2}+6 x-6 y-47=0$
D. $x^{2}+y^{2}-6 x-6 y-47=0$

Answer: C

16. Equation of circle passing through ($-2,0$),(4,0) , and having radius 5 , is
A. $x^{2}+y^{2} \pm 2 x+8 y-8=0$
B. $x^{2}+y^{2}-2 x \pm 8 y-8=0$
C. $x^{2}+y^{2}+2 x-8 y \pm 8=0$
D. $x^{2}+y^{2}+2 x=0$

Answer: B

- Watch Video Solution

17. Equation of circle passing through $\mathrm{A}(-1,-3), \mathrm{B}(3,0)$ and touching line $4 x+3 y-12=0$ at B , is
A. $x^{2}+y^{2}-2 x-3 y-3=0$
B. $x^{2}+y^{2}-2 x-3 y-3=0$
C. $x^{2}+y^{2}-2 x-3 y+3=0$
D. $x^{2}+y^{2}-2 x+3 y-3=0$

Answer: D

- View Text Solution

18. Equation of circle passing throught $(0,0),(3,0)$ and $(0,2)$ is
A. $x^{2}+y^{2}+3 x-2 y=0$
B. $x^{2}+y^{2}-3 x+2 y+6=0$
C. $x^{2}+y^{2}-3 x-2 y=0$
D. $x^{2}+y^{2}-2 x+3 y=0$

D Watch Video Solution

19. Equation of circle through the origin , having intercepts
(6) and (-4) on X - and Y-axes respectively ,is
A. $x^{2}+y^{2}-6 x+4 y=0$
B. $x^{2}+y^{2}+6 x-4 y=0$
C. $x^{2}+y^{2}+6 x-4 y+11=0$
D. $x^{2}+y^{2}-4 x-6 y-11=0$

Answer: A

20. Show that equation of the circle passing through the origin and cutting intercepts a and b on the coordinate axes is $x^{2}+y^{2}-a x-b y=0$
A. $x^{2}+y^{2}+a x+b y=0$
B. $x^{2}+y^{2}-a x-b y=0$
C. $x^{2}+y^{2}-a x+b y=0$
D. $x^{2}+y^{2}+b x+a y=0$

Answer: B

- Watch Video Solution

21. Equation of circumcircle of square OACB of side a, where
$O A$ and $O B$ are along coordinate axes, is
A. $x^{2}+y^{2}-a x+a y=0$
B. $x^{2}+y^{2}+a x-a y=0$
C. $x^{2}+y^{2}+a x+a y=0$
D. $x^{2}+y^{2}-a x-a y=0$

Answer: D

- Watch Video Solution

22. If line $\mathrm{y}=2 \mathrm{x}$ meets circle $x^{2}+y^{2}-4 x=0$ in point A and B , then equation of circle of which $A B$ is diameter is
A. $5 x^{2}+5 y^{2}-4 x+8 y=0$
B. $5 x^{2}+5 y^{2}-4 x+8 y=0$
C. $5 x^{2}+5 y^{2}-8 x-4 y=0$
D. $5 x^{2}+5 y^{2}+8 x+4 y=0$

Answer: B

(Watch Video Solution

23. If line $y=4 x$ meets circle $x^{2}+y^{2}-17 x=0$ in points A and
B, then equation of circle of which $A B$ is a diameter is
A. $x^{2}+y^{2}-x-4 y=0$
B. $x^{2}+y^{2}-x+4 y=0$
C. $x^{2}+y^{2}+x-4 y=0$
D. $x^{2}+y^{2}-4 x-y=0$

Watch Video Solution

24. Equation of circle of radius 5 , centred on X-axis and touch Y -axis, is
A. $x^{2}+y^{2} \pm 5 x=0$
B. $x^{2}+y^{2} \pm 5 y=0$
C. $x^{2}+y^{2} \pm 10 y=0$
D. $x^{2}+y^{2} \pm 10 x=0$

Answer: D

(Watch Video Solution
25. Equation of circle of radius 5, centred on Y-axis and touching X-axis , is
A. $x^{2}+y^{2} \pm 10 x=0$
B. $x^{2}+y^{2} \pm 10 y=0$
C. $x^{2}+y^{2} \pm 5 y=0$
D. $x^{2}+y^{2} \pm 10 x \pm 10 y=0$

Answer: B

- Watch Video Solution

26. Equation of circle of radius 5 , centred on X-axis and passing through origin , is

$$
\text { A. } x^{2}+y^{2} \pm 10 x=0
$$

B. $x^{2}+y^{2} \pm 10 y=0$
C. $x^{2}+y^{2} \pm 10 x \pm 10 y=0$
D. $x^{2}+y^{2}=10$

Answer: A

- Watch Video Solution

27. Equation of circle of redius 5 , centred on Y-axis and passing throught origin , is
A. $x^{2}+y^{2} \pm 10 x=0$
B. $x^{2}+y^{2} \pm 10 y=0$
C. $x^{2}+y^{2} \pm 10 x \pm 10 y=0$
D. $x^{2}+y^{2}+10=0$

(D) Watch Video Solution

28. Equation of circle of radius 5 , touching both co-ordinate axes , and passing through (1,2). Is
A. $x^{2}+y^{2} \pm 10 x+10 y-25=0$
B. $x^{2}+y^{2}+10 x \pm 10 y-25=0$
C. $x^{2}+y^{2} \pm 10 x \pm 10 y-25=0$
D. $x^{2}+y^{2}-10 x-10 y+25=0$

Answer: D

29. Equation of circle of area 154 sq. units, two of whose diameters are $2 x-3 y+12=0$ and $x+4 y-5=0$, is
A. $x^{2}+y^{2}-6 x-4 y+36=0$
B. $x^{2}+y^{2}+6 x+4 y-36=0$
C. $x^{2}+y^{2}+6 x-4 y-36=0$
D. $x^{2}+y^{2}-6 x+4 y+36=0$

Answer: C

D Watch Video Solution

30. Equation of circle through $(5,0)$, two of whose diameters are $x+2 y=7$ and $3 x-y=0$, is
A. $x^{2}+y^{2}-2 x-6 y-15=0$
B. $x^{2}+y^{2}+2 x+6 y-35=0$
C. $x^{2}+y^{2}+2 x-6 y-35=0$
D. $x^{2}+y^{2}-6 x-2 y-16=0$

Answer: D

- Watch Video Solution

31. Equation of circle having radius 5, and touching X-axis at
$(-1,0)$, is
A. $x^{2}+y^{2} \pm 2 x+10 y-1=0$
B. $x^{2}+y^{2} \pm 2 x-10 y+1=0$
C. $x^{2}+y^{2}+2 x+10 y \pm 1=0$
D. $x^{2}+y^{2}+2 x \pm 10 y+1=0$

(D) Watch Video Solution

32. Equation of circle throught origin, having radius 5 and abscissa of centre is (-3) .
A. $x^{2}+y^{2} \pm 8 x+6 y=0$
B. $x^{2}+y^{2}+6 x \pm 8 y-25=0$
C. $x^{2}+y^{2}+6 x \pm 8 y=0$
D. $x^{2}+y^{2}+3 x \pm 4 y=0$

Answer: C

33. Centre and radius of circle $2 x^{2}+2 y^{2}-6 x+4 y-3=0$ are
A. $\left(-\frac{2}{3}, 1\right), \frac{\sqrt{19}}{2}$
B. $\left(\frac{2}{3},-1\right), \frac{\sqrt{19}}{2}$
C. $\left(\frac{-3}{2},-1\right), \frac{\sqrt{19}}{2}$
D. $\left(\frac{2}{3}, 1\right), \frac{\sqrt{11}}{2}$

Answer: B

- Watch Video Solution

34. Equation of circle of area 616 sq. units, concentric with circle $x^{2}+y^{2}+4 x-4 y-28=0$ is
A. $x^{2}+y^{2}-4 x+4 y=188=0$
B. $x^{2}+y^{2}+4 x-4 y-188=0$
C. $x^{2}+y^{2}-4 x-4 y-188=0$
D. $x^{2}+y^{2}+4 x-4 y+28=0$

Answer: B

- Watch Video Solution

35. Equation of circle of circumference 14π units, concentric with circle $x^{2}+y^{2}-6 x+10 y=0$, is
A. $x^{2}+y^{2}-6 x+10 y-15=0$
B. $x^{2}+y^{2}+6 x-10 y-15=0$
C. $x^{2}+y^{2}-6 x+10 y-2=0$
D. $x^{2}+y^{2}-6 x+10 y+15=0$

D Watch Video Solution

36. If radius of circle $2 x^{2}+2 y^{2}-8 x+4 f y+26=0$
is 4 , then $\mathrm{f}=$
A. ± 2
B. ± 3
C. ± 4
D. ± 5

Answer: D

D Watch Video Solution
37. Lengths of intercepts made by circle
$x^{2}+y^{2}+x-4 y-12=0$ on co-ordinates axes are
A. 5,6
B. 6,7
C. 7,8
D. 8,9

Answer: C

- Watch Video Solution

38. Lengths of intercepts by circle
$x^{2}+y^{2}-6 x+4 y-12=0$ on line $4 x-3 y+2=0$ is
A. 4
B. 6
C. 8
D. 3

Answer: B

- Watch Video Solution

39. Two circles $x^{2}+y^{2}-4 x+10 y+20=0$ and $x^{2}+y^{2}+8 x-6 y-24=0$
A. touch externally
B. touch internally
C. are orthogonal
D. are disjoint

D Watch Video Solution

40. Two circles $x^{2}+y^{2}=25$ and
$2 x^{2}+2 y^{2}-2 x+y=0$
A. touch externally
B. touch internally
C. are orthogonal
D. are concentric

Answer: B

D View Text Solution
41. If circles $x^{2}+y^{2}+2 g x+2 f y+c=0$
and $x^{2}+y^{2}+2 x+2 y+1=0$ are orthogonal, then $2 g+2 f-c=$
A. 0
B. 1
C. -1
D. 2

Answer: C

(D) Watch Video Solution

42. If circles $x^{2}+y^{2}+2 g x+2 f y+e=0$
and $x^{2}+y^{2}+2 x+2 y+1=0$ are orthogonal, then
$2 g+2 f-e=$
A. 0
B. 1
C. -1
D. 2

Answer: B

- Watch Video Solution

43. If the two circle
$x^{2}+y^{2}-10 x-14 y+k=0$
and $x^{2}+y^{2}-4 x-6 y+4=0$
are orthogonal , find k.
A. 55
B. 56
C. 57
D. 58

Answer: D

- Watch Video Solution

44. If two circles $x^{2}+y^{2}-2 a x+c==0$ and $x^{2}+y^{2}-2 b y+c=0$ touch each other, then $\mathrm{c}=$
A. $\frac{a^{2}+b^{2}}{a^{2} b^{2}}$
B. $\frac{a^{2} b^{2}}{a^{2}+b^{2}}$
C. $\frac{1}{a^{2}}-\frac{1}{b^{2}}$
D. $\frac{1}{a^{2}}+\frac{1}{b^{2}}$

- Watch Video Solution

45. If the circle $x^{2}+y^{2}=a^{2}$ cuts off a chord of length $2 b$ from the line $y=m x+c$, then
A. $\left(1+m^{2}\right)\left(a^{2}+b^{2}\right)$
B. $\left(1-m^{2}\right)\left(a^{2}+b^{2}\right)$
C. $\left(1-m^{2}\right)\left(a^{2}-b^{2}\right)$
D. $\left(1+m^{2}\right)\left(a^{2}-b^{2}\right)$

Answer: D

46. What is the equation of circle which touches the lines
$x=0, \mathrm{y}=0$ and $x=2 ?$
A. $x^{2}+y^{2}-2 x \pm 2 y+1=0$
B. $x^{2}+y^{2}-2 x-2 y+4=0$
C. $x^{2}+y^{2} \pm 2 x-2 y-1=0$
D. $x^{2}+y^{2} \pm 4 x \pm 4 y+8=0$

Answer: A

- Watch Video Solution

47. Equation of diameter of circle
$(x-5)(x-7)(y-1)=0$,
parallel to co-ordinate axes, are
A. $x^{2}+y^{2} \pm 16 x \pm 16 y+8=0$
B. $x^{2}+y^{2} \pm 8 x \pm 8 y+16=0$
C. $x^{2}+y^{2} \pm 8 x \pm 8 y+16=0$
D. $x^{2}+y^{2} \pm 4 x \pm 4 y+8=0$

Answer: C

- View Text Solution

48. Equations of diameters of circle
$(x-5)(x-1)+(y-7)(y-1)=0$.
parallel to co-ordinates axes, are
A. $x=1, y=1$
B. $x=5, y=7$
C. $x=5, y=1$
D. $x=3, y=4$

Answer: D

- Watch Video Solution

49. If circle $x(x-1)+y(y-1)=c(x+y-1)$ touches X axis , then $\mathrm{c}=$
A. 4
B. 1
C. -1
D. -4

D Watch Video Solution

50. Radii of circles $x^{2}+y^{2}=1, x^{2}+y^{2}-2 x-6 y=6$ and $x^{2}+y^{2}-4 x-12 y=9$ are in
A. A.P
B. G.P.
C. H.P.
D. no progression

Answer: D
(D) Watch Video Solution
51. A circle of radius 2 lies in the first quadrant and touches both the axes. Find the equation of the circle with centre at $(6,5)$ and touching the above circle externally.
A. $x^{2}+y^{2}+12 x-10 y+52=0$
B. $x^{2}+y^{2}-12 x-10 y-52=0$
C. $x^{2}+y^{2}-12 x-10 y+52=0$
D. $x^{2}+y^{2}+12 x+10 y+52=0$

Answer: C

- Watch Video Solution

52. Find the equation of the circle the end points of whose diameter are the centres of the circle :

$$
x^{2}+y^{2}+6 x-14 y=1 \text { and } x^{2}+y^{2}-4 x+10 y=2
$$

A. $x^{2}+t^{2}+x-2 y+41=0$
B. $x^{2}+y^{2}+x+2 y-41=0$
C. $x^{2}+y^{2}+x+2 y-41=0$
D. $x^{2}+y^{2}+x-2 y-41=0$

Answer: C

D Watch Video Solution

53. The sides of a square are $x=2, x=3, y=1$ and $y=2$.

Find the equation of the circle drawn on the diagonals of the square as its diameter.
A. $x^{2}+y^{2}+5 x+3 y-8=0$
B. $x^{2}+y^{2}+5 x-3 y+8=0$
C. $x^{2}+y^{2}-5 x-3 y+8=0$
D. $x^{2}+y^{2}-5 x-3 y-8=0$

Answer: C

- Watch Video Solution

54. If $(2,-1)$ lies on $x^{2}+y^{2}+2 g x+2 f y+c=0$, which is concentric with $x^{2}+y^{2}+4 x-6 y+3=0$, then $\mathrm{c}=$
A. 19
B. -19
C. 21
D. -21

D Watch Video Solution

55. If one end of a diameter of the circle $x^{2}+y^{2}-8 x-14 y+c=0$ is the point $(-3,2)$, then its other end is the point.
A. $(5,3)$
B. $(6,2)$
C. $(1,-8)$
D. $(11,2)$

Answer: D

D Watch Video Solution
56. If ends of a diameter of a circle are $(-4,3)$ and
$(12,-1)$, then y-intercept of the circle is
A. $2 \sqrt{13}$
B. $4 \sqrt{13}$
C. $8 \sqrt{13}$
D. $12 \sqrt{13}$

Answer: B

D Watch Video Solution

57. If abscissas and ordinates of points A, B are roots of equation $x^{2}-3 x+2=0$ and $y^{2}-7 y+12=0$, then equation of circle with $A B$ as a diameter is
A. $x^{2}+y^{2}-3 x+7 y+14=0$
B. $x^{2}+y^{2}+3 x-7 y+14=0$
C. $x^{2}+y^{2}+3 x+7 y+14=0$
D. $x^{2}+y^{2}-3 x-7 y+14=0$

Answer: D

- Watch Video Solution

58. Equation of that
diameter of circle $x^{2}+y^{2}-6 x+2 y-8=0$, which passes through origian , is
A. $x-3 y=0$
B. $x+3 y=0$
C. $3 x-y=0$
D. $3 x+y=0$

Answer: B

(D) Watch Video Solution

59. Equation of circle, concentric with circle
$x^{2}+y^{2}-6 x+12 y+15=0$ and of double its radius , is
A. $x^{2}+y^{2}-6 x+12 y+75=0$
B. $x^{2}+y^{2}-6 x-12 y+75=0$
C. $x^{2}+y^{2}-6 x-12 y-75=0$
D. $x^{2}+y^{2}-6 x+12 y-25=0$

D Watch Video Solution

60. Equation of circle which touches line $x=y$ at the origin , and passes through (2,1), is
A. $x^{2}+y^{2}+5 x+5 y=0$
B. $x^{2}+y^{2}+5 x-5 y=0$
C. $x^{2}+y^{2}-5 x+5 y=0$
D. $x^{2}+y^{2}-5 x-5 y=0$

Answer: C
(D) Watch Video Solution
61.
$(4 a-3) x^{2}+a y^{2}+6 x-2 y+2=0$,
then its centre is
A. $(3,-1)$
B. $(3,1)$
C. $(-3,1)$
D. $(-3,-1)$

Answer: C

- Watch Video Solution

62.

If the
equation
$3 x^{2}+3 y^{2}+k x y+9 x+(k-6) y+3=0$
represents a circle, then the radius of this circle is
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. $\frac{\sqrt{17}}{2}$
D. $\frac{\sqrt{17}}{3}$

Answer: B

(D) Watch Video Solution

63. Equation $x^{2}+y^{2}-8 x+6 y+25=0$ represents
A. a circle
B. a pair of lines
C. a point
D. an ellipse

Answer: C

D Watch Video Solution

64. If lines $12 x+5 y+16=0$ and $12 x+5 y-10=0$ both touch the same circle, then radius radius of this circle is
A. 1
B. 2
C. 3
D. 4
65. Abscissas and ordinates of points A and B are roots of equation $x^{2}+2 a x-b^{2}=0$ and $y^{2}+2 p y-q^{2}=0$ respectively. Equation of circle with $A B$ as a diameter is
A. $x^{2}+y^{2}+2 a x+2 p y+b^{2}+q^{2}=0$
B. $x^{2}+y^{2}-2 a x-2 p y-b^{2}-q^{2}=0$
C. $x^{2}+y^{2}-2 a x+2 p y-b^{2}-q^{2}=0$
D. $x^{2}+y^{2}-2 a x-2 p y+b^{2}+q^{2}=0$

Answer: C

66. Two points on the circle $x^{2}+y^{2}-12 x-16 y+75=0$, one
nearest to the origin and the other farthest from are
A. $(3,4),(9,(12)$
B. $(3,2),(9,12)$
C. $(-3,4),(9,12)$
D. $(3,4),(,-12)$

Answer: A

- Watch Video Solution

67. Two circles $x^{2}+y^{2}-2 x-4 y=0$
and $x^{2}+y^{2}-8 y-4=0$
A. touch externally
B. touch internally
C. are orthogonal
D. do not touch

Answer: B

- Watch Video Solution

68. If circles $x^{2}+y^{2}=9$ and $x^{2}+y^{2}+2 a x+2 y+1=0$ touch each other , then $\mathrm{a}=$
A. 0
B. 1
C. $\pm \frac{4}{3}$
D. $\pm \frac{3}{4}$

Answer: C

- Watch Video Solution

69. If lines $3 x-4 y+4=0$ and $6 x-8 y-7=0$ touch the
same
circle, then its radius is
A. $\frac{3}{2}$
B. $\frac{3}{4}$
C. $\frac{7}{10}$
D. $\frac{4}{5}$

D Watch Video Solution

70.

$x^{2}+y^{2}-3 x+k y-5=0$ and $4 x^{2}+4 y^{2}-12 x-y-9=0$
are concentric , then $\mathrm{k}=$
A. $\frac{-1}{8}$
B. $\frac{1}{8}$
C. $\frac{1}{4}$
D. $\frac{-1}{4}$

Answer: D

71. Centre of circle , passing through $(0,0),(a, 0)$ and $(0, b)$, is
A. $\left(\frac{b}{2}, \frac{a}{2}\right)$
B. $\left(\frac{a}{2}, \frac{b}{2}\right)$
C. (b, a)
D. (a, b)

Answer: B

- Watch Video Solution

72. If line $2 x-y+k=0$ is a diameter of circle $x^{2}+y^{2}+6 x-6 y+5=0$, then $\mathrm{k}=$
A. 12
B. 9
C. 3
D. 8

Answer: B

- Watch Video Solution

73. Determine equation of the circle whose diameter is the chord $x+y=1$ of the circle $x^{2}+y^{2}=4$
A. $x^{2} y^{2}-X-Y+3=0$
B. $x^{2} y^{2}+x+y-3=0$
C. $x^{2}+y^{2}-x-y-3=0$
D. $x^{2}+y^{2}+x+y+3=0$

(D) Watch Video Solution

74. If (h, k) is the centre of a circle passing through the origin then its equation is
A. $x^{2}+y^{2}-h x-k y=0$
B. $x^{2}+y^{2}+h x-k y=0$
C. $x^{2}+y^{2}+2 h x+2 k y=0$
D. $x^{2}+y^{2}-2 h x-2 k y=0$

Answer: D

75. If circles $(x-1)^{2}+y^{2}=a^{2}$ and $(x+2)^{2}+y^{2}=b^{2}$ touch each other externally, then
A. $a-b=3$
B. $a^{2}+b^{2}=1$
C. $a+b=1$
D. $a+b=3$

Answer: D

- Watch Video Solution

76. The centre of circle inscribed in a square formed by lines
$x^{2}-8 x+12=0$ and $y^{2}-14 y+45=0$ is $(4,7)(7,4)(9,4)$
$(4,9)$
A. $(4,7)$
B. $(7,4)$
C. $(9,4)$
D. $(4,9)$

Answer: A

D Watch Video Solution

77. The radius of the circle, having centre at $(2,1)$, whose one of the chord is a diameter of the circle $x^{2}+y^{2}-2 x-6 y+6=0$
A. 1
B. 2
C. 3
D. $\sqrt{3}$

Answer: C

- Watch Video Solution

78. Find the equation of the circle which
touches the circle $x^{2}+y^{2}-2 x-4 y-20=0$
externally at $(5,5)$ with radius 5 .
A. $x^{2}+y^{2}+18 x+16 y+120=0$
B. $x^{2}+y^{2}+18 x-16 y+120=0$
C. $x^{2}+y^{2}-18 x+16 y+120=0$
D. $x^{2}+y^{2}+18 x+16 y-120=0$

D Watch Video Solution

79. If circles $x^{2}+y^{2}+2 g_{1} x+2 f_{1} y=0$ and $x^{2}+y^{2}+2 g_{2} x+2 f_{2} y=0$ touch each other, then
A. $f_{1} f_{2}==g_{1} g_{2}$
B. $f_{1} g_{1}=f_{2} g_{2}$
C. $\left(f_{1} g_{1}\right)^{2}=\left(f_{2} g_{2}\right)^{2}$
D. $f_{1} g_{2}=f_{2} g_{1}$

Answer: D

80. The locus of the point whose co-ordinates are $x=3 \cos \theta+2, y=3 \sin \theta-4$, where θ is a parameter, is
A. circle
B. parabola
C. ellipse
D. hyperbola

Answer: A

(D) Watch Video Solution

81. The radius of the circle
$t^{2} x^{2}+t^{2} y^{2}-2 a t^{3} x-2 a t y+a^{2} t^{4}-a^{2} t^{2}+a^{2}=0$ is
A. a
B. t
C. $a t+\frac{a}{t}$
D. $t+\frac{1}{t}$

Answer: A

- Watch Video Solution

82. If the origin lies inside the circle
$x^{2}+y^{2}+2 g x+2 f y+c=0$, then
A. $g<0$
B. $f<0$
C. $c<0$
D. $\mathrm{fg}=\mathrm{c}$

- Watch Video Solution

83. If the co-ordinates of a point P are $x=a t^{2}$,
$y=a \sqrt{1-t^{4}}$, where t is a parameter, then the locus of P is
a/an
A. circle
B. parabola
C. ellipse
D. hyperbola

Answer: A

84. Equation of circle which passes through (-1,2) and $(1,2)$, and touches the line $y=5$, is
A. $9 x^{2}+9 y^{2}-60 y+75=0$
B. $9 x^{2}+9 y^{2}-60-75=0$
C. $9 x^{2}+9 y^{2}+60 y-75=0$
D. $9 x^{2}+9 y^{2}+60+75=0$

Answer: A

- Watch Video Solution

85. If a square is inscribed in the circle
$x^{2}+y^{2}+2 g x+2 f y+c=0$
then the length of each side of the square is
A. $2 \sqrt{g^{2}+f^{2}-c}$
B. $2\left(g^{2}+f^{2}-c\right)$
C. $g^{2}>f^{2}+c$
D. $\sqrt{2\left(g^{2}+f^{2}-c\right)}$

Answer: D

- Watch Video Solution

86. The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle of non-zero radius, if
A. $g^{2}+f^{2}>c$
B. $g^{2}+f^{2}<c$
C. $g^{2}>f^{2}+c$
D. $g^{2}<f^{2}+c$

Answer: A

- Watch Video Solution

87. If r_{1}, r_{2} and r_{3} are the radii of the circle
$x^{2}+y^{2}-4 x+6 y=5$,
$x^{2}+y^{2}+6 x-4 y=3$ and $x^{2}+y^{2}-2 x+4 y=8$
A. $r_{1}>r_{2}>r_{3}$
B. $r_{2}>r_{3}>r_{1}$
C. $r_{3}>r_{1}>r_{2}$
D. $r_{1}>r_{3}>f_{2}$

D Watch Video Solution

88. If the lines $5 x-12 y=5$ and $10 x-24 y+3=0$ are tangents to the same circle, then diameter of the circle is
A. 1
B. 5
C. 8
D. $\frac{1}{2}$

Answer: D

- Watch Video Solution

89. If the circle described on the join of $(2,3)$ and $(3, a)$ as a diameter passes through the origin, then : $\mathrm{a}=$
A. 2
B. -2
C. 3
D. -3

Answer: B

- Watch Video Solution

90. The radius of the circle, having centre at $(2,1)$, whose one of the chord is a diameter of the circle $x^{2}+y^{2}-2 x-6 y+6=0$
A. 1
B. 2
C. 3
D. $\sqrt{3}$

Answer: C

D Watch Video Solution

91. Area of the circle
$x^{2}+y^{2}+2 \cos \theta \sin \phi \cdot x+2 \sin \phi \cdot y-\cos ^{2} \phi=0$, is
A. $\frac{\pi}{2}$
B. 4π
C. 9π
D. π

Answer: D

- View Text Solution

92. The sides of a square are $x=2, x=3, y=1$ and $y=2$.

Find the equation of the circle drawn on the diagonals of the square as its diameter.
A. $x^{2}+y^{2}-5 x-3 y+8=0$
B. $x^{2}+y^{2}+5 x-3 y+8=0$
C. $x^{2}+y^{2}+5 x+3 y-8=0$
D. $x^{2}+y^{2}+5 x+3 y+8=0$
93.

If the
$3 x^{2}+3 y^{2}+k x y+9 x+(k-6) y+3=0$
represents a circle, then the radius of this circle is
A. $\frac{3}{2}$
B. $\frac{\sqrt{17}}{2}$
C. $\frac{2}{3}$
D. $\frac{9}{2}$

Answer: A

94. If the two circle

$$
x^{2}+y^{2}-3 x+k y-5=0 \text { and }
$$

$4 x^{2}+4 y^{2}-12 x-y-9=0$ are concentric , then $: \mathrm{k}=$
A. $-\frac{1}{8}$
B. $\frac{1}{8}$
C. $\frac{1}{4}$
D. $-\frac{1}{4}$

Answer: D

- Watch Video Solution

95. Equation of the chord of the circle $x^{2}+y^{2}-4 x=0$ whose mid-point is $(1,0)$, is
A. $x=1$
B. $x=2$
C. $y=1$
D. $y=2$

Answer: A

- Watch Video Solution

96. Find the equation of the circle passing through the origin and the points where the line $3 x+4 y=12$ meets the axes of coordinates.
A. $x^{2}+y^{2}+4 x-3 y=0$
B. $x^{2}+y^{2}-4 x-3 y=0$
C. $x^{2}+y^{2}-4 x+3 y=0$
D. $x^{2}+y^{2}+4 x+3 y=0$

Answer: B

D Watch Video Solution

97. The equation of the the circle having $x-y-2=0$ and $x-y+$ $2=0$ as two tangents, and $x+y=0$ as a diameter is
A. $x^{2}+y^{2}+2 x-2 y+1=0$
B. $x^{2}+y^{2}-2 x+2 y-1=0$
C. $x^{2}+y^{2}=2$
D. $x^{2}+y^{2}=1$

- Watch Video Solution

98. Area of a circle in which a chord of length $\sqrt{2}$ makes an angle $\frac{\pi}{2}$ at the centre is
A. $\frac{\pi}{2}$
B. 2π
C. π
D. $\frac{\pi}{4}$

Answer: C

- Watch Video Solution

99. An acute triangle $P Q R$ is inscribed in the circle $x^{2}+y^{2}=25$. If Q and R have coordinates $(3,4)$ and $(-4,3)$ respectively, then find $\angle Q P R$.
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{6}$

Answer: C

- Watch Video Solution

100. Centre of the circle toucing y-axis at $(0,3)$ and making an intercept 2 units on positive X-axis is
A. $(10, \sqrt{3})$
B. $(\sqrt{3}, 10)$
C. $(\sqrt{10}, 3)$
D. $(3, \sqrt{10})$

Answer: C

- Watch Video Solution

101. Circle $x^{2}+y^{2}-8 x+4 y+4=0$ touches
A. X -axis
B. Y-axis
C. both X -axis and Y -axis
D. none of the axes

D Watch Video Solution

102. Abscissas of two points P and Q are roots of the equation $x^{2}+2 x-3=0$ while their ordinates are roots of $y^{2}+4 y-12=0$. The centre of the circle with PQ as a diameter is
A. $(-1,-2)$
B. $(1,2)$
C. $(1,-2)$
D. $(-1,2)$

Answer: A
103. The radius of the circle
$\sqrt{1+a^{2}}\left(x^{2}+y^{2}\right)-2 b x-2 a b y=0$ is
A. b
B. a pair of lines
C. ab
D. $\sqrt{1+a^{2}}$

Answer: A

- Watch Video Solution

104. If line $3 x-y+c=0$ touches circle
$x^{2}+y^{2}-2 x+8 y-23=0$, then $\mathrm{c}=$
A. $13,-27$
B. $-13,27$
C. 13,27
D. $-13,-27$

Answer: A

- Watch Video Solution

105. Given $A \equiv(2,4)$ and $C \equiv(4,-2)$. If $\triangle A B C$ is rightangled at B , then equation of circum-circle of $\triangle A B C$ is
A. $x^{2}+y^{2}+6 x+2 y=0$
B. $x^{2}+y^{2}-2 x-6 y=0$
C. $x^{2}+y^{2}+2 x+6 y=0$
D. $x^{2}+y^{2}-6 x-6 y=0$

Answer: D

- View Text Solution

106. If $y=2 x+k$ touches $x^{2}+y^{2}-4 x-2 y=0$, then $\mathrm{k}=$
A. $-2,8$
B. $2,-8$
C. $3,-7$
D. $-3,7$

Answer: B
107.
$\alpha+y \sin \alpha=p$ touches circle $x^{2}+y^{2}=2 a x$ then $\mathrm{p}=$
A. $a(1-\sin \alpha)$
B. $a(1-\cos \alpha)$
C. $a(1+\sin \alpha)$
D. $a(1+\cos \alpha)$

Answer: D

- Watch Video Solution

108. If line $4 x+3 y+k=0$ touches circle $2 x^{2}+2 y^{2}=5 x$, then $\mathrm{k}=$

$$
\text { A. } \frac{-5}{4}
$$

B. $\frac{4}{5}$
C. $\frac{45}{4}$
D. $\frac{-45}{4}$

Answer: D

D Watch Video Solution

109. Equation of circle which touches line $x=y$ at the origin , and passes through (2,1), is
A. $x^{2}+y^{2}+5 x+5 y=0$
B. $x^{2}+y^{2}+5 x-5 y=0$
C. $x^{2}+y^{2}-5 x+5 y=0$
D. $x^{2}+y^{2}-5 x-5 y=0$
110. If the line $\frac{x}{a}+\frac{y}{b}=1$ touches the circle $x^{2}+y^{2}=1, \quad$ then $a^{2}+b^{2}=$
A. 1
B. $a^{2} b^{2}$
C. 0
D. $a+b$

Answer: B

111. Find the equation of the circle which touches both the axes and the straight line $4 x+3 y=6$ in the first quadrant and lies below it.
A. $x^{2}+y^{2}-6 x-6 y+9=0$
B. $x^{2}=y^{2}-6 x-y+9=0$
C. $4\left(x^{2}+y^{2}-x-6 y\right)+1=0$
D. $4 x^{2}+4 y^{2}-4 x-4 y+1=0$

Answer: D

(D) Watch Video Solution

112. The intercet on the line $y=x$ by the circle $x^{2}+y^{2}-2 x=0$ is AB . Equation of the circle on AB as a diameter is
A. $x^{2}+y^{2}+x+y=0$
B. $x^{2}+y^{2}-x-y=0$
C. $x^{2}+y^{2}+x-y=0$
D. $x^{2}+y^{2}-x+y=0$

Answer: B

(Watch Video Solution

113. Find the greatest distance of the point $P(10,7)$ from the circle $x^{2}+y^{2}-4 x-2 y-20=0$
A. 5
B. 10
C. 15
D. 20

Answer: C

- Watch Video Solution

114. Equation of parabola with vertex $(0,0)$ and focus $(2,0)$ is
A. $x^{2}=x$
B. $y^{2}=2 x$
C. $y^{2}=4 x$
D. $y^{2}=8 x$

Answer: D
115. Equation of parabola with vertex $(0,0)$ and focus $(2,0)$ is
A. $y^{2}=5 x$
B. $y^{2}=8 x$
C. $y^{2}=10 x$
D. $y^{2}=15 x$

Answer: B

- Watch Video Solution

116. Equation of parabola with vertex $(0,0), X$-axis as axis of symmetry , and passing through (2,-4), is
A. $y^{2}=2 x$
B. $y^{2}=4 x$
C. $y^{2}=8 x$
D. $x^{2}=4 y$

Answer: C

D Watch Video Solution

117. Equation of parabola with focus (0,2) and directrix $y+2=$ 0 is
A. $x^{2}=8 y$
B. $x^{2}=2 y$
C. $x^{2}=4 y$
D. $y^{2}=4 x$

D Watch Video Solution

118. Equation of parabola with vertex $(0,0) Y$-axis ax axis of symmetry and passing through $(3,-9)$, is
A. $x^{2}=-y$
B. $x^{2}=y$
C. $x^{2}=3 y$
D. $y^{2}+x=0$

Answer: A

119. Ends of latus-rectum of parabola $3 y^{2}=20 x$ are
A. $\left(\pm \frac{10}{3}, \frac{5}{3}\right)$
B. $\left(\frac{5}{3}, \pm \frac{10}{3}\right)$
C. $\left(\frac{20}{3}, \pm \frac{10}{3}\right)$
D. $\left(\frac{10}{3}, \pm \frac{20}{3}\right)$

Answer: B

- Watch Video Solution

120. Enda of latus-rectum of parabola $3 x^{2}+8 y=0$ are
A. $\left(\pm \frac{4}{3}, \frac{-2}{3}\right)$
B. $\left(\pm \frac{2}{3}, \frac{-4}{3}\right)$
C. $\left(\pm \frac{8}{3}, \frac{-2}{3}\right)$
D. $\left(\frac{2}{3}, \pm \frac{4}{3}\right)$

Answer: A

- Watch Video Solution

121. Focal distance and parameter of the point $\left(\frac{1}{2}, 2\right)$ on the parabola $y^{2}=8 x$ are
A. $\frac{2}{5}, 2$
B. $5, \frac{1}{2}$
C. $\frac{5}{2}, 2$
D. $\frac{5}{2}, \frac{1}{2}$

Answer: D
122. Focal distance and co-ordinates of the point on the parabola $y^{2}=4 x$, whose parameter is -1 , are
A. 2,(1,-2)
B. $1,(2,-2)$
C. 2,(-2,1)
D. $1,(-2,2)$

Answer: A

D Watch Video Solution

123. If line $\mathrm{y}=\mathrm{x}-8$ meets $y^{2}=4 x$ in A and B , then length of intercept AB is
A. $2 \sqrt{12}$
B. $8 \sqrt{3}$
C. $12 \sqrt{2}$
D. $4 \sqrt{3}$

Answer: C

- Watch Video Solution

124. If t is the parameter for one end of a focal chord of the parabola $y^{2}=4 a x$, then its length is:
A. $a\left(t+\frac{1}{t}\right)^{2}$
B. $a^{2}\left(t+\frac{1}{t}\right)$
C. $a\left(t-\frac{1}{t}\right)^{2}$
D. $a\left(t^{2}+1\right)$

Answer: A

- Watch Video Solution

125. If $\mathrm{P}(3 a, 2 a \sqrt{3})$ is one end of a focal chord PQ of
$y^{2}=4 a x$ then $\mathrm{PQ}=$
A. $\frac{3 a}{16}$
B. $\frac{16 a}{\sqrt{3}}$
C. $\frac{16 a}{3}$
D. $\frac{16 a^{2}}{3}$

Answer: C
126. If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are ends of a focal chord of $y^{2}=4 a x$, then values of $x_{1} x_{2}$ and $y_{1} y_{2}$ are (A) a^{2}, a^{2} $2 a^{2}, a^{2}$ (C) $a^{2},-4 a^{2}$ (D) a, a
A. $-4 a^{2}, a^{2}$
B. $a^{2}, 4 a^{2}$
C. $-a^{2},-4 a^{2}$
D. $4 a^{2}, a^{2}$

Answer: B

- Watch Video Solution

127. If θ is the inclination of a focal chord of $y^{2}=4 a x$ to its axis, then its length is
A. $4 a \sin ^{2} \theta$
B. $4 a \cos ^{2} \theta$
C. $4 a \sec ^{2} \theta$
D. $4 a \cos e c^{2} \theta$

Answer: D

- Watch Video Solution

128. If θ is the inclination of a focal chord of $y^{2}=4 a x$ to its axis, then its length is
A. $4 a \sin \theta \cot \theta$
B. $4 a \sec \theta \tan \theta$
C. $4 a \sec \theta \cot \theta$
D. $4 a \sec ^{2} \theta$

Answer: C

D Watch Video Solution

129. If L and L ' are ends of latus-rectum of parabola $y^{2}=4 a x$ whose vertex is A , them $m \angle L A L^{\prime}=$
A. $\tan ^{-1} 4$
B. $\frac{\pi}{2}$
C. $\tan ^{-1} \sqrt{2}$
D. $2 \tan ^{-1} 2$

D Watch Video Solution

130. If t is a parameter, then locus of a point
$P\left(a \sin ^{2} t, 2 a \sin t\right)$ is
A. a line through the origin
B. a circle of radius a
C. a parabola with focus $(a, 0)$
D. a parabola with focus ($0, a$ a)

Answer: C

131. Equation of parabola ,having $(4,-8)$ and $(4,8)$ as ends of its latus-rectum, is
A. $y^{2}=8 x$
B. $y^{2}=16 x$
C. $y^{2}=-32 x$
D. $x^{2}=16 y$

Answer: B

- Watch Video Solution

132. Tangent to $y^{2}=4 a x$ at its vertex is
A. its latus-rectum
B. X-axis
C. Y-axis
D. its directrix

Answer: C

- Watch Video Solution

133. Foot of the directrix of the parabola $y^{2}=4 a x$ is the point
A. $(0,0)$
B. $(a, 0)$
C. $(-a, 0)$
D. $(-a, a)$

- Watch Video Solution

134. If $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$ are point on $y^{2}=4 a x$, then slope of $A B$ is
A. $\frac{x_{1}-x_{2}}{y_{1}-y_{2}}$
B. $\frac{4 a}{x_{1}+x_{2}}$
C. $\frac{4 a}{y_{1}+y_{2}}$
D. $\frac{4 a}{x_{1}-x_{2}}$

Answer: C
135. If $\mathrm{A}\left(t_{1}\right)$ and $B\left(t_{2}\right)$ are points on $y^{2}=4 a x$, then slope of $A B$ is
A. $\frac{4 a}{t_{1}+t_{2}}$
B. $\frac{4}{t_{1}^{2}+t_{2}^{2}}$
C. $\frac{2 a}{t_{1}+t_{2}}$
D. $\frac{2}{t_{1}+t_{2}}$

Answer: D

- Watch Video Solution

136. Points A,B ,C , D on $y^{2}=4 a x$ have parameters $t_{1}, t_{2}, t_{3}, t_{4}$ respectively. If $A B|\mid C D$, then
A. $t_{1}+t_{3}=t_{2}+t_{4}$
B. $t_{1}+t_{2}=t_{3}+t_{4}$
C. $t_{1}-t_{3}=t_{2}-t_{4}$
D. $t_{1}+t_{4}=t_{2}-t_{3}$

Answer: B

- Watch Video Solution

137. Points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, on $y^{2}=4 a x$ have parameters $t_{1}, t_{2}, t_{3}, t_{4}$ respectively. If $\mathrm{AB} \perp \mathrm{CD}$ then $\left(t_{1}+t_{2}\right)\left(t_{3}+t_{4}\right)=$
A. 0
B. 1
C. -4
D. 4

D Watch Video Solution

138. If PQ is a focal chord of parabola $y^{2}=4 a x$ whose vertex is A, then product of slopes of $A P$ and $A Q$ is
A. -1
B. -4
C. 4 a
D. 1

Answer: B

139. If focal distance of a point P on $y^{2}=8 x$ is 4 , then P is
A. $(-2, \pm 4)$
B. $(2, \pm 4)$
C. $(4, \pm 2)$
D. $(\pm 4,2)$

Answer: B

- Watch Video Solution

140. If focal distance of point P on $y^{2}=4 x$ is 6 , then P is
A. $(5, \pm 2 \sqrt{5})$
B. $(5, \pm \sqrt{5}$
C. $(\sqrt{5}, \pm 5)$
D. $(5,5)$

Answer: A

D Watch Video Solution

141. An equilateral triangle is inscribed in $y^{2}=8 x$ so that one angular point of the triangle is at the vertex of the parabola.

Length of side of this triangle is
A. $4 \sqrt{3}$
B. $8 \sqrt{3}$
C. $16 \sqrt{3}$
D. $12 \sqrt{3}$

(D) Watch Video Solution

142. If $(4,0)$ is the vertex, and Y-axis the directrix of a parabola , then its focus is
A. $(8,0)$
B. $(4,0)$
C. $(0,8)$
D. $(0,4)$

Answer: A

- Watch Video Solution

143. The angle subtended by the double ordinate of length 8a of the parabola $y^{2}=4 a x$ at its vertex is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{6}$

Answer: B

- Watch Video Solution

144. If points $\left(a u^{2}, 2 a u\right)^{\prime}$ and $\left(a v^{2}, 2 a v\right)$ are ends of a focal chord of $y^{2}=4 a x$, then

$$
\text { A. uv = } 1
$$

B. $u+v=0$
C. $u-v=0$
D. $1+u v=0$

Answer: D

(D) Watch Video Solution

145. A circle centred at the vertex of parabola $x^{2}=4 y$ intersects it at the ends of its latus-rectum. Equation of this cirlce is
A. $x^{2}+y^{2}=5$
B. $x^{2}+y^{2}=4$
C. $x^{2}+y^{2}=1$
D. $x^{2}+y^{2}=2$

Answer: A

- View Text Solution

146. If $P S Q$ is a focal chord of the parabola $y^{2}=8 x$ such that $S P=6$, then the length of $S Q$ is 6 (b) 4 (c) 3 (d) none of these
A. 6
B. 4
C. 3
D. 5

Watch Video Solution

147. If ASB is a focal chord of a parabola such that AS $=2$ and $S B=4$, then length of its latus-rectum is
A. $\frac{8}{3}$
B. $\frac{16}{3}$
C. $\frac{25}{3}$
D. $\frac{11}{3}$

Answer: B

148. If a parabole $y^{2}=4 a x$ passes through $(2,-6)$, then its latus-rectum is
A. 9
B. 16
C. 18
D. 6

Answer: C

D Watch Video Solution

149. Equation of directrix of parabola $5 y^{2}=4 x$ is

$$
\text { A. } 4 x-1=0
$$

B. $4 x+1=0$
C. $5 x+1=0$
D. $5 x-1=0$

Answer: C

(D) Watch Video Solution

150. The length of the latusrectum of the parbola whose focus is $(3,3)$ and directrix $3 x-4 y-2=0$, is
A. 2
B. 1
C. 4
D. 3

D Watch Video Solution

151. If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are ends of a chord of $y^{2}=4 a x$, which cuts its axis at a distance δ from the origin , then the product $x_{1} x_{2}=$
A. a^{2}
B. δ^{2}
C. $a^{2}+\delta^{2}$
D. $a^{2} \delta^{2}$
152. If $P(2,8)$ is one end of the focal chord $P Q$ of the parabola $\left(8 t^{2}, t 16\right)$, then the mid-point of PQ is
A. $(10,10)$
B. $(11,11)$
C. $(17,-12)$
D. $(11,-12)$

Answer: C

- Watch Video Solution

153. If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are ends of a focal chord of parabola
$3 y^{2}=4 x, \quad$ then $x_{1} x_{2}+y_{1} y_{2}=$
A. 12
B. -12
C. $\frac{1}{3}$
D. $-\frac{1}{3}$

Answer: D

- Watch Video Solution

154. Write the length of het chord of the parabola $y^{2}=4 a x$ which passes through the vertex and in inclined to the axis at $\frac{\pi}{4}$.
A. $4 a \sqrt{2}$
B. $\frac{4 a}{\sqrt{2}}$
C. $2 \sqrt{3}$
D. $4 a \sqrt{3}$

Answer: A

D Watch Video Solution

155. If the focal distance of a point on the parabola
$y^{2}=8 x$ is 4 , then its ordinate can be
A. ± 1
B. ± 2
C. ± 3
D. ± 4

- Watch Video Solution

156. If $(4,0)$ is the vertex, and Y-axis the directrix of a parabola, then its focus is
A. $(4,0)$
B. $(0,8)$
C. $(8,0)$
D. $(0,4)$

Answer: C
(D) Watch Video Solution
157. If ASB is a focal chord of a parabola such that AS $=2$ and $S B=4$, then length of its latus-rectum is
A. $\frac{8}{3}$
B. $\frac{16}{3}$
C. $\frac{25}{3}$
D. $\frac{11}{3}$

Answer: B

D Watch Video Solution

158. Equation of the directrix of the parabola $5 y^{2}=4 x$ is

$$
\text { A. } 4 x-1=0
$$

B. $4 x+1=0$
C. $5 x+1=0$
D. $5 x-1=0$

Answer: C

(D) Watch Video Solution

159. The parametric coordinates of any point on the parabola $y^{2}=4 a x$ can be
A. $\left(-a t^{2},-2 a t\right)$
B. $\left(-a t^{2}, 2 a t\right)$
C. $\left(a \cdot \sin ^{2} t,-2 a \cdot \sin t\right)$
D. $a \cdot \sin t,-2 a \cdot \cos t)$

D Watch Video Solution

160. If PSQ is a focal chord of the parabola $y^{2}=4 a x$ such that $S P=3$ and $S Q=2$, find the latus rectum of the parabola.
A. $\frac{24}{5}$
B. $\frac{12}{5}$
C. $\frac{6}{5}$
D. $\frac{3}{5}$

Answer: A

161. If $P S Q$ is a focal chord of the parabola $y^{2}=8 x$ such that $S P=6$, then the length of $S Q$ is 6 (b) 4 (c) 3 (d) none of these
A. 6
B. 4
C. 3
D. 2

Answer: C

- Watch Video Solution

162. If the equation of a parabola is $y^{2}+12 x-4 y=32$, then its eccentricity is $\mathrm{e}=$
A. -2
B. 2
C. -1
D. 1

Answer: D

D Watch Video Solution

163. Distance between an end of a latus-rectum of the parabola $y^{2}=16 x$ and its vertex is
A. $\sqrt{5}$
B. $3 \sqrt{5}$
C. $2 \sqrt{5}$
D. $4 \sqrt{5}$

Answer: D

- Watch Video Solution

164. Semi-axes are 3 and 2
A. $\frac{x^{2}}{3}+\frac{y^{2}}{2}=1$
B. $\frac{x^{2}}{2}+\frac{y^{2}}{3}=1$
C. $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
D. $\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$

Answer: C
165. Find the equation of th ellipse, the co-ordinates of whose foci are $(\pm 3,0)$ and eccentricity is $\frac{1}{2}$.
A. $\frac{x^{2}}{36}+\frac{y^{2}}{27}=1$
B. $\frac{x^{2}}{256}+\frac{y^{2}}{81}=1$
C. $\frac{x^{2}}{9}+\frac{y^{2}}{81}=1$
D. $\frac{x^{2}}{9}+\frac{y^{2}}{81}=1$

Answer: B

D Watch Video Solution

166. Find the equation of the ellipse which passes through the points (3,1) and (2,2).

$$
\text { A. } 3 x^{2}+5 y^{2}=32
$$

B. $5 x^{2}+3 y^{2}=32$
C. $\frac{x^{2}}{5}+\frac{y^{2}}{3}=32$
D. $x^{2}+y^{2}=8$

Answer: A

(D) Watch Video Solution

167. Find the equation to the ellipse (referred to its axes as the axes of x and y respectively) which passes through the point
$(-3,1)$ and has eccentricity $\sqrt{\frac{2}{5}}$
A. $5 x^{2}+3 y^{2}=32$
B. $\frac{x^{2}}{5}+\frac{y^{2}}{3}=1$
C. $\frac{x^{2}}{3}+\frac{y^{2}}{5}=1$
D. $3 x^{2}+5 y^{2}=32$

Answer: D

- Watch Video Solution

168. Find equation of ellipse whose I(latus-rectum) $=\frac{5}{2}$ and eccentricity $y=\frac{1}{2}$
A. $12 x^{2}+9 y^{2}=25$
B. $9 x^{2}+12 y^{2}=25$
C. $\frac{x^{2}}{9}+\frac{y^{2}}{12}=25$
D. $\frac{25 x^{2}}{9}+\frac{25 y^{2}}{12}=1$

Answer: B
169. Minor axis $=6$ and one vertex at $(5,0)$.
A. $9 x^{2}+25 y^{2}=1$
B. $25 x^{2}+9 y^{2}=1$
C. $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
D. $\frac{x^{2}}{36}+\frac{y^{2}}{25}=1$

Answer: C

- Watch Video Solution

170. Major axis $=3$ (minor axis) and I (latus-rectum) $=2$
A. $\frac{x^{2}}{81}+\frac{y^{2}}{9}=1$
B. $9 x^{2}+y^{2}=81$
C. $\frac{x^{2}}{9}+\frac{y^{2}}{27}=1$
D. $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$

Answer: A

- Watch Video Solution

171. Foci are $(\pm 3,0)$ and vertices $(\pm 5,0)$
A. $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
B. $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
c. $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$
D. $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$

- Watch Video Solution

172. Find equation of ellipse whose vertices are $(\pm 3,0)$ and passes through $(2,1)$
A. $5 x^{2}+y^{2}=9$
B. $x^{2}+9 y^{2}=5$
C. $\frac{x^{2}}{5}+y^{2}=9$
D. $x^{2}+5 y^{2}=9$

Answer: D

173. Distance between foci is 6 and eccentricity is $\frac{3}{5}$
A. $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
B. $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$
C. $16 x^{2}+25 y^{2}=1$
D. $25 x^{2}+16 y^{2}=1$

Answer: A

- Watch Video Solution

174. Distance between directrices is 10 and eccentricity $\frac{1}{\sqrt{5}}$.
A. $5 x^{2}+4 y^{2}=1$
B. $4 x^{2}+5 y^{2}=1$
C. $4 x^{2}+5 y^{2}=20$
D. $5 x^{2}+4 y^{2}=20$

Answer: C

- Watch Video Solution

175. Distance between foci is 4 and distance between directrices is 5
A. $5 x^{2}+y^{2}=5$
B. $x^{2}+5 y^{2}=5$
C. $\frac{x^{2}}{5}+5 y^{2}=1$
D. $x^{2}+\frac{y^{2}}{5}=1$

- Watch Video Solution

176. Distance between foci is 8 and major axis is 10 .
A. $\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$
B. $\frac{16 x^{2}}{25}+\frac{y^{2}}{4}=1$
C. $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$
D. $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$

Answer: D

D Watch Video Solution
177. Distance between directrices $=\frac{25}{2}$, minor axis $=6$
A. $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
B. $\frac{x^{2}}{225}+\frac{y^{2}}{9}=16$
C. $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$
D. $\frac{x^{2}}{625}+\frac{y^{2}}{81}=1$

Answer: A

- Watch Video Solution

178. Distance between foci $=2$ and vertices are $(\pm 2,0)$
A. $3 x^{2}+4 y^{2}=1$
B. $4 x^{2}+3 y^{2}=12$
C. $3 x^{2}+4 y^{2}=12$
D. $\frac{x^{2}}{3}+\frac{y^{2}}{4}=12$
179. Distance between a focus and the corresponding directrix of an ellipse is 16 . If eccentricity is $\frac{3}{5}$, then lengths of its principal axes are
A. 3,4
B. 15,12
C. 12,16
D. 30,24

Answer: D
180. An ellipse, with principal axes along co-ordinate axes has eccentricity $\frac{1}{2}$. If distance between its foci is 4 , then it passes through
A. $(1,2)$
B. $(2,3)$
C. $(3,2)$
D. $(2,4)$

Answer: B

- Watch Video Solution

181. If two ellipse $E(a>b)$ and $E(\alpha>\beta)$ have the same eccentricity , then
A. $a \alpha=b \beta$
B. $a \beta=b \alpha$
C. $a b=\alpha \beta$
D. $a+\alpha=b+\beta$

Answer: B

D Watch Video Solution

182. If latus-rectum is one-third minor axis, then eccentricity of the ellipse is
A. $\frac{2}{5}$
B. $\frac{\sqrt{2}}{3}$
C. $\frac{2 \sqrt{2}}{3}$
D. $\frac{3}{3 \sqrt{2}}$

Answer: C

- Watch Video Solution

183. If latus-rectum $=\left(\frac{1}{2}\right)$ major axis, then $\mathrm{e}=$
A. $\frac{1}{2}$
B. $\frac{1}{\sqrt{3}}$
C. $\frac{1}{\sqrt{2}}$
D. $\frac{2}{\sqrt{3}}$

Answer: C

184. If latus-rectum = semi-minor axis, then $\mathrm{e}=$
A. $\frac{\sqrt{3}}{2}$
B. $\frac{\sqrt{3}}{4}$
C. $\frac{2}{3 \sqrt{3}}$
D. $\frac{1}{\sqrt{2}}$

Answer: A

- Watch Video Solution

185. If (distance between directrices) $=3$ (distance between foci), then $\mathrm{e}=$
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{1}{\sqrt{2}}$

Answer: C

- Watch Video Solution

186. If m times distance between foci of an ellipse is equal to n times distance between its directrices , then
A. $m<n$
B. $m=n$
C. $m>n$
D. $m, n \in N$
187. Can the distance between foci of an ellipse be equal to distance its directrices ?
A. Yes
B. No
C. May be
D. Cannot be determined

Answer: B

- Watch Video Solution

188. If eccentricities of a parabola and an ellipse are e and e^{\prime} respectively, then
A. ee' $=1$
B. $e^{\prime}>e$
C. $e^{\prime}<e$
D. $e^{\prime}=e$

Answer: C

- Watch Video Solution

189. If eccentricities of a parabola and an ellipse are e and e^{\prime} respectively, then
A. $e-e^{\prime}<0$
B. $e+e^{\prime}>1$
C. $e+e^{\prime}<1$
D. $e=e^{\prime}$

Answer: B

- Watch Video Solution

190. Coordinates of a point $P\left(\frac{\pi}{3}\right)$ on the ellipse $16 x^{2}+25 y^{2}=400$ are
A. $\left(\frac{5}{2}, \frac{\sqrt{3}}{2}\right)$
B. $\left(\frac{\sqrt{3}}{2}, \frac{5}{2}\right)$
C. $\left(\frac{2}{5}, \frac{2}{\sqrt{3}}\right)$
D. $\left(\frac{2}{5}, 2 \sqrt{3}\right)$

D Watch Video Solution

191. foci of the ellipse $x=4 \cos \theta, y=3 \sin \theta$ are
A. $(0, \pm \sqrt{7})$
B. $(\pm \sqrt{7}, 0)$
C. $(\pm 5,0)$
D. $(0, \pm 5)$

Answer: B

- Watch Video Solution

192. Focal distances of the point $P(5,4 \sqrt{3})$ on the ellipse $64 x^{2}+100 y^{2}=6400$ are
A. 7,13
B. 18,2
C. 4,16
D. 19, 1

Answer: A

- Watch Video Solution

193. If a chord $P Q$, joining $P(\theta) \quad Q$ and (ϕ), of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, subtands a right angle at its centre , then $\tan \theta \cdot \tan \phi=$
A. $\frac{a^{2}}{b^{2}}$
B. $\frac{-b^{2}}{a^{2}}$
C. $\frac{-a^{2}}{b^{2}}$
D. $\frac{b^{2}}{a^{2}}$

Answer: C

- Watch Video Solution

194. If $P(\theta)$ and $Q(\phi)$ are two points on an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, such that chord PQ subtance a right angle at its centre ' C ' , then $\frac{1}{C P^{2}}+\frac{1}{C Q^{2}}=$
A. $a+b$
B. $\frac{1}{a}+\frac{1}{b}$
C. $a^{2}+b^{2}$
D. $\frac{1}{a^{2}}+\frac{1}{b^{2}}$

Answer: D

- Watch Video Solution

195. If a chord $P_{\theta} Q_{\phi}$ of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ subtands a right angle at the vertex $A(a, 0)$, then
$\tan \left(\frac{\theta}{2}\right) \cdot \tan \left(\frac{\phi}{2}\right)=$
A. $\frac{-a^{2}}{b^{2}}$
B. $\frac{-b^{2}}{a^{2}}$
C. $\frac{-b^{2}}{a}$
D. $-\frac{a}{b}$

(D) Watch Video Solution

196. If $P(\theta)$ is a point on the ellipse $E(a>b)$, whose foci are S and S^{\prime}, then $S P . S^{\prime} P=$
A. $a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta$
B. $a^{2} \cos ^{2} \theta-b^{2} \sin ^{2} \theta$
C. $a^{2} \sin ^{2} \theta-b^{2} \cos ^{2} \theta$
D. $a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta$

Answer: D

197. An ellipse, centred at the origin, has eccentricity $\frac{1}{2}$ and one directrix $d: x=16$. If $P: x=-4$ is a point on this ellipse, then $\mathrm{SP}=$
A. 8
B. 9
C. 10
D. -32

Answer: C

- Watch Video Solution

198. If distance between foci of an ellipse equals its latusrectrum , then its eccentricity is
A. $\frac{1-\sqrt{5}}{2}$
B. $\frac{1+\sqrt{5}}{2}$
C. $\frac{\sqrt{5-1}}{2}$
D. None of these

Answer: D

- Watch Video Solution

199. Find the sum of the focal distances of any point on the ellipse $9 x^{2}+16 y^{2}=144$.
A. 32
B. 18
C. 16
D. 8

Answer: D

- Watch Video Solution

200. If $P=(x, y), F_{1}=(3,0), F_{2}=(-3,0), \quad$ and $16 x^{2}+25 y^{2}=400$, then $P F_{1}+P F_{2}$ equal 8 (b) 6 (c) 10 (d)

12
A. 8
B. 6
C. 10
D. 12
201. The radius of the circle passing through the foci of $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$, and having centre $(0,3)$ is
A. 4
B. 3
C. $\sqrt{12}$
D. $\frac{7}{2}$

Answer: A

- Watch Video Solution

202. In an ellipse, the distances between its foci is 6 and minor axis is 8 . Then its eccentricity is
A. $\frac{4}{3}$
B. $\frac{1}{\sqrt{52}}$
C. $\frac{3}{5}$
D. $\frac{1}{2}$

Answer: C

D Watch Video Solution

203. For the ellipse $25 x^{2}+45 y^{2}=9$,
A. eccentricity is $\frac{1}{3}$
B. latus-rectum is $\frac{5}{3}$
C. foci are $\left(\frac{ \pm 3}{5}, 0\right)$
D. eccentricity = latus-rectum

Answer: D

- Watch Video Solution

204. S and T are foci of an ellipse and B is an end of the minor axis, if STB is an equilateral triangle, the eccentricity of the ellipse, is
A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{2}{3}$

Answer: C

(D) Watch Video Solution

205. Any point whose x and y co-ordinates satisfy the equations

$$
\frac{1-(x / a)}{t^{2}}=\frac{1+(x / a)}{1}=\frac{y / b}{t} \text {, where } \mathrm{t} \text { is an non-zero }
$$ parameter, lies on a/m

A. circle
B. parabola
C. ellipse
D. hyperbola

(D) Watch Video Solution

206. Given $A \equiv(0,-1)$ and $B=(0,1)$. If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is a point satisfying the condition $4 x^{2}+3 y^{2}=12$, then $\mathrm{PA}+\mathrm{PB}=$
A. 3
B. 4
C. 6
D. None of these

Answer: B

207. For the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$, the ends of the two latus rectum are the four points
A. $\left(\pm 1, \pm \frac{3}{2}\right)$
B. $\left(\pm \frac{3}{2}, \pm 1\right)$
C. $\left(\pm \frac{2}{3}, \pm 1\right)$
D. $\left(\pm 1, \pm \frac{2}{3}\right)$

Answer: A

- Watch Video Solution

208. If the equation $\frac{x^{2}}{16-K}+\frac{y^{2}}{5-K}=1$ represents an ellipse, then
A. $K>5$
B. $K>16$
C. $K<5$
D. $5<K<16$

Answer: C

D Watch Video Solution

209. Perimeter of a triangle formed by any point on the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ and its foci is
A. 13
B. 14
C. 15
D. 16

D Watch Video Solution

210. If P is any point on the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ whose foci are S and S^{\prime} perimeter of $\Delta S P S^{\prime}$ is
A. 18
B. 50
C. 34
D. 9

Answer: A

(D) Watch Video Solution
211. If $a^{2}+b^{2}=25$ and a focus of the ellipse
$\frac{x^{2}}{a^{2}+3}+\frac{y^{2}}{b^{2}+3}=1$ is $(\sqrt{7}, 0)$, then equation of this ellipse is
A. $\frac{x^{2}}{20}+\frac{y^{2}}{13}=1$
B. $\frac{x^{2}}{12}+\frac{y^{2}}{19}=1$
c. $\frac{x^{2}}{19}+\frac{y^{2}}{12}=1$
D. $\frac{x^{2}}{13}+\frac{y^{2}}{20}=1$

Answer: C

- Watch Video Solution

212. S and T are foci of an ellipse and B is an end of the minor axis, if STB is an equilateral triangle, the eccentricity of the ellipse , is
A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{2}{3}$

Answer: C

(D) Watch Video Solution

213. If the lines joining the foci of an ellipse to an end of its minor axis are at right angles, then the eccentricity of the ellipse is $\mathrm{e}=$
A. $\frac{1}{4}$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{3}{4}$
D. $\frac{2}{\sqrt{5}}$

Answer: B

(D) Watch Video Solution

214. P and Q are two points on ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ such the $P Q$ passes through centre of ellipse. If R is any point on the ellipse, other then P and Q, then product of slopes of chords $P R$ and $Q R$ is .
A. $\frac{a^{2}}{b^{2}}$
B. $\frac{b^{2}}{a^{2}}$
C. $-\frac{a^{2}}{b^{2}}$
D. $-\frac{b^{2}}{a^{2}}$

Answer: D

(D) Watch Video Solution

215. The eccentricity of the ellipse which meets the straight line $\frac{x}{7}+\frac{y}{2} 1$ on the x - axis and the straight line $\frac{x}{3}-\frac{y}{5}=1$ on the y-axis and whose axis lie along the axis of coordinate
A. $\frac{3 \sqrt{2}}{7}$
B. $\frac{2 \sqrt{3}}{7}$
C. $\frac{\sqrt{3}}{7}$
D. $\frac{2 \sqrt{6}}{7}$

Watch Video Solution

216. Find the area of the greatest rectangle that can be inscribed in an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
A. $\sqrt{a b}$
B. a / b
C. $2 a b$
D. $\pi a b$

Answer: A

217. An arc of a bridge is semi-elliptical with the major axis horizontal. If the length of the base is 9 m and the highest part of the bridge is 3 m from the horizontal, then prove that the best approximation of the height of the acr 2 m from the center of the base is $\frac{8}{3} m$.
A. $\frac{11}{4} m$
B. $\frac{8}{3} m$
C. $\frac{7}{2} m$
D. $2 m$

Answer: C

- Watch Video Solution

218. The equation of the ellipse whose centre is at origin and which passes through the points $(-3,1)$ and $(2,-2)$ is
A. $5 x^{2}+3 y^{2}=32$
B. $3 x^{2}+5 y^{2}=32$
C. $5 x^{2}-3 y^{2}=32$
D. $3 x^{2}+5 y^{2}+32=0$

Answer: B

- Watch Video Solution

219. If the foci and vetrices of an ellipse be $(\pm 1,0)$ and $(\pm 2,0)$, then the minor axis of the ellipse is
B. 2
C. 4
D. $2 \sqrt{3}$

Answer: D

- Watch Video Solution

220. The equation of the directrice of the ellipse $16 x^{2}+25 y^{2}=400$ are
A. $2 x= \pm 25$
B. $5 x= \pm 9$
C. $3 x= \pm 10$
D. none of these

- Watch Video Solution

221. The latus rectum of an ellipse is 10 and the minor axis Is equal to the distnace betweent the foci. The equation of the ellipse is
A. $x^{2}+2 y^{2}=100$
B. $x^{2}+y^{2} \sqrt{2}=100$
C. $x^{2}=2 y^{2}=100$
D. none of these

Answer: A

222. Filnd the distance between the directrices the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{20}=1$.
A. 8
B. 12
C. 18
D. 24

Answer: C

- Watch Video Solution

223. The distnce between the foci of the ellipse $3 x^{2}+4 y^{2}=48$ is
A. 2
B. 4
C. 6
D. 8

Answer: B

- Watch Video Solution

224. Foci of an ellipse are $(\pm 5,0)$ and one of its directrices is
$5 x=36$. Then its equation is
A. $\frac{x^{2}}{36}+\frac{y^{2}}{11}=1$
B. $\frac{x^{2}}{6}+\frac{y^{2}}{\sqrt{11}}=1$
c. $\frac{x^{2}}{6}+\frac{y^{2}}{11}=1$
D. none of these

Answer: A

D Watch Video Solution

225. If the eccentricity of an ellipse be $\frac{1}{\sqrt{2}}$, then its latus rectum is equal to its
A. minor axis
B. semi-minor axis
C. major axis
D. semi-major axis

Answer: D

226. For each point (a, y) on an ellipse, the sum of the distances from (x, y) to the points $(2,0)$ and $(-2,0)$ is 8.

Then the positive value of x so that $(x, 3)$ lies on the ellipse is
A. 2
B. $2 \sqrt{3}$
C. $\frac{1}{\sqrt{3}}$
D. 4

Answer: A

- Watch Video Solution

227. If the centre, one of the foci and semi-major axis of an ellipse are $(0,0),(0,3)$ and 5 , then its equation is
A. $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$
B. $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
C. $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$
D. none of these

Answer: A

- Watch Video Solution

228. If one vertex of an ellipse is $(0,7)$ and the corresponding directrix is $y=12$, then the equation of the ellipse is

$$
\text { A. } 95 x^{2}+144 y^{2}=4655
$$

B. $144 x^{2}+95 y^{2}=4655$
C. $95 x^{2}+144 y^{2}=13680$
D. none of these

Answer: B

D Watch Video Solution

229. Equation of ellipse having letus rectum 8 and eccentricity
$\frac{1}{\sqrt{2}}$ is
A. $\frac{x^{2}}{18}+\frac{y^{2}}{32}=1$
B. $\frac{x^{2}}{8}+\frac{y^{2}}{9}=1$
C. $\frac{x^{2}}{64}+\frac{y^{2}}{32}=1$
D. $\frac{x^{2}}{16}+\frac{y^{2}}{24}=1$

- Watch Video Solution

230. Ellipse $x^{2}+4 y^{2}=4$ is inscribed in a rectangle aligned with co-ordinate axes. This rectangle itself is inscribed in another ellipse the passes ellipse that through ($-4,0$) . Then the equation of the ellipse is
A. $x^{2}+16 y^{2}=16$
B. $x^{2}+12 y^{2}=16$
C. $4 x^{2}+48 y^{2}=48$
D. $4 x^{2}+64 y^{2}=48$

Answer: B
231. Equation $\frac{x^{2}}{r-2}+\frac{y^{2}}{5-r}=1$ represents an ellipse if
A. $r>2$
B. $2<r<5$
C. $r>5$
D. none of these

Answer: B

- Watch Video Solution

232. The eccentricity of an ellipse with its centre at the origin is $\frac{1}{2}$. If one of the directrices is $x=4$, then the equation of ellipse is
A. $3 x^{2}+4 y^{2}=1$
B. $3 x^{2}+4 y^{2}=12$
C. $4 x^{2}+3 y^{2}=1$
D. $4 x^{2}+3 y^{2}=12$

Answer: B

- Watch Video Solution

233. The distanve between the foci of an ellipse is 16 and eccentricity is $\frac{1}{2}$. Length of the major axis of the cellipse is
A. 8
B. 64
C. 16
D. 32

Answer: D

- Watch Video Solution

234. If the eccentricities of the two ellipse $\frac{x^{2}}{169}+\frac{y^{2}}{25}=1$ and $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and equal, then the value $\frac{a}{b}$, is
A. $\frac{5}{13}$
B. $\frac{6}{13}$
C. $\frac{13}{5}$
D. $\frac{13}{6}$
235. In the ellipse $9 x^{2}+5 y^{2}=45$, distance between the foci is
A. $4 \sqrt{5}$
B. $3 \sqrt{5}$
C. 3
D. 4

Answer: D

- Watch Video Solution

236. If the distance foci of an ellipse is 8 and distance between its directrices is 18 , then the equation of the ellipse is
A. $5 x^{2}-9 y^{2}=180$
B. $9 x^{2}+5 y^{2}=180$
C. $x^{2}+9 y^{2}=180$
D. $5 x^{2}+9 y^{2}=180$

Answer: D

- Watch Video Solution

237. Find the equation of the hyperbola whole transverse and conjugate axes are 8 and 6 respectively.
A. $16 x^{2}-9 y^{2}=1$
B. $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
C. $9 x^{2}-16 y^{2}=1$
D. $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$

Answer: D

- Watch Video Solution

238. Find the equation of hyperbola where, conjugate axis is 3 along Y -axis and distance between foci is 5 .
A. $\frac{4 x^{2}}{9}-\frac{y^{2}}{4}=1$
B. $\frac{x^{2}}{4}-\frac{4 y^{2}}{9}=1$
C. $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$
D. $4 x^{2}-36 y^{2}=9$

(D) Watch Video Solution

239. The length of the transverse axis of a hyperbola is 7 and it passes through the point $(5,-2)$. The equation of the hyperbola is
A. $\frac{x^{2}}{49}-\frac{y^{2}}{196}=1$
B. $\frac{y^{2}}{196}-\frac{x^{2}}{49}=1$
C. $\frac{4 x^{2}}{7}-\frac{51 y^{2}}{196}=1$
D. $4 x^{2}-357 y^{2}=196$

Answer: C

240. One focus at $(4,0)$ corresponding directrix $x=1$.
A. $4 x^{2}-12 y^{2}=1$
B. $125 x^{2}-100 y^{2}=9$
C. $9 x^{2}-9 y^{2}=100$
D. $3 x^{2}-y^{2}=12$

Answer: D

(D) Watch Video Solution

241. Distance between foci $=10$ and eccentricity $=\frac{3}{2}$
A. $\frac{9 x^{2}}{100}-\frac{9 y^{2}}{125}=1$
B. $125 x^{2}-100 y^{2}=9$
C. $9 x^{2}-9 y^{2}=100$
D. $100 x^{2}-125 y^{2}=9$

Answer: A

D Watch Video Solution

242. Conjugate axis $=10$ and eccentricity $=\frac{6}{5}$
A. $4 x^{2}-25 y^{2}=1$
B. $4 x^{2}-25 y^{2}=-1$
C. $\frac{x^{2}}{25}-\frac{y^{2}}{11}=1$
D. $4 x^{2}-25 y^{2}=100$

Answer: C
243. One focus at $(3,0)$ and eccentricity $=\frac{6}{5}$
A. $\frac{4 x^{2}}{25}-\frac{4 y^{2}}{11}=1$
B. $36 x^{2}-4 y^{2}=2475$
C. $36 x^{2}-4 y^{2}-9$
D. $9 x^{2}-36 y^{2}=25$

Answer: A

- Watch Video Solution

244. Find the equation of hyperbola whose conjugate axis = latus-rectum $=8$,
A. $16 x^{2}-16 y^{2}=1$
B. $16 x^{2}-16 y^{2}=-1$
C. $x^{2}-y^{2}=16$
D. $8 x^{2}-8 y^{2}=1$

Answer: C

- Watch Video Solution

245. $e=\frac{3}{2}$ and distance between directrices $=\frac{8}{3}$
A. $4 x^{2}-5 y^{2}=1$
B. $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$
C. $\frac{x^{2}}{5}-\frac{y^{2}}{4}=1$
D. $4 x^{2}-5 y^{2}=20$

- Watch Video Solution

246. Equation of the hyperbola in standard form which passes through the points $(6,9)$ and $(3,0)$ is
A. $3 x^{2}-y^{2}=27$
B. $\frac{x^{2}}{27}-\frac{y^{2}}{3}=1$
C. $\frac{x^{2}}{27}-\frac{y^{2}}{9}=1$
D. $27 x^{2}-3 y^{2}=9$

Answer: A

247. Find the equation of hyperbola whose eccentricity $=\sqrt{2}$ and passing through ($-5,3$) .
A. $16 x^{2}-16 y^{2}=1$
B. $16 x^{2}-16 y^{2}=-1$
C. $x^{2}-y^{2}=16$
D. $4 x^{2}-4 y^{2}=1$

Answer: C

(Watch Video Solution
248. Eccentricity and latus-rectum of $x^{2}-3 y^{2}=36$ are
A. $\frac{3}{\sqrt{3}}, 4$
B. $\frac{2}{\sqrt{3}}, 4$
C. $\frac{4}{\sqrt{3}}, 9$
D. $\frac{5}{\sqrt{3}}, 9$

Answer: B

- Watch Video Solution

249. For hyperbola, If transverse axis = conjugate axis , then $\mathrm{e}=$
A. 0
B. 1
C. 2
D. $\sqrt{2}$
250. If transverse axis $=2$ (latus-rectum), then $e=$
A. $\sqrt{2}$
B. $\sqrt{3}$
C. $\sqrt{\frac{3}{2}}$
D. $\sqrt{\frac{2}{3}}$

Answer: C

- Watch Video Solution

251. If conjugate axis $=2$ (latus-rectum), then $e=$
A. 2
B. $\sqrt{5}$
C. $\sqrt{5}$
D. $\frac{\sqrt{5}}{2}$

Answer: D

- Watch Video Solution

252. If distance between foci $=3$ (distance between directrices)
. Then $\mathrm{e}=$
A. 2
B. $\sqrt{2}$
C. 3
D. $\sqrt{3}$

D Watch Video Solution

253. Focus of the parabola $y^{2}=8 x$ is a vertex of a hyperbola whose conjuagate axis is 4 . Eccentricity of this hyperbola is
A. 2
B. $\sqrt{2}$
C. 3
D. $\sqrt{3}$

Answer: B

- Watch Video Solution

254. Co-ordinates of point $P\left(\frac{\pi}{4}\right)$ on the hyperbola $25 x^{2}-9 y^{2}=225$ are
A. $(3 \sqrt{2}, 5)$
B. $(2 \sqrt{3}, 5)$
C. $(3,5 \sqrt{2})$
D. $(\sqrt{2}, 15)$

Answer: A

- Watch Video Solution

255. Focal distances of a point $P: x=13$ on 13 on $81 x^{2}-144 y^{2}=11664$ are
A. $\frac{38}{3}, \frac{92}{3}$
B. 13,117
C. 71,311
D. $\frac{17}{4}, \frac{113}{4}$

Answer: D

- View Text Solution

256. If $P(\theta)$ is a point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, whose foci are S and S^{\prime}, then $S P . S^{\prime} P=$
A. $a^{2} \sec ^{2} \theta+b^{2} \tan ^{2} \theta$
B. $a^{2} \sec ^{2} \theta-b^{2} \tan ^{2} \theta$
C. $a^{2} \tan ^{2} \theta-b^{2} \sec ^{2} \theta$
D. $a^{2} \tan ^{2} \theta+b^{2} \sec ^{2} \theta$
257. The length intercepted by the hyperbola $x^{2}-4 y^{2}=1$ on the line $x-3 y=1$ is
A. $\frac{6}{5} \sqrt{5}$
B. $\frac{3}{5} \sqrt{10}$
C. $\frac{6}{5} \sqrt{10}$
D. None of these

Answer: C

258. If eande' the eccentricities of a hyperbola and its conjugate, prove that $\frac{1}{e^{2}}+\frac{1}{e^{2}}=1$.
A. $e_{1}^{2}+e_{2}^{2}=1$
B. $\frac{1}{e_{1}^{2}}-\frac{1}{e_{2}^{2}}=1$
C. $\frac{1}{e_{1}^{2}}+\frac{1}{e_{2}^{2}}=1$
D. $e_{1}^{2}-e_{2}^{2}=1$

Answer: C

- Watch Video Solution

259. The eccentricity of the conjugate hyperbola of the hyperbola $x^{2}-3 y^{2}=1$ is 2 (b) $2 \sqrt{3}$ (c) 4 (d) $\frac{4}{5}$
A. 2
B. $\frac{2}{\sqrt{3}}$
C. 4
D. $\frac{4}{\sqrt{3}}$

Answer: A

(D) Watch Video Solution

260. If the equation $4 x^{2}+k y^{2}=18$ respresents a hyperbola whose eccentricity is $\sqrt{2}$, then $\mathrm{k}=$
A. 4
B. -4
C. 3
D. -3

D Watch Video Solution

261. The eccentricity of the hyperbola $\frac{\sqrt{2006}}{4}\left(x^{2}-y^{2}\right)=1$ is
A. $\sqrt{2}$
B. 2
C. $2 \sqrt{2}$
D. $\sqrt{3}$

Answer: A

D Watch Video Solution
262. If e_{1}, e_{2} and e_{3} the eccentricities of a parabola, and ellipse and a hyperbola respectively, then
A. $e_{1}<e_{2}<e_{3}$
B. $e_{1}<e_{3}<e_{2}$
C. $e_{3}<e_{1}<e_{2}$
D. $e_{2}<e_{1}<e_{3}$

Answer: D

- Watch Video Solution

263. If e_{1} be the eccentricity of a hyperbola and e_{2} be the eccentricity of its conjugate, then show that the point $\left(\frac{1}{e_{1}}, \frac{1}{e_{2}}\right)$ lies on the circle $x^{2}+y^{2}=1$.
A. $x^{2}+y^{2}=0$
B. $x^{2}+y^{2}=1$
C. $x^{2}+y^{2}=2$
D. $x^{2}+y^{2}=3$

Answer: B

- Watch Video Solution

264. If t is a non-zero parameter, then the locus of the point of intersection of the lines $\frac{x}{a}+\frac{y}{b}=t$ and $\frac{x}{a}-\frac{y}{b}=\frac{1}{t}$ is
A. a circle
B. an ellipse
C. a hyperbola
D. a parabola

Answer: C

- Watch Video Solution

265.

The
locus
represented
$x=\frac{a}{2}\left(t+\frac{1}{t}\right), y=\frac{a}{2}\left(t-\frac{1}{t}\right)$ is
A. circle
B. parabola
C. ellipse
D. hyperbola

- Watch Video Solution

266. A hyperbola, centred at the prigin, has transverse axis 2 a .

If it passes through a given point $\left(x_{1}, y_{1}\right)$, then its eccentricity is
A. $\sqrt{\frac{x_{1}^{2}-y_{1}^{2}-a^{2}}{x_{1}^{2}-x_{1}^{2}}}$
B. $\sqrt{\frac{x^{2}-x_{1}^{2}-y_{1}^{2}}{x^{2}-a_{1}^{2}}}$
C. $\sqrt{\frac{a^{2}+x_{1}^{2}+y_{1}^{2}}{a^{2}-x_{1}^{2}}}$
D. $\sqrt{a^{2}-\frac{y_{1}^{2}}{x_{1}^{2}}}$

Answer: B
267. For the hyperbola $\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1$, where α is a parameter, which of the following remains constant ?
A. abscissa of vertices
B. abscissa of foci
C. eccentricity
D. directrix

Answer: B

- Watch Video Solution

268. Point P, Q and R on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ are such that line PQ passes through the centre of the hyperbola.

Then product of slopes of $P R$ and $Q R$ is
A. $\frac{a}{b}$
B. $\frac{a^{2}}{b^{2}}$
C. $\frac{b^{2}}{a^{2}}$
D. $\frac{b}{a}$

Answer: C

- Watch Video Solution

269. The equation of the conic with focus at $(1,-1)$, directrix along $x-y+1=0$ and with eccentricity $\sqrt{2}$, is
A. $x^{2}-y^{2}=1$
B. $x y=1$
C. $2 x y-4 x+4 y+1=0$
D. $2 x y+4 x-4 y-1=0$

Answer: C

D Watch Video Solution

270. The equation $x=\frac{e^{t}+e^{-t}}{2}, y=\frac{e^{t}-e^{-t}}{2}, t \in R$, represents
A. a parabola
B. an ellipse
C. a hyperbola
D. a circle

Answer: C

271. Locus of the point of intersection of the lines
$m x \sqrt{3}+m y-4 \sqrt{3}=0$ and
$x \sqrt{3}-y-4 m \sqrt{3}=0$, where m is parameter, is
A. a parabola
B. a hyperbola with $\mathrm{e}=2$
C. an ellipse with $e=\frac{2}{3}$
D. a circle

Answer: B

- Watch Video Solution

272. Write the equation of the hyperbola whose vertices are $(\pm 3,0)$ and foci at $(\pm 5,0)$
A. $16 x^{2}-9 y^{2}=144$
B. $9 x^{2}-16 y^{2}=144$
C. $25 x^{2}-9 y^{2}=225$
D. $9 x^{2}-25 y^{2}=81$

Answer: A

- Watch Video Solution

273. If the eccentricity of the hyperbola $x^{2}-y^{2}(\mathrm{sec}) \alpha=5$ is $\sqrt{3}$ times the eccentricity of the ellipse $x^{2}(\sec)^{2} \alpha+y^{2}=25$, then a value of α is : (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: B

- Watch Video Solution

274. Standard equation of the hyperbola having distance between foci to 32 , and eccentricity $2 \sqrt{2}$, is
A. $7 x^{2}-y^{2}=56$
B. $x^{2}-7 y^{2}=56$
C. $7 x^{2}-y^{2}=224$
D. $x^{2}-7 y^{2}=224$

Answer: C

D Watch Video Solution

275. If $0<\alpha<\frac{\pi}{2}$ and the eccentricity of the ellipse $x^{2} \tan ^{2} \alpha+y^{2} \sec ^{2} \alpha=1 i s 1 / 2$, then α
A. $\frac{\pi}{12}$
B. $\frac{\pi}{6}$
C. $\frac{5 \pi}{12}$
D. $\frac{\pi}{3}$
276. If P is a point on the hyperbola $16 x^{2}-9 y^{2}=144$ whose foci are S_{1} and S_{2} then : $\left|S_{1} P-S_{2} P\right|=$
A. 4
B. 6
C. 8
D. 12

Answer: B

- Watch Video Solution

277. If the latus rectum of an hyperbola be 8 and eccentricity be $\frac{3}{\sqrt{5}}$ the the equation of the hyperbola is
A. $4 x^{2}-5 y^{2}=100$
B. $5 x^{2}-4 y^{2}=100$
C. $4 x^{2}+5 y^{2}=100$
D. $5 x^{2}+4 y^{2}=100$

Answer: A

(Watch Video Solution

278. Eccentricity of the hyperbola passing through $(3,0)$ and $(3 \sqrt{2}, 2)$ is
A. $\sqrt{13}$
B. $\frac{\sqrt{13}}{3}$
C. $\frac{\sqrt{13}}{4}$
D. $\frac{\sqrt{13}}{2}$

Answer: B

(D) Watch Video Solution

279. Find the equation of the hyperbola whose conjugate axis is 5 and the distance between the foci is 13 .
A. $25 x^{2}-144 y^{2}=900$
B. $144 y^{2}-25 y^{2}=900$
C. $25 x^{2}+144 y^{2}=900$
D. $144 x^{2}+25 y^{2}=900$
280. The length of the transverse axis of a hyperbola is 7 and it passes through the point $(5,-2)$. The equation of the hyperbola is
A. $\frac{4}{49} x^{2}-\frac{196}{51} y^{2}=1$
B. $\frac{49}{4} x^{2}-\frac{51}{196} y^{2}=1$
C. $\frac{4}{49} x^{2}-\frac{51}{196} y^{2}=1$
D. none of these

Answer: C

281. If $(4,0)$ and $(-4,0)$ be the vertices and $(6,0)$ and $(-6,0)$ be the foci of a hyperbola, then its eccentricity is
A. $5 / 2$
B. 2
C. $3 / 2$
D. $\sqrt{2}$

Answer: C

- Watch Video Solution

282. If $(0, \pm 4)$ and $(0, \pm 2)$ are respectively the foci and vertices of a hyperbola, then its equation is
A. $\frac{x^{2}}{4}-\frac{y^{2}}{12}=1$
B. $\frac{x^{2}}{12}-\frac{y^{2}}{4}=1$
C. $\frac{y^{2}}{4}-\frac{x^{2}}{12}=1$
D. $\frac{y^{2}}{12}-\frac{x^{2}}{4}=1$

Answer: C

- Watch Video Solution

283. Eccentricity of the a hyperbola can never be equal to
A. $\sqrt{\frac{9}{5}}$
B. $\sqrt{\frac{1}{9}}$
C. $3 \sqrt{\frac{1}{8}}$
D. 2

D Watch Video Solution

284. A hyperbola passes through $(3,2)$ and $(-17,12)$ and has its centre at origin and transverse axis along X -axis . Then length of its transverse axis is
A. 2
B. 4
C. 6
D. none of these

Answer: A

285. Equation of hyperbola is standard from having latus rectum $=9$ and eccentricity $=5 / 4$ is
A. $\frac{x^{2}}{16}-\frac{y^{2}}{18}=1$
B. $\frac{x^{2}}{36}-\frac{y^{2}}{27}=1$
C. $\frac{x^{2}}{64}-\frac{y^{2}}{36}=1$
D. $\frac{x^{2}}{36}-\frac{y^{2}}{64}=1$

Answer: C

- Watch Video Solution

286. Distance between foci of a hyperbola is double the distance between its vertices. If the length of its conjugate axis is 6 , then equation is
A. $3 x^{2}-y^{2}=3$
B. $x^{2}-3 y^{2}=3$
C. $3 x^{2}-y^{2}=9$
D. $x^{2}-3 y^{2}=9$

Answer: C

- Watch Video Solution

287. The equation to the hyperbola having its eccentricity 2 and the distance between its foci is 8 is
A. $\frac{x^{2}}{12}-\frac{y^{2}}{4}=1$
B. $\frac{x^{2}}{4}-\frac{y^{2}}{12}=1$
C. $\frac{x^{2}}{8}-\frac{y^{2}}{2}=1$
D. $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$

Answer: B

- Watch Video Solution

288. If the distance between the foci and the distance between the two directricies of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ are in the ratio $3: 2$, then $b: a$ is $1: \sqrt{2}$ (b) $\sqrt{3}: \sqrt{2} 1: 2$ (d) $2: 1$
A. $\sqrt{2}: 1$
B. $\sqrt{3}: \sqrt{2}$
C. 1:2
D. $2: 1$

- Watch Video Solution

289. The distance between the directices of the hyperboltic
$x=8 \sec \theta, y=8 \tan \theta i s$
A. $16 \sqrt{2}$
B. $\sqrt{2}$
C. $8 \sqrt{2}$
D. $4 \sqrt{2}$

Answer: C
(D) Watch Video Solution

1. If the equation

$a x^{2}+b y^{2}+(a+b-4) x y-a x-b y-20=0$
represents a circle, then its radius is
A. $\frac{\sqrt{21}}{2}$
B. $\frac{\sqrt{42}}{2}$
C. $2 \sqrt{21}$
D. $\sqrt{22}$

Answer: B

- Watch Video Solution

2. Circle $x^{2}+y^{2}-8 x+4 y+4=0$ touches
A. neither of the two axes
B. X-axis
C. both of the two axes
D. Y-axis

Answer: D

D Watch Video Solution

3. If the circles of same radius a and centres $(2,3)$, $(5,6)$ cut orthogonally , then $a=$
A. $2 \sqrt{2}$
B. 3
C. 4
D. none of these

D Watch Video Solution

4. If the equation
$a^{2} x^{2}+\left(a^{2}-5 a+4\right) x y+(3 a-2) y^{2}-8 x+12 y-4=0$
represents a circle, then : $\mathrm{a}=$
A. 1
B. 4
C. 2
D. none of these

Answer: A

D Watch Video Solution
5. The $\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}=0\right.$ represents a circle whose centre is
A. $\left(\frac{x_{1}-x_{2}}{2}, \frac{y_{1}-y_{2}}{2}\right)$
B. $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
C. $\left(x_{1}, y_{2}\right)$
D. $\left(x_{2}, y_{1}\right)$

Answer: B

- Watch Video Solution

6. Two circles with centres at C_{1}, C_{2} and having radii r_{1}, r_{2}
will intersect each in two real distinct points if, and only if :
A. $l\left(C_{1} C_{2}\right)<r_{1}+r_{2}$
B. $l\left(C_{1} C_{2}\right)-\left|r_{1}-r_{2}\right|$
C. $\left|r_{1}-r_{2}\right|<l\left(C_{1} C_{2}\right)<r_{1}+r_{2}$
D. none of these

Answer: C

D Watch Video Solution

7. If the two circles $x^{2}+y^{2}+a x=0$ and $x^{2}+y^{2}=c^{2}$, where $a, c>0$, touch each other intenally, then :
A. $c=a$
B. $\mathrm{C}=2 \mathrm{a}$
C. $c=a / 2$
D. none of these

D Watch Video Solution

8. If the line $x+2 b y+7=0$ is a diameter of the circle $x^{2}+y^{2}-6 x+2 y=0$, then $: \mathrm{b}=$
A. 3
B. -5
C. -1
D. 5

Answer: D

9. If the circle $x^{2}+y^{2}-k x-12 y+4=0$ touches the X-axis then : $\mathrm{k}=$
A. $\sqrt{12}$
B. 12
C. $\sqrt{16}$
D. 16

Answer: C

- Watch Video Solution

10. The equation of the circle which touches both axes and whose centre is $\left(x_{1}, y_{1}\right)$ is
A. $x^{2}+y^{2}+2 x_{1}(x+y)+x_{1}^{2}=0$
B. $x^{2}+y^{2}-2 x_{1}(x+y)+x_{1}^{2}=0$
C. $x^{2}+y^{2}=x_{1}^{2}+y_{1}^{2}$
D. $x^{2}+y^{2}+2 x x_{1}+2 y y_{1}=0$

Answer: B

- Watch Video Solution

11. A circle touches the y-axis at the point $(0,4)$ and cuts the x axis in a chord of length 6 units. Then find the radius of the circle.
A. 3
B. 4
C. 5
D. 6

Answer: C

D Watch Video Solution

12. Centre of the circle
$\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)=0$ is
A. $\left(\frac{x_{1}+y_{1}}{2}, \frac{x_{1}+y_{2}}{2}\right)$
B. $\left(\frac{x_{1}-y_{1}}{2}, \frac{x_{2}-y_{2}}{2}\right)$
C. $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
D. $\left(\frac{x_{1}-x_{2}}{2}, \frac{y_{1}-y_{2}}{2}\right)$

Answer: C
13. $\triangle A B C$ is right angled at C . If $A \equiv(-3,4)$ and $B \equiv(3,4)$ then equation of circumcircle of $\triangle A B C$ is
A. $x^{2}+y^{2}-6 x+8 y=0$
B. $x^{2}+y^{2}=25$
C. $x^{2}+y^{2}-3 x+4 y+5=0$
D. none of these

Answer: B

- Watch Video Solution

14. If the equation,
$p x^{2}+(2-q) x y+3 y^{2}-6 q x+30 y+6 y=0$
represents a circle , then : $(\mathrm{p}, \mathrm{q}) \equiv$
A. $(3,1)$
B. $(2,2)$
C. $(3,2)$
D. $(3,4)$

Answer: C

- Watch Video Solution

15. Circle $x^{2}+y^{2}+6 y=0$ touches
A. X-axis at the origin
B. Y-axis at the origin
C. X-axis at $(3,0)$
D. the line $y+3=0$

Answer: A

D Watch Video Solution

16. Equation of the circle with centre at $(1,-2)$, and passing through the centre of the circle $x^{2}+y^{2}+2 y-3=0$, is
A. $x^{2}+y^{2}-2 x+4 y+3=0$
B. $x^{2}+y^{2}-2 x+4 y-3=0$
C. $x^{2}+y^{2}+2 x-4 y-3=0$
D. $x^{2}+y^{2}+2 x-4 y+3=0$

(D) Watch Video Solution

17. Equation of the circle concentric with the circle $x^{2}+y^{2}+8 x+10 y-7=0$, and passing through the centre of the circle $x^{2}+y^{2}-4 x-6 y=0$,is
A. $x^{2}+y^{2}+8 x+10 y+59=0$
B. $x^{2}+y^{2}+8 x+10 y-59=0$
C. $x^{2}+y^{2}-4 x-6 y+87=0$
D. $x^{2}+y^{2}-4 x-6 y-87=0$
18. Equation of the circle passing through the three points
$(0,0),(0, b)$ and (a, b) is
A. $x^{2}+y^{2}+a x+b y=0$
B. $x^{2}+y^{2}-6 x+12 y-15=0$
C. $x^{2}+y^{2}-a x-b y=0$
D. $x^{2}+y^{2}-6 x+12 y+45=0$

Answer: C

- Watch Video Solution

19. A circle is concentric with the circle

$$
x^{2}+y^{2}-6 x+12 y+15=0
$$

and has area double of its area. Its equation is
A. $x^{2}+y^{2}-6 x+12 y-15=0$
B. $x^{2}+y^{2}-6 x+12 y+15=0$
C. $x^{2}+y^{2}-6 x+12 y+45=0$
D. none of these

Answer: A

- Watch Video Solution

20. Equation of the circle with centre on the X -axis, radius 4 , and passing through the origin , is
A. $x^{2}+y^{2}+4 x=0$
B. $x^{2}+y^{2}-8 y=0$
C. $x^{2}+y^{2} \pm 8 x=0$
D. $x^{2}+y^{2}+8 y=0$

Answer: C

D Watch Video Solution

21. the equation of the circle passing through the point $(2,1)$ and touching y-axis at the origin is
A. $x^{2}+y^{2}-5 x=0$
B. $2 x^{2}+2 y^{2}-5 x=0$
C. $x^{2}+y^{2} 5 x=0$
D. none of these
22. Equation of the circle which passes through the origin and cuts off intercepts of length 2 units from negative co-ordinate axes, is
A. $x^{2}+y^{2}+2 x+2 y=0$
B. $x^{2}+y^{2}+2 x-2 y=0$
C. $x^{2}+y^{2}+2 x+2 y=0$
D. $x^{2}+y^{2}-2 x-2 y=0$

Answer: C

23. If the radius of the circel $x^{2}+y^{2}+2 g x+2 f y+c=0$ be r, then it will touch both the axes, if
A. $g=f=r$
B. $g=f=c=r$
C. $g=f=\sqrt{c}=r$
D. $\mathrm{g}=\mathrm{f}$ and $c^{2}=r$

Answer: C

- Watch Video Solution

24. Equation of the circle with centre on X-axis, radius 5, and passing through $(2,3)$, is

$$
\text { A. } x^{2}+y^{2}+4 x-21=0
$$

B. $x^{2}+y^{2}-4 x-21=0$
C. $x^{2}+y^{2}-4 x-21=0$
D. $x^{2}+y^{2}+5 x-21=0$

Answer: A

- Watch Video Solution

25. The equation of the circel which touches X-axis at $(3,0)$ and passes through $(1,4)$ is given by
A. $x^{2}+y^{2}-6 x-5 y+9=0$
B. $x^{2}+y^{2}+6 x+5 y=0$
C. $x^{2}+y^{2}-6 x+5 y-9=0$
D. $x^{2}+y^{2}+6 x-5 y+9=0$

D Watch Video Solution

26. The equation $a x^{2}+2 b x y+2 y^{2}+2 x-y+c=0$ represents a circle through the origin , if
A. $a=0, b=0, c=2$
B. $a=1, b=0, c=0$
C. $a=2, b=2, c=0$
D. $a=2, b=0, c=0$

Answer: D

27. Equation of the circle, centred at the origin , whose radius equals the distance between the lines $x=-1$ and $x=1$, is
A. $x^{2}+y^{2}=1$
B. $x^{2}+y^{2}=2$
C. $x^{2}+y^{2}=4$
D. $x^{2}+y^{2}=-4$

Answer: C

- Watch Video Solution

28. If the equation of a circle which touches the line $x=y$ at the origin , and passes through $(2,1)$ is
$x^{2}+y^{2}+p x+q y=0$, then $:(\mathrm{p}, \mathrm{q}) \equiv$
A. $(5,-5)$
B. $(-4,4)$
C. $(4,-4)$
D. $(-5,5)$

Answer: D

- Watch Video Solution

29. A circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ passing through
$(4,-2)$ is concentric to the circle
$x^{2}+y^{2}-2 x+4 y+20=0$, then the value of c will be
A. $x=1$
B. 4
C. 0
D. 1

Answer: A

- Watch Video Solution

30. If the equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle with X -axis as a diameter, and radius a , then :
A. $f=2 a, g=0, c=3 a^{2}$
B. $f=0, g=a, c=3 a^{2}$
C. $f=0, g=-2 a, c=3 a^{2}$
D. none of these

D Watch Video Solution

31. Equation of the circle with centre ($-4,3$), and touching the circle $x^{2}+y^{2}=1$, is
A. $x^{2}+y^{2}+8 x-6 y+9=0$
B. $x^{2}+y^{2}+8 x+6 y-11=0$
C. $x^{2}+y^{2}+8 x+6 y+9=0$
D. none of these

Answer: A

D Watch Video Solution
32. Equation of the circle concentric with the circle $x^{2}+y^{2}-4 x-6 y-3=0$, and touching Y -axis , is
A. $x^{2}+y^{2}-4 x-6 y-9=0$
B. $x^{2}+y^{2}-4 x-6 y+9=0$
C. $x^{2}+y^{2}-4 x-6 y+3=0$
D. none of these

Answer: B

(D) Watch Video Solution

33. Radius of the circle $x^{2}+y^{2}+2 x \cos \theta+2 y \sin \theta-8=0$, is
A. 1
B. 3
C. $2 \sqrt{3}$
D. $\sqrt{10}$

Answer: B

(D) Watch Video Solution

34. If the equation $\frac{K(x+1)^{2}}{3}+\frac{(y+2)^{2}}{4}=1$ represents a ciecle, then $K=$
A. $\frac{3}{4}$
B. 1
C. $\frac{4}{3}$
D. 12

(D) Watch Video Solution

35. The focus of the parabola $4 y^{2}+12 x-20 y+67=0$ is
A. $(-7 / 2,5 / 2)$
B. $(-3 / 4,5 / 2)$
C. $(-17 / 4,5 / 2)$
D. $(5 / 2,-3 / 4)$

Answer: C

D Watch Video Solution
36. The equation of the directirx of the parabola $y^{2}+4 y+4 x+2=0$ is
A. $x=1$
B. $x=-1$
C. $x=-3 / 2$
D. $x=3 / 2$

Answer: D

D Watch Video Solution

37. If the focus of a parabola divides a focal chord in segments of lengths 3 and 2 , then the length of its latus rectum is

$$
\text { A. } \frac{3}{2}
$$

B. $\frac{6}{5}$
C. $\frac{12}{5}$
D. $\frac{24}{5}$

Answer: D

- Watch Video Solution

38. If $(4,0)$ is the vertex, and Y-axis the directrix of a parabola, then its focus is
A. $(8,0)$
B. $(4,0)$
C. $(0,8)$
D. $(0,4)$

D Watch Video Solution

39. Length of latus rectum of a parabola whose focus is $(3,3)$
and directrix is $3 x-4 y-2=0$ is
A. 1
B. 2
C. 3
D. 4

Answer: B

40. What is the equation of the parabola, whose vertex and focus are on the x-axis at distance a and b from the origin respectively ? $(b>a>0)$
A. $y^{2}=4(b-a) x$
B. $y^{2}=4(b-a)(x-a)$
C. $y^{2}=4(b-a)(x-b)$
D. none of these

Answer: B

(D) Watch Video Solution

41. If vertex of a parabola is origin and directrix is $x+7=0$, then its latus rectum is
A. 7
B. 14
C. 28
D. 56

Answer: C

(D) Watch Video Solution
42. Points on parabola $y^{2}=12 x$, whose focal distance is 4 , are
A. $(2, \pm \sqrt{3})$
B. $(1, \pm 2 \sqrt{3})$
C. $(1,2)$
D. none of these

Answer: B

D Watch Video Solution

43. The focal distance of a point on the parabola $y^{2}=16 x$ whose ordinate is twice the abscis is
A. 6
B. 8
C. 10
D. 12
44. A parabola passing through the point $(-4,2)$ has its vertex at the origin and Y-axis as its axis. Then, latus rectum of this parabola is
A. 6
B. 8
C. 10
D. 12

Answer: B

45. A parabola has the origin as its focus and the line $x=2$ as the directrix. The vertex of the parabola is at
A. $(1,0)$
B. $(0,1)$
C. $(2,0)$
D. $(0,2)$

Answer: A

D Watch Video Solution

46. Find the point on the parabola $y^{2}=18 x$ at which ordinate is 3 times its abscissa.
A. $(6,2)$
B. $(-2,-6)$
C. $(3,18)$
D. $(2,6)$

Answer: D

(D) Watch Video Solution

47. The straight lines $y= \pm x$ intersect the parabola $y^{2}=8 x$ in points P and Q , then length of PQ is
A. 4
B. $4 \sqrt{2}$
C. 8
D. 16
48. Equation of the latus rectum of the parabola $2 y^{2}=5 x$ is
A. $8 x-5=0$
B. $8 x+5=0$
C. $5 x+8=0$
D. $5 x-8=0$

Answer: A

- Watch Video Solution

49. For the parabola $y^{2}=4 x$, the points (s) P whose focal distance is 17 , is/are
A. $(2, \pm 8)$
B. $(16, \pm 8)$
C. $(8, \pm 8)$
D. $(4, \pm 8)$

Answer: B

D Watch Video Solution

50. The two parabolas $x^{2}=4 y$ and $y^{2}=4 x$ meet in two distinct points. One of these is origin and the other point is
B. $(4,-4)$
C. $(4,4)$
D. $(-2,2)$

Answer: C

- Watch Video Solution

