©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - MARVEL MATHS (HINGLISH)

STRAIGHT LINE

Illustrative Examples

1. Using slopes show that the points $(1,3),(3,-1)$ and
$(5,-5)$ are collinear.
(Watch Video Solution
2. If the triangle with vertices $A(12,8), B(-2, k)$ and C $(6,0)$ is right - angled at C, find k.

- Watch Video Solution

3. The point P is $(-2,5)$. Find the point A on the X axis
and the point B on the Y-axis such that the slope of
the line $A P$ is 3 and slop of line $B P$ is 7 .

- Watch Video Solution

4. If the point $(1,1)$ lies on the line passing through the points $(a, 0)$ and $(0, b)$ find the value of the expression: $\frac{1}{a}+\frac{1}{b}$.

- Watch Video Solution

5. Find the equation of the line having inclination
135° and bisecting the join of the points ($-2,5$) and $(3,4)$.

- Watch Video Solution

6. Find the equation of the line which passes through the point (5-1), and divides the join of the points $(9,2)$ and $(3,4)$ internally in the ratio $1: 2$.

- Watch Video Solution

7. A $(1,-2), \mathrm{B}(-2,3)$ and $\mathrm{C}(2,-5)$ are the vertives of Δ
$A B C$. Find the equation of the
(i) side AC
(ii) altiude from A
(iii) median from B

Perpendicular bisector of side AB.
8. If $(2,-3)$ and $(-6,7)$ are opposite vertices of a rhombus, find the equations of its diagonals.

- Watch Video Solution

9. Prow that the line through the point $\left(x_{1}>y_{1}\right)$
and parallel to the line $A x+B y+C=0$ is

$$
A\left(x-x_{1}\right)+B\left(y-y_{1}\right)=0 .
$$

10. Show that the equation of a line passing through a given point $\left(x_{1}, y_{1}\right)$ and perpendicular to the line $a x+b y+c=0$ is

$$
\mathrm{b}\left(\mathrm{x}-x_{1}\right)-a\left(y-y_{1}\right)=0 .
$$

- Watch Video Solution

11. If a line passing through a point $(k, 2)$ and having
x - intercept 4 has slope $1 / 3$ find K.

- Watch Video Solution

12. If a line has x-intercept $=a$ and y-intercept $=b$ show that its slope is $m=-b / a$. Hence discuss the equation of a line which makes equal makes equal intercepts on the co-ordinate axes.

- Watch Video Solution

13. Find the equation of the line passing through the point (1,3), if its y-intercept is 3 times its x intercept.

- Watch Video Solution

14. Find the equation of the straight line which passes through the point $(-3,8)$ and cuts off positive intercepts on the coordinate axes whose sum is 7.

- Watch Video Solution

15. If the mid- point of the portion of a line intercepted between ithe co-ordinate axes is $(4,5)$
find the equation of the line.

- Watch Video Solution

16. A line intersects the co- ordinate axes in the points A and B such that area of $\Delta \mathrm{OAB}$ is 48 sq. units. If the line passes through the point $(3,6)$ find its equation.

- Watch Video Solution

17. A square is constructed on the portion of
$x+y=5$, which is intercepted between the axes
on the side of the line away from origin. The equations to the diagonals of the square are
18. If $(-4,5)$ is a vertex of a square and one of its diagonal is $7 x-y+8$ - 0 . Find the equation of other diagonal

- Watch Video Solution

19. . The points $(1,3),(5,1)$ are the opposite vertices of a rectangle. The other two vertices lie on the line $y=2 x+c$. Find c and remaining two vertices.
20. The sides of a parallelogram are parallel to the
lines $5 x-y=0$ and $7 x+y=0$. If $(1,3)$ and $(-2,4)$ are a pair of its opposite vertices find the equations of all of its sides.

- Watch Video Solution

21. Astraight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.
22. Find the measure of the acute angle between the two lines.
(i) $x+3 y+1=0$
and
$2 x+y+7=0$
(ii) $3 x+2 y=9 \quad$ and $\quad 2 x-y+1=0$.

- Watch Video Solution

23. Two sides of a square are along the lines
$5 x-12 y+39=0$ and $5 x-12 y+78=0$.
Find the area of the square.

- Watch Video Solution

24. Find the radius of a circle which touches two lines
$3 x-4 y-6=0$ and $6 x-8 y+1=0$.

- Watch Video Solution

25. Find the equation of the line at a distance of 3 units from the origin and having inclination 120°.

- Watch Video Solution

26. Find the coordinates of a point on $x+y+3=0, \quad$ whose \quad distance from
$x+2 y+2=0$ is $\sqrt{5}$.

- Watch Video Solution

27. Find the co-ordinates of the point (s) on the X axis which is (are) at a unit distance from the line $5 x+12 y=12$.

- Watch Video Solution

28. Find the equation of a line parallel to the line
$x+2 y-1=0$, which is at a distance of $2 \sqrt{5}$ units from the point $(1,3)$.
29. Find the equation of a line perpendicular to the line $3 x-y-5=0$, which is at a distance of $2 \sqrt{10}$ units froms the points (1,-1).

D Watch Video Solution

30. If P_{1} and p_{2} are the lenghts of the perpendiculars drawn from the origin to the two lines
$\mathrm{x} \sec \alpha+\mathrm{y} . \operatorname{Cosec} \alpha=2 \mathrm{a}$
and $\mathrm{x} \cdot \cos \alpha+\mathrm{y} \cdot \sin \alpha=\mathrm{a} \cdot \cos 2 \alpha$,
show that $P_{1}^{2}+P_{2}^{2}$ is constant for all values of α.

D Watch Video Solution

31. If the perpendicular distance of the line (x/a)+ $(\mathrm{y} / \mathrm{b})=1$ from the origin is $p / \sqrt{2}$ show that a^{2}, p^{2}, b^{2} are in Harmonic Progression.

D Watch Video Solution

32. Show that the equation
$(3-2 k) x-(2+k) y=5-k$,
where k is real represents a family of lines all passing through a fixed point. Find the co-ordinates of this fixed point.

D Watch Video Solution

33. Using slopes show that the points $(1,3),(3,-1)$ and
$(5,-5)$ are collinear.

D Watch Video Solution

34. If the triangle with vertices $A(12,8), B(-2, k)$ and C
$(6,0)$ is right - angled at C, find k.
35. The point P is $(-2,5)$. Find the point A on the X axis and the point B on the Y-axis such that the slope of the line AP is 3 and slop of line $B P$ is 7.

- Watch Video Solution

36. If the point $(1,1)$ lies on the line passing through the points $(a, 0)$ and $(0, b)$ find the value of the expression:
$\frac{1}{4}+\frac{1}{b}$.
37. Find the equation of the line having inclination 135° and bisecting the join of the points ($-2,5$) and $(3,4)$.

- Watch Video Solution

38. Find the equation of the line which passes through the point (5-1), and divides the join of the points $(9,2)$ and $(3,4)$ internally in the ratio $1: 2$.
39. A $(1,-2), \mathrm{B}(-2,3)$ and $\mathrm{C}(2,-5)$ are the vertives of Δ
$A B C$. Find the equation of the
(i) side AC
(ii) altiude from A
(iii) median from B

Perpendicular bisector of side AB.

- Watch Video Solution

40. If $(2,-3)$ and $(-6,7)$ are opposite vertices of a rhombus, find the equations of its diagonals.
41. Prow that the line through the point $\left(x_{1}>y_{1}\right)$ and parallel to the line $A x+B y+C=0$ is $A\left(x-x_{1}\right)+B\left(y-y_{1}\right)=0$.

- Watch Video Solution

42. Show that the equation of a line passing through a given point $\left(x_{1}, y_{1}\right)$ and perpendicular to the line $a x+b y+c=0$ is

$$
\mathrm{b}\left(\mathrm{x}-x_{1}\right)-a\left(y-y_{1}\right)=0 .
$$

43. If a line passing through a point ($k, 2$) and having x - intercept 4 has slope $1 / 3$ find K.

- Watch Video Solution

44. If a line has x-intercept $=a$ and y-intercept $=b$
show that its slope is $m=-b / a$. Hence discuss the equation of a line which makes equal makes equal intercepts on the co-ordinate axes.

- Watch Video Solution

45. Find the equation of the line passing through the point (1,3), if its y-intercept is 3 times its x intercept.

- Watch Video Solution

46. Find the equation of the straight line which passes through the point $(-3,8)$ and cuts off positive intercepts on the coordinate axes whose sum is 7 .

D Watch Video Solution
47. If the mid- point of the portion of a line intercepted between ithe co-ordinate axes is (4,5)
find the equation of the line.

- Watch Video Solution

48. A line intersects the co- ordinate axes in the points A and B such that area of $\Delta \mathrm{OAB}$ is 48 sq .
units. If the line passes through the point $(3,6)$ find its equation.
49. A square is constructed on the portion of $x+y=5$, which is intercepted between the axes on the side of the line away from origin. The equations to the diagonals of the square are

- Watch Video Solution

50. If $(-4,5)$ is a vertex of a square and one of its diagonal is $7 x-y+8-0$. Find the equation of other diagonal
51. The points $(1,3)$ and $(5,1)$ are two opposite vertices of a rectangle. The other two vertices lie on the line $y=2 x+c$. What is the value of c ?

- Watch Video Solution

52. The sides of a parallelogram are parallel to the lines $5 x-y=0$ and $7 x+y=0$. If $(1,3)$ and $(-2,4)$ are a pair of its opposite vertices find the equations of all of its sides.
53. Astraight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.

- Watch Video Solution

54. Find the measure of the acute angle between the two lines.
(i) $x+3 y+1=0 \quad$ and $\quad 2 x+y+7=0$
(ii) $3 x+2 y=9$
and
$2 x-y+1=0$.

- Watch Video Solution

55. Two sides of a square are along the lines
$5 x-12 y+39=0$ and $5 x-12 y+78=0$.
Find the area of the square.

- Watch Video Solution

56. Find the radius of a circle which touches two lines
$3 x-4 y-6=0$ and $6 x-8 y+1=0$.
57. Find the equation of the line at a distance of 3 units from the origin and having inclination 120°.

- Watch Video Solution

58. Find the co-ordinates of the point (s) on the line
$x+y+3=0$, whose distance from the line $x+2 y+2=0$ is
$\sqrt{5}$ units.

- Watch Video Solution

59. Find the co-ordinates of the point (s) on the X axis which is (are) at a unit distance from the line $5 x+12 y=12$.

- Watch Video Solution

60. Find the equation of a line parallel to the line
$x+2 y-1=0$, which is at a distance of $2 \sqrt{5}$ units from the point $(1,3)$.
61. Find the equation of a line perpendicular to the
line $3 x-y-5=0$, which is at a distance of $2 \sqrt{10}$ units froms the points ($1,-1$).

- Watch Video Solution

62. If P_{1} and p_{2} are the lenghts of the perpendiculars drawn from the origin to the two lines
$\mathrm{x} \sec \alpha+\mathrm{y} . \operatorname{Cosec} \alpha=2 \mathrm{a}$
and $\mathrm{x} \cdot \cos \alpha+\mathrm{y} \cdot \sin \alpha=\mathrm{a} \cdot \cos 2 \alpha$,
show that $P_{1}^{2}+P_{2}^{2}$ is constant for all values of α.
63. If the perpendicular distance of the line $(x / a)+$ $(\mathrm{y} / \mathrm{b})=1$ from the origin is $p / \sqrt{2}$ show that a^{2}, p^{2}, b^{2} are in Harmonic Progression.

- Watch Video Solution

64. Show that the equation
$(3-2 k) x-(2+k) y=5-k$,
where k is real represents a family of lines all
passing through a fixed point. Find the co-ordinates
of this fixed point.
65. If $u \equiv x-y-6$ and $v \equiv 2 x-y-12$ find the points (s) of intersection of the two loci
$21 u+107 v=0$ and $5 u-133 v=0$.

- Watch Video Solution

Mutiple Choice Questions

1. If the line passing through $(2,3)$ and $(5, k)$ has slope
(5/3), then : $k=$
A. -1
B. 0
C. 8
D. 2

Answer: C

D Watch Video Solution

2. If the points $(-3,4),(-14,12)$ and $(8, k)$ are collinear
then :k
A. -1
B. -2
C. -3
D. -4

Answer: D

- Watch Video Solution

3. If the point $(3, k)$ lies on the line passing through
the points $(-1,3)$ and $(1,5)$ then $: k=$
A. -1
B. 3
C. 7
D. 2

Answer: C

- Watch Video Solution

4. If the triangle whose vertices are $A(4,3), B(6,-2)$
and $C(k,-3)$ is right -angled at A, then : $K=$
A. 3
B. 8
C. -11
D. -5

Answer: C

D Watch Video Solution

5. If A is $(5,-3)$ and B is a point on the X-axis such that the slope of line $A B$ is (-2), then : $B=$
A. $(7,2)$
B. $(7 / 2,0)$
C. $(0,7 / 2)$
D. $(2 / 7,0)$

Answer: B

- Watch Video Solution

6. If A is $(-4,9)$ and B is a point on the Y-axis such that the slope of the line $A B$ is (-1), then : $B \equiv$
A. $(0,1)$
B. $(0,3)$
C. $(5,0)$
D. $(0,5)$

Answer: D

7. If A is $(1,-2), B(3, k), C(-3,1)$ and $D(k, 4)$ where lines $A B$

 and CD are parallel then : $\mathrm{K}=$A. $-2 / 7$
B. $2 / 7$
C. $-7 / 2$
D. $7 / 2$

Answer: A

- Watch Video Solution

8. If A is $(1,-2), B(3, k), C(-3,1)$ and $D(k, 4)$ where lines $A B$

$\perp \mathrm{CD}$ then : $\mathrm{k}=$

$$
\begin{aligned}
& \text { A. }-\frac{5}{12} \\
& \text { B. } 5 / 12 \\
& \text { C. }-12 / 5 \\
& \text { D. } 12 / 5
\end{aligned}
$$

Answer: C

- Watch Video Solution

9. If the point $(1,1)$ lies on the line passing through the points
$(\mathrm{a}, 0)$ and $(0, \mathrm{~b})$ then : $\frac{1}{a}+\frac{1}{b}=$
A. -1
B. 0
C. 1
D. $\frac{1}{a b}$

Answer: C
10. The slope of the line which bisects the angles in the first and third quadrants is
A. -1
B. 0
C. 1
D. none of these

Answer: C

- Watch Video Solution

11. The slope of the line which bisects the angles in the second and fourth quadrants is
A. -1
B. 0
C. 1
D. none of these

Answer: A
12. If $\mathrm{A}(1,-2), \mathrm{B}(-2,3)$ and $\mathrm{C}(2,-5)$ are the vertices of Δ
$A B C$, then the equation of the median $B E$ is
A. $7 x+13 y+47=0$
B. $13 x+7 y+5=0$
C. $7 x-13 y+5=0$
D. none of these

Answer: B

- Watch Video Solution

13. The equation of the line which passes through
$(4,7)$ and divides the join of $(1,7)$ and ($6,-3$) internally in the ratio $2: 3$, is
A. $y=4 x-9$
B. $x=4 y-9$
C. $4 x+y=9$
D. none of these

Answer: A

- Watch Video Solution

14. The equation of the line having inclination 120° and dividing the join of $(-1,4)$ and $(2,6)$ externally in the ratio $2: 1$, is
A. $\sqrt{3} \cdot x+y=13$
B. $(x-5) \sqrt{3}+y=8$
C. $x+y \sqrt{3}=8$
D. none of these

Answer: B

- Watch Video Solution

15. The area of the quadrilateral whose sides are along the lines $x=0, x=4, y=-3$ and $y=5$ is
A. 12
B. 15
C. 20
D. 32

Answer: D

- Watch Video Solution

16. The equation of the line through $(1,2)$, which makes equal intercepts on the axes is
A. $x+y=1$
B. $x+y=2$
C. $x+y=4$
D. none of these

Answer: D

- Watch Video Solution

17. The equation of the line through $(4,1)$, whose x intercept is double its y - intercepts on the axes is
A. $x+2 y=6$
B. $2 x+y=6$
C. $x+2 y+6=0$
D. none of these

Answer: A
18. The equation of the line through the origin which bisects the portion of the line $3 x y=12$ intercepted between the axex is
A. $3 x+y=0$
B. $y=3 x$
C. $x=3 y$
D. none of these

Answer: A

- Watch Video Solution

19. If $(2,3)$ is the midpoint of the portion of a line intercepted between the co-ordinate axes, then the equation of the line is
A. $2 x+3 y=12$
B. $2 x+3 y+12=0$
C. $3 x+2 y=12$
D. none of these

Answer: C

- Watch Video Solution

20. Find the equation of the straight line which passes through the point $(-3,8)$ and cuts off positive intercepts on the coordinate axes whose sum is 7.
A. $8 x-3 y=24$
B. $4 x+3 y=12$
C. $3 x+8 y=24$
D. none of these

Answer: B

- Watch Video Solution

21. The equation of the line through $(6,1)$ having x and y-intercepts eaual in magnitude but opposite in sign is
A. $x-y=5$
B. $y=x+5$
C. $x+y=5$
D. none of these

Answer: A

- Watch Video Solution

22. The equation of the line having y-intercept
$=-7$, and parallel to the join of $(2,3)$ and $(-3,7)$ is
A. $5 x+4 y+28=0$
B. $4 x+5 y+35=0$
C. $4 x+5 y+28=0$
D. none of these

Answer: B

- Watch Video Solution

23. The equation of the line having x - intercept $=5 / 3$,

 and perendicular to the join of $(5,-2)$ and $(-1,3)$ isA. $6 x-5 y=10$
B. $5 x-6 y=10$
C. $6 x-5 y+10=0$
D. none of these

Answer: A
24. A line meets X-axis in A and Y-axis in B. If $R(4,6)$ is point on the line such that $A R: R B=3: 2$, then the equation of the line is
A. $y=x+10$
B. $x+y+10=0$
C. $x+y=10$
D. none of these

Answer: C

- Watch Video Solution

25. The length of the perpendicular from the origin on a line L is 3 . If the perperdicular make an angle of 240° with positive X -axis then the equation of line L is
A. $\sqrt{3} \cdot x+y=6$
B. $x+y \sqrt{3}+6=0$
C. $\sqrt{3}, x+y+6=0$
D. none of these

Answer: B
26. If the length of the perpendicular to a line L from
the origin is 8 and the perpendicular makes an angle of 60° with the X -axis then the equation of line L is

$$
\text { A. } x+y \sqrt{3}=16
$$

B. $x \sqrt{3}+\mathrm{y}=16$
C. $x-y \sqrt{3}+16=0$
D. none of these

Answer: A

- Watch Video Solution

27. If the length of the perpendicular to a line L from the origin si $5 \sqrt{2}$ and the perperdicular to a makes an angle of 135° with the X -axis then the equation of line L is
A. $x+y+10=0$
B. $x-y-10=0$
C. $y=x+10$
D. none of these

Answer: C
28. If A is $(\sqrt{3}, 1)$ and B is $(\sqrt{3},-1)$, then :m $a n \geq l \mathrm{AOB}=$
A. 30°
B. 45°
C. 60°
D. 90°

Answer: C

- Watch Video Solution

29. If the line $k x+4 y=6$ passes through the point of intersection of the two lines $2 x+3 y=4$ and $3 x+4 y=5$, then : $\mathrm{k}=$
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

30. If the line $k y=x+1$ passes through the point on intersection of the two lines $2 x-3 y+5=0$ and $3 x+2 y+1=0$, then $: k=$
A. -1
B. 0
C. 1
D. none of these

Answer: B

- Watch Video Solution

31. The foot of the perpendicular from $(1,2)$ on the line $x-3 y+7=0$ is
A. $(5 / 4,5 / 13)$
B. $(4 / 5,13 / 5)$
C. $(4 / 5,9 / 5)$
D. none of these

Answer: B
32. The foot of the perpendicular from $(2,-5)$ on the line $3 x-4 y+10=0$ is

A. $(-58 / 25,19 / 25)$
B. $(58 / 25,-19 / 25)$
C. $(25 / 58,-25 / 19)$

D. none of these

Answer: A
33. Distance of the point $(-2,-4)$ from the line $\frac{x}{3}-\frac{y}{4}=1$ is
A. 43959
B. 44048
C. 0
D. none of these

Answer: B

- Watch Video Solution

34. Find the equation of the line at a distance of 3 units from the origin and having inclination 120°.
A. $\sqrt{3} \cdot x \pm y+6=0$
B. $\sqrt{3} \cdot x+y \pm 6=0$
C. $x+y=6$
D. none of these

Answer: B
35. A point of the X-axis which is at a unit distance
from the line $5 x+12 y=12$ is
A. $(1 / 5,0)$
B. $(5,0)$
C. $(17,0)$
D. none of these

Answer: B

- Watch Video Solution

36. If the perpendicular distance of the line (x / a)+ $(\mathrm{y} / \mathrm{b})=1$ from the origin is $p / \sqrt{2}$ show that a^{2}, p^{2}, b^{2} are in Harmonic Progression.
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: C
37. If p_{1} and p_{2} are the lengths of the perpendicular
$x \sec \theta+y \cos e c \theta=a$ and $x \cos \theta-y \sin \theta=a \cos 2 \theta$
respectively then prove that $4 p_{1}^{2}+p_{2}^{2}=a^{2}$
A. \sqrt{m}
B. m
C. m^{2}
D. m^{4}

Answer: C
38. In relation to the line : $\frac{x}{3}-\frac{y}{4}=1$, the point $(-2,-4)$ lies on
A. the line
B. the origin side of the line
C. the non- origin side of the line
D. none of these

Answer: B

- Watch Video Solution

39. In relation to the line : $7(x-2)=5(y+3)$, the point
$(3,-2)$ lies on
A. the line
B. origin side of the line
C. non-origin side of the line
D. none of these

Answer: C
40. If the line passing through $(2,3)$ and $(5, k)$ has slope ($5 / 3$), then : $k=$
A. -1
B. 0
C. 8
D. 2

Answer: C

- Watch Video Solution

41. If the points $(-3,4),(-14,12)$ and ($8, k$) are collinear then : k

A. -1
B. -2
C. -3
D. -4

Answer: D

- Watch Video Solution

42. If the point $(3, k)$ lies on the line passing through the points $(-1,3)$ and $(1,5)$ then $: k=$
A. -1
B. 3
C. 7
D. 2

Answer: C
43. If the triangle whose vertices are $A(4,3), B(6,-2)$ and $C(k,-3)$ is right -angled at A, then : $K=$
A. 3
B. 8
C. -11
D. -5

Answer: C

- Watch Video Solution

44. If A is $(5,-3)$ and B is a point on the X-axis such that the slope of line $A B$ is (-2), then : $B=$
A. $(7,2)$
B. $(7 / 2,0)$
C. $(0,7 / 2)$
D. $(2 / 7,0)$

Answer: B

- Watch Video Solution

45. If A is $(-4,9)$ and B is a point on the Y-axis such that the slope of the line $A B$ is (-1), then : $B \equiv$
A. $(0,1)$
B. $(0,3)$
C. $(5,0)$
D. $(0,5)$

Answer: D

46. If A is $(1,-2), B(3, k), C(-3,1)$ and $D(k, 4)$ where lines
$A B$ and $C D$ are parallel then : $K=$

$$
\begin{aligned}
& \text { A. }-2 / 7 \\
& \text { B. } 2 / 7 \\
& \text { C. }-7 / 2 \\
& \text { D. } 7 / 2
\end{aligned}
$$

Answer: A

- Watch Video Solution

47. If A is $(1,-2), B(3, k), C(-3,1)$ and $D(k, 4)$ where lines
$\mathrm{AB} \perp \mathrm{CD}$ then $: \mathrm{k}=$

$$
\begin{aligned}
& \text { A. }-\frac{5}{12} \\
& \text { B. } 5 / 12 \\
& \text { C. }-12 / 5 \\
& \text { D. } 12 / 5
\end{aligned}
$$

Answer: C

48. If the point $(1,1)$ lies on the line passing through the points
$(\mathrm{a}, 0)$ and $(0, \mathrm{~b})$ then : $\frac{1}{a}+\frac{1}{b}=$
A. -1
B. 0
C. 1
D. $\frac{1}{a b}$

Answer: C

- Watch Video Solution

49. The slope of the line which bisects the angles in the first and third quadrants is
A. -1
B. 0
C. 1
D. none of these

Answer: C

- Watch Video Solution

50. The slope of the line which bisects the angles in the second and fourth quadrants is
A. -1
B. 0
C. 1
D. none of these

Answer: A
51. If A $(1,-2), B(-2,3)$ and $C(2,-5)$ are the vertices of Δ
$A B C$, then the equation of the median $B E$ is
A. $7 x+13 y+47=0$
B. $13 x+7 y+5=0$
C. $7 x-13 y+5=0$
D. none of these

Answer: B

- Watch Video Solution

52. The equation of the line which passes through
$(4,7)$ and divides the join of $(1,7)$ and $(6,-3)$ internally in the ratio $2: 3$, is
A. $y=4 x-9$
B. $x=4 y-9$
C. $4 \mathrm{x}+\mathrm{y}=9$
D. none of these

Answer: A

- Watch Video Solution

53. The equation of the line having inclination 120°
and dividing the join of $(-1,4)$ and $(2,6)$ externally in the ratio $2: 1$, is
A. $\sqrt{3} \cdot x+y=13$
B. $(x-5) \sqrt{3}+y=8$
C. $x+y \sqrt{3}=8$
D. none of these

Answer: B

- Watch Video Solution

54. The area of the quadrilateral whose sides are along the lines $x=0, x=4, y=-3$ and $y=5$ is
A. 12
B. 15
C. 20
D. 32

Answer: D

- Watch Video Solution

55. The equation of the line through (1,2), which makes equal intercepts on the axes is
A. $x+y=1$
B. $x+y=2$
C. $x+y=4$
D. none of these

Answer: D

56. The equation of the line through (4,1), whose x intercept is double its y-intercepts on the axes is
A. $x+2 y=6$
B. $2 x+y=6$
C. $x+2 y+6=0$
D. none of these

Answer: A
57. The equation of the line through the origin which bisects the portion of the line $3 x-y=12$ intercepted between the axes is
A. $3 x+y=0$
B. $y=3 x$
C. $x=3 y$
D. none of these

Answer: A

- Watch Video Solution

58. If $(2,3)$ is the midpoint of the portion of a line intercepted between the co-ordinate axes, then the equation of the line is
A. $2 x+3 y=12$
B. $2 x+3 y+12=0$
C. $3 x+2 y=12$
D. none of these

Answer: C

- Watch Video Solution

59. Find the equation of the straight line which passes through the point $(-3,8)$ and cuts off positive intercepts on the coordinate axes whose sum is 7 .
A. $8 x-3 y=24$
B. $4 x+3 y=12$
C. $3 x+8 y=24$
D. none of these

Answer: B

- Watch Video Solution

60. The equation of the line through $(6,1)$ having x and y-intercepts eaual in magnitude but opposite in sign is
A. $x-y=5$
B. $y=x+5$
C. $x+y=5$
D. none of these

Answer: A

- Watch Video Solution

61. The equation of the line having y-intercept $=-7$, and parallel to the join of $(2,3)$ and $(-3,7)$ is
A. $5 x+4 y+28=0$
B. $4 x+5 y+35=0$
C. $4 x+5 y+28=0$
D. none of these

Answer: B
62. The equation of the line having x - intercept $=5 / 3$, and perendicular to the join of $(5,-2)$ and $(-1,3)$ is
A. $6 x-5 y=10$
B. $5 x-6 y=10$
C. $6 x-5 y+10=0$
D. none of these

Answer: A
63. A line meets X-axis in A and Y-axis in B. If $R(4,6)$ is point on the line such that $A R: R B=3: 2$, then the equation of the line is
A. $y=x+10$
B. $x+y+10=0$
C. $x+y=10$
D. none of these

Answer: C

- Watch Video Solution

64. The length of the perpendicular from the origin on a line L is 3 . If the perperdicular make an angle of 240° with positive X -axis then the equation of line L is
A. $\sqrt{3} \cdot x+y=6$
B. $x+y \sqrt{3}+6=0$
C. $\sqrt{3}, x+y+6=0$
D. none of these

Answer: B
65. If the length of the perpendicular to a line L from
the origin is 8 and the perpendicular makes an angle of 60° with the X -axis then the equation of line L is

$$
\text { A. } x+y \sqrt{3}=16
$$

B. $x \sqrt{3}+\mathrm{y}=16$
C. $x-y \sqrt{3}+16=0$
D. none of these

Answer: A

- Watch Video Solution

66. If the length of the perpendicular to a line L from the origin si $5 \sqrt{2}$ and the perperdicular to a makes an angle of 135° with the X -axis then the equation of line L is
A. $x+y+10=0$
B. $x-y-10=0$
C. $y=x+10$
D. none of these

Answer: C
67. If A is $(\sqrt{3}, 1)$ and B is $(\sqrt{3},-1)$, then :m $a n \geq l \mathrm{AOB}=$
A. 30°
B. 45°
C. 60°
D. 90°

Answer: C

- Watch Video Solution

68. If the line $k x+4 y=6$ passes through the point of intersection of the two lines $2 x+3 y=4$ and $3 x+4 y=5$, then : $\mathrm{k}=$
A. 1
B. 2
C. 3
D. 4

Answer: B
69. If the line $k y=x+1$ passes through the point on intersection of the two lines $2 x-3 y+5=0$ and $3 x+2 y+1=0$, then $: k=$
A. -1
B. 0
C. 1
D. none of these

Answer: B

- Watch Video Solution

70. The foot of the perpendicular from $(1,2)$ on the line $x-3 y+7=0$ is
A. $(5 / 4,5 / 13)$
B. $(4 / 5,13 / 5)$
C. $(4 / 5,9 / 5)$
D. none of these

Answer: B

- Watch Video Solution

71. The foot of the perpendicular from $(2,-5)$ on the line $3 x-4 y+10=0$ is
A. $(-58 / 25,19 / 25)$
B. $(58 / 25,-19 / 25)$
C. $(25 / 58,-25 / 19)$
D. none of these

Answer: A
72. Distance of the point $(-2,-4)$ from the line $\frac{x}{3}-\frac{y}{4}=1$ is
A. 43959
B. 44048
C. 0
D. none of these

Answer: B

- Watch Video Solution

73. Find the equation of the line at a distance of 3

 units from the origin and having inclination 120°.A. $\sqrt{3} \cdot x \pm y+6=0$
B. $\sqrt{3} \cdot x+y \pm 6=0$
C. $x+y=6$
D. none of these

Answer: B
74. A point of the X-axis which is at a unit distance from the line $5 x+12 y=12$ is
A. $(1 / 5,0)$
B. $(5,0)$
C. $(17,0)$
D. none of these

Answer: B

- Watch Video Solution

75. If the perpendicular distance of the line (x / a)+
$(\mathrm{y} / \mathrm{b})=1$ from the origin is $p / \sqrt{2}$ show that a^{2}, p^{2}, b^{2} are in Harmonic Progression.
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: C

- Watch Video Solution

76. If p_{1} and p_{2} are the lengths of the perpendicular form the orgin to the line $x \sec \theta+y \cos e c \theta=a$ and $x \cos \theta-y \sin \theta=a \cos 2 \theta$
respectively then prove that $4 p_{1}^{2}+p_{2}^{2}=a^{2}$
A. \sqrt{m}
B. m
C. m^{2}
D. m^{4}

Answer: C
77. In relation to the line : $\frac{x}{3}-\frac{y}{4}=1$, the point $(-2,-4)$ lies on
A. the line
B. the origin side of the line
C. the non- origin side of the line
D. none of these

Answer: B

- Watch Video Solution

78. In relation to the line : $7(x-2)=5(y+3)$, the point $(3,-2)$ lies on
A. the line
B. origin side of the line
C. non-origin side of the line

D. none of these

Answer: C

- Watch Video Solution

1. If the point $P(p, q)$ is equidistant from the points $A(a+b, b-a)$ and $B(a-b, a+b)$, then
A. ax=by
B. $b x=a y$
C. $a x=-b y$
D. $b x=-a y$

Answer: B

- Watch Video Solution

2. Prove that the points $(a+b+c),(b, c+a)$ and $(c, a+b)$

 are collinear.A. vertices of an equilateral triangle B. vertices of a right angled triangle
C. concyclic

D. collinear

Answer: D

- Watch Video Solution

3. Points $A(a, 3)$ and $C(5, b)$ are opposite vertices of a rectangle $A B C D$. If the other two vertices lie on the line $y=2 x+c$ which passes through the point (a, b), then : c=
A. -7
B. -4
C. 0
D. 7

Answer: A
4. If a, b, c are non-zero real numbers in H.P then the
line $\frac{x}{a}+\frac{y}{b}+\frac{1}{c}=0$ always passes through a fixed point whose coordinates are
A. $(1,-2)$
B. $(1,-1 / 2)$
C. $(-1,2)$
D. $(-1,-2)$

Answer: A

D Watch Video Solution

5. Let $A(2,-3)$ and $B(-2,1)$ be vertices of a triangle $A B C$.

If the centroid of this triangle moves on line $2 x+3 y$
$=1$, then the locus of the vertex C is the line :
A. $3 x+2 y=5$
B. $2 x-3 y=7$
C. $2 x+3 y=9$
D. $3 x-2 y=3$

Answer: C

- Watch Video Solution

6. For any real values of a, b, c such that $3 a,+2 b+4 c=0$, line $a x+b y+c=0$ passes through the fixed point whose coordinates are
A. $(3,2)$
B. $(2,4)$
C. $(3,4)$
D. $(3 / 4,1 / 2)$

Answer: D
7. The equations of sides of a triangle are $x+3 y=0$,
$4 x-3 y=5$ and $3 x-y=0$. Then the line $6 x-7 y=0$ passes
through the \qquad of the triangle.
A. incentre
B. centroid
C. circumcentre
D. orthocentre

Answer: D

- Watch Video Solution

8. Ifa,b,c are in A.P., a, x,b,are in G.P and b,y,c are also in G.P then the point (x, y) lies on
A. a line
B. a circle
C. an ellipse
D. a hyperbola

Answer: B
9. If we reduce $3 x+3 y+7=0$ to the form $x \cos \alpha+y \sin \alpha=p$, then find the value of p.

$$
\begin{aligned}
& \text { A. } \frac{7}{2 \sqrt{3}} \\
& \text { B. } \frac{7}{3} \\
& \text { C. } \frac{3 \sqrt{7}}{2} \\
& \text { D. } \frac{7}{3 \sqrt{2}}
\end{aligned}
$$

Answer: D

- Watch Video Solution

10. The length of perpendicular from the point ($a \cos \propto, a \sin \propto)$ upon the striaght line $\mathrm{y}=\mathrm{x}$ $\tan \propto+c($ where c gt 0) is
A. C
B. c. $\sin ^{2} \alpha$
C. $\operatorname{c} \cdot \cos \alpha$
D. $\operatorname{c.sec}^{2} \alpha$

Answer: C

- Watch Video Solution

11. the line $\frac{x}{a}-\frac{y}{b}=1$ cuts the x-axes at P.the equation of the line passes through point P and perpendicular to the line is:
A. $x+y=a b$
B. $x+y=a+b$
C. $\mathrm{ax}+\mathrm{by}=a^{2}$
D. $\mathrm{bx}+\mathrm{ay}=a^{2}$

Answer: C

- Watch Video Solution

12. If $(-4,5)$ is a vertex of a square and one of its diagonal is $7 x-y+8$ - 0 . Find the equation of other diagonal
A. $x+3 y=21$
B. $2 x=3 y=7$
C. $x+7 y=31$
D. $2 x+3 y=21$

Answer: C

- Watch Video Solution

13. If $a, b, c>0$, then area of the triangle formed by the line $a x+b y+c=0$ and coordinatte axes is
A. $\frac{a^{2}}{2 a b c}$
B. $\frac{b^{2}}{2 a b c}$
C. $\frac{c^{2}}{2 a b c}$
D. 0

Answer: C
14. If the line $a x+b y+c=0$ always passes through the fixed point ($1,-2$) then : a, b, c are in
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: A
15. A square of area 25 sq.units is formed by taking two sides as $3 x+4 y=k_{1}$ and $3 x+4 y=k_{2}$ then
$\left|k_{1}-k_{2}\right|=$
A. 5
B. 1
C. 25
D. 20

Answer: C

- Watch Video Solution

16. Segment joining (1,2) and ($-2,1$) is divided by the line $3 x+4 y=7$ in the ration
A. 3: 4
B. $4: 3$
C. 9: 4
D. $4: 9$

Answer: D

- Watch Video Solution

17. The medians $A D$ and $B E$ of the triangle with vertices $A(0, b), B(0,0)$ and $C(a, 0)$ are mutually perpendicular if
A. $\mathrm{b}=a \sqrt{2}$
B. $a=b \sqrt{2}$
C. $\mathrm{b}=-a \sqrt{2}$
D. $a=5 b \sqrt{2}$

Answer: B

- Watch Video Solution

18. A triangle are $(6,0)$. $(0,6)$ and $(6,6)$. If distance between circumcentre and orthocenter and distance between circumcentre and centroid are λ and u unit respectively, then (λ, u) lies on:
A. $2 \sqrt{2}$
B. 2
C. $3 \sqrt{2}$
D. 1

Answer: C

19. If a vertex of a triangle is $(1,1)$, and the middle points of two sides passing through it are $-2,3$) and (5,2), then find the centroid and the incenter of the triangle.
A. $(5 / 3,3)$
B. $(5 / 3,-3)$
C. $(-5 / 3,3)$
D. $(-5 / 3,-3)$

Answer: A

- Watch Video Solution

20. Find the points on the line $x+y=4$ that lies at a unit distance from the line $4 x+3 y=10$.
A. $(5,-1)$
B. $(-7,11)$
C. $(3,-1)$
D. $(7,-11)$

Answer: B

- Watch Video Solution

21. A rectangle has two opposite vertices at the points $(1,2)$ and $(5,5)$. If the other vertices lie on the line $x=3$, then their coordinates are
A. $(3,-1),(3,-6)$
B. $(3,1),(3,5)$
C. $(3,2),(3,6)$
D. $(3,1),(3,6)$

Answer: D

- Watch Video Solution

22. find the equation of the straight line passing through the origin and the middle point of intercept of the line $a x+b y+c=0$ between the axes
A. $a x+b y=0$
B. $a x-b y=0$
C. $b x+a y=0$
D. $b x=a y=0$

Answer: B

23. Diagonals of a parallelogram PQRS must be a

A. rectangle
B. square
C. cyclic quadrilateral
D. rhombus

Answer: D

- View Text Solution

24. A line passes through $(2,2)$ and is perpendicular to the line $3 x+y=3$, is
A. $3 x+y=8$
B. $3 x-y=4$
C. $x-3 y=-4$
D. $x+3 y=8$

Answer: C

D Watch Video Solution

25. The distance of the mid point of the line joining the points $(a \sin \theta, 0)$ and $(0, a \cos \theta)$ from the origin is
A. $\frac{a}{2}$
B. $\frac{a}{2}(\sin \theta+\cos \theta)$
C. $\mathrm{a}(\sin \theta+\cos \theta)$
D. a

Answer: A

- Watch Video Solution

26. If $a, b, c>0$ and the line $a x+c y=2 b$ makes a triangle of area 2 with the axes then :
A. a,b,c are in G.P.
B. $a,-b,-c$ are in G.P.
C. $a, 2 b, c$ are in G.P.
D. $a,-2 b, c$ are in G.P.

Answer: A

- Watch Video Solution

27. If P_{1} and P_{2} are the lenghts of perpendiculars
from origin to the lines x. sec $a+y$. Csc $a=2 a$ and
x.cos $\alpha+\mathrm{y} . \sin \alpha=\mathrm{a} \cos 2 \alpha$,
A. $4 \sin ^{2} 4 \alpha$
B. $4 \cos ^{2} 4 \alpha$
C. $4 \csc ^{2} 4 \alpha$
D. $4 \sec ^{2} 4 \alpha$

Answer: C

- View Text Solution

28. If $A(-1,3), B(1,-1)$ and $C(5,1)$ are the vertices of a triangle $A B C$, find the length of the median through A.
A. 5
B. 4
C. 1
D. 3

Answer: A

- Watch Video Solution

29. The equation of the locus of the point whose distance from the x-axis is twice that of from the y axis is :
A. $y=x$
B. $y=2 x$
C. $x=y$
D. $x=2 y$

Answer: D

- Watch Video Solution

30. The points $(3,3),(h, 0)$ and $(0, k)$ are collinear if
A. $\frac{1}{h}+\frac{1}{k}+=\frac{1}{3}$
B. $\frac{1}{h}-\frac{1}{k}=\frac{1}{3}$
C. $\frac{1}{k}-\frac{1}{h}=\frac{1}{3}$
D. $\frac{1}{h}=\frac{1}{k}$

Answer: A

- Watch Video Solution

31. if $(3,-4),(-6,5)$ are the exterimities of the diagonal of the parallelogram and $(-2,-1)$ is itts third vertex then find fourth vertex,
A. $(1,0)$
B. $(-1,0)$
C. $(0,1)$
D. $(0,-1)$

Answer: B

- Watch Video Solution

32. If $P=(1,0) ; Q=(-1.0) \& R=(2,0)$ are three given points, then the locus of the points S satisfying the relation, $S Q^{2}+S R^{2}=2 S P^{2}$ is -
A. a line || to X -axis
B. a line || to Y-axis
C. circle with centre at origin

D. none of these

Answer: B

- Watch Video Solution

33. The distance of the mid point of the line joining the points $(a \sin \theta, 0)$ and $(0, a \cos \theta)$ from the origin is
A. a
B. $\frac{a}{2}(\sin \theta+\cos \theta)$
C. $\mathrm{a}(\sin \theta+\cos \theta)$
D. $\frac{a}{2}$

Answer: D

- Watch Video Solution

34. If a triangle has its orthocentre at (1,1) and circumcentre at $(3 / 2,3 / 4)$ then the coordinate of the
centroid of triangle is
A. $\left(\frac{4}{3},-\frac{5}{6}\right)$
B. $\left(\frac{4}{3}, \frac{5}{6}\right)$
C. $\left(-\frac{4}{3}, \frac{5}{6}\right)$
D. $\left(-\frac{4}{3},-\frac{5}{6}\right)$

Answer: B

D Watch Video Solution

35. Find the orthocentre of the triangle whose vertices are $(0,0),(3,0)$, and (0,4$)$.
A. $\left(\frac{3}{4}, 2\right)$
B. $(0,0)$
C. $\left(1, \frac{4}{3}\right)$
D. $\left(2, \frac{3}{2}\right)$

Answer: B

D Watch Video Solution

36. If the orthocentre and centroid of a triangle are
$(-3,5)$ and $(3,3)$ then its circumcentre is
A. $(0,4)$
B. $(6,-2)$
C. $(6,2)$
D. $(0,8)$

- Watch Video Solution

37. The medians $A D$ and $B E$ of the triangle with vertices $A(0, b), B(0,0)$ and $C(a, 0)$ are mutually perpendicular if

$$
\text { A. } a=\frac{b}{2}
$$

B. $\mathrm{b}=\frac{a}{2}$
C. $a b=1$
D. $a= \pm \sqrt{2 b}$

Answer: D

38. The point which divides the join of $(1,2)$ and $(3,4)$ externally in the ratio 1:1 a. lies in the III quadrant b.
lies in the II quadrant c. lies in the I quadrant d.
cannot be found
A. lies in the third quadrant
B. lies in the second quadrant
C. lies in the first quadrant
D. cnnont be found

Answer: D

- Watch Video Solution

39. The points $(-a,-b),(0,0) .(a, b)$ and $\left(a^{2}, a^{3}\right)$ are
A. vertices of a rectangle
B. vertices of a parallelogram
C. collinear
D. none of these

Answer: C

- Watch Video Solution

40. If A and B are two points on the line joining P
$(2,5)$ and $Q(4,-7)$ such that $P A=A B=B Q$ then the mid point of seg $A B$ is
A. $(3,1)$
B. $(3,-1)$
C. $(-3,1)$
D. $(-1,3)$

Answer: B

- Watch Video Solution

41. A triangle with vertices
$(4,0),(-1,-1),(3,5)$, is
A. isosceles and right- angled
B. isosceles but not right -angled
C. right-angled but not isosceles
D. neither isosceles nor right -angled

Answer: A
42. If $B(1,3)$ is equidistant form $A(6,1)$ and $C(x, 8)$ then : $x=$
A. 3 or -5
B. -3 or 5
C. -3 or 5
D. 3 or 5

Answer: B

- Watch Video Solution

43. The points $(1,5),(2,4)$ and $(3,3)$ are
A. vertices of an equilateral triangle
B. vertices of an isosceles triangle
C. vertices of a right-angle triangle
D. collinear

Answer: D

- Watch Video Solution

44. If $A \equiv(0,0)$ and $B \equiv(4,-3)$ then the locus of
the moving point P such that $2 \mathrm{PA}=3 \mathrm{~PB}$ is
A. $5 x^{2}+5 y^{2}+72 \mathrm{x}+54 \mathrm{y}+225=0$
B. $5 x^{2}+5 y^{2}-72 \mathrm{x}-54 \mathrm{y}+225=0$
C. $5 x^{2}+5 y^{2}-72 \mathrm{x}+54 \mathrm{y}+225=0$
D. none of these

Answer: C

- Watch Video Solution

45. If the points (x, y), (x^{\prime}, y^{\prime}) and ($\left.x^{\prime}-x^{\prime}, y-y^{\prime}\right)$ are collinear then
A. $x y=x^{\prime} y^{\prime}$
B. $x x^{\prime}=y y^{\prime}$
C. $x y^{\prime}=x^{\prime} y$

D. none of these

Answer: C

- Watch Video Solution

46. The vertices of a triangle are
$(2,4), B(2,6), C(2+\sqrt{3}, 5)$. The triangle is :
A. isosceles and right- angled
B. always isosceles
C. right- angled

D. equilateral

Answer: D

D Watch Video Solution

47. The triangle with vertices (0,0), (2,0) and (0,3) is

A. acute-angled
B. isosceles
C. right-angled
D. equilateral
48. For what value of k are the points
$(k, 2-2 k),(-k+1,2 k) a n d(-4-k, 6-2 k)$
collinear?
A. $\frac{1}{2}$
B. $-\frac{1}{2}$
C. 1
D. -1

Answer: D
49. If the point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be equidistant from the points
$A(a+b, a-b)$ and $B(a-b, a+b)$ then
A. $a x=b y$
B. $b x=a y$
C. $a x=-b y$
D. $b x=-a y$

Answer: B
50. If $P(1,2) Q(4,6), R(5,7)$, and $S(a, b)$ are the vertices of a parallelogram $P Q R S$, then

$$
\begin{align*}
& a=2, b=4 \text { (b) } a=3, b=4 \quad a=2, b=3 \\
& a=1 \text { or } b=-1 \tag{d}
\end{align*}
$$

A. $a=2, b=4$
B. $a=3, b=4$
C. $a=2, b=3$
D. $a=3, b=5$

Answer: C

51. Prove that the line $y-x+2=0$ divides the join of points $(3,-1)$ and $(8,9)$ in the ratio 2:3.
A. 2: 3
B. 3: 2
C. $-2: 3$
D. $-3: 2$

Answer: A

- Watch Video Solution

52. The orthocentre of the triangle formed by the lines $x y=0$ and $x+y=1$, is
A. (-2-1)
B. $(-2,1)$
C. $(0,0)$
D. none of these

Answer: C

- Watch Video Solution

53. Find the equation of the straight line which makes an angle of 15° with the positive direction of x-axis and which cuts and intercept of length 4 on then negative direction of y-axis.

$$
\text { A. }(2-\sqrt{3}) x+y-4=0
$$

B. $(2-\sqrt{3}) x-y-4=0$
C. $(2-\sqrt{3}) x y-4=0$
D. $(2+\sqrt{3} x+y+4=0$

Answer: B
54. The equation of the straight line cutting off an no intercept 8 on x-axis and making an angle of 60° with the positive direction of y-axis is
A. $x-\sqrt{3} y=8$
B. $x-\sqrt{3} y=8$
C. $y=\sqrt{3} x+8$
D. none of these

Answer: B

Watch Video Solution

55. A rectangle has two opposite vertices at the points (1,2) and (5,5). If the other vertices lie on the line $x=3$, then their coordinates are
A. $(3,-1),(3,-6)$
B. $(3,1),(3,5)$
C. $(3,2),(3,6)$
D. $(3,1),(3,6)$

Answer: D

- Watch Video Solution

56. The equation of the line which passes through the point $(3,4)$ and whos y-intercept is twice its x intercept, is
A. $2 x-y=0$
B. $x+2 y=10$
C. $2 x+y=10$
D. none of these

Answer: C

- Watch Video Solution

57. Find the equation of the straight line whose intercepts on X -axis and Y -axis are respectively twice and thrice of those by the line $3 x+4 y=12$.
A. $9 x+8 y=72$
B. $9 x-8 y=72$
C. $8 x+9 y=72$
D. $9 y-8 x=72$

Answer: A

- Watch Video Solution

58. find the equation of the straight line passing through the origin and the middle point of intercept of the line $a x+b y+c=0$ between the axes
A. $a x+b y=0$
B. $a x-b y=0$
C. $b x+a y=0$
D. $b x-a y=0$

Answer: B
59. Find the equation of the straight line upon which the length of perpendicular from origin is $3 \sqrt{2}$ units and this perpendicular makes an angle of 75^{0} with the positive direction of x-axis.

> A. $(\sqrt{3}-1) x+(\sqrt{3}+1) y-12=0$
> B. $(\sqrt{3}-1) x+(\sqrt{3}+1) y+12=0$
> C. $(\sqrt{3}+1) x+(\sqrt{3}-1) y-12=0$
D. none of these

Answer: A

- Watch Video Solution

60. Find the angle between $x+y=3$ and the line joining points (1,1) and ($-3,4$)
A. $\tan ^{-1}\left(\frac{3}{7}\right)$
B. $\pi-\tan ^{-1}\left(\frac{3}{7}\right)$
C. $\tan ^{-1}\left(\frac{1}{7}\right)$
D. $\pi-\tan ^{-1}\left(\frac{1}{7}\right)$

Answer: C

- Watch Video Solution

61. The equation of the line passing through (1,-2) and parallel to the line $8 x-4 y+7=0$ is
A. $2 x+y-4=0$
B. $2 x-y+4=0$
C. $2 x-y-4=0$
D. $2 x-y+6=0$

Answer: C
62. The equation of the line passing through $(2,-4)$ and perpendicular form the point $(2,4)$ on the line $x+y=1$ is
A. $x+2 y+6=0$
B. $x-2 y+6=0$
C. $2 x+y+6=0$
D. $2 x-y+6=0$

Answer: A

- Watch Video Solution

63. The co-ordinates of foot of the perpendicular from the point $(2,4)$ on the line $x+y=1$ are:
A. $\left(\frac{1}{2}, \frac{3}{2}\right)$
B. $\left(-\frac{1}{2}, \frac{3}{2}\right)$
C. $\left(\frac{4}{3}, \frac{1}{2}\right)$
D. $\left(\frac{3}{4},-\frac{1}{2}\right)$

Answer: B
64. Find coordinates of the foot of perpendicular, image and equation of perpendicular drawn from the point $(2,3)$ to the line $y=3 x-4$.
A. $\left(-\frac{1}{10}, \frac{37}{10}\right)$
B. $\left(\frac{1}{10},-\frac{37}{10}\right)$
c. $\left(-\frac{1}{10}, \frac{37}{10}\right)$
D. $\left(\frac{1}{10}, \frac{37}{10}\right)$

Answer: A

- Watch Video Solution

65. The value of k such that the lines

$$
2 x-3 y+k=0,3 x-4 y-13=0 \quad \text { and }
$$

$8 x-11 y-33=0$ are concurrent is
A. 7
B. -7
C. 5
D. -5

Answer: B

- Watch Video Solution

66. A line passes through the point $(2,2)$ and is perpendicular to the line $3 x+y=3$, then its y intercept is
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. 1
D. $\frac{4}{3}$

Answer: D
67. A square is constructed on the portion of $x+y=5$, which is intercepted between the axes on the side of the line away from origin. The equations to the diagonals of the square are
A. $x=5, y=-5$
B. $x=-5, y=5$
C. $x=5, y=5$
D. $x-y=5, x-y=-5$

Answer: C

68. The equation of the line with gradient $-\frac{3}{2}$ which is concurrent with the lines $4 x+3 y-7=0$ and $8 x+5 y-1=0$
A. $2 y-3 x-2=0$
B. $3 x+2 y-2=0$
C. $3 x+2 y-63=0$
D. none of these

Answer: B

- Watch Video Solution

69. The equations $a x+b y+c=0$ and $d x+e y+f=0$ represent the same straight line if and only if
A. $\frac{a}{d}=\frac{b}{e}$
B. $c=f$
C. $\frac{a}{d}=\frac{b}{e}=\frac{c}{f}$
D. $a=d, b=e, c=f$

Answer: C

- Watch Video Solution

70. Let $P S$ be the median of the triangle with vertices $\quad P(2,2), Q(6,-1) \operatorname{and} R(7,3) \quad$ Then equation of the line passing through $(1,-1)$ and

$$
\begin{array}{llr}
\text { parallel to } & P S & \text { is } \\
2 x-9 y-11=0 & & 2 x-9 y-7=0 \\
2 x+9 y+7=0
\end{array}
$$

A. $2 x-9 y-7=0$
B. $2 x-9 y-11=0$
C. $2 x+9 y-11=0$
D. $2 x+9 y-7=0$

- Watch Video Solution

71. If the lines $a x+12 y+1=0 \quad b x+13 y+1=0$ and $c x+14 y+1=0$ are concurrent then a, b, c are in
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: A

- Watch Video Solution

72. If $(-4,5)$ is a vertex of a square and one of its diagonal is $7 x-y+8$ - 0. Find the equation of other diagonal
A. $7 x-y+23=0$
B. $x+7 y=31$
C. $x-7 y=31$
D. none of these

Answer: B

- Watch Video Solution

73. The new co-ordinates of the point $(4,5)$ when the

 origin is shified to the point $(1,-2)$ isA. $(5,3)$
B. $(3,5)$
C. $(3,7)$
D. $(7,3)$

Answer: C

- Watch Video Solution

74. If the sum of reciprocals of x-and y-inercepts of a line is a constant k then the line passes through the fixed point whose co-ordinates are
A. (k,k)
B. $\left(\frac{1}{k}, \frac{1}{k}\right)$
C. (k,-k)
D. $(-k,-k)$

Answer: B

- View Text Solution

75. the lines $(p+2 q) x+(p-3 q) y=p-q$ for different values of $p \& q$ passes trough the fixed point is:
A. $\left(\frac{3}{2}, \frac{5}{2}\right)$
B. $\left(\frac{2}{5}, \frac{2}{5}\right)$
C. $\left(\frac{3}{5}, \frac{3}{5}\right)$
D. $\left(\frac{2}{5}, \frac{3}{5}\right)$

Answer: D
76. Show that the straight line $x(a+2 b)+y(a+3 b)=(a+b)$ for different values of a and b passes through the fixed point.

Find that point
A. $(2,1)$
B. $(2,-1)$
C. $(-2,1)$
D. $(-2,-1)$

Answer: B
77. The diagonals of a parallelogram $A B C D$ are along are the lines $x+3 y=4$ and $6 x-2 y=7$. Then ABCD must be a
A. rectangle

B. kite

C. cyclic quadrilateral
D. rhombus

Answer: D

- Watch Video Solution

78. If $a+b+c=0$ then the line $3 a x+b y+2 c=0$ passes
through the fixed point

$$
\begin{aligned}
& \text { А. }\left(2, \frac{2}{3}\right) \\
& \text { в. }\left(\frac{2}{3}, 2\right) \\
& \text { С. }\left(2, \frac{2}{3}\right) \\
& \text { D. }\left(\frac{2}{3}, \frac{2}{3}\right)
\end{aligned}
$$

Answer: B
79. Equation of a straight line passing through the point of intersection of
$x-y+1=0$ and $3 x+y-5=0$ are
perpendicular to one of them is
A. $x+y+3=0$
B. $x+y-3=0$
C. $x-3 y-5=0$
D. $x+3 y+5=0$

Answer: B
$x \cos \alpha+y \sin \alpha=P_{1}$ and $x \cos \beta+y \sin \beta=P_{2}$
will be perpendicular, if :
A. $\alpha=\frac{\pi}{2}$
B. $\alpha=\beta$
C. $\alpha \pm \beta=\frac{\pi}{2}$
D. $|\alpha-\beta|=\frac{\pi}{2}$

Answer: D
81. If the point $P(x, y)$ is equidistant from the points
$A(a+b, b-a)$ and $B(a-b, a+b)$. Prove that $b x=a y$.
A. $a x=b y$
B. $b x=a y$
C. $a x=-b y$
D. $b x=-a y$

Answer: B

- Watch Video Solution

82. The points $(a, b+c),(b, c+a)$ and $(c, a+b)$
A. vertices of an equilateral triangle
B. vertices of a right angled triangle
C. concyclic
D. collinear

Answer: D

- Watch Video Solution

83. Points $A(a, 3)$ and C (5,b) are opposite vertices of a rectangle $A B C D$. If the other two vertices lie on the
line $y=2 x+c$ which passes through the point (a, b),
then : $\mathrm{c}=$
A. -7
B. -4
C. 0
D. 7

Answer: A

D Watch Video Solution

84. If a, b, c are in harmonic progression, then the straight line $\left(\left(\frac{x}{a}\right)\right)_{\frac{y}{b}}+\left(\frac{l}{c}\right)=0$ always passes through a fixed point. Find that point.
A. $(1,-2)$
B. $(1,-1 / 2)$
C. $(-1,2)$
D. $(-1,-2)$

Answer: A

- Watch Video Solution

85. Let $A(2,-3)$ and $B(-2,1)$ be vertices of a triangle
$A B C$. If the centroid of this triangle moves on line $2 x$
$+3 y=1$, then the locus of the vertex C is the line :
A. $3 x+2 y=5$
B. $2 x-3 y=7$
C. $2 x+3 y=9$
D. $3 x-2 y=3$

Answer: C

- Watch Video Solution

86. For any real values of a, b, c such that $3 a$, $+2 b+4 c=0$, line $a x+b y+c=0$ passes through the fixed point whose coordinates are
A. $(3,2)$
B. $(2,4)$
C. $(3,4)$
D. $(3 / 4,1 / 2)$

Answer: D

- Watch Video Solution

87. The equations of sides of a triangle are $x+3 y=0$,
$4 x-3 y=5$ and $3 x-y=0$. Then the line $6 x-7 y=0$ passes
through the \qquad of the triangle.
A. incentre
B. centroid
C. circumcentre
D. orthocentre

Answer: D

- Watch Video Solution

88. Ifa,b,c are in A.P., $a, x, b, a r e$ in G.P and b,y,c are also
in G.P then the point (x, y) lies on
A. a line
B. a circle
C. an ellipse
D. a hyperbola

Answer: B

- Watch Video Solution

89. If we reduce $3 x+3 y+7=0$ to the form $x \cos \alpha+y \sin \alpha=p$, then the value of p is $\frac{7}{2 \sqrt{3}}$
(b) $\frac{7}{3}$ (c) $\frac{3 \sqrt{7}}{2}$ (d) $\frac{7}{3 \sqrt{2}}$
A. $\frac{7}{2 \sqrt{3}}$
B. $\frac{7}{3}$
C. $\frac{3 \sqrt{7}}{2}$
D. $\frac{7}{3 \sqrt{2}}$

Answer: D

- Watch Video Solution

90. The length of perpendicular from the point ($a \cos \propto, a \sin \propto)$ upon the striaght line $\mathrm{y}=\mathrm{x}$ $\tan \propto+c($ where c gt 0) is
A. C
B. c. $\sin ^{2} \alpha$
C. $\operatorname{c.cos} \alpha$
D. $\operatorname{c.sec}^{2} \alpha$

Answer: C

- Watch Video Solution

91. the line $\frac{x}{a}-\frac{y}{b}=1$ cuts the x-axes at P.the equation of the line passes through point P and perpendicular to the line is:
A. $x+y=a b$
B. $x+y=a+b$
C. $a x+b y=a^{2}$
D. $b x+a y=a^{2}$

Answer: C

- Watch Video Solution

92. If $(-4,5)$ is a vertex of a square and one of its
diagonal is $7 x-y+8$ - 0 . Find the equation of other diagonal
A. $x+3 y=21$
B. $2 x=3 y=7$
C. $x+7 y=31$
D. $2 x+3 y=21$

Answer: C

D Watch Video Solution

93. If $a, b, c>0$, then area of the triangle formed by
the line $a x+b y+c=0$ and coordinatte axes is
A. $\frac{a^{2}}{2 a b c}$
B. $\frac{b^{2}}{2 a b c}$
C. $\frac{c^{2}}{2 a b c}$
D. 0

Answer: C

- Watch Video Solution

94. If the line $a x+b y+c=0$ always passes through the
fixed point ($1,-2$) then : a,b,c are in
A. A.P.
B. G.P.
C. H.P.

D. none of these

Answer: A

- Watch Video Solution

95. A square of area 25 sq.units is formed by taking two sides as $3 x+4 y=k_{1}$ and $3 x+4 y=k_{2}$ then
$\left|k_{1}-k_{2}\right|=$
A. 5
B. 1
C. 25
D. 20

Answer: C

- Watch Video Solution

96. Segment joining (1,2) and ($-2,1$) is divided by the
line $3 x+4 y=7$ in the ration
A. $3: 4$
B. $4: 3$
C. 9: 4
D. $4: 9$

Answer: D

D Watch Video Solution

97. The medians $A D$ and $B E$ of the triangle with vertices $A(0, b), B(0,0)$ and $C(a, 0)$ are mutually perpendicular if
A. $\mathrm{b}=a \sqrt{2}$
B. $a=b \sqrt{2}$
C. $\mathrm{b}=-a \sqrt{2}$
D. $a=5 b \sqrt{2}$

Answer: B

- Watch Video Solution

98. Vertices of a triangle are $A(6,0), B(0,6)$ and
$C(6,6)$. The distance between its circumcentre and orthocentre is
A. $2 \sqrt{2}$
B. 2
C. $3 \sqrt{2}$
D. 1

Answer: C

D Watch Video Solution

99. If a vertex of a triangle is $(1,1)$, and the middle points of two sides passing through it are $-2,3$) and $(5,2)$, then find the centroid and the incenter of the triangle.
A. $(5 / 3,3)$
B. $(5 / 3,-3)$
C. $(-5 / 3,3)$
D. $(-5 / 3,-3)$

Answer: A

- Watch Video Solution

100. Find the points on the line $x+y=4$ that lies at a unit distance from the line $4 x+3 y=10$.
A. $(5,-1)$
B. $(-7,11)$
C. $(3,-1)$
D. $(7,-11)$

Answer: B

- Watch Video Solution

101. A rectangle has two opposite vertices at the points $(1,2)$ and $(5,5)$. If the other vertices lie on the line $x=3$, then their coordinates are
A. $(3,-1),(3,-6)$
B. $(3,1),(3,5)$
C. $(3,2),(3,6)$
D. $(3,1),(3,6)$

Answer: D

102. Find the equation of the straight line passing through the origin and bisecting the portion of the
line $a x+b y+c=0$ intercepted between the coordinate axes.
A. $a x+b y=0$
B. $a x-b y=0$
C. $b x+a y=0$
D. $b x=a y=0$

Answer: B

- Watch Video Solution

103. Diagonals of a parallelogram PQRS must be a
A. rectangle
B. square
C. cyclic quadrilateral
D. rhombus

Answer: D

D View Text Solution
104. A line passes through the point $(2,2)$ and is perpendicular to the line $3 x+y=3$, then its y intercept is
A. 43833
B. 43864
C. 1
D. 43924

Answer: D

- Watch Video Solution

105. The distance of the mid point of the line joining the points $(a \sin \theta, 0)$ and $(0, a \cos \theta)$ from the origin is
A. $\frac{a}{2}$
B. $\frac{a}{2}(\sin \theta+\cos \theta)$
C. $a(\sin \theta+\cos \theta)$
D. a

Answer: A

- Watch Video Solution

106. If the straight line $a x+c y=2 b$, where $a, b, c>0$, makes a triangle of area 2 sq. units with the coordinate axes, then a, b, c are in GP a, -b ; c are in GP $a, 2 b, c$ are in GP (d) $a,-2 b, c$ are in GP
A. a,b,c are in G.P.
B. a,-b,-c are in G.P.
C. $a, 2 b, c$ are in G.P.
D. $a,-2 b, c$ are in G.P.

Answer: A

107. If P_{1} and P_{2} are the lenghts of perpendiculars
from origin to the lines x. sec $a+y$. Csc $a=2 a$ and $\mathrm{x} . \cos \alpha+\mathrm{y} . \sin \alpha=\mathrm{a} \cos 2 \alpha$,
A. $4 \sin ^{2} 4 \alpha$
B. $4 \cos ^{2} 4 \alpha$
C. $4 \csc ^{2} 4 \alpha$
D. $4 \sec ^{2} 4 \alpha$

Answer: C

- View Text Solution

108. If $A(-1,3), B(1,-1)$ and $C(5,1)$ are the vertices of a triangle $A B C$, what is the length of the median through vertex A ?
A. 5
B. 4
C. 1
D. 3

Answer: A

109. The equation of the locus of the point whose

 distance from the x-axis is twice that of from the y axis is :A. $y=x$
B. $y=2 x$
C. $x=y$
D. $x=2 y$

Answer: D

110. Show that the points $(3,3),(h, 0)$ and $(0, k)$
are collinear if $\frac{1}{h}+\frac{1}{k}=\frac{1}{3}$

$$
\begin{aligned}
& \text { A. } \frac{1}{h}+\frac{1}{k}+=\frac{1}{3} \\
& \text { B. } \frac{1}{h}-\frac{1}{k}=\frac{1}{3} \\
& \text { C. } \frac{1}{k}-\frac{1}{h}=\frac{1}{3} \\
& \text { D. } \frac{1}{h}=\frac{1}{k}
\end{aligned}
$$

Answer: A
111. if $(3,-4),(-6,5)$ are the exterimities of the diagonal of the parallelogram and $(-2,-1)$ is itts third vertex then find fourth vertex,
A. $(1,0)$
B. $(-1,0)$
C. $(0,1)$
D. $(0,-1)$

Answer: B

- Watch Video Solution

112. If $P(1,0), Q(-1,0)$ and $R(2,0)$ are three given points, then the locus of the point S satisfying the relation $(S Q)^{2}+(S R)^{2}=2(S P)^{2}$
A. a line || to X -axis
B. a line || to Y-axis
C. circle with centre at origin
D. none of these

Answer: B

- Watch Video Solution

113. The distance of the mid point of the line joining the points $(a \sin \theta, 0)$ and $(0, a \cos \theta)$ from the origin is
A. a
B. $\frac{a}{2}(\sin \theta+\cos \theta)$
C. $a(\sin \theta+\cos \theta)$
D. $\frac{a}{2}$

Answer: D
114. If a triangle has it's orthocenter at $(1,1)$ and circumcentre ($3 / 2,3 / 4$) then centroid is:

$$
\begin{aligned}
& \text { A. }\left(\frac{4}{3},-\frac{5}{6}\right) \\
& \text { B. }\left(\frac{4}{3}, \frac{5}{6}\right) \\
& \text { C. }\left(-\frac{4}{3}, \frac{5}{6}\right) \\
& \text { D. }\left(-\frac{4}{3},-\frac{5}{6}\right)
\end{aligned}
$$

Answer: B
115. The vertices of a triangle are $(0,3),(-3,0)$ and $(3,0)$. The coordinates of its orthocentre are
A. $\left(\frac{3}{4}, 2\right)$
B. $(0,0)$
C. $\left(1, \frac{4}{3}\right)$
D. $\left(2, \frac{3}{2}\right)$

Answer: B
116. If the orthocentre and centroid of a triangle are
$(-3,5)$ and $(3,3)$ then its circumcentre is
A. $(0,4)$
B. $(6,-2)$
C. $(6,2)$
D. $(0,8)$

Answer: C
117. The medians $A D$ and $B E$ of the triangle with vertices $A(0, b), B(0,0)$ and $C(a, 0)$ are mutually perpendicular if

$$
\text { A. } a=\frac{b}{2}
$$

B. $\mathrm{b}=\frac{a}{2}$
C. $a b=1$
D. $a= \pm \sqrt{2 b}$

Answer: D

- Watch Video Solution

118. The point which divides the join of $(1,2)$ and $(3,4)$ externally in the ratio 1:1 a. lies in the III quadrant b.
lies in the II quadrant c. lies in the I quadrant d .
cannot be found
A. lies in the third quadrant
B. lies in the second quadrant
C. lies in the first quadrant
D. cnnont be found

Answer: D

119. The points $(-a,-b),(0,0) .(a, b)$ and $\left(a^{2}, a^{3}\right)$ are
A. vertices of a rectangle
B. vertices of a parallelogram
C. collinear
D. none of these

Answer: C

- Watch Video Solution

120. If A and B are two points on the line joining P
$(2,5)$ and $Q(4,-7)$ such that $P A=A B=B Q$ then the mid point of seg $A B$ is
A. $(3,1)$
B. $(3,-1)$
C. $(-3,1)$
D. $(-1,3)$

Answer: B

- Watch Video Solution

121. A triangle with vertices
$(4,0),(-1,-1),(3,5)$, is
A. isosceles and right- angled
B. isosceles but not right -angled
C. right-angled but not isosceles
D. neither isosceles nor right -angled

Answer: A
122. If $B(1,3)$ is equidistant from $A(6,1)$ and $C(x, 8)$ then $\mathrm{x}=$
A. 3 or -5
B. -3 or 5
C. -3 or 5
D. 3 or 5

Answer: B

- Watch Video Solution

123. The points $(1,5),(2,5)$ and $(3,3)$ are
A. vertices of an equilateral triangle
B. vertices of an isosceles triangle
C. vertices of a right-angle triangle
D. collinear

Answer: D

- Watch Video Solution

124. If $A \equiv(0,0)$ and $B \equiv(4,-3)$ then the locus of
the moving point P such that $2 \mathrm{PA}=3 \mathrm{~PB}$ is
A. $5 x^{2}+5 y^{2}+72 \mathrm{x}+54 \mathrm{y}+225=0$
B. $5 x^{2}+5 y^{2}-72 \mathrm{x}-54 \mathrm{y}+225=0$
C. $5 x^{2}+5 y^{2}-72 \mathrm{x}+54 \mathrm{y}+225=0$
D. none of these

Answer: C

- Watch Video Solution

125. If the points $(x, y),\left(x^{\prime}, y^{\prime}\right)$ and $\left(x^{\prime}-x^{\prime}, y-y^{\prime}\right)$ are
collinear then
A. $x y=x^{\prime} y^{\prime}$
B. $x x^{\prime}=y y^{\prime}$
C. $x y^{\prime}=x^{\prime} y$

D. none of these

Answer: C

- Watch Video Solution

126. The triangle with vertices $(2,4),(2,6)$ and $(2+\sqrt{3}$
,5) is
A. isosceles and right- angled
B. always isosceles
C. right- angled

D. equilateral

Answer: D

- Watch Video Solution

127. The triangle with vertices $(0,0),(2,0)$ and $(0,3)$ is

A. acute-angled
B. isosceles
C. right-angled
D. equilateral
128. For what value of k are the points
$(k, 2-2 k),(-k+1,2 k) a n d(-4-k, 6-2 k)$
collinear?
A. $\frac{1}{2}$
B. $-\frac{1}{2}$
C. 1
D. -1

Answer: D

129. If the point (x, y) is equidistant from the points
$(a+b, b-a)$ and $(a-b, a+b)$, then prove that $b x=a y$.
A. $a x=b y$
B. $b x=a y$
C. $a x=-b y$
D. $b x=-a y$

Answer: B
130. If $P(1,2) Q(4,6), R(5,7)$, and $S(a, b)$ are the vertices of a parallelogram $P Q R S$, then

$$
\begin{align*}
& a=2, b=4 \quad \text { (b) } \quad a=3, b=4 \quad a=2, b=3 \tag{d}\\
& a=1 \text { or } b=-1
\end{align*}
$$

A. $a=2, b=4$
B. $a=3, b=4$
C. $a=2, b=3$
D. $a=3, b=5$

Answer: C

131. In what ratio does the line $x-y-2=0$ divides the line segment joining ($3,-1$) and (8,9) ?
A. $2: 3$
B. 3: 2
C. $-2: 3$
D. $-3: 2$

Answer: A

- Watch Video Solution

132. The co-ordinates of the orthocentre formed by the lines $\mathrm{x}=\mathrm{O}, \mathrm{y}=0$ and $\mathrm{x}+\mathrm{y}=1$ are
A. (-2-1)
B. $(-2,1)$
C. $(0,0)$
D. none of these

Answer: C

- Watch Video Solution

133. Find the equation of the straight line which makes an angle of 15° with the positive direction of x-axis and which cuts and intercept of length 4 on then negative direction of y-axis.

$$
\text { A. }(2-\sqrt{3}) x+y-4=0
$$

B. $(2-\sqrt{3}) x-y-4=0$
C. $(2-\sqrt{3}) x y-4=0$
D. $(2+\sqrt{3} x+y+4=0$

Answer: B
134. The equation of the straight line cutting off an no intercept 8 on x-axis and making an angle of 60° with the positive direction of y-axis is
A. $x-\sqrt{3} y=8$
B. $x-\sqrt{3} y=8$
C. $y=\sqrt{3} x+8$
D. none of these

Answer: B

Watch Video Solution

135. A rectangle has two opposite vertices at the points $(1,2)$ and $(5,5)$. If the other vertices lie on the line $x=3$, then their coordinates are
A. $(3,-1),(3,-6)$
B. $(3,1),(3,5)$
C. $(3,2),(3,6)$
D. $(3,1),(3,6)$

Answer: D

- Watch Video Solution

136. The equation of the line which passes through the point $(3,4)$ and whos y-intercept is twice its x intercept, is
A. $2 x-y=0$
B. $x+2 y=10$
C. $2 x+y=10$
D. none of these

Answer: C

- Watch Video Solution

137. Find the equation of the straight line whose intercepts on X -axis and Y -axis are respectively twice and thrice of those by the line $3 x+4 y=12$.
A. $9 x+8 y=72$
B. $9 x-8 y=72$
C. $8 x+9 y=72$
D. $9 y-8 x=72$

Answer: A

- Watch Video Solution

138. find the equation of the straight line passing through the origin and the middle point of intercept of the line $a x+b y+c=0$ between the axes
A. $a x+b y=0$
B. $a x-b y=0$
C. $b x+a y=0$
D. $b x-a y=0$

Answer: B
139. Find the equation of the straight line upon which the length of perpendicular from origin is $3 \sqrt{2}$ units and this perpendicular makes an angle of 75^{0} with the positive direction of x-axis.

$$
\begin{aligned}
& \text { A. }(\sqrt{3}-1) x+(\sqrt{3}+1) y-12=0 \\
& \text { B. }(\sqrt{3}-1) x+(\sqrt{3}+1) y+12=0 \\
& \text { C. }(\sqrt{3}+1) x+(\sqrt{3}-1) y-12=0
\end{aligned}
$$

D. none of these

Answer: A

140. Find the angle between $x+y=3$ and the line joining points (1,1) and ($-3,4$)
A. $\tan ^{-1}\left(\frac{3}{7}\right)$
B. $\pi-\tan ^{-1}\left(\frac{3}{7}\right)$
C. $\tan ^{-1}\left(\frac{1}{7}\right)$
D. $\pi-\tan ^{-1}\left(\frac{1}{7}\right)$

Answer: C

- Watch Video Solution

141. The equation of the line passing through (1,-2) and parallel to the line $8 x-4 y+7=0$ is
A. $2 x+y-4=0$
B. $2 x-y+4=0$
C. $2 x-y-4=0$
D. $2 x-y+6=0$

Answer: C

- Watch Video Solution

142. The equation of the line passing through $(2,-4)$ and perpendicular form the point $(2,4)$ on the line $x+y=1$ is
A. $x+2 y+6=0$
B. $x-2 y+6=0$
C. $2 x+y+6=0$
D. $2 x-y+6=0$

Answer: A

- Watch Video Solution

143. The co-ordinates of foot of the perpendicular from the point $(2,4)$ on the line $x+y=1$ are:
A. $\left(\frac{1}{2}, \frac{3}{2}\right)$
B. $\left(-\frac{1}{2}, \frac{3}{2}\right)$
C. $\left(\frac{4}{3}, \frac{1}{2}\right)$
D. $\left(\frac{3}{4},-\frac{1}{2}\right)$

Answer: B
144. Find the coordinates of the foot of the perpendicular drawn from the point $(2,3)$ to the line $y=3 x+4$
A. $\left(-\frac{1}{10}, \frac{37}{10}\right)$
B. $\left(\frac{1}{10},-\frac{37}{10}\right)$
C. $\left(-\frac{1}{10}, \frac{37}{10}\right)$
D. $\left(\frac{1}{10}, \frac{37}{10}\right)$

Answer: A

- Watch Video Solution

145. The value of k such that the lines
$2 x-3 y+k=0,3 x-4 y-13=0$
$8 x-11 y-33=0$ are concurrent is
A. 7
B. -7
C. 5
D. -5

Answer: B
146. A line passes through the point $(2,2)$ and is perpendicular to the line $3 x+y=3$, then its y intercept is
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. 1
D. $\frac{4}{3}$

Answer: D

- Watch Video Solution

147. A square is constructed on the portion of $x+y=5$, which is intercepted between the axes on the side of the line away from origin. The equations to the diagonals of the square are
A. $x=5, y=-5$
B. $x=-5, y=5$
C. $x=5, y=5$
D. $x-y=5, x-y=-5$

Answer: C

148. The equation of the line with gradient $-\frac{3}{2}$ which is concurrent with the lines $4 x+3 y-7=0$ and $8 x+5 y-1=0$
A. $2 y-3 x-2=0$
B. $3 x+2 y-2=0$
C. $3 x+2 y-63=0$
D. none of these

Answer: B
149. The equations $a x+b y+c=0$ and $d x+e y+f=0$ represent the same straight line if and only if
A. $\frac{a}{d}=\frac{b}{e}$
B. $c=f$
C. $\frac{a}{d}=\frac{b}{e}=\frac{c}{f}$
D. $a=d, b=e, c=f$

Answer: C

- Watch Video Solution

150. Let $P S$ be the median of the triangle with vertices $\quad P(2,2), Q(6,-1) \operatorname{and} R(7,3) \quad$ Then equation of the line passing through $(1,-1)$ and

$$
\begin{array}{ll}
\text { parallel to } P S & \text { is } \\
2 x-9 y-11=0 & \\
2 x-9 y-7=0 \\
2 x+9 y+7=0
\end{array}
$$

A. $2 x-9 y-7=0$
B. $2 x-9 y-11=0$
C. $2 x+9 y-11=0$
D. $2 x+9 y-7=0$

- Watch Video Solution

151. If the lines $a x+12 y+1=0 \quad b x+13 y+1=0$ and $c x+14 y+1=0$ are concurrent then a, b, c are in
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: A

- Watch Video Solution

152. If $(-4,5)$ is a vertex of a square and one of its diagonal is $7 x-y+8$-0.Find the equation of other diagonal
A. $7 x-y+23=0$
B. $x+7 y=31$
C. $x-7 y=31$
D. none of these

Answer: B

- Watch Video Solution

153. The new co-ordinates of the point $(4,5)$ when the origin is shified to the point $(1,-2)$ is
A. $(5,3)$
B. $(3,5)$
C. $(3,7)$
D. $(7,3)$

Answer: C

- Watch Video Solution

154. A straight line moves so that the sum of the reciprocals of its intercepts on two perpendicular
lines is constant then the line passes through-
A. (k,k)
B. $\left(\frac{1}{k}, \frac{1}{k}\right)$
C. (k,-k)
D. $(-k,-k)$

Answer: B

- Watch Video Solution

155. the lines $(p+2 q) x+(p-3 q) y=p-q$ for different values of $p \& q$ passes trough the fixed point is:
A. $\left(\frac{3}{2}, \frac{5}{2}\right)$
B. $\left(\frac{2}{5}, \frac{2}{5}\right)$
C. $\left(\frac{3}{5}, \frac{3}{5}\right)$
D. $\left(\frac{2}{5}, \frac{3}{5}\right)$

Answer: D
156. Show that the straight line $x(a+2 b)+y(a+3 b)=(a+b)$ for different values of a and b passes through the fixed point.

Find that point
A. $(2,1)$
B. $(2,-1)$
C. $(-2,1)$
D. $(-2,-1)$

Answer: B
157. The diagonals of a parallelogram $A B C D$ are along are the lines $x+3 y=4$ and $6 x-2 y=7$. Then $A B C D$ must be a
A. rectangle

B. kite

C. cyclic quadrilateral
D. rhombus

Answer: D

- Watch Video Solution

158. If $a+b+c=0$ then the line $3 a x+b y+2 c=0$ passes through the fixed point

$$
\begin{aligned}
& \text { А. }\left(2, \frac{2}{3}\right) \\
& \text { в. }\left(\frac{2}{3}, 2\right) \\
& \text { С. }\left(2, \frac{2}{3}\right) \\
& \text { D. }\left(\frac{2}{3}, \frac{2}{3}\right)
\end{aligned}
$$

Answer: B

159. Equation of a straight line passing through the

point of intersection of
$x-y+1=0$ and $3 x+y-5=0$ are
perpendicular to one of them is
A. $x+y+3=0$
B. $x+y-3=0$
C. $x-3 y-5=0$
D. $x+3 y+5=0$

Answer: B
160.

The
lines
$x \cos \alpha+y \sin \alpha=P_{1}$ and $x \cos \beta+y \sin \beta=P_{2}$ will be perpendicular, if :
A. $\alpha=\frac{\pi}{2}$
B. $\alpha=\beta$
C. $\alpha \pm \beta=\frac{\pi}{2}$
D. $|\alpha-\beta|=\frac{\pi}{2}$

Answer: D

