

India's Number 1 Education App

### **MATHS**

# **BOOKS - MARVEL MATHS (HINGLISH)**

# **QUESTION PAPER 2018**

### Question

**1.** If 
$$\int_0^k \frac{dx}{2+18x^2} = \frac{\pi}{24}$$
, then the value of k is

A. 3

B. 4

c.  $\frac{1}{3}$ 

D.  $\frac{1}{4}$ 

**Answer: C** 

**2.** The cartesian co - ordinates of the point on the parabola  $y^2=-16x$  ,

whose parameter is 
$$\frac{1}{2}$$
, are

A. 
$$(-2, 4)$$

B. 
$$(4, -1)$$

C. 
$$(-1, -4)$$

D. 
$$(-1, 4)$$

### Answer:



3. 
$$\int \frac{1}{\sin x \cdot \cos^2 x} dx =$$

A. 
$$\sec x + \log |\sec x + \tan x| + c$$

B. 
$$\sec x \cdot \tan x + c$$

 $\mathsf{C.} \sec x + \log |\sec x - \tan x| + c$ 

 $\mathsf{D.}\sec x - \log|\!\!|\!\!|\!\!| \csc x + \cot x| + c$ 

### **Answer: D**



Watch Video Solution

**4.** IF  $\log_{10}\left(rac{x^3-y^3}{x^3+y^3}
ight)=2$  then  $rac{dy}{dx}=$ 

A. 
$$\frac{x}{y}$$

$$\mathsf{B.}-rac{y}{x}$$

$$\mathsf{C.} - rac{x}{y}$$

D.  $\frac{y}{x}$ 

### Answer: D



**5.** IF 
$$f\!:\!R-\{2\} o R$$
 is a function defined by  $f(x)=rac{x^2-4}{x-2}$  , then its range is

A. 
$$R$$

B. 
$$R-\{2\}$$

C. 
$$R - \{4\}$$

D. 
$$R-\{-2,2\}$$

Answer: c

**6.** IF 
$$f(x)=x^2+lpha$$
 for  $x\geq 0$  and  $2\sqrt{x^2+1}+eta$  for  $x<0$  is continuous at  $x=0$  and  $f\Bigl(rac{1}{2}\Bigr)=2,$  then  $lpha^2+eta^2$  is

B. 
$$\frac{8}{25}$$
C.  $\frac{25}{8}$ 

D. 
$$\frac{1}{3}$$

**Answer: C** 



Watch Video Solution

7. IF 
$$y=\left(\tan^{-1}x
ight)^2$$
 then  $\left(x^2+1
ight)^2rac{d^2y}{dx^2}+2x(x^2+1)rac{dy}{dx}=$ 

A. 4

B. 2

**C**. 1

**D**. 0

### **Answer: B**



**8.** The line 5x + y - 1 = 0 coincides with one of the lines given by

$$5x^2+xy-kx-2y+2=0$$
 then the value of k is

$$A. - 11$$

$$D. - 31$$

### **Answer: C**



**9.** IF 
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 1 & 2 \\ 1 & 2 & 4 \end{bmatrix}$$
 then  $(A^2 - 5A)A^{-1} =$ 

A. 
$$\begin{bmatrix} 4 & 2 & 3 \\ -1 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

A. 
$$\begin{bmatrix} 4 & 2 & 3 \\ -1 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$
B. 
$$\begin{bmatrix} -4 & 2 & 3 \\ -1 & -4 & 2 \\ 1 & 2 & -1 \end{bmatrix}$$

C. 
$$\frac{x-3}{2}=\frac{y+1}{2}=\frac{z-2}{2}$$
D.  $\frac{x-3}{2}=\frac{y+1}{2}=\frac{z-2}{2}$ 

C.  $\begin{bmatrix} -4 & -1 & 1 \\ 2 & -4 & 2 \\ 3 & 2 & -1 \end{bmatrix}$ D.  $\begin{bmatrix} -1 & -2 & 1 \\ 4 & -2 & -3 \\ 1 & 4 & -2 \end{bmatrix}$ 

A.  $\frac{x+3}{2} = \frac{y+1}{2} = \frac{z-2}{2}$ 

B.  $\frac{x-3}{2} = \frac{y+1}{2} = \frac{z-2}{2}$ 

**Answer: B** 

**10.** The equation of line passing throufh  $(3,\ -1,2)$  and perpendicular to

the lines 
$$ar r=\left(\hat i+\hat j-\hat k
ight)+\lambda\left(2\hat i-2\hat j+\hat k
ight) ext{ and } ar r=\left(2\hat i+\hat j-3\hat k
ight)+\mu\left(\hat i-2\hat j$$

- is

**11.** Letters in the word HULULULU are rearranged . The probability of all three L being together is

A. 
$$\frac{3}{20}$$

B. 
$$\frac{2}{5}$$
C.  $\frac{3}{28}$ 

D. 
$$\frac{5}{23}$$

Answer: C



Watch Video Solution

**12.** The sum of the first 10 terms of the series  $9+99+999+\ldots$  , is

A. 
$$rac{9}{8}ig(9^{10}-1ig)$$

B. 
$$\frac{100}{9} (10^9 - 1)$$

C. 
$$\left(10^9-1\right)$$
D.  $\frac{100}{9} \left(10^{10}-1\right)$ 

### **Answer: B**



Watch Video Solution

- If A,B ,C are the angle of  $\Delta ABC$ 13. then  $\cot A \cdot \cot B + \cot B \cdot \cot C + \cot C \cdot \cot A =$ 
  - **A.** 0
  - B. 1
  - C. 2
  - D. 1

# **Answer: B**



**14.** IF 
$$\dfrac{dx}{\sqrt{16-9x^2}}=A\sin^{-1}(bx)+c$$
 then  $A+B=$ 

A. 
$$\frac{9}{4}$$

B. 
$$\frac{19}{4}$$

$$\mathsf{C.}\ \frac{3}{4}$$

D.  $\frac{13}{12}$ 

**Answer: D** 



15. 
$$\int \!\! e^x \left[ rac{2+\sin 2x}{1+\cos 2x} 
ight] dx =$$

A. 
$$e^x \tan x + c$$

$$\mathsf{B.}\,e^x + \tan x + c$$

$$\mathsf{C.}\, 2e^x \tan x + c$$

D. 
$$e^x an 2x + c$$



Watch Video Solution

**16.** A coin is tossed three times .If X denotes the absolute difference between the number of heads and the number of tails then  $P(X=1)=% \frac{1}{2}\left( \frac{1}{2}\right) =\frac{1}{2}\left( \frac{1}{$ 

- A.  $\frac{1}{2}$
- $\mathsf{B.}\;\frac{2}{3}$
- $\mathsf{C.}\,\frac{1}{6}$
- D.  $\frac{3}{4}$

**Answer: D** 



A. 
$$\sqrt{3}$$

$$\mathsf{B.} - \frac{1}{\sqrt{3}}$$

$$\mathsf{C.}\,\frac{1}{\sqrt{3}}$$

D. 
$$-\sqrt{3}$$

### **Answer: D**



# Watch Video Solution

**18.** The area of the region bounded by  $x^2=4y,\,y=1,\,y=4$  and the yaxis lying in the first quadrant is  $\_\_\_\_$  square units .

- - A.  $\frac{22}{3}$
  - B.  $\frac{28}{3}$
  - C.30
  - D.  $\frac{21}{4}$

### **Answer: B**

**19.** If 
$$f(x)=rac{e^{x^2}-\cos x}{x^2}$$
 , for  $x
eq 0$  is continous at  $x=0$  , then value of f(0) is

A. 
$$\frac{2}{3}$$

$$\mathsf{B.}\;\frac{5}{2}$$

D. 
$$\frac{3}{2}$$

### Answer: D



20.

# Watch Video Solution

 $3x+5y\leq 26$  and  $5x+3y\leq 30,$   $x\geq 0,$   $y\geq 0$  is

maximum value of 2x + y subject

to

The

B. 11.5

C. 10

D.17.33

# Answer: A



Watch Video Solution

# then $\left[ar{a}+ar{b}+ar{c} \ \ \ \ ar{b}-ar{a} \ \ \ ar{c} ight]=?$

**21.** IF  $ar{a}, ar{b}, ar{c}$  are mutually perpendicular vectors having magnitudes 1,2,3

A. 0

respectively

B. 6

C. 12

D. 18

**Answer: C** 

**22.** IF points  $p(4,5,x),\,Q(3,y,4)\,$  and  $\,R(5,8,0)$  are collinear , then the value of x+y is

$$A.-4$$

B. 3

**C**. 5

D. 4

### Answer: D



Watch Video Solution

**23.** IF the slope of one of the lines given by  $ax^2+2hxy+by^2=0$  is two times the other then

A. 
$$8h^2=9ab$$

 $B.8h^2 = 9ab^2$ 

 $\mathsf{C.}\,8h=9ab$ 

D.  $8h = 9ab^2$ 

### Answer: A



Watch Video Solution

**24.** The equation of the line passing through the point (-3,1) and bisecting the angle between co - ordinate axes is

A. x + y + 2 = 0

B. -x + y + 2 = 0

C. x - y + 4 = 0

D. 2x + y + 5 = 0

### **Answer:**



**25.** The negation of the statement : Getting above 95% marks is neccary condition for hema to get the admission in good college ".

A. hema gets above above 95 % marks but she does not get the admission in good college

- B. `hema does not get above 95 % marks and she gets admission in good college
- C. If hema does not get above 95% marks then she will not get the admission in good college
- D. hema does not get above 95% marks of she gets the admission in good college .

### **Answer: B**



**26.** 
$$\cos 1^{\circ}$$
.  $\cos 2^{\circ}$ .  $\cos 3^{\circ}$ .... $\cos 179^{\circ}$ 

B. 1

 $c. - \frac{1}{2}$ 

D. -1

### **Answer: A**



Watch Video Solution

pass through a staight line the  $a^2+b^2+c^2=$ 

**27.** If planes x - cy - bz = 0, cx - y + az = 0 and bx + ay - z = 0

A. 1 - abc

B. abc-1

 $\mathsf{C.}\,1-2abc$ 

D.2abc-1

### **Answer: C**



### Watch Video Solution

 $x^2 - y^2 + x + 3y - 2 = 0$  is

- 28. The point of intersection of lines represented by
  - A. (1, 0)
  - B.(0,2)
  - $\mathsf{C.}\left(\frac{1}{2},\frac{3}{2}\right)$
  - $\mathrm{D.}\left(\frac{1}{2},\,\frac{1}{2}\right)$

### **Answer: C**



### Watch Video Solution

**29.** A die is rolled .IF X denotes the number of positive divisors of the outcome then the range of the random variable X is

- A.  $\{1, 2, 3\}$
- B.  $\{1, 2, 3, 4\}$
- $C. \{1, 2, 3, 5, 6, \}$
- D.(1,3,5)

### **Answer: B**



# **Watch Video Solution**

- 30. A die is thrown for times .The probability of getting perfect square in at least one throw is
  - $\mathsf{A.}\ \frac{16}{81}$
  - $\mathsf{B.}\;\frac{65}{81}$
  - c.  $\frac{23}{81}$

### **Answer: B**

**31.** 
$$\int_0^{\pi/4} x . \sec^2 x dx = ?$$

A. 
$$rac{\pi}{4} + \log \sqrt{2}$$

B. 
$$\frac{\pi}{4} - \log \sqrt{2}$$

$$\mathsf{C.}\,1+\log\sqrt{2}$$

$$\mathsf{D.}\,1 - \frac{1}{2}\!\log 2$$

### **Answer: B**



# Watch Video Solution

**32.** In  $\triangle ABC$ , with usual notations, if a,b,c are in AP then  $a\cos^2\!\left(rac{C}{2}
ight) + \cos^2\!\left(rac{A}{2}
ight) =$ 

A. 
$$\frac{3a}{2}$$

B. 
$$\frac{3c}{2}$$

C. 
$$\frac{3b}{2}$$
D.  $\frac{3abc}{2}$ 

### **Answer: C**



Watch Video Solution

**33.** If 
$$x=e^{ heta}(\sin \theta-\cos \theta),$$
  $y=e^{ heta}(\sin \theta+\cos \theta)$  then  $\dfrac{dy}{dx}$  at  $\theta=\dfrac{\pi}{4}$  is

- A. 1
- B. 0
- $\mathsf{C.}\,\frac{1}{\sqrt{2}}$
- D.  $\sqrt{2}$

### **Answer: A**



**34.** The number of solutions of 
$$\sin x + \sin 3x + \sin 5x = 0$$
 in the interval  $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$  is

B. 3

D. 5

# **Answer: B**



**35.** IF 
$$an^{-1} 2x + an^{-1} 3x = \frac{\pi}{4}$$
, then x=

$$A.-1$$

$$\mathsf{B.}\;\frac{1}{3}$$

$$\mathsf{C.}\,\frac{1}{6}$$

$$D. \frac{1}{2}$$

### Answer: A::C



Watch Video Solution

**36.** Matrix 
$$A=egin{bmatrix} 1 & 2 & 3 \ 1 & 1 & 5 \ 2 & 4 & 7 \end{bmatrix}$$
 then the value of  $A_{31}A_{31}+a_{32}A_{32}+a_{33}A_{33}$ 

is

A. 1

B. 13

 $\mathsf{C.}-1$ 

D. - 13

### Answer: C



**37.** The contrapositive of the statement: "If the weather is fine then my friends will come and we go for a picnic".

A. The weather is fine but my friends will not come or we do not go for a picnic.

B. If my friends do not come or we do not go for picnic then weather will not be fine .

C. IF the weather is not fine then my friends will not come or we do not for a picnic .

D. the weather is not but my friends will come and we go for a picnic .

### **Answer: B**



Watch Video Solution

**38.** If  $=\frac{x}{x^2+1}$  is increasing function, then the value of x lies in

A.  ${\cal R}$ 

 $C.(1,\infty)$ D. (-1, 1)**Answer: D** Watch Video Solution **39.** If  $X = \{4^n - 3n - 1 \colon n \in N\}$  and  $\{9(n-1) \colon n \in N\}$ , the prove that  $X\subset Y$ . A. X B. Y  $\mathsf{C}.\,\phi$  $D. \{0\}$ Answer: A **Watch Video Solution** 

B.  $(-\infty, -1)$ 

**40.** The statement pattern  $p \wedge ({\scriptscriptstyle \sim} p \wedge q)$  is

A. A tautology

B. a contradiction

C. equivalent to  $p \wedge q$ 

D. equivalent to  $p \lor q$ 

### **Answer: B**



**Watch Video Solution** 

**41.** If the line y=4x-5 toches to the curve  $y^2=ax^3+b$  at the point

(2,3) then 7a + 2b =

A. 0

B. 1

C. -1

### **Answer: A**



Watch Video Solution

**42.** The sides of a recyangle are given by  $x=\pm a$  and  $y=\pm b$  The equation of the circle passing through the vertices of the rectangle is

A. 
$$x^2 + y^2 = a^2$$

$$\mathrm{B.}\, x^2 + y^2 = a^2 + b^2$$

C. 
$$x^2 + y^2 = a^2 + b^2$$

D. 
$$(x-a)^2 + (y-b)^2 = a^2 + b^2$$

### **Answer: B**



**43.** The minimum value of the function  $f(x) = x \log x$  is

$$\mathsf{A.} - \frac{1}{e}$$

B.-e

 $\mathsf{C}.\,\frac{1}{e}$ 

D. e

### Answer: A



Watch Video Solution

**44.** If  $X ilde{-}B(n,p)$  with n=10, p=0.4 the  $Eig(X^2ig)=?$ 

A. 4

 $B. \, 2.4$ 

C. 3.6

 $\mathsf{D.}\,18.4$ 



**Watch Video Solution** 

**45.** The general solution of differential equation  $\frac{dx}{dy} = \cos(x+y)$  is

A. 
$$an\left(rac{x+y}{2}
ight)=y+c$$

$$\mathsf{B.}\tan\left(\frac{x+y}{2}\right) = x+c$$

$$\mathsf{C.}\cot\left(\frac{x+y}{2}\right) = y+c$$

$$\mathsf{D.}\cot\!\left(\frac{x+y}{2}\right) = x + C$$

**Answer: A** 



Watch Video Solution

**46.** IF planes  $\bar{r}$ .  $\left(p\hat{i}-\hat{j}+2\hat{k}\right)+3=0$  and  $\bar{r}$ .  $\left(2\hat{i}-p\hat{j}-\hat{k}\right)-5=0$  include angle  $\frac{\pi}{3}$  then the value of p is



intersect then the value of k is

**48.** IF lines 
$$\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$$
 and  $x-3 = \frac{y-k}{2} = z$ 

- A.  $\frac{9}{2}$
- $\mathsf{B.}\;\frac{1}{2}$
- $\mathsf{C.}\,\frac{5}{2}$
- D.  $\frac{7}{2}$

### **Answer: A**



**Watch Video Solution** 

**49.** If a line makes angle  $120^\circ$  and  $60^\circ$  with the positive directions of X and Z-axes respectively, then the angle made by theline with positive Y-axis is

| Δ | 1 | 50 |  |
|---|---|----|--|

B.  $60^{\circ}$ 

C.  $135^{\circ}$ 

D.  $120^{\circ}$ 

### **Answer: C**



### Watch Video Solution

**50.** L and M are two points with position vectors  $2\overrightarrow{a} - \overrightarrow{b}$  and  $\overrightarrow{a} + 2\overrightarrow{b}$ , respectively. The position vector of the pont N which divides the line segment LM in the ratio 2:1 externally is

A. 
$$3ar{b}$$

B.  $4ar{b}$ 

C.  $5ar{b}$ 

D.  $3ar{a}+4ar{b}$ 

### **Answer: C**

