©゙" doubtnut

MATHS

BOOKS - MARVEL MATHS (HINGLISH)

PROBABILITY DISTRIBUTIONS

Mcqs

1. If the function $P(X=x)=k x, \ldots x=1,2,3,4,5=0$....otherwise
is a probability mass function (p.m.f.) ,then : $k=. .$. .
A. $\frac{1}{14}$
B. $\frac{1}{15}$
C. $\frac{1}{16}$
D. none of these

Answer: B

- Watch Video Solution

2. Detemine k such that the following funciton is a p.m.f $P(X=x)=k\left(\frac{2^{x}}{x!}\right), x=0,1,2,3$
$=0$ otherwise .
A. $\frac{1}{19}$
B. $\frac{2}{19}$
C. $\frac{3}{19}$
D. none of these

- Watch Video Solution

3. Find k ,such that the function
$P(x)=\left\{\left(k\binom{4}{x},, x=0,1,2,3,4, k>0\right),(0\right.$, otherwise. $)$
is a probability mass function (p.m.f.)
A. $\frac{1}{4}$
B. $\frac{1}{16}$
C. $\frac{1}{64}$
D. none of these

Answer: B

4. The p.m.f. of a r.v. X is as follows :
$P(X=0)=3 k^{3}, P(X=1)=4 k-10 k^{2}, P(X=2)=5 k-1$
$P(X=x)=0$ for any other values of x, then $\mathrm{k}=$
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

Answer: C

- Watch Video Solution

5. If the p.d.f. of a c.r.v. X is
$f(x)= \begin{cases}k x^{2}\left(1-x^{3}\right), 0 \leq x \leq 1 \\ 0, & \text { elsewhere }\end{cases}$ then :k...
A. 6
B. 5
C. 4
D. 3

Answer: A

- Watch Video Solution

6. The p.d.f. of a c.r.v. X is

$$
f(x)= \begin{cases}k \cdot \sin \left(\frac{\pi x}{5}\right), 0 \leq x \leq 5 \\ 0, & \text { elsewhere }\end{cases}
$$

then : $\mathrm{k}=. . .$. .
A. $\frac{\pi}{2}$
B. $\frac{\pi}{5}$
C. $\frac{\pi}{10}$
D. none of these

Answer: C

D Watch Video Solution

7. The p.m.f. of a r.v. X is $P(x)=\left\{\begin{array}{l}k x, x=1,2,3 \\ 0, \text { therwise }\end{array}\right.$, then $\mathrm{k}=$
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{1}{5}$

Answer: A

(D) Watch Video Solution

8. The p.d.f. of a.c.r. X is
$f(x)=\left\{\begin{array}{l}\frac{1}{2}, 0<x<2 \\ 0,\end{array}\right.$ otherwise
Then $\mathrm{P}(X<1.5)$ and $P(X>1)$ are
A. $0.25,0.50$
B. $0.75,0.5$
C. $0.6,0.27$
D. none of these

Answer: B

D Watch Video Solution

9. If the p.d.f. of a c.r.v. X is
$f(x)= \begin{cases}\frac{1}{4},-1<x<3 \\ 0, & \text { otherwise }\end{cases}$ then : $\mathrm{P}(X>0)=$.
A. 0.25
B. 0.50
C. 0.75
D. 1

Answer: C

D Watch Video Solution

10. if the p.d.f of a a.c.r.v X is
$f(x)= \begin{cases}\frac{x}{8}, 0<x<4 \\ 0, & \text { otherwise }\end{cases}$
then $P(X<1)$ and $(P(X \geq 2)$ are
A. $\frac{1}{16}, \frac{3}{4}$
B. $\frac{1}{4}, \frac{3}{8}$
C. $\frac{5}{8}, \frac{7}{16}$
D. none of these

Answer: A
11. If a curve X has probability density function ($p d f$)
$f(x)=\left\{\begin{array}{l}a x, 0 \leq x \leq 1 \\ a, 1 \leq x \leq 2 \\ 3 a-a x, 2 \leq x \leq 3 \\ 0, \text { otherewise }\end{array}\right.$
Then, a is equal to
A. 1
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{1}{5}$

Answer: C
12. The p.m.f. of a r.v. X is $P(x)=\left\{\begin{array}{l}\frac{1}{15}, x=1,2, \ldots, 15 \\ 0, \text { otherwise }\end{array}\right.$, then
$\operatorname{Var}(X)=$
A. $\frac{1}{4}$
B. $\frac{1}{5}$
C. $\frac{1}{6}$
D. $\frac{1}{7}$

Answer: D

(Watch Video Solution

13. P.d.f. of a c.r.v X is
$f(x)=\left\{\begin{array}{l}6 x(1-x), 0 \leq x \leq 1 \\ 0, \quad \text { elsewhere }\end{array}\right.$
If $\mathrm{P}(X<a)=P(X>a)$ then $: \mathrm{a}=.$.
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

Answer: B

D Watch Video Solution

14. A c.r.v X has the p.d.f
$f(x)=\left\{\begin{array}{l}3 x^{2}, 0 \leq x \leq 1 \\ 0, \quad \text { elsewhere }\end{array}\right.$
If $\mathrm{P}(X \leq a)=P(X>a)$, then $: a=\ldots$
A. $\frac{1}{2^{\frac{1}{3}}}$
B. 1
C. $\frac{1}{3^{\frac{1}{3}}}$
D. $\frac{1}{4^{\frac{1}{3}}}$

Answer: A

- Watch Video Solution

15. The life in hours of a ratio tube is continuous random variable with pdf
$f(x)=\left\{\begin{array}{l}\frac{100}{x^{2}}, x \geq 100 \\ 0, \text { else where }\end{array}\right.$
Then, the probability that the life of tube will than 200 h if it is known that th tube is still functioning after 150 h of services is
A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. none of these

Answer: A

- Watch Video Solution

16. The amount of bread x (in hundreds os pounds) that a bakery sells in a day has a P.d.f:

$$
f(x)= \begin{cases}k x, 0 \leq x<5 \\ k(10-x), & 5 \leq x<10 \\ 0, & \text { otherwise }\end{cases}
$$

Then the probability that the amount of bread that will be sold tomorrow will be less than 500 pound is ..
A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. none of these

Answer: C

- Watch Video Solution

17. The p.m.f. of a r.v. X is $P(x)=\left\{\begin{array}{l}\frac{c}{x^{3}}, x=1,2,3 \\ 0, \text { otherwise }\end{array}\right.$, then $\mathrm{E}(\mathrm{X})=$
A. $\frac{343}{297}$
B. $\frac{294}{251}$
C. $\frac{297}{294}$
D. none of these
18. The p.m.f. of a r.v. X is $P(x)=\left\{\begin{array}{l}k x^{2}, x=1,2,3,4 \\ 0, \text { otherwise }\end{array}\right.$, then E $(X)=$
A. 1.6111
B. 0.49
C. 0.59
D. 0.69

Answer: D

- Watch Video Solution

19. A fair coin is tosed 3 times. A person receives Rs. X^{2} if he gets X number of heads in all. His expected gain is
A. 1
B. 2
C. 3
D. 4

Answer: C

D Watch Video Solution

20. The p.d.f. of X is $f(x)=\left\{\begin{array}{l}\frac{x^{2}}{18},-3<x<3 \\ 0, \text { otherwise }\end{array}\right.$, then
$P(|X|<1)=$
A. $\frac{1}{27}$
B. $\frac{1}{28}$
C. $\frac{1}{29}$
D. none of these

Answer: A

- Watch Video Solution

21. The p.d.f. of X is $f(x)=\left\{\begin{array}{l}\frac{x+2}{18},-2<x<4 \\ 0 \text {, otherwise }\end{array}\right.$, then $P(|X|<1)=$
A. $\frac{1}{9}$
B. $\frac{2}{9}$
C. $\frac{3}{9}$
D. $\frac{4}{9}$

Answer: B

- Watch Video Solution

22. Given : $f(x)=\left\{\begin{array}{ll}\frac{1}{x^{2}}, 1<x<\infty & \\ 0, & \text { elsewhere }\end{array}\right.$ is p.d.f. of c.r.v X

If $A: 1<x<2$ and $B: 4<x<5$, then $: P(A \cup B)=\ldots$
A. 0.33
B. 0.44
C. 0.55
D. 0.66

- Watch Video Solution

23. The p.d.f. of a r.v. X is $f(x)=\left\{\begin{array}{l}\frac{1}{x^{2}}, 1<x<\infty \\ 0, \text { otherwise }\end{array}\right.$, then $\mathrm{F}(\mathrm{x})$ $=$
A. $\frac{1}{x}-1$
B. $1-\frac{1}{x}$
C. $x+\frac{1}{x}$
D. $x-\frac{1}{x}$

Answer: B

- Watch Video Solution

24. The p.d.f of a random variable X is given by $f(x)=3\left(1-2 x^{2}\right), 0<x<1$
$=0$, otherwise
Find $P\left(\frac{1}{4}<X<\frac{1}{3}\right)$
A. $\frac{216}{864}$
B. $\frac{179}{864}$
C. $\frac{179}{216}$
D. none of these

Answer: B

- Watch Video Solution

25. Given the p.d.f of a continous r.v.X was $f(x)=\frac{x^{2}}{3},-1<x<2$
$=0$, Otherwise

Determine the c.d.f of X and hence find .

$$
P(X<1), P(X \leq-2), P(X>0), P(1<X<2)
$$

A. $2 x-3 x^{2}$
B. $3 x-4 x^{3}$
C. $3 x-2 x^{3}$
D. none of these

Answer: C

26. The p.m.f. of a r.v. is
$P(X=x)=\left\{\begin{array}{l}\frac{1}{2^{5}}{ }^{5} C_{x}, x=0,1, \ldots, 5 \\ 0, \text { otherwise }\end{array}\right.$, then
A. $a<b$
B. $a>$
C. $a=b$
D. none of these

Answer: C

(Watch Video Solution

27. The p.m.f. of a r.v. X is $P(x)= \begin{cases}\frac{2 x}{n(n+1)} & x=1,2, \ldots, n \\ 0 & \text { otherwise }\end{cases}$

Then $E(X)=$
A. $\frac{n}{1}+\frac{1}{2}$
B. $\frac{n}{3}+\frac{1}{6}$
C. $\frac{n}{2}+\frac{1}{5}$
D. none of these

Answer: B

D Watch Video Solution

28. The pdf of a curve X is
$f(x)=\left\{\begin{array}{l}\frac{k}{\sqrt{x}}, 0<x<4 \\ 0, x \leq 0 \text { or } x \geq 4\end{array}\right.$
Then, $P(X \geq 1)$ is equal to
A. 0.2
B. 0.3
C. 0.4
D. 0.5

Answer: D

D Watch Video Solution

29. If the p.d.f of a c.r.v X is
$f(x)=\frac{3+2 x}{18}, 2 \leq x \leq 4=0$.. Otherwise ,
then the Mathematical Exapectation of X is
A. $\frac{83}{27}$
B. $\frac{27}{83}$
C. $\frac{87}{23}$
D. $\frac{38}{72}$

D Watch Video Solution

30. If the p.d.f. of a r.v. X is
$f(x)=K . e^{-\theta x}, \theta>0,0 \leq x<\infty$
$=0$, otherwise

Then, $\mathrm{K}=$
A. 1
B. $\frac{\theta}{2}$
C. θ
D. 2θ
31. If p.d.f. of a a c.r.v. X is
$f(x)=a e^{-a x}, x \geq 0, a>0$
$=0$, otherwise.
If $P(0<X<K)=0.5$, then $\mathrm{K}=$
A. $\frac{1}{2} \cdot \log a$
B. $\frac{1}{a} \cdot \log 2$
C. $\frac{1}{2} \cdot \log 2$
D. $\frac{1}{a} \cdot \log a$

Answer: B
(D) Watch Video Solution
32. The time (X) one has to wait for a bus at a downtown bus stop has the following P.d.f .
$f(x)= \begin{cases}0, x<0 & \\ \frac{1}{9}(x+1), 0 \leq x<1 & \\ \frac{4}{9}\left(x-\frac{1}{2}\right), 1 \leq x<\frac{3}{2} & \\ \frac{4}{9}\left(\frac{5}{2}-x\right), \frac{3}{2} \leq x<2 & \\ \frac{1}{9}(4-x), 2 \leq x<3 & \\ \frac{1}{9}, 3 \leq x<6 & x \geq 6 \\ 0, & \end{cases}$
If $A: 0 \leq x \leq 2, B: 1 \leq x \leq 3$
then the values of $P(B \mid A)$ and $P\left(A^{\prime} \cap B^{\prime}\right)$ are ..
A. $\frac{1}{4}, \frac{3}{4}$
B. $\frac{2}{3}, \frac{1}{3}$
C. $\frac{1}{6}, \frac{5}{6}$
D. none of these
33. A random variable X takes the values $0,1,2,3, \ldots$, with prbability $P X(=x)=k(x+1)\left(\frac{1}{5}\right)^{x}$, where k is a constant, then $P(X=0)$ is.
A. $\frac{7}{25}$
B. $\frac{16}{25}$
C. $\frac{18}{25}$
D. $\frac{19}{25}$

Answer: B
34. A random variate X takes the values $0,1,2,3$ and its mean is 1.3. If $P(X=3)=2 P(X=1)$ and $P(X=2)=0.3$, then $P(X=0)$ is equal to
A. 0.1
B. 0.2
C. 0.3
D. 0.4

Answer: D

- Watch Video Solution

35. If in a distribution each x is replaced by corresponding value of $f(x)$, then the probability of getting $f(x)$, when the
probability of getting $x_{i} i s p_{i}$, is.
A. p_{i}
B. $f\left(p_{i}\right)$
C. $f\left(\frac{1}{p_{i}}\right)$
D. none of these

Answer: A

- Watch Video Solution

36. If the range ot a random vaniabie X is $0,1,2,3$, at $P(X=K)=\left(\frac{K+1}{3^{k}}\right)$ a for $k \geq 0$, then a equals
A. $\frac{2}{3}$
B. $\frac{2}{9}$
C. $\frac{8}{27}$
D. $\frac{16}{81}$

Answer: B

D Watch Video Solution

37. If X follows a binomial distribution with parameters $n=6$ and p. If $4(P(X=4))=P(X=2)$, then $P=$
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. $\frac{1}{6}$
D. $\frac{1}{3}$

- Watch Video Solution

38. Seven chits are numbered 1 to 7 . Four chits are drawn one by one with replacment. The probability that the least number appearing on any selected chit is 5 is :
A. $\left(\frac{3}{7}\right)^{4}$
B. $\left(\frac{6}{7}\right)^{3}$
C. $\frac{5 \times 4 \times 3}{7^{3}}$
D. $\left(\frac{3}{4}\right)^{4}$

Answer: A
39. An unbiased die is thrown. X dentes the number on the face of the die. Then $E(x)$ where $x \geq 1$ is:
A. $\frac{3}{2}$
B. $\frac{5}{2}$
C. $\frac{7}{2}$
D. $\frac{9}{2}$

Answer: C

D Watch Video Solution

40. Three numbers are chosen from 1 to 20 . Find the probability that they are consecutive.
A. $\frac{1}{60}$
B. $\frac{3}{190}$
C. $\frac{1}{57}$
D. $\frac{3}{20}$

Answer: B

- Watch Video Solution

41. Two cards are drawn from a well shuffled pack of 52 cards.

The probability that one is heart card and the other is a king is p, then the value of $104 p$ is
A. $\frac{1}{51}$
B. $\frac{1}{26}$
C. $\frac{2}{51}$
D. $\frac{1}{34}$

Answer: D

- Watch Video Solution

42. A and B are two events such that $P(A \cup B)=0.5$,
$P(A \cap B)=0.3, P(B)=0.4$ then $P\left(A^{\prime} \mid B^{\prime}\right)=$
A. $\frac{1}{2}$
B. $\frac{3}{5}$
C. $\frac{2}{5}$
D. $\frac{5}{6}$

- Watch Video Solution

43. Given $P(A \cup B)=0.6, P(A \cap B)=0.2$, then probability of exactly one of the event occurs is
A. 0.3
B. 0.2
C. 0.4
D. 0.8

Answer: C

D Watch Video Solution

44. From a group of 8 boys and 3 girls, a committee of 5 members to be formed. Find the probability that 2 particular girls are included in the committee.
A. $\frac{2}{11}$
B. $\frac{4}{11}$
C. $\frac{3}{11}$
D. $\frac{5}{11}$

Answer: A

- Watch Video Solution

45. If $\mathrm{P}(\mathrm{A})=0.8, \mathrm{P}(\mathrm{B})=0.6, \mathrm{P}(A \cap B)=0.5$, then $\mathrm{P}\left(\mathrm{B}^{\prime} \mid \mathrm{A}^{\prime}\right)=$
A. $\frac{1}{3}$
B. $\frac{1}{2}$
C. $\frac{1}{4}$
D. $\frac{1}{5}$

Answer: B

(D) Watch Video Solution

46. If two dice are thrown together. Then, the probability that the sum of the numbers appearing on them is a prime number, is
A. $1 / 2$
B. $3 / 7$
C. $5 / 12$
D. $7 / 12$

Answer: C

- Watch Video Solution

47. A four digit number is to be formed using the digits $1,2,3$,

4, 5,6,7 (no digit is being repeated in any number). Then , the probability that it is >4000, is
A. $3 / 2$
B. $1 / 2$
C. $4 / 7$
D. $3 / 7$

Answer: C

D Watch Video Solution

48. Two coins are tossed simultaneously. Then, the value of $E(X)$, where X denotes the number of heads is
A. $\frac{1}{2}$
B. 2
C. 1
D. 1.05

Answer: C

49. If $\mathrm{P}(\mathrm{A})=0.4, \mathrm{P}(\mathrm{B})=0.8$ and $\mathrm{P}(A \cap B)=0.3$ then the probability that exactly one of them occurs is
A. 0.2
B. 0.4
C. 0.6
D. 0.1

Answer: C

D Watch Video Solution

50. An urn contains 4 black and 6 red balls. If two balls are drawn at random from the urn without replacement ,then the probability that both are black is
A. $\frac{1}{5}$
B. $\frac{1}{15}$
C. $\frac{2}{15}$
D. $\frac{13}{15}$

Answer: C

(D) Watch Video Solution

51. Two fair coins are tossed if X represents the number of tails obtained then $\mathrm{V}(\mathrm{X})=$
A. 2
B. $\frac{3}{2}$
C. $\frac{2}{3}$
D. $\frac{1}{2}$

Answer: D

D Watch Video Solution

