đず doubtnut

MATHS

BOOKS - MARVEL MATHS (HINGLISH)

SEQUENCES AND SERIES

Illustrative Examples

1. Find the $24^{\text {th }}$ term of the H.P $\frac{2}{7}, \frac{1}{5}, \frac{2}{13}, \frac{1}{8}, \cdots$
(Watch Video Solution
2. If the $11^{\text {th }}$ and $21^{\text {st }}$ terms of an H.P are $1 / 16$ and $1 / 29$ respectively find the $31^{\text {st }}$ term of the H.P.

- Watch Video Solution

3. The $p^{\text {th }}$ term T_{p} of H.P is $q(p+q)$ and $q^{\text {th }}$ term T_{q} is $p(p+q)$. Prove that $T_{p+q}=p q$

- Watch Video Solution

4. If the $m^{\text {th }}$ term of an H.P. is n and the $n^{\text {th }}$ term is m , show that its $(\mathrm{mm})^{\text {th }}$ term is 1 .
5. If for a G.P. $\left\{t_{n}\right\}, t_{2}=-6$ and $t_{5}=48$ find S_{7}.

- Watch Video Solution

6. If for a G.P. $\left\{t_{n}\right\}, t_{7}: t_{4}=27$ and $S_{5}=242$, and t_{3}.

D Watch Video Solution
7. If for a G.P. $\left\{t_{n}\right\}, S_{2}=15$ and $S_{4}=255$, find a and r.
8. If $\mathrm{a}=3, \mathrm{r}=3$ and $S_{n}=255$ find n .

- Watch Video Solution

9. If the sum of the first n terms of a sequence is
$2\left(7^{n}-1\right) / 3$ show that it is a G.P. Also , find its first term and common ratio.

- Watch Video Solution

10. Find three numbers in a G.P. such that their
sum is 31 and their product is 125 .

- Watch Video Solution

11. The sum of three numbers in G.P. is 21 and the sum of their squares is 189 . Find the numbers.

- Watch Video Solution

12. Find five numbers in a G.P. such that their product is 1 , and the sum of the middle three is 13/3.

- Watch Video Solution

13. Find four positive in a G.P. such that their product is 1 and the sum of the extremes is $65 / 8$.

- Watch Video Solution

14. The three numbers are in A.P and their sum is
15. If the first and second are decrease by 1 each and third is increased by 7, they form a G.P Find the numbers of A.P.

- Watch Video Solution

15. if α, β be roots of $x^{2}-3 x+a=0$ and γ, δ are roots of $x^{2}-12 x+b=0$ and $\alpha, \beta, \gamma, \delta$ (in order) form a increasing GP then find the value of $a \& b$

D Watch Video Solution

16. If the A.M. and G.M. of two numbers are 16 and

12 respectively find their H.M.

- Watch Video Solution

17. If the A.M. of two numbers exceeds their G.M. by

10 and their H.M. by 16 , then the numbers are.
A. 5,45
B. 10,40
C. 5,40
D. 15,25

Answer: A

D Watch Video Solution

18. If the G.M. of two numbers is 24 and their H.M.

 is $72 / 5$, find the numbers.
- Watch Video Solution

19. The harmonic mean of two numbers is 4 . Their arithmetic mean A and the geometric mean G satisfy the relation $2 A+G^{2}=27$. Find two numbers.
20. Find the sum to n terms of the series
$4+41+401+4001+\cdot \cdot$

D Watch Video Solution

21. Find the sum to n terms of the series $4+44+444+4444+\cdots$

- Watch Video Solution

22. Sum the series $.4+.44+.444+\ldots$ to n terms.
23. Find the sum to n terms of the series $3.4+5.04+7.004+9.0004+\cdots$

- Watch Video Solution

24. Find the sum to n terms of the series (1)+(1+a)+
$\left(1+a+a^{2}\right) \cdots$.

- Watch Video Solution

25. Find the sum to n terms of the series : $1+2 x+3 x^{2}+4 x^{3}+\ldots .$.

- Watch Video Solution

26. Find $\sum_{r=1}^{10}(r+2)(3 r+1)$.

- Watch Video Solution

27. Evaluate the sum: $4^{3}+5^{3}+6^{3}+\cdots+20^{3}$
28.

$50^{2}-49^{2}+48^{2}-47^{2}+\cdots+2^{2}-1^{2}$.

- Watch Video Solution

29. If $\frac{1.2+2.3+3.4+\cdots \text { to } \mathrm{n} \text { terms }}{1+2+3+\cdots \text { to } \mathrm{n} \text { terms }}=6$ find n .

- Watch Video Solution

30. Find the sum to n terms of the series

$2.5+5.9+8.13+11.17+\cdots$

where the point represents multiplication.

- Watch Video Solution

31. Find the sum to n terms of the series

$$
\frac{1^{2}}{1}+\frac{1^{2}+2^{2}}{1+2}+\frac{1^{2}+2^{2}+3^{2}}{1+2+3}+\cdots
$$

- Watch Video Solution

Multiple Choice Questions

1. If for a G.P., $a=8$ and $t_{4}=64$ then $: r=$
A. 1
B. 2
C. 3
D. 4

Answer: B

D Watch Video Solution

2. If for a G.P., $\mathrm{r}=2$ and $t_{9}=128$, then $: \mathrm{a}=$
A. $\frac{1}{2}$
B. 2
C. $\frac{1}{3}$
D. 3

Answer: A

- Watch Video Solution

3. If, for a G.P., $t_{3}=0.08$ and $t_{7}=0.000128$, then : (a, r)
A. $(1,2)$
B. $\left(2, \frac{1}{2}\right)$
C. $(2,0.2)$
D. $\left(\frac{1}{2}, 0.002\right)$

Answer: C

- Watch Video Solution

4. If for a G.P., $S_{2}=8$ and $S_{4}=80$, then : $(\mathrm{a}, \mathrm{r}) \equiv$
A. $(2,4)$
B. $(2,3)$
C. $(3,4)$
D. none of these

Answer: B
5. If for a G.P., $\mathrm{r}=2$ and $S_{8}=510$, then : $t_{3}=$
A. 2
B. 15
C. 8
D. 18

Answer: C

- Watch Video Solution

6. If for a G.P., $t_{3}=36$ and $t_{6}=972$, then $: t_{8}=$
A. $4\left(3^{7}\right)$
B. $3\left(4^{7}\right)$
C. $2\left(3^{7}\right)$
D. $3\left(2^{7}\right)$

Answer: A

- Watch Video Solution

7. If for a G.P., $t_{8}: t_{3}=32$ and $S_{9}=255$, then $: t_{1}=$
A. 2
B. 3
C. 5
D. none of these

Answer: C

- Watch Video Solution

8. If for a G.P., $S_{3}: S_{6}=125: 152$ then : $r=$
A. 3
B. $\frac{3}{5}$
C. 5
D. $\frac{5}{3}$

Answer: B

- Watch Video Solution

9. If for a G.P., $\mathrm{a}=5, \mathrm{r}=2$ and $S_{n}=635$ then $: \mathrm{n}=$
A. 5
B. 8
C. 7
D. none of these

Answer: C

- Watch Video Solution

10. If the $n^{\text {th }}$ term of a G.P. is $3\left(4^{n+1}\right)$ then its first term and common ratio are respectively
A. $3, \mathrm{n}$
B. $\mathrm{n}, 4$
C. 3,4
D. 4,3

- Watch Video Solution

11. If $2+x, 3+x, 9+x$ are in a G.P., then : $x=$

$$
\begin{aligned}
& \text { A. }-\frac{9}{5} \\
& \text { B. } \frac{9}{5} \\
& \text { C. }-\frac{5}{9} \\
& \text { D. } \frac{5}{9}
\end{aligned}
$$

Answer: A

- Watch Video Solution

12. If the positive numbers $3, x, 5, y$ are in a G.P., then :

$$
(x, y)=
$$

A. $(3 \sqrt{15}, 2 \sqrt{5})$
B. $(3 \sqrt{5}, 15 \sqrt{5})$
C. $(2 \sqrt{15}, 3 \sqrt{5})$
D. none of these

Answer: D

- Watch Video Solution

13. Four number in G.P. such that the product of their extremes is 108 and the sum of the middle two is 24 are
A. 9,10,11,12
B. 2,18,6,54
C. 2,6,8,54
D. none of these

Answer: C

- Watch Video Solution

14. Three given numbers whose sum is 24 are in an A.P. If the first is decreased by 1 the second is decreased by 2 and the third is left unchanged the resulting numbers are in a G.P. Then the given numbers are
A. $3,13,8$
B. $4,8,12$
C. $13,3,8$
D. none of these

Answer: B
15. Three numbers whose sum is 18 are in AP if 2,4 ,

11 are added to them respective the resulting numbers are in GP. Find the numbers.
A. 9,6,3
B. 3,9,6
C. $3,6,9$
D. none of these

Answer: C

D Watch Video Solution
16. If the $5^{\text {th }}$ and $8^{\text {th }}$ terms of a G.P. are 32 and 256 respectively. Then its $4^{\text {th }}$ term is
A. 8
B. 12
C. 16
D. 20

Answer: C

- Watch Video Solution

17. If $5^{\text {th }}, 8^{\text {th }}$ and $11^{\text {th }}$ terms of a G.P. are p, q and s respectively then
A. $p+r=2 q$
B. $q+r=2 p$
C. $p+q=2 r$
D. $\mathrm{pr}=q^{2}$

Answer: D

- Watch Video Solution

18. If x, y, z are in G.P. then $\log x, \log y, \log z$, are in

A. A.P.
B. G.P.
C. both
D. none of these

Answer: A

- Watch Video Solution

19. If the third term of G.P.is 4 , then find the product of first five terms
A. 4^{3}
B. 4^{4}
C. 4^{5}
D. 4^{6}

Answer: C

- Watch Video Solution

20. If $x, 2 x+2,3 x+3$ are in $G . P$., then the fourth term is
A. 27
B. -27
C. 13.5
D. -13.5

Answer: D

- Watch Video Solution

21. A man borrows Rs. 8190 without interset and repays the loan in 12 monthly instalments. If each instalment is double the preceding one then the first and last instalments are (in rupees)
A. 5 and 1200
B. 2 and 4096
C. 3 and 7200
D. none of these

Answer: B
22. If a, b, c are unequal numbers in A.P. such that $a, b-c, c-a$ are in G.P. then

$$
\begin{aligned}
& \text { А. } \frac{a}{1}=\frac{b}{2}=\frac{c}{3} \\
& \text { B. } \frac{a}{3}=\frac{b}{5}=\frac{c}{7} \\
& \text { C. } \frac{a}{1}=\frac{b}{3}=\frac{c}{5}
\end{aligned}
$$

D. none of these

Answer: C

- Watch Video Solution

23. If a, b, c are in A.P. and x, y, z are in G.P., then prove that:

$$
x^{b-c} \cdot y^{c-a} \cdot z^{a-b}=1
$$

A. -1
B. 0
C. 1
D. none of these

Answer: C

D Watch Video Solution
24. If a,b,c are simultaneously in an A.P. and a G.P. ,
then : $a^{b} . b^{c} . c^{a}=$
A. -1
B. 0
C. 1
D. none of these

Answer: A
25. if S is the sum , P the product and R the sum of reciprocals of n terms in G. P. prove that $P^{2} R^{n}=S^{n}$
A. P
B. P^{2}
C. P^{3}
D. P^{n}

Answer: B

D Watch Video Solution
26. The A.M. of a and c is b. If b is also the G.M. of a and $c+1$ then : $(b-c)^{2}=$
A. a
B. b
C. c
D. $a-b$

Answer: A
27. If the A.M. and G.M. of the roots of a quadratic equation in x are P and q respectively then the equation is

$$
\text { A. } x^{2}-2 p x+q^{2}=0
$$

B. $x^{2}+2 p x+q^{2}=0$
C. $x^{2}-\mathrm{px}+\mathrm{q}=0$
D. $x^{2}-2 p x+q=0$

Answer: A
28. If the A.M. of the roots of a quadratic equation is $\frac{8}{5}$ and the A.M. of their reciprocals is $\frac{8}{7}$ then the equation is
A. $5 x^{2}-8 x+7=0$
B. $5 x^{2}-16 x+7=0$
C. $7 x^{2}-16 x+5=0$
D. $7 x^{2}-16 x-5=0$

Answer: B
29. $8^{2}+9^{2}+10^{2}+\cdots+22^{2}=$
A. 3656
B. 3655
C. 3654
D. none of these

Answer: B

D Watch Video Solution
30. $60^{2}-59^{2}+58^{2}-57^{2}+\cdots+2^{2}-1^{2}=$
A. 1830
B. 3180
C. 1380
D. none of these

Answer: A
(D) Watch Video Solution
31. $40^{3}-38^{3}+36^{3}-34^{3}+\cdots+4^{3}-2^{3}=$
A. 34200
B. 34300
C. 34400
D. 34500

Answer: C

- Watch Video Solution

32. If $\sum_{r=1}^{n} \mathrm{r}=210$, then : $\sum_{r=1}^{n} r^{2}=$
A. 2870
B. 2160
C. 2970
D. 2960

Answer: A

- Watch Video Solution

33. $\sum_{r=1}^{20} \mathrm{r}(2 \mathrm{r}+1)=$
A. 5550
B. 5950
C. 5590
D. none of these

- Watch Video Solution

34. $\sum_{r=1}^{10}(4 r-3)^{2}=$
A. 4930
B. 3490
C. 9430

D. none of these

Answer: A
35. Find the sum of the following series:
$5+55+555+\rightarrow$ nterms.

$$
\begin{aligned}
& \text { A. } \frac{5}{9}\left[\frac{10}{9}\left(1-10^{n}\right)-1\right] \\
& \text { B. } \frac{5}{9}\left[\frac{10}{9}\left(10^{n}-1\right)-n\right] \\
& \text { C. } \frac{5}{9}\left[\frac{1}{9}\left(1-10^{n}\right)-10_{n}\right]
\end{aligned}
$$

D. none of these

Answer: B
36. $1.2+3.02+5.002+7.0002+\cdots$ to n terms $=$

$$
\begin{aligned}
& \text { A. } n^{2}+\frac{2}{9}\left(1+\frac{1}{10^{n}}\right) \\
& \text { B. } n^{2}-\frac{2}{9}\left(1-\frac{1}{10^{n}}\right) \\
& \text { C. } n^{2}+\frac{2}{9}\left(1-\frac{1}{10^{n}}\right)
\end{aligned}
$$

D. none of these

Answer: C

- Watch Video Solution

37. $1^{3}+2^{3}+3^{3}+\cdots+20^{3}=$
A. 14400
B. 44100
C. 41400
D. none of these

Answer: B

D Watch Video Solution
38. $7^{2}+8^{2}+9^{2}+\ldots+20^{2}=$
A. 2779
B. 7279
C. 7729

D. none of these

Answer: A

- Watch Video Solution

39. $11^{2}+12^{2}+13^{2}+\cdots+32^{2}=$
A. 11550
B. 11055
C. 55011
D. none of these

- Watch Video Solution

40. Suppose that $F(n+1)=\frac{2 f(n)+1}{2}$ for $\mathrm{n}=1$, $2,3, \ldots .$. and $f(1)=2$ Then $F(101)$ equals $=$?
A. 50
B. 52
C. 54
D. none of these
41. If a, b, c, d, e, f are in A.P., then $e-c$ is equal to
A. 2(c-a)
B. 2(d-b)
C. 2(f-d)
D. $2(\mathrm{~d}-\mathrm{c})$

Answer: D

- Watch Video Solution

42. If the middle term amongst any odd number
(n) consecutive terms of an A.P, is m, then their
sum is (a) $2 m^{2} n$ (b) $\frac{m n}{2}$ (c) $m n$ (d) $m n^{2}$
A. $2 m m n$
B. $\mathrm{mn} / 2$
C. $m n$
D. $m n^{2}$

Answer: C

- Watch Video Solution

43. The sum of all 2 digit odd numbers is

A. 2475
B. 2530
C. 4905
D. 5049

Answer: A

- Watch Video Solution

44. The middle term of the progression $20,16,12, \cdots,-176,-180$ is (a)-46 (b)-76 (c)-80
(d) None of these
A. -46
B. -76
C. -80
D. none of these

Answer: C

D Watch Video Solution
45. If the first and the last terms of an A.P. are -4 and 146 respectively and the sum of this A.P. is 7171 then its common difference is
A. 2
B. $-3 / 2$
C. $3 / 2$
D. -2

Answer: C
46. The sum of an A.P. is 525 . If its first term is 3 and the last term is 39 then its common difference is
A. $3 / 2$
B. 1
C. $1 / 2$
D. none of these

Answer: A

- Watch Video Solution

47. If the first term of an A.P. is 100 and the sum of its first 6 terms is five times the sum of the next 6 terms then its common difference is
A. 10
B. -10
C. 5
D. -5

Answer: B

- Watch Video Solution

48. Sum of all two digit numbers which when divided by 4 yield unity as remainder is.
A. 1100
B. 1200
C. 1210
D. none of these

Answer: C
49. If the sum of any number of consecutive terms of a sequence is always nine times the squared number of these terms then sequence is a/an
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: A
50. If the sum of the first n terms of an A.P. is pn+ $q n^{2}$ then its common difference is
A. $p-q$
B. $p+q$
C. $2 q$
D. $2 p$

Answer: C
51. The sum of the series
$a-(a+d)+(a+2 d)-(a+3 d)+\quad$ up to
$(2 n+1)$ terms is $-n d$ b. $a+2 n d$ c. $a+n d$ d. $2 n d$
A. $-n d$
B. $a+2 n d$
C. a+nd
D. 2nd

Answer: C

- Watch Video Solution

52. If $S_{n}=n P+\frac{n(n-1)}{2} Q$, where S_{n} denotes
the sum of the first n terms of an A.P., then find the common difference.
A. $p+q$
B. $2 p+3 q$
C. $2 q$
D. q

Answer: D

- Watch Video Solution

53. Four different integers form an increasing A.P
.One of these numbers is equal to the sum of the squares of the other three numbers. Then the product of all numbers is ?
A. $-2,-1,0,1$
B. $0,1,2,3$,
C. $-1,0,1,2$,
D. none of these

Answer: C
54. If in an A.P. $\left\{t_{n}\right\}$, it is given that $t_{p}=\mathrm{q}$ and $t_{q}=\mathrm{p}$ then : $t_{p+q}=\cdots$
A. 0
B. $p-q$
C. $p+q$

$$
\text { D. }-(p+q)
$$

Answer: A

- Watch Video Solution

55. If in an A.P. $\left\{t_{n}\right\}$, it is given that p. $t_{p}=q . t_{q}$ then $: t_{p+q}=\cdots$
A. -1
B. 1
C. 0

$$
\text { D. }-(p+q)
$$

Answer: C

- Watch Video Solution

56. If $a, \frac{1}{b}$, and $\frac{1}{p}, q, \frac{1}{r}$ from two arithmetic progressions of the common difference, then a, q, c are in A.P. if p, b, r are in A.P. b. $\frac{1}{p}, \frac{1}{b}, \frac{1}{r}$ are in A.P. c. p, b, r are in G.P. d. none of these
A. p,b,r, in A.P.
B. $\frac{1}{p}, \frac{1}{b}, \frac{1}{r}$ in A.P.
C. p,b,r in G.P.
D. none of these

Answer: B
57. If S_{n} is the sum of the first n terms of an A.P.
then : (a) $S_{3 n}=3\left(S_{2 n}-S_{n}\right)$ (b) $S_{3 n}=S_{n}+S_{2 n}$
(c) $S_{3 n}=2\left(S_{2 n}-S_{n}\right.$ (d) none of these
A. $S_{3 n}=3\left(S_{2 n}-S_{n}\right)$
B. 2. $S_{3 n}=S_{n}+S_{2 n}$
C. $S_{3 n}=2\left(S_{2 n}-S_{n}\right)$
D. none of these

Answer: A

- Watch Video Solution

58. If in an A.P., $S_{2 n}=3 . S_{n}$ then $S_{3 n}: S_{n}=$ (a)5 (b) 6
(c)7 (d) 8
A. 5
B. 6
C. 7
D. 8

Answer: B
59. If S_{n} denotes the sum of first n terms of an A.P., then
$\frac{S_{3 n}-S_{n-1}}{S_{2 n}-S_{n-1}}$ is equal to
A. 21
B. 15
C. 16
D. 19

Answer: B

- Watch Video Solution

60. If in an A.P. $\left\{a_{n}\right\}$,
$a_{1}+a_{5}+a_{10}+a_{15}+_{20}+a_{24}=225$ then $:$
$S_{24}=\cdots$
A. 550
B. 900
C. 1150
D. 1400

Answer: B

D Watch Video Solution
61.
A. 49
B. 98
C. 147
D. 196

Answer: B
62. let $a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots$. , be an $A P$ such that $\frac{a_{1}+a_{2}+a_{3}+\ldots \ldots \ldots .+a_{p}}{a_{1}+a_{2}+a_{3}+\ldots \ldots \ldots .+a_{q}}=\frac{p^{3}}{q^{3}},(p \neq q)$
then find $\frac{a_{6}}{a_{21}}=$?
A. $7 / 2$
B. $2 / 7$
C. $11 / 41$
D. $41 / 11$

Answer: C

D Watch Video Solution
63. If $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ are in AP, where $a_{i}>0$ for
all
$\frac{1}{\sqrt{a}_{1}+\sqrt{a_{2}}}+$
I,
is

> A. $\frac{\sqrt{a_{1}}+\sqrt{a}_{n}}{n}$
> B. $\frac{n}{\sqrt{a_{1}}+\sqrt{a_{n}}}$
> C. $\frac{n-1}{\sqrt{a_{1}}+\sqrt{a_{n}}}$
> D. $n . \sqrt{\left(a_{1} \cdot a_{n}\right)}$

Answer: C

64. If $a_{1}, a_{2}, a_{3},, a_{n}$ are an A.P. of non-zero terms, prove that
$\frac{1}{a_{1}+a_{2}}+\frac{1}{a_{1}+a_{3}}++\frac{1}{a_{n-1}+a_{n}}=\frac{n-1}{a_{1}+a_{n}}$.
A. $\frac{a_{1} \cdot a_{n}}{2}$
B. $\frac{a_{1} \cdot a_{n}}{n}$
C. $\frac{n-1}{a_{1} \cdot a_{n}}$
D. $\frac{n}{a_{1} \cdot a_{n}}$

Answer: C
65. If a, b, c are in both : A.P. and G.P. then (A)

$$
\begin{aligned}
& a=b \neq c \quad \text { (B) } a \neq b=c \quad \text { (C) } \quad a \neq b \neq c \\
& a=b=c
\end{aligned}
$$

$$
\text { A. } \mathrm{a}=\mathrm{b} \neq \mathrm{c}
$$

$$
\text { B. } a \neq b=c
$$

$$
\text { C. } a \neq b \neq c
$$

$$
\text { D. } a=b=c
$$

Answer: D

D Watch Video Solution
66. If x, y, z are in A.P. then : e^{-x}, e^{-y}, e^{-z} are in (a) A.P (b) G.P (c) H.P (d) no definite sequence
A. A.P.
B. G.P.
C. H.P.
D. no definite sequence

Answer: B

- Watch Video Solution

67. If x, y, z are in A.P. then : $y z, z x, x y$ are in
A. A.P.
B. G.P.
C. H.P.
D. no definite sequence

Answer: C

D Watch Video Solution
68. If in a G.P., $\left\{a_{n}\right\}$ it given that (a) 120 (b)124 (c)

128 (d) 132
A. 120
B. 124
C. 128
D. 132

Answer: C

D View Text Solution

69. Every term of a G.P. is positive and also every
term is the sum of preceding. Then, the common ratio of the G.P. is

$$
\text { A. } \frac{1-\sqrt{5}}{2}
$$

B. $\frac{\sqrt{5}+1}{2}$
C. $\frac{\sqrt{5}-1}{2}$
D. 1

Answer: B

- Watch Video Solution

70. If in a g.P. $\left\{t_{n}\right)$ it is given that $t_{p+q}=\mathrm{a}$ and t_{p-q} $=\mathrm{b}$ then $: t_{p}=(\mathrm{A})(a b)^{\frac{1}{2}}(\mathrm{~B})(a b)^{\frac{1}{3}}(\mathrm{C})(a b)^{\frac{1}{4}}$ (D) none of these
A. $(a b)^{1 / 2}$
B. $(a b)^{1 / 3}$
C. $(a b)^{1 / 4}$
D. none of these

Answer: A

- Watch Video Solution

71. If, in a G.P. $\left\{a_{n}\right\}$ it is given that
$a_{1}+a_{2}+a_{3}+a_{4}=30$
and $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}=340$,
then : $\left(a_{1}, r\right) \equiv$
A. $(2,2)$
B. $(3,3)$
C. $(16,1 / 3)$
D. $(16,1 / 2)$

Answer: A

- Watch Video Solution

72. If $\left\{a_{n}\right\}$ is a G.P. of positive terms then :
$\frac{\sqrt{a_{1} a_{2}}+\sqrt{a_{3} a_{4}}+\cdots+\sqrt{a_{2 n-1 \cdot} a_{2 n}}}{\sqrt{a_{2} a_{3}}+\sqrt{a_{4} a_{5}}+\cdots+\sqrt{a_{2 n .} a_{2 n-1}}}=$
A. $a_{1}+a_{3}+\cdots+a_{2 n-1}$
B. $a_{2}+a_{4}+\cdots+a_{2 n}$
C. $\frac{a_{2}+a_{4}+\cdots+a_{2 n}}{a_{1}+a_{3}+\cdots+a_{2 n-1}}$
D. $\frac{a_{1}+a_{3}+\cdots+a_{2 n-1}}{a_{2}+a_{4}+\cdots+a_{2 n}}$

Answer: D

- View Text Solution

73. The sides of a right angled triangle arein $A . P$.
, then they are in the ratio
A. $2: 3: 4$
B. 3:4:5
C. $4: 5: 6$
D. none of these

Answer: B

- Watch Video Solution

74. If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in G.P and $a^{x}=b^{y}=c^{z}$,then
A. $\log _{b} a=\log _{a} c$
B. $\log _{c} \mathrm{a}=\log _{a} \mathrm{c}$
C. $\log _{b} \mathrm{a}=\log _{c} \mathrm{~b}$
D. none of these

Answer: C

- Watch Video Solution

75. If $p^{t h}, q^{\text {th }}$ and $r^{\text {th }}$ terms of an A.P. are in G.P., then the common ratio of G.P. is-

> A. $\frac{p r}{q^{2}}$ B. $\frac{r}{p}$ C. $\frac{p-q}{r-q}$ D. $\frac{q-r}{p-q}$

- Watch Video Solution

76. IF $x, 2 y, 3 z$ are in A.P. where x, y, z are unequal number in a G.P., then the common ratio of this G.P.
is (a) 3 (b) $\frac{1}{3}$ (c) 2 (d) $\frac{1}{2}$
A. 3
B. $1 / 3$
C. 2
D. $1 / 2$

Answer: B
77. If $x, 2 x+2,3 x+3$ are the first three terms of a GP, then what is its fourth term?
A. 27
B. -27
C. 13.5
D. -13.5

Answer: D

- Watch Video Solution

78. If a, b, c, d are positive numbers such that a, b, c
are in A.P. and b, c, d are in H.P., then : $(A) a b=c d(B)$
$a c=b d(C) a d=b c(D) n o n e$ of these
A. $a b=c d$
B. $\mathrm{ac}=\mathrm{bd}$
C. $a d=b c$
D. none of these

Answer: C

79. If a, b, and c are in G.P then $a+b, 2 b$ and $b+c$ are

 inA. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: C

- Watch Video Solution

80. If a, x, b are in A.P., a, y, b are in G.P. and a, z, b are in H.P. such that $x=9 z$ and $>0, b>0$, then

$$
\text { A. }|y|=4 z
$$

B. $x=4|y|$
C. $2 y=x+z$
D. none of these

Answer: B

- Watch Video Solution

81. If a, b, c, are in G.P. , a.x.b in A.P. and b,y,c in A.P., then : $\frac{a}{x}+\frac{c}{y}=$ (A) $\frac{1}{2}$ (B) 1 (C) 2 (D) none of these
A. $1 / 2$
B. 1
C. 2
D. none of these

Answer: C

- Watch Video Solution

