

MATHS

BOOKS - MARVEL MATHS (HINGLISH)

QUESTION PAPER 2017

Question

1. The number of principal solutions of an 2 heta = 1 is

A. one

B. two

C. three

D. four

Answer: B

2. The objective function
$$Z=4x_1+5x_2$$
, Subject to $2x_1+x_2\geq 7, 2x_1+3x_2\leq 15, x_2\leq 3, x_1, x_2\geq 0$ has minimum value

A. On x-axis

at the point

- B. On y-axis
- C. At the origin
- D. On the line parallel to x-axis

Answer: A

Watch Video Solution

3. If z_1 and z_2 are z-coordinates of the points of trisection of the segment joining the points A(2,1,4), B(-1,3,6_, then z_1+z_2+

B.4

C. 5

D. 10

Answer: D

Watch Video Solution

- **4.** The maximum value of $f(x) = \frac{\log x}{x} (x
 eq 0, x
 eq 1)$ is
 - A. e
 - $\operatorname{B.}\frac{1}{e}$

 $\mathsf{C.}\,e^2$

D. $\frac{1}{e^2}$

Answer: B

5.
$$\int_0^1 x \tan^{-1} x dx =$$

A.
$$\frac{\pi}{4}+\frac{1}{2}$$

B.
$$\frac{\pi}{4}-\frac{1}{2}$$

C.
$$rac{1}{2}-rac{\pi}{4}$$

$$\mathsf{D.} - \frac{\pi}{4} - \frac{1}{2}$$

Watch Video Solution

6. The statement pattern $(\neg p \land q)$ is logically equivalent to

A.
$$(p \lor q) \lor extstyle extstyle P$$

B.
$$(pee q)\wedge$$
 ~ P

$$\mathsf{C.}\left(p\wedge q\right)\to P$$

D.
$$(p \lor q) o p$$

Watch Video Solution

7. If g(x) is the inverse function of f(x) and $f'(x) = \frac{1}{1+x^4}$, then g'(x) is

A.
$$1+\left[g(x)
ight]^4$$

B.
$$1-\left[g(X)
ight]^4$$

$$\mathsf{C.}\,1+\left[f(x)\right]^4$$

D.
$$\frac{1}{1+\left[g(x)
ight]^4}$$

Answer: A

8. The inverse of the matrix
$$\begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{bmatrix}$$
 is

A.
$$-\frac{1}{3}\begin{bmatrix} -3 & 0 & 0 \\ 3 & 1 & 0 \\ 9 & 2 & -3 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 0 & 0 \end{bmatrix}$$

9. if
$$\int \!\! \frac{1}{\sqrt{9-16x^2}} dx = lpha \sin^{-1}(eta x) + c$$
. then $lpha + \frac{1}{eta} =$

B.
$$\frac{7}{12}$$

c.
$$\frac{19}{12}$$

$$\mathsf{D.}\;\frac{9}{12}$$

Watch Video Solution

10. O(0,0), A(1,2), B(3,4) are the vertices of ΔOAB . The joint equation of the altitude and median drawn from O is

A.
$$x^2 + 7xy - y^2 = 0$$

B.
$$x^2 + 7xy + y^2 = 0$$

C.
$$3x^2 - xy - 2y^2 = 0$$

D.
$$3x^2 + xy - 2y^2 = 0$$

Answer: D

11.
$$f(x)=egin{cases} \left(anrac{\pi}{4}+x
ight)^{1/x},&x
eq0 \ k,&x=0 \end{cases}$$
 for what value of k, f(x) is continuous at x = 0 ?

12. For a invertible matrix A if $A(adjA)=\begin{bmatrix}10&0\\0&10\end{bmatrix}$ then |A|=

A.e

B. e^{-1}

 $C.e^2$

Answer: B

Watch Video Solution

A. 100

B. - 100

C. 10

Answer: C

Watch Video Solution

13. The Solution of the differential equation $\frac{dy}{dx} = an\!\left(\frac{y}{x}\right) + \frac{y}{x}$ is

A.
$$\cos\left(\frac{y}{x}\right) = cx$$

$$\mathsf{B.}\sin\!\left(\frac{y}{x}\right) = cx$$

$$\mathsf{C.}\cos\!\left(\frac{y}{x}\right) = cy$$

$$D.\sin\!\left(\frac{y}{x}\right) = cy$$

Answer: B

14. In $\triangle ABC$ if $\sin^2 A + \sin^2 B = \sin^2 B = \sin^2 C$ and 1(AB) = 10,

then the maximum value of the area of ΔABC is

- A. 50
- B. $10\sqrt{2}$
- C.25
- D. $25\sqrt{2}$

Answer: C

View Text Solution

15. If
$$x=f(t)$$
 and yy=g(t) are differentiable functions of t then $\dfrac{d^2y}{dx^2}$ is

A.
$$\frac{f'(t). g''(t) - g'(t). f^n(t)}{\left[f'(t)\right]^3}$$

$$\begin{aligned} &\text{A.} \ \frac{f'(t). \ g' \ '(t) - g'(t). \ f^n(t)}{\left[f'(t)\right]^3} \\ &\text{B.} \ \frac{f'(t). \ g' \ '(t) - g'(t). \ g' \ '(t)}{\left[f'(t)\right]^2} \\ &\text{C.} \ \frac{g'(t). \ f' \ '(t) - f'(t). \ G' \ '(t)}{\left[f'(t)\right]^3} \end{aligned}$$

C.
$$\frac{g'(t).\,f'\,'(t)-f'(t).\,G'\,'(t)}{\left\lceil f'(t)
ight
ceil^3}$$

D.
$$\dfrac{g^{\prime}(t).\,f^{\prime\,\prime}(t)+f^{\prime}(t).\,g^{\prime\,\prime}(t)}{\left[f^{\prime}(t)
ight]^3}$$

Watch Video Solution

16. The equation of line equally inclined to co -ordinate axes and passing through (3,2,-5) is

A.
$$\frac{x+3}{1} = \frac{y-2}{1} = \frac{z+5}{1}$$

B.
$$\frac{x-3}{1} = \frac{y-2}{1} = \frac{5+z}{-1}$$

$$\text{C.} \ \frac{x+3}{-1} = \frac{y-2}{1} = \frac{z+5}{-1}$$

D.
$$\frac{x+3}{-1} = \frac{2-y}{1} = \frac{z+5}{-1}$$

Answer: B

17. If
$$\int_0^{\pi/2}\log\cos x dx=rac{\pi}{2}\log\Bigl(rac{1}{2}\Bigr),\,\,$$
 then $\int_0^{\pi/2}\log\sec x dx=$

A.
$$\frac{\pi}{2}\log\left(\frac{1}{2}\right)$$

$$extsf{B.} 1 - rac{\pi}{2} \mathrm{log}\left(rac{1}{2}
ight)$$
 $extsf{C.} 1 + rac{\pi}{2} \mathrm{log}\left(rac{1}{2}
ight)$

D.
$$\frac{\pi}{2}\log 2$$

Answer: D

- **18.** A boy tosses faiir coin 3 times. If he gets Rs 2X for X heads, then his expected gain equals to Rs.....
 - A. 1
 - B. $\frac{3}{2}$
 - C. 3

Watch Video Solution

19. Which of the following statement pattern is a tautology?

A.
$$p \lor (q
ightarrow p)$$

B. ~
$$q
ightarrow$$
 ~ P

C.
$$(1 o p)ee (extstyle p \leftrightarrow q)$$

D.
$$p \wedge { extstyle au} p$$

Answer: C

20. If the angle between the planes

 $ar{r}.\left(m\hat{i}-\hat{j}+2\hat{k}
ight)+3=0$ and $ar{r}.\left(2\hat{i}-m\hat{j}-\hat{k}
ight)-5=0$ is $rac{\pi}{3}$,

21. If the origin and the point $p(2,3,4),\,q(\,,1,2,3)R(x,y,z)$ are

$$\mathsf{D.}-2$$

 $B.\pm3$

C. 3

Answer: C

Watch Video Solution

A.
$$x-2y-z=0$$

coplanar then

$$\operatorname{B.} x + 2y + z = 0$$

$$\mathsf{C.}\,x-2y+z=0$$

D.
$$2x - 2y + z = 0$$

Answer: C

Watch Video Solution

22. if lines represented by equation $px^2-qy^2=0$ are distinct, then

 $\mathsf{A.}\,pq>0$

B. pq < 0

 $\mathsf{C}.\,pq=0$

D. p + q = 0

Answer: A

23. Let $\square PQRS$ be a quadrilateral. If M and N are the mid-points of the sides PQ and RS respectively, then PS+QR=

- A. $3\overline{MN}$
- ${\rm B.}~4\overline{MN}$
- $\mathsf{C.}\ 2\overline{MN}$
- D. $2\overline{NM}$

Answer: C

- **24.** If slopes of lines represented by $kx^2 + 5xy + y^2 = 0$ differ by 1, then k=
 - A. 2
 - B. 3

C.	6
D	Q

D. 8

Answer: C

Watch Video Solution

25. If vector r wiith dc's l,m,n is equally inclined to the coordinate axes, then the total number of such vectors is

A. 4

B. 6

C. 8

D. 2

Answer: C

26. If
$$\int rac{1}{(x^2+4)(x^2+9)} dx = A an^{-1}rac{x}{2} + B an^{-1}\Big(rac{x}{3}\Big) + C$$
, then A-B=

A.
$$\frac{1}{6}$$

B.
$$\frac{1}{30}$$
C. $-\frac{1}{30}$

$$\mathsf{D.}-\frac{1}{6}$$

Watch Video Solution

27. If lpha and eta are roots of the equation $x^2+5|x|-6=0,$ then the value of $\left| an^{-1} lpha - an^{-1} eta
ight|$ is

A.
$$\frac{\pi}{2}$$

 $\mathsf{C}.\,\pi$

D. $\frac{\pi}{4}$

Answer: A

Watch Video Solution

28. If $x=a\Big(t-rac{1}{t}\Big),$ $y=a\Big(t+rac{1}{t}\Big)$, where t be the parameter, then

 $\frac{dy}{dx} = ?$

A. $\frac{Y}{x}$

B. $\frac{-x}{y}$

C. $\frac{x}{y}$

D. $\frac{-y}{x}$

Answer: C

29. The point on the curve
$$y=\sqrt{x-1}$$
 where the tangent is perpendicular to the line $2x+y-5=0$ is

 $\int \!\! \sqrt{rac{x-5}{x-7}} dx = A \sqrt{x^2-12x+35} + \log \! \left| x-6 + \sqrt{x^2-12x+35}
ight| + C$

If

A.
$$(2, -1)$$

D.
$$(5, -2)$$

30.

Answer: C

Watch Video Solution

, then

A.
$$-1$$

B.
$$\frac{1}{2}$$
C. $-\frac{1}{2}$
D. 1

Answer: D

Watch Video Solution

31. A r.v. $X \sim B$ (n, p). If values of mean and variance of X are 18 and 12 respectively, then total number of possible values of X are

- A. 54
- C. 12

B. 55

D. 18

Answer: B

32. The area of the reggion bounded by the lines

$$y = 2x + 1, y = 3x + 1$$
 and $x = 4$ is

- A. 16sq unit
- B. $\frac{121}{3}$ sq, unit
- C. $\frac{121}{6}$ sq,unit
- D. 8 sq,unit

Answer: D

Watch Video Solution

33. A box contains 6 pens , 2 of which are defective Two pens are taken randomy from the bax .If r,v. X_n : Number of defective pens obtained , then standard deviation of x=

A.
$$\pm \frac{4}{3\sqrt{5}}$$

$$\mathsf{B.}\;\frac{2}{3}$$

c.
$$\frac{16}{45}$$

$$\text{D.}\ \frac{4}{3\sqrt{5}}$$

Watch Video Solution

34. If the volume of spherical ball is increasing at the rate of 4π cc/s, then the rate of change of its surface area when the volume is 288 π cc is

A.
$$rac{4}{3}\pi xm^2/\sec$$

B.
$$\frac{2}{3}\pi cm^2/\sec$$

C.
$$4\pi cm^2/\sec$$

D.
$$2\pi c \frac{m^2}{\mathrm{sec}}$$

Answer: A

35. If
$$f(x) = \log(\sec^2 x)^{\cot 2}$$
 for $x \neq 0$ for x=0 is continuous at x=0, then K is

36. If c denotes the contradication, then dual of the compound

A.
$$e^{-1}$$

$$\mathsf{C}.\,e$$

B. 1

Answer: B

Watch Video Solution

statement ${ ilde p} \wedge (q \lor c)$ is

A. ~
$$P \lor (q \land t)$$

B. ~
$$P \wedge (q \vee t)$$

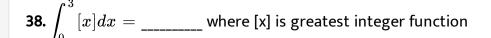
C.
$$p \lor (\neg q \lor t)$$

D. ~
$$p \lor (q \land c)$$

Watch Video Solution

37. All parabolas whose axis is the Y-axis.

A.
$$x rac{d^2y}{dx^2} - rac{dy}{dx} = 0$$


$$B. x \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$$

C.
$$rac{d^2y}{dx^2}-y=0$$

D.
$$rac{d^2y}{dx^2}-rac{dy}{dx}=0$$

Answer: A

A. 3

B. 0

C. 2

D. 1

Answer: A

Watch Video Solution

39. The objective function off LPP defined over the convex set attains it optimum value at

A. at least two of the corner points

B. all the corner points

C. at least one of the corner points

D. none of the corner points

Answer: C

Watch Video Solution

40. IF the inverse of the matrix $\begin{bmatrix} \alpha & 14 & -1 \\ 2 & 3 & 1 \\ 6 & 2 & 3 \end{bmatrix}$ does not exist then the

value of lpha is

A. 1

 $\mathsf{B.}-1$

 $\mathsf{C}.\,0$

 $\mathsf{D.}-2$

Answer: D

- **41.** If f(x) = x for x < 0
 - = 0for x > 0 then f(x) at x=0 is
 - A. continuous but not differentible
 - B. Not continuous but differentiable
 - C. Contunuous and differentiable
 - D. Not continuous and not differentiable

Watch Video Solution

42. The equation of the plane through (-1,1,2), whose normal makes equal acute angles with coordinate axes is

A.
$$ar{r}$$
. $\left(\hat{i}+\hat{j}+\hat{k}
ight)=2$

B.
$$ar{r}$$
. $\left(\hat{i}+\hat{j}+\hat{k}
ight)=6$

C.
$$ar{r}$$
. $\left(3\hat{i}-3\hat{j}+3\hat{k}
ight)=2$

D.
$$ar{r}$$
. $\left(\hat{i}-\hat{j}+\hat{k}
ight)=3$

Watch Video Solution

- **43.** Probability that a person will develop immunity after vaccination is 0.8 If 8 people are given the vaccine then probability that all develop immunity is
 - A. $(0.2)^8$
 - B. $(0.8)^8$
 - **C**. 1
 - D. $^8C_6(0.2)^6(0.8)^2$

Answer: B

44. If the distance of points $2\hat{i}+3\hat{j}+\lambda\hat{k}$ from the plane

$$ar{r}.\left(3\hat{i}+2\hat{j}+6\hat{k}
ight)=13$$
 is 5 units then $\lambda=$

A. 6,
$$-\frac{17}{3}$$

B.
$$6, \frac{17}{3}$$

C.
$$-6, -\frac{17}{3}$$

D.
$$-6, \frac{17}{3}$$

Answer: A

Watch Video Solution

45. The value of $\cos^{-1}\left[\cot\left(\frac{\pi}{2}\right)\right]+\cos^{-1}\left|\sin\left(\frac{2\pi}{3}\right)\right|$ is

A.
$$\frac{2\pi}{3}$$

B.
$$\frac{\pi}{3}$$

C.
$$\frac{\pi}{2}$$

Watch Video Solution

46. The particular solution of the differntial equation xdy+2ydx=0,

, when x=2, y=1 is

A.
$$xy = 4$$

$$\mathrm{B.}\,x^2y=4$$

$$\mathsf{C.}\,xy^2=4$$

D.
$$x^2y^2 = 4$$

Answer: B

ABC is a

triangle

and

 $A=(235)\overset{.}{B}=(\,-1,3,2)$ and $C=(\lambda,5,\mu)$. If the median through A

is equally inclined to the axes, then find the value of $\lambda and\mu$

6

1

- A. 10, 7
 - B.9, 10
 - C.7, 9
 - D. 7, 10

Answer: D

Watch Video Solution

48. For the following distribution function F(x) of a r.v X

$$p(3 < x \le 5) =$$

A.0.48

B.0.37

C.0.27

D.1.47

Answer: B

Watch Video Solution

49. The lines $\frac{x-1}{2} = \frac{y+1}{2} = \frac{z-1}{4}$ and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$

A.
$$(-2, -4, 5)$$

B.
$$(-2, -4, -5)$$

C.
$$(2, 4, -5)$$

D.
$$(2, -4, -5)$$

Answer: B

50.
$$\int \frac{\sec^8 x}{\csc x} dx =$$

A.
$$\frac{\sec^8 x}{8} + c$$

B.
$$\frac{\sec^7 x}{7} + c$$

$$\mathsf{C.}\ \frac{\sec^6 x}{6} + c$$

$$\mathsf{D.}\,\frac{\sec^9 x}{9} + c$$

