

MATHS

BOOKS - MARVEL MATHS (HINGLISH)

STRAIGHT LINE

Illustrative Examples

1. Using slopes show that the points (1,3), (3,-1) and

(5,-5) are collinear.

2. If the triangle with vertices A (12,8) , B (-2,k) and C

(6,0) is right - angled at C, find k.

3. The point P is (-2,5). Find the point A on the X axis

and the point B on the Y-axis such that the slope of

the line AP is 3 and slop of line BP is 7.

4. If the point (1,1) lies on the line passing through the points (a,0) and (0,b) find the value of the expression: $\frac{1}{a} + \frac{1}{b}$.

Watch Video Solution

5. Find the equation of the line having inclination 135° and bisecting the join of the points (-2,5) and (3,4).

6. Find the equation of the line which passes through the point (5-1), and divides the join of the points (9,2) and (3,4) internally in the ratio 1:2.

Watch Video Solution

7. A (1,-2), B(-2,3) and C (2,-5) are the vertives of Δ

ABC. Find the equation of the

(i) side AC

(ii) altiude from A

(iii) median from B

Perpendicular bisector of side AB.

8. If (2,-3) and (-6,7) are opposite vertices of a rhombus, find the equations of its diagonals.

9. Prow that the line through the point $(x_1 > y_1)$ and parallel to the line Ax + By + C = 0 is $A(x - x_1) + B(y - y_1) = 0$.

10. Show that the equation of a line passing through a given point (x_1, y_1) and perpendicular to the line ax+by +c =0 is $b(x-x_1) - a(y - y_1) = 0.$

11. If a line passing through a point (k,2) and having

x- intercept 4 has slope 1/3 find K.

12. If a line has x-intercept =a and y- intercept =b show that its slope is m= -b/a. Hence discuss the equation of a line which makes equal makes equal intercepts on the co-ordinate axes.

Watch Video Solution

13. Find the equation of the line passing through the point (1,3), if its y-intercept is 3 times its x-intercept.

14. Find the equation of the straight line which passes through the point (-3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.

15. If the mid- point of the portion of a line intercepted between ithe co-ordinate axes is (4,5) find the equation of the line.

16. A line intersects the co- ordinate axes in the points A and B such that area of Δ OAB is 48 sq. units. If the line passes through the point (3,6) find its equation.

17. A square is constructed on the portion of x + y = 5, which is intercepted between the axes on the side of the line away from origin. The equations to the diagonals of the square are

18. If (-4,5) is a vertex of a square and one of its diagonal is 7x-y+8-0.Find the equation of other diagonal

Watch Video Solution

19. The points (1,3), (5, 1) are the opposite vertices of a rectangle. The other two vertices lie on the line y = 2x + c. Find c and remaining two vertices.

20. The sides of a parallelogram are parallel to the lines 5x-y=0 and 7x+y=0. If (1,3) and (-2,4) are a pair of its opposite vertices find the equations of all of its sides.

21. Astraight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.

22. Find the measure of the acute angle between the two lines.
(i) x+3y+1=0 and 2x+y+7=0
(ii) 3x+2y=9 and 2x-y+1=0.

23. Two sides of a square are along the lines

5x-12y+39=0 and 5x-12y+78=0.

Find the area of the square.

24. Find the radius of a circle which touches two

lines

3x-4y-6=0 and 6x-8y+1=0.

25. Find the equation of the line at a distance of 3

units from the origin and having inclination 120° .

26. Find the coordinates of a point on x+y+3=0, whose distance from

27. Find the co-ordinates of the point (s) on the X-axis which is (are) at a unit distance from the line 5x+12y=12.

28. Find the equation of a line parallel to the line x+2y-1=0, which is at a distance of $2\sqrt{5}$ units from the point (1,3).

29. Find the equation of a line perpendicular to the line 3x-y-5=0, which is at a distance of $2\sqrt{10}$ units froms the points (1,-1).

Watch Video Solution

30. If P_1 and p_2 are the lenghts of the perpendiculars drawn from the origin to the two lines

x sec α +y . Cosec α =2a

and x. $\cos \alpha$ +y. $\sin \alpha$ =a. $\cos 2 \alpha$,

show that $P_1^2+P_2^2$ is constant for all values of lpha .

31. If the perpendicular distance of the line (x/a)+ (y/b)=1 from the origin is $p/\sqrt{2}$ show that a^2 , p^2 , b^2 are in Harmonic Progression.

Watch Video Solution

32. Show that the equation

(3-2k) x-(2+k)y=5-k,

where k is real represents a family of lines all passing through a fixed point. Find the co-ordinates of this fixed point.

33. Using slopes show that the points (1,3), (3,-1) and

(5,-5) are collinear.

Watch Video Solution

34. If the triangle with vertices A (12,8), B (-2,k) and C

(6,0) is right - angled at C, find k.

35. The point P is (-2,5). Find the point A on the X axis and the point B on the Y-axis such that the slope of the line AP is 3 and slop of line BP is 7.

Watch Video Solution

36. If the point (1,1) lies on the line passing through the points (a,0) and (0,b) find the value of the expression:

$$\frac{1}{4} + \frac{1}{b}.$$

37. Find the equation of the line having inclination 135° and bisecting the join of the points (-2,5) and (3,4).

38. Find the equation of the line which passes through the point (5-1), and divides the join of the points (9,2) and (3,4) internally in the ratio 1:2.

39. A (1,-2), B(-2,3) and C (2,-5) are the vertives of Δ

ABC. Find the equation of the

(i) side AC

- (ii) altiude from A
- (iii) median from B

Perpendicular bisector of side AB.

Watch Video Solution

40. If (2,-3) and (-6,7) are opposite vertices of a

rhombus, find the equations of its diagonals.

41. Prow that the line through the point $(x_1 > y_1)$ and parallel to the line Ax + By + C = 0 is $A(x - x_1) + B(y - y_1) = 0$.

Watch Video Solution

42. Show that the equation of a line passing through a given point (x_1, y_1) and perpendicular to the line ax+by +c =0 is

 $\mathsf{b}(\mathsf{x} extsf{-}x_1) - a(y-y_1)$ =0.

43. If a line passing through a point (k,2) and having

x- intercept 4 has slope 1/3 find K.

44. If a line has x-intercept =a and y- intercept =b show that its slope is m= -b/a. Hence discuss the equation of a line which makes equal makes equal intercepts on the co-ordinate axes.

45. Find the equation of the line passing through the point (1,3), if its y-intercept is 3 times its x-intercept.

Watch Video Solution

46. Find the equation of the straight line which passes through the point (-3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.

47. If the mid- point of the portion of a line intercepted between ithe co-ordinate axes is (4,5) find the equation of the line.

Watch Video Solution

48. A line intersects the co- ordinate axes in the points A and B such that area of Δ OAB is 48 sq. units. If the line passes through the point (3,6) find its equation.

49. A square is constructed on the portion of x + y = 5, which is intercepted between the axes on the side of the line away from origin. The equations to the diagonals of the square are

50. If (-4,5) is a vertex of a square and one of its diagonal is 7x-y+8-0.Find the equation of other diagonal

51. The points (1, 3) and (5, 1) are two opposite vertices of a rectangle. The other two vertices lie on the line y = 2x + c. What is the value of c ?

Watch Video Solution

52. The sides of a parallelogram are parallel to the lines 5x-y=0 and 7x+y=0. If (1,3) and (-2,4) are a pair of its opposite vertices find the equations of all of its sides.

53. Astraight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.

54. Find the measure of the acute angle between the two lines.

- (i) x+3y+1=0 and 2x+y+7=0
- (ii) 3x+2y=9 and 2x-y+1=0.

55. Two sides of a square are along the lines

5x-12y+39=0 and 5x-12y+78=0.

Find the area of the square.

Watch Video Solution

56. Find the radius of a circle which touches two

lines

3x-4y-6=0 and 6x-8y+1=0.

57. Find the equation of the line at a distance of 3

units from the origin and having inclination 120° .

58. Find the co-ordinates of the point (s) on the line

x+y+3=0, whose distance from the line x+2y+2=0 is $\sqrt{5}$ units.

59. Find the co-ordinates of the point (s) on the X-axis which is (are) at a unit distance from the line 5x+12y=12.

Watch Video Solution

60. Find the equation of a line parallel to the line x+2y-1=0, which is at a distance of $2\sqrt{5}$ units from the point (1,3).

61. Find the equation of a line perpendicular to the line 3x-y-5=0, which is at a distance of $2\sqrt{10}$ units froms the points (1,-1).

Watch Video Solution

62. If P_1 and p_2 are the lenghts of the perpendiculars drawn from the origin to the two lines

x sec α +y . Cosec α =2a

and x. $\cos \alpha$ +y. $\sin \alpha$ =a. $\cos 2 \alpha$,

show that $P_1^2+P_2^2$ is constant for all values of lpha .

63. If the perpendicular distance of the line (x/a)+ (y/b)=1 from the origin is $p/\sqrt{2}$ show that a^2, p^2, b^2

are in Harmonic Progression.

64. Show that the equation

(3-2k) x-(2+k)y=5-k,

where k is real represents a family of lines all passing through a fixed point. Find the co-ordinates of this fixed point.

65. If $u \equiv x$ -y-6 and $v \equiv 2x$ -y-12 find the points (s)

of intersection of the two loci

21 u +107 v =0 and 5u-133 v =0.

Mutiple Choice Questions

1. If the line passing through (2,3) and (5,k) has slope

(5/3), then : k=

B. 0

C. 8

D. 2

Answer: C

Watch Video Solution

2. If the points (-3,4), (-14,12) and (8,k) are collinear then :k

A. -1

B. -2

C. -3

D. -4

Answer: D

3. If the point (3,k) lies on the line passing through the points (-1,3) and (1,5) then :k=

A. -1

B. 3

C. 7

D. 2

Answer: C

Watch Video Solution

4. If the triangle whose vertices are A(4,3), B(6,-2) and C(k,-3) is right -angled at A, then : K=

A. 3

B. 8

C. -11

D. -5

5. If A is (5,-3) and B is a point on the X-axis such that the slope of line AB is (-2), then : B=

A. (7,2)

B. (7/2,0)

C. (0,7/2)

D. (2/7,0)

6. If A is (-4,9) and B is a point on the Y-axis such that

the slope of the line AB is (-1), then : B \equiv

A. (0,1)

B. (0,3)

C. (5,0)

D. (0,5)

Answer: D

Watch Video Solution

7. If A is (1,-2), B (3,k), C(-3,1) and D (k,4) where lines AB

and CD are parallel then : K=

A. -2/7B. 2/7C. -7/2

D. 7/2

8. If A is (1,-2), B (3,k), C(-3,1) and D(k,4) where lines AB

$$\perp$$
 CD then :k=

A.
$$-\frac{5}{12}$$

B. 5/12

C. - 12/5

D. 12/5

9. If the point (1,1) lies on the line passing through

the points

(a,0) and (0,b) then : $\frac{1}{a} + \frac{1}{b}$ =

A. -1

B. 0

C. 1

D.
$$\frac{1}{ab}$$

Answer: C

Watch Video Solution

10. The slope of the line which bisects the angles in

the first and third quadrants is

A. -1

B. 0

C. 1

D. none of these

11. The slope of the line which bisects the angles in

the second and fourth quadrants is

A. -1

B. 0

C. 1

D. none of these

12. If A (1,-2), B (-2,3) and C(2,-5) are the vertices of Δ

ABC, then the equation of the median BE is

A. 7x+13y+47=0

B. 13x+7y+5=0

C. 7x-13y+5=0

D. none of these

13. The equation of the line which passes through (4,7) and divides the join of (1,7) and (6,-3) internally in the ratio 2:3, is

A. y=4x-9

B. x=4y-9

C. 4x+y=9

D. none of these

14. The equation of the line having inclination 120° and dividing the join of (-1,4) and (2,6) externally in the ratio 2:1, is

A.
$$\sqrt{3}$$
 .x+y=13
B. (x-5) $\sqrt{3}$ +y=8

C. x+ $y_{\sqrt{3}=8}$

15. The area of the quadrilateral whose sides are along the lines x=0, x=4,y=-3 and y=5 is

A. 12

B. 15

C. 20

D. 32

Answer: D

16. The equation of the line through (1, 2), which makes equal intercepts on the axes is

A.
$$x + y = 1$$

$$\mathsf{B.}\,x+y=2$$

$$C. x + y = 4$$

D. none of these

Answer: D

17. The equation of the line through (4, 1), whose xintercept is double its y – intercepts on the axes is

A.
$$x+2y=6$$

B. 2x + y = 6

C.
$$x + 2y + 6 = 0$$

D. none of these

18. The equation of the line through the origin which bisects the portion of the line 3xy=12 intercepted between the axex is

A. 3x+y=0

B. y=3x

C. x=3y

D. none of these

19. If (2,3) is the midpoint of the portion of a line intercepted between the co-ordinate axes , then the equation of the line is

A. 2x+3y=12

B. 2x+3y+12=0

C. 3x+2y=12

D. none of these

20. Find the equation of the straight line which passes through the point (-3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.

A. 8x-3y=24

B. 4x+3y=12

C. 3x + 8y = 24

D. none of these

21. The equation of the line through (6,1) having xand y-intercepts eaual in magnitude but opposite in sign is

A. x-y=5

B. y=x+5

C. x+y=5

D. none of these

22. The equation of the line having y – intercept = -7, and parallel to the join of (2,3) and (-3,7) is

A. 5x + 4y + 28 = 0

B. 4x + 5y + 35 = 0

C. 4x + 5y + 28 = 0

D. none of these

23. The equation of the line having x- intercept =5/3, and perendicular to the join of (5,-2) and (-1,3) is

A. 6x-5y=10

B. 5x-6y=10

C. 6x-5y+10=0

D. none of these

24. A line meets X-axis in A and Y-axis in B. If R (4,6) is point on the line such that AR:RB=3:2, then the equation of the line is

A. y=x+10

B. x+y+10=0

C. x+y=10

D. none of these

25. The length of the perpendicular from the origin on a line L is 3. If the perpendicular make an angle of 240° with positive X-axis then the equation of line L is

A.
$$\sqrt{3}$$
 .x+y=6

B.
$$x+y\sqrt{3}$$
+6=0

C.
$$\sqrt{3}$$
 ,x+y+6=0

D. none of these

26. If the length of the perpendicular to a line L from the origin is 8 and the perpendicular makes an angle of 60° with the X-axis then the equation of line L is

A. x+
$$y\sqrt{3}$$
=16

B.
$$x\sqrt{3}$$
+y=16

C. x-
$$y\sqrt{3}$$
+16=0

D. none of these

27. If the length of the perpendicular to a line L from the origin si $5\sqrt{2}$ and the perpendicular to a makes an angle of 135° with the X-axis then the equation of line L is

A. x+y+10=0

B. x-y-10=0

C. y=x+10

D. none of these

28. If A is $(\sqrt{3},1)$ and B is $\left(\sqrt{3},\,-1
ight)$, then :m $an\geq l$ AOB=

A. 30°

B. 45°

C. 60°

D. 90°

29. If the line kx+4y=6 passes through the point of intersection of the two lines 2x+3y=4 and 3x+4y=5, then : k=

- A. 1
- B. 2
- C. 3
- D. 4

30. If the line ky=x+1 passes through the point on intersection of the two lines 2x-3y+5=0 and 3x+2y+1=0, then :k=

A. -1

B. 0

C. 1

D. none of these

Answer: B

Watch Video Solution

31. The foot of the perpendicular from (1,2) on the

line x-3y+7=0 is

A. (5/4, 5/13)

B. (4/5, 13/5)

C. (4/5, 9/5)

D. none of these

32. The foot of the perpendicular from (2,-5) on the

line 3x-4y+10=0 is

A. (-58/25, 19/25)

B. (58/25,-19/25)

C. (25/58,-25/19)

D. none of these

33. Distance of the point (-2,-4) from the line $\frac{x}{3} - \frac{y}{4} = 1$ is

A. 43959

B. 44048

C. 0

D. none of these

34. Find the equation of the line at a distance of 3 units from the origin and having inclination 120° .

A.
$$\sqrt{3}$$
. $x\pm y+6=0$

B.
$$\sqrt{3}$$
. $x+y\pm 6=0$

C. x+y=6

D. none of these

35. A point of the X-axis which is at a unit distance

from the line 5x+12y=12 is

A. (1/5,0)

B. (5,0)

C. (17,0)

D. none of these

36. If the perpendicular distance of the line (x/a)+ (y/b)=1 from the origin is $p/\sqrt{2}$ show that a^2 , p^2 , b^2 are in Harmonic Progression.

A. A.P.

B. G.P.

C. H.P.

D. none of these

Answer: C

Watch Video Solution

37. If p_1 and p_2 are the lengths of the perpendicular form the orgin to the line $x \sec \theta + y \cos ec\theta = a$ and $x \cos \theta - y \sin \theta = a \cos 2\theta$ respectively then prove that $4p_1^2 + p_2^2 = a^2$

B.m

 $\mathsf{C}.\,m^2$

D. m^4

38. In relation to the line : $\frac{x}{3} - \frac{y}{4} = 1$, the point (-2,-4) lies on

A. the line

B. the origin side of the line

C. the non- origin side of the line

D. none of these

39. In relation to the line : 7(x-2) = 5(y+3), the point (3,-2) lies on

A. the line

B. origin side of the line

C. non-origin side of the line

D. none of these

40. If the line passing through (2,3) and (5,k) has slope (5/3), then : k=

A. -1

B. 0

C. 8

D. 2

41. If the points (-3,4), (-14,12) and (8,k) are collinear

then :k

A. -1

B. -2

C. -3

D. -4

Answer: D

42. If the point (3,k) lies on the line passing through

the points (-1,3) and (1,5) then :k=

A. -1

B. 3

C. 7

D. 2

43. If the triangle whose vertices are A(4,3), B(6,-2) and C(k,-3) is right -angled at A, then : K=

A. 3

B. 8

C. -11

D. -5

44. If A is (5,-3) and B is a point on the X-axis such that the slope of line AB is (-2), then : B=

A. (7,2)

B. (7/2,0)

C. (0,7/2)

D. (2/7,0)

45. If A is (-4,9) and B is a point on the Y-axis such that the slope of the line AB is (-1), then : B \equiv

A. (0,1)

B. (0,3)

C. (5,0)

D. (0,5)

Answer: D

46. If A is (1,-2), B (3,k), C(-3,1) and D (k,4) where lines

AB and CD are parallel then : K=

A. -2/7

B. 2/7

C. - 7/2

D. 7/2

47. If A is (1,-2), B (3,k), C(-3,1) and D(k,4) where lines

AB \perp CD then :k=

A.
$$-\frac{5}{12}$$

B. 5/12

- C. 12/5
- D. 12/5

48. If the point (1,1) lies on the line passing through

the points

(a,0) and (0,b) then : $\frac{1}{a} + \frac{1}{b}$ =

A. -1

B. 0

C. 1

D.
$$\frac{1}{ab}$$

Answer: C

Watch Video Solution

49. The slope of the line which bisects the angles in

the first and third quadrants is

A. -1

B. 0

C. 1

D. none of these

50. The slope of the line which bisects the angles in

the second and fourth quadrants is

A. -1

B. 0

C. 1

D. none of these

51. If A (1,-2), B (-2,3) and C(2,-5) are the vertices of Δ

ABC, then the equation of the median BE is

A. 7x+13y+47=0

B. 13x+7y+5=0

C. 7x-13y+5=0

D. none of these

52. The equation of the line which passes through (4,7) and divides the join of (1,7) and (6,-3) internally in the ratio 2:3, is

A. y=4x-9

B. x=4y-9

C. 4x+y=9

D. none of these

53. The equation of the line having inclination 120° and dividing the join of (-1,4) and (2,6) externally in the ratio 2:1, is

C. x+ $y\sqrt{3}$ =8

54. The area of the quadrilateral whose sides are

along the lines x=0, x=4,y=-3 and y=5 is

A. 12

B. 15

C. 20

D. 32

Answer: D

55. The equation of the line through (1,2), which makes equal intercepts on the axes is

A. x+y=1

B. x+y=2

C. x+y=4

D. none of these

Answer: D

56. The equation of the line through (4,1), whose x-intercept is double its y-intercepts on the axes is

A. x+2y=6

B. 2x+y=6

C. x+2y+6=0

D. none of these

57. The equation of the line through the origin which bisects the portion of the line 3x-y=12 intercepted between the axes is

A. 3x+y=0

B. y=3x

C. x=3y

D. none of these

58. If (2,3) is the midpoint of the portion of a line intercepted between the co-ordinate axes , then the equation of the line is

A. 2x+3y=12

B. 2x+3y+12=0

C. 3x+2y=12

D. none of these

59. Find the equation of the straight line which passes through the point (-3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.

A. 8x-3y=24

B. 4x+3y=12

C. 3x + 8y = 24

D. none of these

60. The equation of the line through (6,1) having xand y-intercepts eaual in magnitude but opposite in sign is

A. x-y=5

B. y=x+5

C. x+y=5

D. none of these

61. The equation of the line having y-intercept =-7, and parallel to the join of (2,3) and (-3,7) is

A. 5x+4y+28=0

B. 4x+5y+35=0

C. 4x+5y+28=0

D. none of these

62. The equation of the line having x- intercept =5/3, and perendicular to the join of (5,-2) and (-1,3) is

A. 6x-5y=10

B. 5x-6y=10

C. 6x-5y+10=0

D. none of these

63. A line meets X-axis in A and Y-axis in B. If R (4,6) is point on the line such that AR:RB=3:2, then the equation of the line is

A. y=x+10

B. x+y+10=0

C. x+y=10

D. none of these

64. The length of the perpendicular from the origin on a line L is 3. If the perpendicular make an angle of 240° with positive X-axis then the equation of line L is

A.
$$\sqrt{3}$$
 .x+y=6

B.
$$x+y\sqrt{3}$$
+6=0

C.
$$\sqrt{3}$$
 ,x+y+6=0

D. none of these

65. If the length of the perpendicular to a line L from the origin is 8 and the perpendicular makes an angle of 60° with the X-axis then the equation of line L is

A. x+
$$y\sqrt{3}$$
=16

B.
$$x\sqrt{3}$$
+y=16

C. x-
$$y\sqrt{3}$$
+16=0

D. none of these

66. If the length of the perpendicular to a line L from the origin si $5\sqrt{2}$ and the perpendicular to a makes an angle of 135° with the X-axis then the equation of line L is

A. x+y+10=0

B. x-y-10=0

C. y=x+10

D. none of these

67. If A is $(\sqrt{3},1)$ and B is $\left(\sqrt{3},\,-1
ight)$, then :m $an\geq l$ AOB=

A. 30°

B. 45°

C. 60°

D. 90°

68. If the line kx+4y=6 passes through the point of intersection of the two lines 2x+3y=4 and 3x+4y=5, then : k=

- A. 1
- B. 2
- C. 3
- D. 4

69. If the line ky=x+1 passes through the point on intersection of the two lines 2x-3y+5=0 and 3x+2y+1=0, then :k=

A. -1

B. 0

C. 1

D. none of these

Answer: B

Watch Video Solution

70. The foot of the perpendicular from (1,2) on the

line x-3y+7=0 is

A. (5/4, 5/13)

B. (4/5, 13/5)

C. (4/5, 9/5)

D. none of these

71. The foot of the perpendicular from (2,-5) on the

line 3x-4y+10=0 is

A. (-58/25, 19/25)

B. (58/25,-19/25)

C. (25/58,-25/19)

D. none of these

72. Distance of the point (-2,-4) from the line $\frac{x}{3} - \frac{y}{4} = 1$ is

A. 43959

B. 44048

C. 0

D. none of these

73. Find the equation of the line at a distance of 3 units from the origin and having inclination 120° .

A.
$$\sqrt{3}$$
. $x\pm y+6=0$

B.
$$\sqrt{3}$$
. $x+y\pm 6=0$

C. x+y=6

D. none of these

74. A point of the X-axis which is at a unit distance

from the line 5x+12y=12 is

A. (1/5,0)

B. (5,0)

C. (17,0)

D. none of these

75. If the perpendicular distance of the line (x/a)+ (y/b)=1 from the origin is $p/\sqrt{2}$ show that a^2 , p^2 , b^2 are in Harmonic Progression.

A. A.P.

B. G.P.

C. H.P.

D. none of these

Answer: C

Watch Video Solution

76. If p_1 and p_2 are the lengths of the perpendicular form the orgin to the line $x \sec \theta + y \cos ec\theta = a$ and $x \cos \theta - y \sin \theta = a \cos 2\theta$ respectively then prove that $4p_1^2 + p_2^2 = a^2$

B.m

 $\mathsf{C}.\,m^2$

D. m^4

77. In relation to the line : $\frac{x}{3} - \frac{y}{4} = 1$, the point (-2,-4) lies on

A. the line

B. the origin side of the line

C. the non- origin side of the line

D. none of these

Answer: B

78. In relation to the line : 7(x-2) =5(y+3), the point (3,-2) lies on

A. the line

B. origin side of the line

C. non-origin side of the line

D. none of these

Answer: C

Miscellaneous Mcqs

1. If the point P(p, q) is equidistant from the points A(a + b, b - a) and B(a - b, a + b), then

A. ax=by

B. bx=ay

C. ax=-by

D. bx=-ay

Answer: B

2. Prove that the points (a+b+c),(b,c+a) and (c,a+b) are collinear.

A. vertices of an equilateral triangle

B. vertices of a right angled triangle

C. concyclic

D. collinear

Answer: D

3. Points A (a,3) and C (5,b) are opposite vertices of a rectangle ABCD. If the other two vertices lie on the line y=2x +c which passes through the point (a,b), then : c=

A. -7

B. -4

C. 0

D. 7

Answer: A

4. If a,b,c are non-zero real numbers in H.P then the

line $rac{x}{a}+rac{y}{b}+rac{1}{c}=0$ always passes through a

fixed point whose coordinates are

A. (1,-2)

B. (1,-1/2)

C. (-1,2)

D. (-1,-2)

Answer: A

5. Let A (2,-3) and B(-2,1) be vertices of a triangle ABC.
If the centroid of this triangle moves on line 2x + 3y
= 1, then the locus of the vertex C is the line :

A. 3x+2y=5

B. 2x-3y=7

C. 2x+3y=9

D. 3x-2y=3

6. For any real values of a,b,c such that 3a, +2b+4c=0, line ax+by+c=0 passes through the fixed point whose coordinates are

A. (3,2)

B. (2,4)

C. (3,4)

D. (3/4,1/2)

Answer: D

7. The equations of sides of a triangle are x+3y=0 ,
4x-3y=5 and 3x-y=0. Then the line 6x-7y=0 passes
through the ______ of the triangle.

A. incentre

B. centroid

C. circumcentre

D. orthocentre

Answer: D

Watch Video Solution

8. Ifa,b,c are in A.P., a,x,b,are in G.P and b,y,c are also

in G.P then the point (x,y) lies on

A. a line

B. a circle

C. an ellipse

D. a hyperbola

Answer: B

9. If we reduce 3x + 3y + 7 = 0 to the form $x \cos lpha + y \sin lpha = p,$ then find the value of p.

Answer: D

10. The length of perpendicular from the point ($a\cos \propto$, $a\sin \propto$) upon the striaght line y = x $\tan \propto + c$ (where c gt 0) is

A. c

B. c. $\sin^2 \alpha$

C. c.cos α

D. c. $\sec^2 \alpha$

11. the line $\frac{x}{a} - \frac{y}{b} = 1$ cuts the *x*-axes at *P*.the equation of the line passes through point *P* and perpendicular to the line is:

A. x+y=ab

B. x+y=a+b

C. ax+by= a^2

D. bx+ay= a^2

12. If (-4,5) is a vertex of a square and one of its diagonal is 7x-y+8-0.Find the equation of other diagonal

A. x+3y=21

B. 2x=3y=7

C. x+7y=31

D. 2x+3y=21

13. If a,b,c > 0, then area of the triangle formed by

the line ax+by+c=0 and coordinatte axes is

A.
$$\frac{a^2}{2abc}$$
B.
$$\frac{b^2}{2abc}$$
C.
$$\frac{c^2}{2abc}$$

14. If the line ax+by+c=0 always passes through the

fixed point (1,-2) then : a,b,c are in

A. A.P.

B. G.P.

C. H.P.

D. none of these

Answer: A

15. A square of area 25 sq.units is formed by taking two sides as $3x + 4y = k_1$ and $3x + 4y = k_2$ then $|k_1 - k_2| =$

A. 5

B. 1

C. 25

D. 20

16. Segment joining (1,2) and (-2,1) is divided by the

line 3x+4y=7 in the ration

A. 3:4

B. 4:3

C.9:4

D. 4:9

Answer: D

17. The medians AD and BE of the triangle with vertices A(O, b), B(O, O) and C(a, O) are mutually perpendicular if

A. $b=a\sqrt{2}$ B. $a=b\sqrt{2}$ C. $b=-a\sqrt{2}$

D. a=
$$5b\sqrt{2}$$

Answer: B

18. A triangle are(6, 0). (0, 6) and (6, 6). If distance between circumcentre and orthocenter and distance between circumcentre and centroid are λ and u unit respectively, then (λ, u) lies on:

A. $2\sqrt{2}$

B. 2

C. $3\sqrt{2}$

D. 1

19. If a vertex of a triangle is (1, 1), and the middle points of two sides passing through it are -2, 3) and (5, 2), then find the centroid and the incenter of the triangle.

A. (5/3,3)

B. (5/3,-3)

C. (-5/3,3)

D. (-5/3,-3)

Answer: A

20. Find the points on the line x + y = 4 that lies at a unit distance from the line 4x + 3y = 10.

A. (5,-1)

- B. (-7,11)
- C. (3,-1)
- D. (7,-11)

Answer: B

21. A rectangle has two opposite vertices at the points (1,2) and (5,5). If the other vertices lie on the line x=3, then their coordinates are

A. (3,-1), (3,-6)

B. (3,1), (3,5)

C. (3,2), (3,6)

D. (3,1) ,(3,6)

Answer: D

22. find the equation of the straight line passing through the origin and the middle point of intercept of the line ax + by + c = 0 between the axes

A. ax+by=0

B. ax-by=0

C. bx+ay=0

D. bx=ay=0

Answer: B

23. Diagonals of a parallelogram PQRS must be a

A. rectangle

B. square

C. cyclic quadrilateral

D. rhombus

Answer: D

View Text Solution

24. A line passes through (2,2) and is perpendicular

to the line 3x + y = 3, is

A. 3x + y = 8

B. 3x - y = 4

C. x - 3y = -4

D. x + 3y = 8

Answer: C

25. The distance of the mid point of the line joining the points $(a \sin \theta, 0)$ and $(0, a \cos \theta)$ from the origin is

A.
$$\frac{a}{2}$$

B. $\frac{a}{2}(\sin\theta + \cos\theta)$
C. $a(\sin\theta + \cos\theta)$

D. a

Answer: A

26. If a,b,c > 0 and the line ax +cy=2b makes a triangle of area 2 with the axes then :

A. a,b,c are in G.P.

B. a,-b,-c are in G.P.

C. a,2b,c are in G.P.

D. a,-2b,c are in G.P.

Answer: A

27. If P_1 and P_2 are the lenghts of perpendiculars from origin to the lines x. sec a+y . Csc a=2a and x.cos α +y. sin α =a cos 2 α ,

A. $4\sin^2 4lpha$

B. 4 $\cos^2 4\alpha$

C. 4 $\csc^2 4\alpha$

D. 4 $\sec^2 4\alpha$

Answer: C

View Text Solution

28. If A(-1, 3), B(1, -1) and C(5, 1) are the vertices of a triangle ABC , find the length of the median through A.

B. 4

C. 1

D. 3

Answer: A

Watch Video Solution

29. The equation of the locus of the point whose distance from the x-axis is twice that of from the y-axis is :

A. y=x

B. y=2x

C. x=y

D. x=2y

Answer: D

Watch Video Solution

30. The points (3,3), (h,0) and (0,k) are collinear if

A.
$$\frac{1}{h} + \frac{1}{k} + = \frac{1}{3}$$

B. $\frac{1}{h} - \frac{1}{k} = \frac{1}{3}$
C. $\frac{1}{k} - \frac{1}{h} = \frac{1}{3}$

$$\mathsf{D}.\,\frac{1}{h} = \frac{1}{k}$$

Answer: A

Watch Video Solution

31. if (3, -4), (-6, 5) are the exterimities of the diagonal of the parallelogram and (-2, -1) is itts third vertex then find fourth vertex,

A. (1,0)

B. (-1,0)

C. (0,1)

D. (0,-1)

Answer: B

Watch Video Solution

32. If P = (1,0); Q = (-1.0)&R = (2,0) are three given points, then the locus of the points S satisfying the relation, $SQ^2 + SR^2 = 2SP^2$ is -

A. a line || to X-axis

B. a line || to Y-axis

C. circle with centre at origin

D. none of these

Answer: B

Watch Video Solution

33. The distance of the mid point of the line joining the points $(a \sin \theta, 0)$ and $(0, a \cos \theta)$ from the origin is

A. a

B.
$$\frac{a}{2}(\sin\theta + \cos\theta)$$

 $C.a(\sin\theta + \cos\theta)$

Answer: D

34. If a triangle has its orthocentre at (1,1) and circumcentre at (3/2,3/4) then the coordinate of the centroid of triangle is

$$A.\left(\frac{4}{3},\ -\frac{5}{6}\right)$$
$$B.\left(\frac{4}{3},\ \frac{5}{6}\right)$$
$$C.\left(-\frac{4}{3},\ \frac{5}{6}\right)$$

$$\mathsf{D}.\left(-\frac{4}{3},\ -\frac{5}{6}\right)$$

Answer: B

Watch Video Solution

35. Find the orthocentre of the triangle whose vertices are (0, 0), (3, 0), and (0, 4).

A.
$$\left(\frac{3}{4},2\right)$$

B. (0,0)

$$\mathsf{C.}\left(1,\frac{4}{3}\right)$$
$$\mathsf{D.}\left(2,\frac{3}{2}\right)$$

(-3, 5) and (3, 3) then its circumcentre is

A. (0,4)

B. (6,-2)

C. (6,2)

D. (0,8)

37. The medians AD and BE of the triangle with vertices A(0, b), B(0, 0) and C(a, 0) are mutually perpendicular if

A. a = $\frac{b}{2}$ B. b= $\frac{a}{2}$ C. ab=1

D. a=
$$\pm \sqrt{2b}$$

Answer: D

38. The point which divides the join of (1,2) and(3,4) externally in the ratio 1:1 a. lies in the III quadrant b. lies in the II quadrant c. lies in the I quadrant d. cannot be found

A. lies in the third quadrant

B. lies in the second quadrant

C. lies in the first quadrant

D. cnnont be found

Answer: D

39. The points (-a, -b), (0, 0). (a, b) and (a^2, a^3) are

A. vertices of a rectangle

B. vertices of a parallelogram

C. collinear

D. none of these

Answer: C

40. If A and B are two points on the line joining P (2,5) and Q (4,-7) such that PA =AB=BQ then the mid point of seg AB is

- A. (3,1)
- B. (3,-1)
- C. (-3,1)
- D. (-1,3)

41. A triangle with vertices (4, 0), (-1, -1), (3, 5), is

A. isosceles and right-angled

B. isosceles but not right -angled

C. right-angled but not isosceles

D. neither isosceles nor right -angled

Answer: A

42. If B (1,3) is equidistant form A (6,1) and C (x,8)

then : x =

A. 3 or -5

B.-3 or 5

C. -3 or 5

D. 3 or 5

Answer: B

43. The points (1,5), (2,4) and (3,3) are

A. vertices of an equilateral triangle

B. vertices of an isosceles triangle

C. vertices of a right-angle triangle

D. collinear

Answer: D

Watch Video Solution

44. If A \equiv (0,0) and B \equiv (4,-3) then the locus of

the moving point P such that 2 PA = 3PB is

A.
$$5x^2 + 5y^2$$
+72x+54y+225=0

B.
$$5x^2 + 5y^2$$
-72x-54y+225=0

C.
$$5x^2 + 5y^2$$
-72x+54y+225=0

D. none of these

Answer: C

Watch Video Solution

45. If the points (x,y), (x',y') and (x'-x',y-y') are collinear

then

A. xy=x'y'

B. xx'=yy'

C. xy'=x'y

D. none of these

Answer: C

Watch Video Solution

46. The vertices of a triangle are $(2, 4), B(2, 6), C(2 + \sqrt{3}, 5)$. The triangle is :

A. isosceles and right- angled

B. always isosceles

C. right- angled

D. equilateral

Answer: D

Watch Video Solution

47. The triangle with vertices (0,0), (2,0) and (0,3) is

A. acute-angled

B. isosceles

C. right-angled

D. equilateral

48. For what value of k are the points (k, 2-2k), (-k+1, 2k)and(-4-k, 6-2k) collinear?

A.
$$\frac{1}{2}$$

B. $-\frac{1}{2}$
C. 1

D. -1

Answer: D

49. If the point P(x, y) be equidistant from the points A(a+b,a-b) and B(a-b,a+b) then

A. ax=by

B. bx=ay

C. ax=-by

D. bx=-ay

Answer: B

50. If P(1, 2)Q(4, 6), R(5, 7), and S(a, b) are the vertices of a parallelogram PQRS, then a = 2, b = 4 (b) a = 3, b = 4 a = 2, b = 3 (d) a = 1 or b = -1

A. a=2, b=4

B. a=3, b=4

C. a=2,b=3

D. a=3, b=5

51. Prove that the line y - x + 2 = 0 divides the join of points (3,-1) and (8,9) in the ratio 2:3.

A. 2:3

B. 3:2

C. - 2:3

 $\mathsf{D.}-3\!:\!2$

Answer: A

52. The orthocentre of the triangle formed by the

lines xy = 0 and x + y = 1, is

A. (-2-1)

B. (-2, 1)

C. (0,0)

D. none of these

53. Find the equation of the straight line which makes an angle of 15° with the positive direction of x-axis and which cuts and intercept of length 4 on then negative direction of y-axis.

A.
$$(2-\sqrt{3})x+y-4=0$$

B. $(2-\sqrt{3})x-y-4=0$
C. $(2-\sqrt{3})xy-4=0$

D. $(2+\sqrt{3}x+y+4=0)$

54. The equation of the straight line cutting off an no intercept 8 on x-axis and making an angle of 60° with the positive direction of y -axis is

A. x-
$$\sqrt{3}$$
y=8

B. x- $\sqrt{3}$ y=8

C.
$$y=\sqrt{3}x+8$$

D. none of these

55. A rectangle has two opposite vertices at the points (1,2) and (5,5). If the other vertices lie on the line x=3, then their coordinates are

A. (3,-1), (3,-6)

B. (3,1), (3,5)

C. (3,2), (3,6)

D. (3,1), (3,6)

Answer: D

56. The equation of the line which passes through the point (3,4) and whos y-intercept is twice its x-intercept, is

A. 2x-y=0

B. x+2y=10

C. 2x+y=10

D. none of these

57. Find the equation of the straight line whose intercepts on X-axis and Y-axis are respectively twice and thrice of those by the line 3x + 4y = 12.

A. 9x+8y=72

B. 9x-8y=72

C. 8x+9y=72

D. 9y-8x=72

Answer: A

58. find the equation of the straight line passing through the origin and the middle point of intercept of the line ax + by + c = 0 between the axes

A. ax+by=0

B. ax-by=0

C. bx+ay=0

D. bx-ay=0

59. Find the equation of the straight line upon which the length of perpendicular from origin is $3\sqrt{2}$ units and this perpendicular makes an angle of 75^0 with the positive direction of x-axis.

A.
$$\left(\sqrt{3}-1
ight)x+\left(\sqrt{3}+1
ight)y-12=0$$

B. $\left(\sqrt{3}-1
ight)x+\left(\sqrt{3}+1
ight)y+12=0$
C. $\left(\sqrt{3}+1
ight)x+\left(\sqrt{3}-1
ight)y-12=0$

D. none of these

Answer: A

60. Find the angle between x + y = 3 and the line joining points (1,1) and (-3,4)

A.
$$\tan^{-1}\left(\frac{3}{7}\right)$$

B. $\pi - \tan^{-1}\left(\frac{3}{7}\right)$
C. $\tan^{-1}\left(\frac{1}{7}\right)$
D. $\pi - \tan^{-1}\left(\frac{1}{7}\right)$

61. The equation of the line passing through (1,-2) and parallel to the line 8x-4y+7=0 is

A. 2x+y-4=0

B. 2x-y+4=0

C. 2x-y-4=0

D. 2x-y+6=0

62. The equation of the line passing through (2,-4) and perpendicular form the point (2,4) on the line x+y=1 is

A. x+2y+6=0

B. x-2y+6=0

C. 2x+y+6=0

D. 2x-y+6=0

Answer: A

63. \cdot The co-ordinates of foot of the perpendicular from the point (2, 4)on the line x + y = 1 are:

A.
$$\left(\frac{1}{2}, \frac{3}{2}\right)$$

B. $\left(-\frac{1}{2}, \frac{3}{2}\right)$
C. $\left(\frac{4}{3}, \frac{1}{2}\right)$
D. $\left(\frac{3}{4}, -\frac{1}{2}\right)$

64. Find coordinates of the foot of perpendicular, image and equation of perpendicular drawn from the point (2, 3) to the line y = 3x - 4.

A.
$$\left(-\frac{1}{10}, \frac{37}{10}\right)$$

B. $\left(\frac{1}{10}, -\frac{37}{10}\right)$
C. $\left(-\frac{1}{10}, \frac{37}{10}\right)$
D. $\left(\frac{1}{10}, \frac{37}{10}\right)$

Answer: A

65.	The	value	of	k	such	that	the	lines
2x	-3y +	k=0,	3x –	- 4y	t-13 =	= 0		and
8x-11y-33=0 are concurrent is								
	A. 7							
	B7							
	C. 5							
	D5							
Answer: B								

66. A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3, then its yintercept is

A.
$$\frac{1}{3}$$

B. $\frac{2}{3}$
C. 1
D. $\frac{4}{3}$

Answer: D

67. A square is constructed on the portion of x + y = 5, which is intercepted between the axes on the side of the line away from origin. The equations to the diagonals of the square are

A. x=5, y=-5

B. x=-5 , y=5

C. x=5, y=5

D. x-y=5 , x-y=-5

Answer: C

68. The equation of the line with gradient $-\frac{3}{2}$ which is concurrent with the lines 4x + 3y - 7 = 0and 8x + 5y - 1 = 0

A. 2y-3x-2=0

B. 3x+2y-2=0

C. 3x+2y-63=0

D. none of these

69. The equations ax + by + c = 0 and dx + ey + f = 0 represent the same straight line if and only if

A.
$$\frac{a}{d} = \frac{b}{e}$$

B. c=f
C. $\frac{a}{d} = \frac{b}{e} = \frac{c}{f}$

Answer: C

70. Let PS be the median of the triangle with vertices P(2,2), Q(6, -1)andR(7,3) Then equation of the line passing through (1, -1) and parallel to PS is 2x - 9y - 7 = 02x - 9y - 11 = 02x + 9y - 11 = 02x + 9y + 7 = 0A. 2x-9y-7=0 B. 2x-9y-11=0 C. 2x+9y-11=0 D. 2x+9y-7=0

Answer: D

71. If the lines ax+12y+1=0 bx+13y+1=0 and

cx+14y+1=0 are concurrent then a,b,c are in

A. A.P.

B. G.P.

C. H.P.

D. none of these

Answer: A

72. If (-4,5) is a vertex of a square and one of its diagonal is 7x-y+8-0.Find the equation of other diagonal

A. 7x-y+23=0

B. x+7y=31

C. x-7y=31

D. none of these

73. The new co-ordinates of the point (4,5) when the

origin is shifted to the point (1,-2) is

A. (5,3)

- B. (3,5)
- C. (3,7)
- D. (7,3)

Answer: C

74. If the sum of reciprocals of x-and y-inercepts of a line is a constant k then the line passes through the fixed point whose co-ordinates are

A. (k,k)
B.
$$\left(\frac{1}{k}, \frac{1}{k}\right)$$

C. (k,-k)

Answer: B

75. the lines (p+2q)x + (p-3q)y = p-q for different values of p&q passes trough the fixed point is:

$$A.\left(\frac{3}{2},\frac{5}{2}\right)$$
$$B.\left(\frac{2}{5},\frac{2}{5}\right)$$
$$C.\left(\frac{3}{5},\frac{3}{5}\right)$$
$$D.\left(\frac{2}{5},\frac{3}{5}\right)$$

Answer: D

76. Show that the straight line x(a+2b) + y(a+3b) = (a+b) for different values of a and b passes through the fixed point . Find that point

A. (2,1)

- B. (2,-1)
- C. (-2,1)
- D. (-2,-1)

Answer: B

77. The diagonals of a parallelogram ABCD are along are the lines x+3y=4 and 6x-2y=7. Then ABCD must be

а

A. rectangle

B. kite

C. cyclic quadrilateral

D. rhombus

Answer: D

Watch Video Solution

78. If a+b+c=0 then the line 3ax+by+2c=0 passes through the fixed point

A.
$$\left(2, \frac{2}{3}\right)$$

B. $\left(\frac{2}{3}, 2\right)$
C. $\left(2, \frac{2}{3}\right)$
D. $\left(\frac{2}{3}, \frac{2}{3}\right)$

Answer: B

79. Equation of a straight line passing through the

point of intersection of x - y + 1 = 0 and 3x + y - 5 = 0 are

perpendicular to one of them is

A. x+y+3=0

B. x+y-3=0

C. x-3y-5=0

D. x+3y+5=0

Answer: B

80.

lines

 $x\coslpha+y\sinlpha=P_1 ext{ and } x\coseta+y\sineta=P_2$ will be perpendicular, if :

A.
$$\alpha = \frac{\pi}{2}$$

B. $\alpha = \beta$
C. $\alpha \pm \beta = \frac{\pi}{2}$
D. $|\alpha - \beta| = \frac{\pi}{2}$

Answer: D

Watch Video Solution

81. If the point P(x, y) is equidistant from the points A(a + b, b-a) and B(a-b, a + b). Prove that bx = ay.

A. ax=by

B. bx=ay

C. ax=-by

D. bx=-ay

Answer: B

82. The points (a, b + c), (b, c + a) and (c, a + b)

A. vertices of an equilateral triangle

B. vertices of a right angled triangle

C. concyclic

D. collinear

Answer: D

Watch Video Solution

83. Points A (a,3) and C (5,b) are opposite vertices of

a rectangle ABCD. If the other two vertices lie on the

line y=2x +c which passes through the point (a,b),

then : c=

A. -7

B. -4

C. 0

D. 7

Answer: A

84. If a, b, c are in harmonic progression, then the straight line $\left(\left(\frac{x}{a}\right)\right)_{\frac{y}{b}} + \left(\frac{l}{c}\right) = 0$ always passes

through a fixed point. Find that point.

A. (1,-2)

B. (1,-1/2)

C. (-1,2)

D. (-1,-2)

Answer: A

85. Let A (2,-3) and B(-2,1) be vertices of a triangle
ABC. If the centroid of this triangle moves on line 2x
+ 3y = 1, then the locus of the vertex C is the line :

A. 3x+2y=5

B. 2x-3y=7

C. 2x+3y=9

D. 3x-2y=3

Answer: C

Watch Video Solution

86. For any real values of a,b,c such that 3a, +2b+4c=0, line ax+by+c=0 passes through the fixed point whose coordinates are

A. (3,2)

B. (2,4)

C. (3,4)

D. (3/4,1/2)

Answer: D

87. The equations of sides of a triangle are x+3y=0, 4x-3y=5 and 3x-y=0. Then the line 6x-7y=0 passes through the _____ of the triangle. A. incentre

B. centroid

C. circumcentre

D. orthocentre

Answer: D

Watch Video Solution

88. Ifa,b,c are in A.P., a,x,b,are in G.P and b,y,c are also

in G.P then the point (x,y) lies on

A. a line

B. a circle

C. an ellipse

D. a hyperbola

Answer: B

Watch Video Solution

89. If we reduce 3x + 3y + 7 = 0 to the form $x \cos \alpha + y \sin \alpha = p$, then the value of p is $\frac{7}{2\sqrt{3}}$ (b) $\frac{7}{3}$ (c) $\frac{3\sqrt{7}}{2}$ (d) $\frac{7}{3\sqrt{2}}$

A.
$$\frac{7}{2\sqrt{3}}$$

B.
$$\frac{7}{3}$$

C. $\frac{3\sqrt{7}}{2}$
D. $\frac{7}{3\sqrt{2}}$

Answer: D

90. The length of perpendicular from the point ($a\cos \propto$, $a\sin \propto$) upon the striaght line y = x $\tan \propto + c$ (where c gt 0) is

B. c. $\sin^2 lpha$

C. c.cos α

D. c. $\sec^2 lpha$

Answer: C

Watch Video Solution

91. the line $\frac{x}{a} - \frac{y}{b} = 1$ cuts the *x*-axes at *P*.the equation of the line passes through point *P* and perpendicular to the line is:

A. x+y=ab

B. x+y=a+b

C. ax+by= a^2

D. bx+ay= a^2

Answer: C

Watch Video Solution

92. If (-4,5) is a vertex of a square and one of its diagonal is 7x-y+8-0.Find the equation of other diagonal

A. x+3y=21

B. 2x=3y=7

C. x+7y=31

D. 2x+3y=21

Answer: C

93. If a,b,c > 0, then area of the triangle formed by

the line ax+by+c=0 and coordinatte axes is

A.
$$\frac{a^2}{2abc}$$
B.
$$\frac{b^2}{2abc}$$

С. 2abc

D. 0

Answer: C

94. If the line ax+by+c=0 always passes through the

fixed point (1,-2) then : a,b,c are in

A. A.P.

B. G.P.

C. H.P.

D. none of these

Answer: A

Watch Video Solution

95. A square of area 25 sq.units is formed by taking two sides as $3x + 4y = k_1$ and $3x + 4y = k_2$ then $|k_1 - k_2| =$

A. 5

B. 1

C. 25

D. 20

Answer: C

Watch Video Solution

96. Segment joining (1,2) and (-2,1) is divided by the

line 3x+4y=7 in the ration

A. 3:4

B.4:3

C.9:4

D. 4:9

Answer: D

97. The medians AD and BE of the triangle with vertices A(0, b), B(0, 0) and C(a, 0) are mutually perpendicular if

A. b= $a\sqrt{2}$

B. a= $b\sqrt{2}$

C. b= $-a\sqrt{2}$

D. a= $5b\sqrt{2}$

98. Vertices of a triangle are A (6,0), B (0,6) and C(6,6). The distance between its circumcentre and orthocentre is

A. $2\sqrt{2}$ B. 2 C. $3\sqrt{2}$

D. 1

99. If a vertex of a triangle is (1, 1), and the middle points of two sides passing through it are -2, 3) and (5, 2), then find the centroid and the incenter of the triangle.

A. (5/3,3)

B. (5/3,-3)

C. (-5/3,3)

D. (-5/3,-3)

100. Find the points on the line x + y = 4 that lies at a unit distance from the line 4x + 3y = 10.

A. (5,-1)

B. (-7,11)

C. (3,-1)

D. (7,-11)

Answer: B

101. A rectangle has two opposite vertices at the points (1,2) and (5,5). If the other vertices lie on the line x=3, then their coordinates are

A. (3,-1), (3,-6)

B. (3,1), (3,5)

C. (3,2), (3,6)

D. (3,1) ,(3,6)

Answer: D

102. Find the equation of the straight line passing through the origin and bisecting the portion of the line ax + by + c = 0 intercepted between the coordinate axes.

A. ax+by=0

B. ax-by=0

C. bx+ay=0

D. bx=ay=0

Answer: B

103. Diagonals of a parallelogram PQRS must be a

A. rectangle

B. square

C. cyclic quadrilateral

D. rhombus

Answer: D

104. A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3, then its yintercept is

A. 43833

B. 43864

C. 1

D. 43924

Answer: D

105. The distance of the mid point of the line joining the points $(a \sin \theta, 0)$ and $(0, a \cos \theta)$ from the origin is

A.
$$\frac{a}{2}$$

B. $\frac{a}{2}(\sin\theta + \cos\theta)$
C. $a(\sin\theta + \cos\theta)$

Answer: A

106. If the straight line ax + cy = 2b, where a, b, c > 0, makes a triangle of area 2 sq. units with the coordinate axes, then a, b, c are in GP a, -b; c are in GP a, 2b, c are in GP (d) a, -2b, c are in GP

A. a,b,c are in G.P.

B. a,-b,-c are in G.P.

C. a,2b,c are in G.P.

D. a,-2b,c are in G.P.

Answer: A

107. If P_1 and P_2 are the lenghts of perpendiculars from origin to the lines x. sec a+y . Csc a=2a and x.cos α +y. sin α =a cos 2 α ,

A. $4\sin^24lpha$

- B. 4 $\cos^2 4 \alpha$
- C. 4 $\csc^2 4\alpha$
- D. 4 $\sec^2 4\alpha$

Answer: C

108. If A(-1, 3), B(1, -1) and C(5, 1) are the vertices of a triangle ABC, what is the length of the median through vertex A?

A. 5

B.4

C. 1

D. 3

Answer: A

109. The equation of the locus of the point whose distance from the x-axis is twice that of from the y-axis is :

A. y=x

B. y=2x

C. x=y

D. x=2y

Answer: D

110. Show that the points (3, 3), (h, 0) and (0, k)are collinear if $\frac{1}{h} + \frac{1}{k} = \frac{1}{3}$ A. $\frac{1}{h} + \frac{1}{k} + \frac{1}{3}$

A.
$$\frac{1}{h} + \frac{1}{k} + =$$

B. $\frac{1}{h} - \frac{1}{k} = \frac{1}{3}$
C. $\frac{1}{k} - \frac{1}{h} = \frac{1}{3}$
D. $\frac{1}{h} = \frac{1}{k}$

Answer: A

111. if (3, -4), (-6, 5) are the exterimities of the diagonal of the parallelogram and (-2, -1) is itts third vertex then find fourth vertex,

A. (1,0)

B. (-1,0)

C. (0,1)

D. (0,-1)

112. If P(1,0), Q(-1,0) and R (2,0) are three given points, then the locus of the point S satisfying the relation $(SQ)^2 + (SR)^2 = 2(SP)^2$

A. a line || to X-axis

B. a line || to Y-axis

C. circle with centre at origin

D. none of these

113. The distance of the mid point of the line joining the points $(a \sin \theta, 0)$ and $(0, a \cos \theta)$ from the origin is

A. a

B.
$$rac{a}{2}(\sin heta+\cos heta)$$

C. a
$$(\sin heta + \cos heta)$$

D.
$$\frac{a}{2}$$

Answer: D

114. If a triangle has it's orthocenter at (1,1) and circumcentre (3/2,3/4) then centroid is:

A.
$$\left(\frac{4}{3}, -\frac{5}{6}\right)$$

B. $\left(\frac{4}{3}, \frac{5}{6}\right)$
C. $\left(-\frac{4}{3}, \frac{5}{6}\right)$
D. $\left(-\frac{4}{3}, -\frac{5}{6}\right)$

115. The vertices of a triangle are (0,3) ,(-3,0) and (3,0) . The coordinates of its orthocentre are

A.
$$\left(\frac{3}{4},2\right)$$

B. (0,0)

$$\mathsf{C.}\left(1,\frac{4}{3}\right)$$
$$\mathsf{D.}\left(2,\frac{3}{2}\right)$$

116. If the orthocentre and centroid of a triangle are

(-3, 5) and (3, 3) then its circumcentre is

A. (0,4)

B. (6,-2)

C. (6,2)

D. (0,8)

117. The medians AD and BE of the triangle with vertices A(0, b), B(0, 0) and C(a, 0) are mutually perpendicular if

A. a
$$=$$
 $\frac{b}{2}$
B. b= $\frac{a}{2}$
C. ab=1

D. a=
$$\pm \sqrt{2b}$$

Answer: D

118. The point which divides the join of (1,2) and(3,4) externally in the ratio 1:1 a. lies in the III quadrant b. lies in the II quadrant c. lies in the I quadrant d. cannot be found

A. lies in the third quadrant

B. lies in the second quadrant

C. lies in the first quadrant

D. cnnont be found

Answer: D

119. The points (-a, -b), (0, 0). (a, b) and (a^2, a^3) are

A. vertices of a rectangle

B. vertices of a parallelogram

C. collinear

D. none of these

120. If A and B are two points on the line joining P (2,5) and Q (4,-7) such that PA =AB=BQ then the mid point of seg AB is

- A. (3,1)
- B. (3,-1)
- C. (-3,1)
- D. (-1,3)

121. A triangle with (4, 0), (-1, -1), (3, 5), is

vertices

A. isosceles and right- angled

B. isosceles but not right -angled

C. right-angled but not isosceles

D. neither isosceles nor right -angled

Answer: A

122. If B (1,3) is equidistant from A (6,1) and C (x,8)

then x =

A. 3 or -5

B.-3 or 5

C. -3 or 5

D. 3 or 5

Answer: B

123. The points (1,5), (2,5) and (3,3) are

A. vertices of an equilateral triangle

B. vertices of an isosceles triangle

C. vertices of a right-angle triangle

D. collinear

Answer: D

Watch Video Solution

124. If A \equiv (0,0) and B \equiv (4,-3) then the locus of

the moving point P such that 2 PA = 3PB is

A.
$$5x^2 + 5y^2$$
+72x+54y+225=0

B.
$$5x^2 + 5y^2$$
-72x-54y+225=0

C.
$$5x^2 + 5y^2$$
-72x+54y+225=0

D. none of these

Answer: C

125. If the points (x,y), (x',y') and (x'-x',y-y') are collinear then

A. xy=x'y'

B. xx'=yy'

C. xy'=x'y

D. none of these

Answer: C

126. The triangle with vertices (2,4), (2,6) and $(2+\sqrt{3})$

,5) is

A. isosceles and right- angled

B. always isosceles

C. right- angled

D. equilateral

Answer: D

Watch Video Solution

127. The triangle with vertices (0,0), (2,0) and (0,3) is

A. acute-angled

B. isosceles

C. right-angled

D. equilateral

128. For what value of k are the points (k, 2 - 2k), (-k + 1, 2k) and (-4 - k, 6 - 2k) collinear?

A.
$$\frac{1}{2}$$

B. $-\frac{1}{2}$
C. 1

D. -1

Answer: D

129. If the point (x, y) is equidistant from the points (a+b, b-a) and (a-b, a+b), then prove that bx=ay.

A. ax=by

B. bx=ay

C. ax=-by

D. bx=-ay

Answer: B

130. If P(1, 2)Q(4, 6), R(5, 7), and S(a, b) are the vertices of a parallelogram PQRS, then a = 2, b = 4 (b) a = 3, b = 4 a = 2, b = 3 (d) a = 1 or b = -1

A. a=2, b=4

B. a=3, b=4

C. a=2,b=3

D. a=3, b=5

131. In what ratio does the line x - y - 2 = 0 divides the line segment joining (3, -1) and (8, 9) ?

A. 2:3

- B. 3:2
- C. 2:3
- $\mathsf{D.}-3\!:\!2$

Answer: A

132. The co-ordinates of the orthocentre formed by

the lines x =0, y=0 and x+y=1 are

A. (-2-1)

B. (-2, 1)

C. (0,0)

D. none of these

133. Find the equation of the straight line which makes an angle of 15° with the positive direction of x-axis and which cuts and intercept of length 4 on then negative direction of y-axis.

A.
$$(2-\sqrt{3})x+y-4=0$$

B. $(2-\sqrt{3})x-y-4=0$
C. $(2-\sqrt{3})xy-4=0$

D. $(2+\sqrt{3}x+y+4=0)$

134. The equation of the straight line cutting off an no intercept 8 on x-axis and making an angle of 60° with the positive direction of y -axis is

A. x-
$$\sqrt{3}$$
y=8

B. x- $\sqrt{3}$ y=8

C.
$$y=\sqrt{3}x+8$$

D. none of these

135. A rectangle has two opposite vertices at the points (1,2) and (5,5). If the other vertices lie on the line x=3, then their coordinates are

A. (3,-1), (3,-6)

B. (3,1), (3,5)

C. (3,2), (3,6)

D. (3,1), (3,6)

Answer: D

136. The equation of the line which passes through the point (3,4) and whos y-intercept is twice its x-intercept, is

A. 2x-y=0

B. x+2y=10

C. 2x+y=10

D. none of these

137. Find the equation of the straight line whose intercepts on X-axis and Y-axis are respectively twice and thrice of those by the line 3x + 4y = 12.

A. 9x+8y=72

B. 9x-8y=72

C. 8x+9y=72

D. 9y-8x=72

Answer: A

138. find the equation of the straight line passing through the origin and the middle point of intercept of the line ax + by + c = 0 between the axes

A. ax+by=0

B. ax-by=0

C. bx+ay=0

D. bx-ay=0

139. Find the equation of the straight line upon which the length of perpendicular from origin is $3\sqrt{2}$ units and this perpendicular makes an angle of 75^0 with the positive direction of x-axis.

A.
$$\left(\sqrt{3}-1
ight)x+\left(\sqrt{3}+1
ight)y-12=0$$

B. $\left(\sqrt{3}-1
ight)x+\left(\sqrt{3}+1
ight)y+12=0$
C. $\left(\sqrt{3}+1
ight)x+\left(\sqrt{3}-1
ight)y-12=0$

D. none of these

Answer: A

140. Find the angle between x + y = 3 and the line joining points (1,1) and (-3,4)

A.
$$\tan^{-1}\left(\frac{3}{7}\right)$$

B. $\pi - \tan^{-1}\left(\frac{3}{7}\right)$
C. $\tan^{-1}\left(\frac{1}{7}\right)$
D. $\pi - \tan^{-1}\left(\frac{1}{7}\right)$

141. The equation of the line passing through (1,-2) and parallel to the line 8x-4y+7=0 is

A. 2x+y-4=0

B. 2x-y+4=0

C. 2x-y-4=0

D. 2x-y+6=0

142. The equation of the line passing through (2,-4) and perpendicular form the point (2,4) on the line x+y=1 is

A. x+2y+6=0

B. x-2y+6=0

C. 2x+y+6=0

D. 2x-y+6=0

Answer: A

143. \cdot The co-ordinates of foot of the perpendicular from the point (2, 4)on the line x + y = 1 are:

A.
$$\left(\frac{1}{2}, \frac{3}{2}\right)$$

B. $\left(-\frac{1}{2}, \frac{3}{2}\right)$
C. $\left(\frac{4}{3}, \frac{1}{2}\right)$
D. $\left(\frac{3}{4}, -\frac{1}{2}\right)$

144. Find the coordinates of the foot of the perpendicular drawn from the point (2,3) to the line y=3x+4

A.
$$\left(-\frac{1}{10}, \frac{37}{10}\right)$$

B. $\left(\frac{1}{10}, -\frac{37}{10}\right)$
C. $\left(-\frac{1}{10}, \frac{37}{10}\right)$
D. $\left(\frac{1}{10}, \frac{37}{10}\right)$

Answer: A

145.	The	value	of	k	such	that	the	lines
2x –	3y +	k=0,3	3x -	4y	- 13 =	= 0		and
8x -	11y –	- 33 = () are	con	icurren	t is		
A.	7							
Β.	-7							
C.	5							
D.	-5							
Answer: B								

146. A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3, then its yintercept is

A.
$$\frac{1}{3}$$

B. $\frac{2}{3}$
C. 1
D. $\frac{4}{3}$

Answer: D
147. A square is constructed on the portion of x + y = 5, which is intercepted between the axes on the side of the line away from origin. The equations to the diagonals of the square are

A. x=5, y=-5

B. x=-5 , y=5

C. x=5, y=5

D. x-y=5 , x-y=-5

Answer: C

Watch Video Solution

148. The equation of the line with gradient $-rac{3}{2}$ which is concurrent with the lines 4x+3y-7=0 and 8x+5y-1=0

A. 2y-3x-2=0

B. 3x+2y-2=0

C. 3x+2y-63=0

D. none of these

149. The equations ax + by + c = 0 and dx + ey + f = 0 represent the same straight line if and only if

A.
$$\frac{a}{d} = \frac{b}{e}$$

B. c=f
C. $\frac{a}{d} = \frac{b}{e} = \frac{c}{f}$

Answer: C

> Watch Video Solution

150. Let PS be the median of the triangle with vertices P(2,2), Q(6, -1)andR(7,3) Then equation of the line passing through (1, -1) and parallel to PS is 2x - 9y - 7 = 02x - 9y - 11 = 02x + 9y - 11 = 02x + 9y + 7 = 0A. 2x-9y-7=0 B. 2x-9y-11=0 C. 2x+9y-11=0 D. 2x+9y-7=0

Answer: D

151. If the lines ax+12y+1=0 bx+13y+1=0 and

cx+14y+1=0 are concurrent then a,b,c are in

A. A.P.

B. G.P.

C. H.P.

D. none of these

Answer: A

Watch Video Solution

152. If (-4,5) is a vertex of a square and one of its diagonal is 7x-y+8-0.Find the equation of other diagonal

A. 7x-y+23=0

B. x+7y=31

C. x-7y=31

D. none of these

153. The new co-ordinates of the point (4,5) when the origin is shified to the point (1,-2) is

A. (5,3)

- B. (3,5)
- C. (3,7)
- D. (7,3)

Answer: C

154. A straight line moves so that the sum of the reciprocals of its intercepts on two perpendicular lines is constant then the line passes through-

A. (k,k)
B.
$$\left(\frac{1}{k}, \frac{1}{k}\right)$$

C. (k,-k)

155. the lines (p+2q)x + (p-3q)y = p-q for different values of p&q passes trough the fixed point is:

$$A.\left(\frac{3}{2},\frac{5}{2}\right)$$
$$B.\left(\frac{2}{5},\frac{2}{5}\right)$$
$$C.\left(\frac{3}{5},\frac{3}{5}\right)$$
$$D.\left(\frac{2}{5},\frac{3}{5}\right)$$

Answer: D

156. Show that the straight line x(a+2b) + y(a+3b) = (a+b) for different values of a and b passes through the fixed point . Find that point

A. (2,1)

- B. (2,-1)
- C. (-2,1)
- D. (-2,-1)

157. The diagonals of a parallelogram ABCD are along are the lines x+3y=4 and 6x-2y=7. Then ABCD must be a

A. rectangle

B. kite

C. cyclic quadrilateral

D. rhombus

Answer: D

158. If a+b+c=0 then the line 3ax+by+2c=0 passes through the fixed point

A.
$$\left(2, \frac{2}{3}\right)$$

B. $\left(\frac{2}{3}, 2\right)$
C. $\left(2, \frac{2}{3}\right)$
D. $\left(\frac{2}{3}, \frac{2}{3}\right)$

159. Equation of a straight line passing through the

point of intersection of x - y + 1 = 0 and 3x + y - 5 = 0 are

perpendicular to one of them is

A. x+y+3=0

B. x+y-3=0

C. x-3y-5=0

D. x+3y+5=0

160.

lines

 $x\coslpha+y\sinlpha=P_1 ext{ and } x\coseta+y\sineta=P_2$ will be perpendicular, if :

A.
$$\alpha = \frac{\pi}{2}$$

B. $\alpha = \beta$
C. $\alpha \pm \beta = \frac{\pi}{2}$
D. $|\alpha - \beta| = \frac{\pi}{2}$

Answer: D

Watch Video Solution