

MATHS

BOOKS - MARVEL MATHS (HINGLISH)

PROBABILITY DISTRIBUTIONS

Mcqs

1. If the function P (X=x) =kx,.....x=1,2,3,4,5=0otherwise

is a probability mass function (p.m.f.) ,then : k=....

A.
$$\frac{1}{14}$$

B. $\frac{1}{15}$
C. $\frac{1}{16}$

D. none of these

Answer: B

Watch Video Solution

2. Detemine k such that the following funciton is a p.m.f

$$P(X=x) = kigg(rac{2^x}{x\,!}igg), x=0,1,2,3$$

=0 otherwise .

A.
$$\frac{1}{19}$$

B. $\frac{2}{19}$
C. $\frac{3}{19}$

D. none of these

Answer: C

3. Find k ,such that the function

$$P(x)=iggl\{iggl(kiggl({a\over x}iggr),\,x=0,\!1,\!2,\!3,\!4,\,k>0iggr),\,(0, ext{ otherwise.})$$

is a probability mass function (p.m.f.)

A.
$$\frac{1}{4}$$

B. $\frac{1}{16}$
C. $\frac{1}{64}$

D. none of these

Answer: B

Watch Video Solution

4. The p.m.f. of a r.v. X is as follows :

$$P(X=0)=3k^3, P(X=1)=4k-10k^2, P(X=2)=5k-1$$

 $P(X=x)=0 \;\; {
m for \; any \; other \; values \; of \; x, \; then \; k=}$

,

Answer: C

5. If the p.d.f. of a c.r.v. X is

$$f(x) = egin{cases} kx^2ig(1-x^3ig), 0 \leq x \leq 1 \ 0, & elsewhere \end{cases}$$

then :k...

A. 6 B. 5 C. 4 D. 3

Answer: A

6. The p.d.f. of a c.r.v. X is

$$f(x) = egin{cases} k.\sin\Bigl(rac{\pi x}{5}\Bigr), 0 \leq x \leq 5 \ 0, \qquad \qquad elsewhere \end{cases}$$

then :k=.....

A.
$$\frac{\pi}{2}$$

B. $\frac{\pi}{5}$
C. $\frac{\pi}{10}$

D. none of these

Answer: C

Watch Video Solution

7. The p.m.f. of a r.v. X is $P(x) = egin{cases} kx, x = 1, 2, 3 \\ 0, ext{ therwise} \end{cases}$, then k =

A.
$$\frac{1}{2}$$

B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{1}{5}$

Answer: A

8. The p.d.f. of a.c.r. X is
$$f(x) = egin{cases} rac{1}{2}, 0 < x < 2 \ 0, & otherwise \end{cases}$$

Then P (X < 1.5) and P(X > 1) are

 $\mathsf{A}.\,0.25,\,0.50$

 $B.\,0.75,\,0.5$

C. 0.6, 0.27

D. none of these

Answer: B

Watch Video Solution

9. If the p.d.f. of a c.r.v. X is

$$f(x) = \left\{egin{array}{c} rac{1}{4}, -1 < x < 3 \ 0, & otherwise \end{array}
ight.$$

then : P(X > 0) = .

A. 0.25

 $B.\,0.50$

 $\mathsf{C}.\,0.75$

D. 1

Answer: C

Watch Video Solution

10. if the p.d.f of a a.c.r.v X is
$$f(x) = \left\{egin{array}{c} rac{x}{8}, 0 < x < 4 \\ 0, & otherwise \end{array}
ight.$$

then P(X < 1) and $(P(X \ge 2))$ are

A.
$$\frac{1}{16}$$
, $\frac{3}{4}$
B. $\frac{1}{4}$, $\frac{3}{8}$
C. $\frac{5}{8}$, $\frac{7}{16}$

D. none of these

Answer: A

11. If a curve X has probability density function (pdf)

$$f(x) = egin{cases} ax, 0 \leq x \leq 1 \ a, 1 \leq x \leq 2 \ 3a - ax, 2 \leq x \leq 3 \ 0, \mathrm{otherewise} \end{cases}$$

Then, a is equal to

A. 1

B.
$$\frac{1}{3}$$

C. $\frac{1}{2}$
D. $\frac{1}{5}$

Answer: C

Watch Video Solution

12. The p.m.f. of a r.v. X is $P(x) = \begin{cases} rac{1}{15}, x = 1, 2, \ldots, 15 \\ 0, ext{ otherwise} \end{cases}$, then

Var (X) =

A.
$$\frac{1}{4}$$

B. $\frac{1}{5}$
C. $\frac{1}{6}$
D. $\frac{1}{7}$

Answer: D

13. P.d.f. of a c.r.v X is

$$f(x) = egin{cases} 6x(1-x), 0 \leq x \leq 1 \ 0, & elsewhere \end{cases}$$
 If P $(X < a) = P(X > a)$ then : a =..

A. 1

B.
$$\frac{1}{2}$$

C. $\frac{1}{3}$
D. $\frac{1}{4}$

Answer: B

14. A c.r.v X has the p.d.f
$$f(x)=egin{cases} 3x^2, 0\leq x\leq 1\ 0, & elsewhere \end{cases}$$
If P $(X\leq a)=P(X>a),$ then: $a=.$

•

A.
$$rac{1}{2^{rac{1}{3}}}$$

B. 1

C.
$$\frac{1}{3^{\frac{1}{3}}}$$

D. $\frac{1}{4^{\frac{1}{3}}}$

Answer: A

Vatch Video Solution

15. The life in hours of a ratio tube is continuous random

variable with pdf

$$f(x) = \left\{ egin{array}{c} rac{100}{x^2}, x \geq 100 \ 0, ext{else where} \end{array}
ight.$$

Then, the probability that the life of tube will than 200 h if it is known that th tube is still functioning after 150 h of services is

A.
$$\frac{1}{4}$$

B. $\frac{1}{3}$

 $\mathsf{C}.\,\frac{1}{2}$

D. none of these

Answer: A

Watch Video Solution

16. The amount of bread x (in hundreds os pounds) that a bakery sells in a day has a P.d.f :

$$f(x) = egin{cases} kx, 0 \leq x < 5 \ k(10-x), & 5 \leq x < 10 \ 0, & otherwise \end{cases}$$

Then the probability that the amount of bread that will be sold tomorrow will be less than 500 pound is ..

A.
$$\frac{1}{4}$$

B. $\frac{1}{3}$

 $\mathsf{C}.\,\frac{1}{2}$

D. none of these

Answer: C

Watch Video Solution

17. The p.m.f. of a r.v. X is
$$P(x) = \left\{egin{array}{c} rac{c}{x^3}, x=1,2,3\\ 0, ext{ otherwise} \end{array}
ight.$$
 then E (X) =

A.
$$\frac{343}{297}$$

B. $\frac{294}{251}$
C. $\frac{297}{294}$

D. none of these

Answer: B

18. The p.m.f. of a r.v. X is $P(x) = egin{cases} kx^2, x = 1, 2, 3, 4 \\ 0, ext{ otherwise} \end{cases}$, then E

(X) =

A. 1.6111

B. 0.49

C. 0.59

D. 0.69

Answer: D

19. A fair coin is tosed 3 times. A person receives $\operatorname{Rs.} X^2$ if he

gets X number of heads in all. His expected gain is

B. 2 C. 3 D. 4

A. 1

Answer: C

A.
$$\frac{1}{27}$$

B. $\frac{1}{28}$
C. $\frac{1}{29}$

D. none of these

Answer: A

21. The p.d.f. of X is
$$f(x) = \begin{cases} rac{x+2}{18}, -2 < x < 4 \\ 0, ext{ otherwise} \end{cases}$$
, then

P(|X| < 1) =

A.
$$\frac{1}{9}$$

B. $\frac{2}{9}$
C. $\frac{3}{9}$

Answer: B

Watch Video Solution

22. Given :
$$f(x) = \begin{cases} rac{1}{x^2}, 1 < x < \infty \\ 0, & elsewhere \end{cases}$$
 is p.d.f. of

c.r.v X

 $\mathsf{If} \, A \!:\! 1 < x < 2 \, \text{ and } \, B \!:\! 4 < x < 5, then \!:\! P(A \cup B) = \dots$

A. 0.33

B. 0.44

C. 0.55

D. 0.66

Answer: C

23. The p.d.f. of a r.v. X is
$$f(x) = egin{cases} rac{1}{x^2}, 1 < x < \infty \ 0, ext{ otherwise} \end{cases}$$
 , then F (x)

A.
$$rac{1}{x}-1$$

B. $1-rac{1}{x}$
C. $x+rac{1}{x}$
D. $x-rac{1}{x}$

=

Answer: B

24. The p.d.f of a random variable X is given by $f(x) = 3(1 - 2x^2), 0 < x < 1$ = 0, otherwise Find $P\left(\frac{1}{4} < X < \frac{1}{3}\right)$ A. $\frac{216}{864}$ B. $\frac{179}{864}$ C. $\frac{179}{216}$

D. none of these

Answer: B

25. Given the p.d.f of a continous r.v.X was $f(x) = rac{x^2}{3}, \ -1 < x < 2$

=0, Otherwise

Determine the c.d.f of X and hence find .

 $P(X < 1), P(X \le -2), P(X > 0), P(1 < X < 2)$

- A. $2x 3x^2$
- B. $3x 4x^3$
- C. $3x 2x^3$

D. none of these

Answer: C

Watch Video Solution

26. The p.m.f. of a r.v. is

$$P(X=x) = \left\{ egin{array}{c} rac{1}{2^5} C_x, x=0,1,...,5\ 0, ext{ otherwise} \end{array}
ight., ext{then}$$

A. a < b

B.a >

C. a=b

D. none of these

Answer: C

Watch Video Solution

27. The p.m.f. of a r.v. X is
$$P(x) = \begin{cases} rac{2x}{n(n+1)} & x=1,2,\ldots,n \\ 0 & ext{otherwise} \end{cases}$$

Then E(X) =

A.
$$\frac{n}{1} + \frac{1}{2}$$

B. $\frac{n}{3} + \frac{1}{6}$
C. $\frac{n}{2} + \frac{1}{5}$

D. none of these

Answer: B

$$f(x) = egin{cases} rac{k}{\sqrt{x}}, 0 < x < 4 \ 0, x \leq 0 ext{ or } x \geq 4 \end{cases}$$

Then , $P(X \geq 1)$ is equal to

A. 0.2

B. 0.3

C. 0.4

D. 0.5

Answer: D

Watch Video Solution

29. If the p.d.f of a c.r.v X is
$$f(x) = rac{3+2x}{18}, 2 \leq x \leq 4$$
 =0 .. Otherwise ,

then the Mathematical Exapectation of X is

A.
$$\frac{83}{27}$$

B. $\frac{27}{83}$
C. $\frac{87}{23}$
D. $\frac{38}{72}$

Answer: A

30. If the p.d.f. of a r.v. X is
$$f(x) = K. e^{- heta x}, heta > 0, 0 \le x < \infty$$

= 0 , otherwise
Then, K =
A. 1
B. $rac{ heta}{2}$

 $\mathsf{D.}\,2\theta$

Answer: C

31. If p.d.f. of a a c.r.v. X is

$$f(x)=ae^{\,-\,ax}, x\geq 0, a>0$$

= 0 , otherwise.

If P(0 < X < K) = 0.5 , then K =

A.
$$\frac{1}{2}$$
. $\log a$
B. $\frac{1}{a}$. $\log 2$
C. $\frac{1}{2}$. $\log 2$
D. $\frac{1}{a}$. $\log a$

Answer: B

Watch Video Solution

32. The time (X) one has to wait for a bus at a downtown bus -

stop has the following P.d.f.

$$f(x) = egin{cases} egin{aligned} 0, x < 0 \ rac{1}{9}(x+1), 0 \leq x < 1 \ rac{4}{9}igg(x-rac{1}{2}igg), 1 \leq x < rac{3}{2} \ rac{4}{9}igg(rac{5}{2}-xigg), rac{3}{2} \leq x < 2 \ rac{1}{9}(4-x), 2 \leq x < 3 \ rac{1}{9}, 3 \leq x < 6 \ 0, & x \geq 6 \end{aligned}$$

then the values of P(B|A) and P (A' \cap B') are ..

A.
$$\frac{1}{4}, \frac{3}{4}$$

B. $\frac{2}{3}, \frac{1}{3}$
C. $\frac{1}{6}, \frac{5}{6}$

D. none of these

Answer: B

33. A random variable X takes the values 0, 1, 2, 3, ..., with prbability $PX(=x) = k(x+1)\left(\frac{1}{5}\right)^x$, where k is a constant, then P(X=0) is.

Answer: B

Watch Video Solution

34. A random variate X takes the values 0, 1, 2, 3 and its mean is 1.3. If P(X=3)=2P(X=1) and P(X=2)=0.3, then P(X=0) is equal to

A. 0.1

B. 0.2

C. 0.3

D. 0.4

Answer: D

35. If in a distribution each x is replaced by corresponding value of f(x), then the probability of getting f(x), when the

probability of getting $x_i i s p_i$, is.

A. p_i

B. $f(p_i)$

$$\mathsf{C.}\,f\!\left(\frac{1}{p_i}\right)$$

D. none of these

Answer: A

36. If the range of a random vaniable X is 0, 1, 2, 3, at $P(X = K) = \left(\frac{K+1}{3^k}\right)$ a for $k \ge 0$, then a equals A. $\frac{2}{3}$ B. $\frac{2}{9}$

C.
$$\frac{8}{27}$$

D. $\frac{16}{81}$

Answer: B

Watch Video Solution

37. If X follows a binomial distribution with parameters n=6 and p. If 4(P(X=4))=P(X=2) , then P=

A.
$$\frac{1}{2}$$

B. $\frac{1}{4}$
C. $\frac{1}{6}$
D. $\frac{1}{3}$

Answer: D

38. Seven chits are numbered 1 to 7. Four chits are drawn one by one with replacment. The probability that the least number appearing on any selected chit is 5 is :

A.
$$\left(\frac{3}{7}\right)^4$$

B. $\left(\frac{6}{7}\right)^3$
C. $\frac{5 \times 4 \times 3}{7^3}$
D. $\left(\frac{3}{4}\right)^4$

Answer: A

39. An unbiased die is thrown . X dentes the number on the face of the die . Then E(x) where x \geq 1 is :

A.
$$\frac{3}{2}$$

B. $\frac{5}{2}$
C. $\frac{7}{2}$
D. $\frac{9}{2}$

Answer: C

40. Three numbers are chosen from 1 to 20. Find the probability that they are consecutive.

A.
$$\frac{1}{60}$$

B. $\frac{3}{190}$
C. $\frac{1}{57}$
D. $\frac{3}{20}$

Answer: B

41. Two cards are drawn from a well shuffled pack of 52 cards. The probability that one is heart card and the other is a king is p, then the value of 104p is____.

A.
$$\frac{1}{51}$$

B. $\frac{1}{26}$

C.
$$\frac{2}{51}$$

D. $\frac{1}{34}$

Answer: D

Watch Video Solution

42. A and B are two events such that $P(A \cup B) = 0.5$, $P(A \cap B) = 0.3, P(B) = 0.4$ then $P(A' \mid B') =$

A.
$$\frac{1}{2}$$

B. $\frac{3}{5}$
C. $\frac{2}{5}$
D. $\frac{5}{6}$

Answer: D

43. Given $P(A\cup B)=0.6, P(A\cap B)=0.2$, then

probability of exactly one of the event occurs is

A. 0.3

B. 0.2

C. 0.4

D. 0.8

Answer: C

44. From a group of 8 boys and 3 girls, a committee of 5 members to be formed. Find the probability that 2 particular girls are included in the committee.

A.
$$\frac{2}{11}$$

B. $\frac{4}{11}$
C. $\frac{3}{11}$
D. $\frac{5}{11}$

Answer: A

45. If P (A) =0.8, P(B)=0.6, P $(A \cap B) = 0.5, ext{ then P(B'|A')=}$

A.
$$\frac{1}{3}$$

B. $\frac{1}{2}$
C. $\frac{1}{4}$
D. $\frac{1}{5}$

Answer: B

46. If two dice are thrown together . Then , the probability that the sum of the numbers appearing on them is a prime number, is

A. 1/2

B. 3/7

C.5/12

D. 7/12

Answer: C

Watch Video Solution

47. A four digit number is to be formed using the digits 1,2,3, 4, 5,6,7 (no digit is being repeated in any number). Then , the probability that it is > 4000, is

A. 3/2 B. 1/2

C.4/7

D. 3/7

48. Two coins are tossed simultaneously. Then, the value of E(X), where X denotes the number of heads is

B. 2

A. $\frac{1}{2}$

C. 1

D. 1.05

Answer: C

49. If P (A) =0.4,P(B)=0.8 and P($A \cap B$) = 0.3 then the

probability that exactly one of them occurs is

A. 0.2

B. 0.4

C. 0.6

D. 0.1

Answer: C

Watch Video Solution

50. An urn contains 4 black and 6 red balls. If two balls are drawn at random from the urn without replacement ,then the probability that both are black is

A.
$$\frac{1}{5}$$

B. $\frac{1}{15}$
C. $\frac{2}{15}$
D. $\frac{13}{15}$

Answer: C

51. Two fair coins are tossed .if X represents the number of

tails obtained then V(X)=

A. 2

B.
$$\frac{3}{2}$$

C. $\frac{2}{3}$

Answer: D

