©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MARVEL PHYSICS (HINGLISH)

FORCE, WORK AND TORQUE

Mcqs

1. Out of the four basic forces in nature, the
weakest force is
A. the electromagnetic force
B. the strong nuclear force
C. the gravitational force
D. the weak nuclear force

Answer: C

D Watch Video Solution
2. Out of the four baic (fundamental) forces in nature, the strongest force is
A. the electromagnetic force
B. the stong nuclear force
C. the gravitational force
D. the weak nuclear force

Answer: B

D Watch Video Solution

3. A car is moving along a road with a uniform speed of $20 \mathrm{~km} /$ hour. The net force acting on the car is
A. the driving force (P) which drives the car in the forward direction
B. the
opposing
(frictional)
force
(f),opposite to the direction of motion of
the car
C. zero
D. $P+F$

Answer: C

4. If a force $200 N$ acts on a body, the change in momentum is $100 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$. What is the time for which the force acts on th body?
A. 1 sec
B. 0.75 sec
C. 0.5 sec
D. 0.25 sec

Answer: C

5. Impulse is

A. a force

B. a scalar

C. equal to rate of change of momentum of
a body
D. equal to change in the momentum of a
body

Answer: D

6. The area under the force time curve represents
A. Work
B. Power
C. Momentum

D. Impulse

Answer: D

7. A batsman hits back a ball of mass 0.2 kg , straight in the direction of the bowler without chaning its initial speed of $6 \mathrm{~m} / \mathrm{s}$. What is the impulse impated to the ball?
A. $1.6 \mathrm{~N}-\mathrm{s}$
B. $2.4 \mathrm{~N}-\mathrm{s}$
C. $3.2 \mathrm{~N}-\mathrm{s}$
D. $4 \mathrm{~N}-\mathrm{s}$

Answer: B

8. Swimming is possible on account of

A. first law of motion
B. second law of motion
C. third law of motion
D. law of gravitation

Answer: C

9. In order to apply Newton's law of motion in

an accelerated (non-inertial) frame of reference, we make the use fo
A. electrostatic force
B. gravitationa force
C. pseudo force
D. electromagnetic force

Answer: C

D View Text Solution
10. Which one of the following forces is a pseudo force?
A. Force of friction
B. Force between an electron and a proton
C. Centrifual force
D. Gravitationa force between the planets
and the sun

Answer: C

D View Text Solution
11. A force acts on the body of mass 50 kg , for

10 second. When the force stops acting on the body, the body covers 80 m in the next 10 second. What is the magnitude of the force?
A. 40 N
B. 50 N
C. 30N
D. 60 N
12. A body of mass 5 kg is moving in a straight
line. The relation between its displacement and time t is given by $x=\left(t^{3}-2 t-10\right)$
metre. What is the force acting onit at the end of second?
A. 150 N
B. 120 N
C. 100 N
D. 80 N

Answer: A

D Watch Video Solution

13. A body of mass 10 kg has velocities of 10
$\mathrm{m} / \mathrm{s}, 11 \mathrm{~m} / \mathrm{s}$ and $12 \mathrm{~m} / \mathrm{s}$ at the end of successive
seconds. What is force acting on the body?

A. 15 N

B. 20 N
C. 10 N
D. 5 N

Answer: C

- Watch Video Solution

14. A body of mass 2 kg is at rest. Two forces of

6 N and 8 N act on the body at right angles to
each other. What is the velocity of the body after 3 second?
A. $10 \mathrm{~m} / \mathrm{s}$
B. $15 \mathrm{~m} / \mathrm{s}$
C. $5 \mathrm{~m} / \mathrm{s}$

D. $20 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

15. Two persons greet each other by shaking
hands. What kind of force do they exert on each other?
A. Gravitational
B. Nuclear

C. Electromagnetic

D. Weak nuclear force

Answer: C

D View Text Solution

16. A force $\vec{F}=(3 \hat{i}+4 \hat{j}+5 \hat{k}) N$ produces
an acceleratioinof $1.414 \mathrm{~m} / \mathrm{s}^{2}$ in a body. What
is the mass of the body?
A. 3 kg
B. 4 kg
C. 5 kg
D. 10 kg

Answer: C

D Watch Video Solution

17. A body of mass 5 kg is moving with a velocity $20 \mathrm{~m} / \mathrm{s}$. If a force of 100 N is applied on
it for 10 s in the same direction as its velocity what will be the velocity of the body?
A. $180 \mathrm{~m} / \mathrm{s}$
B. $200 \mathrm{~m} / \mathrm{s}$
C. $220 \mathrm{~m} / \mathrm{s}$
D. $250 \mathrm{~m} / \mathrm{s}$

Answer: C

D View Text Solution

18. A force F appllied to a body(A)of mas m_{1} produces an acceleratioin of $4 m / s^{2}$. If the same force F is applied to another body (B) of
mass m_{2}, then an accelerationof $10 \mathrm{~m} / \mathrm{s}^{2}$, produced in the body. A and B are the tied together and the same force is applied to the combined body. What is the acceleration of the system?

$$
\begin{aligned}
& \text { A. } \frac{10}{7} m / s^{2} \\
& \text { B. } \frac{20}{7} m / s^{2} \\
& \text { C. } \frac{5}{3} m / s^{2} \\
& \text { D. } \frac{7}{20} m / s^{2}
\end{aligned}
$$

Answer: B
19. Which one of the following observers is in an inertial frame?
A. A cyclist negotiating a sharp turn
B. A child revolving in a merry go round
C. The driver of a car moving on a straight road with a constant speed
D. A pilot in an aircraft, which is in take off stage.

Answer: C

D View Text Solution

20. A rider on a horse back falls forward if the horse suddenly stops. This is due to
A. the large weight of the horse
B. the inertia of the horse
C. losing the balance
D. the inertia of the rider.

Answer: D

D View Text Solution

21. If a consant force acts on a body of mass m,
then the body will have uniform
A. velocity
B. displacement
C. acceleration
D. momentum

Answer: C

D Watch Video Solution

22. It is easier to catch a tennis balll as compared to a cricket ball, moving with the same velocity. This is because
A. The tennis balll is lighter than the cricket ball
B. the linear momentum of the tennis ball
is less than that of the cricket ball

C. the potential energy of the tennis ball is

 more than that of the cricket ballD. both the balls have the same kinetic energy

Answer: B

D View Text Solution

23. A player caught a cricket ball of mass 150 g moving at a rate of $20 \mathrm{~m} / \mathrm{s}$. The cathcing process is completed in 0.1 second. What is the
force exerted by the ball on the hand of the player?

A. 15 N

B. 20 N
C. 30 N
D. 40 N

Answer: C

D View Text Solution
24. A person is sitting in a travelling train and
facing the engine. He tosses up a coin and
thhe coin falls behind him. It can be concluded
from this that the train is
A. moving forward and gaining speed
B. moving forward with uniform speed
C. moving forward and losing speed
D. moving backward with uniform speed

Answer: A
25. A bird weighs 0.5 kg and is inside a cage of
2.5 kg . If it starts flying, then what is the weight of the bird an cage assembly?
A. 4 kg
B. 1.5 kg
C. 3 kg
D. 2.5 kg

Answer: C
26. It is easier to draw up a wooden block along an inclined plane than haul it up vertically because
A. the friction is reduced
B. the mass becomes smaller
C. g becomes smaller
D. only a part of the weight has to be

Answer: D

D View Text Solution

27. A railway engine (mass $10^{4} \mathrm{~kg}$) is moving
with a speed of $72 \mathrm{~km} / \mathrm{h}$. The force which
should be applied to bring it to rest over a distance of 20 m is
A. 7200 N
B. 1000 N
C. 3600 N

D. 100000 N

Answer: D

D Watch Video Solution

28. A particle of mass 0.3 kg is subjected to a
force $F=-k x$ with $k=15 N / m$. What will
be its initial acceleration if it is released from a point 20 cm away from th origin?
A. $5 m / s^{2}$
B. $10 m /^{2}$
C. $3 m / s^{2}$
D. $15 m / s^{2}$

Answer: B

D View Text Solution
29. A student sitting on a chair, attempts to lift
the chair. He will not succeed
A. as the force exerted is small
B. the weight of the chair opposes the upward force
C. Newton's law of inertia is not applicable
to living beings
D. as the force applied by the students is
an internal force of the system

Answer: D

D View Text Solution
30. If suddenly the gravitational force of attaractiion between the earth and a satellite
revolving around it becomes zero, then the satellite will
A. continue to move in its orbit with the same velocity
B. move tangentially to the original orbit
with the same velocity
C. become stationary in its orbit
D. move towards the earth

Answer: B

D View Text Solution

31. A particle of mass m is moving with a uniform velocity v_{1}. It is given an impulse such that its velocity becomes v_{2}. The impulse is equal to

$$
\begin{aligned}
& \text { A. } m\left(v_{1}+v_{2}\right) \\
& \text { B. } m\left[\left|v_{2}\right|-\left|v_{1}\right|\right] \\
& \text { C. } \frac{1}{2}\left(v_{2}^{2}-v_{1}^{2}\right)
\end{aligned}
$$

$$
\text { D. } m\left(v_{2}-v_{1}\right)
$$

Answer: D

D Watch Video Solution

32. A ball of mass 150 g moving with an acceleration of $20 \mathrm{~m} / \mathrm{s}^{2}$ is hit by a force, which acts on it for 0.1 s . What is the impulsive force?

A. 0.1 N

B. 0.5 N
C. 0.3 N
D. 1.2 N

Answer: C

D View Text Solution

33. A player takes 0.1 s in catching a ball of mass 150 g moving with velocity of $20 \mathrm{~m} / \mathrm{s}$. the
force imparted by the ball on the hands of the player is
A. 3 N
B. 0.3 N
C. 30 N
D. 300 N

Answer: C

D View Text Solution

34. While launching a rocket of mass 2×10^{4} kg , a force of $5 \times 10^{5} N$ is applied for 20 s .

What is the velocity attained by the rocket at the end of 20s?
A. $300 \mathrm{~m} / \mathrm{s}$
B. $350 \mathrm{~m} / \mathrm{s}$
C. $450 \mathrm{~m} / \mathrm{s}$
D. $500 \mathrm{~m} / \mathrm{s}$

Answer: D
(D) View Text Solution
35. A cricket ball of mass 150 g is moving with a
velocity of $12 \mathrm{~m} / \mathrm{s}$ and is hit by a bat so that
the ball is turned back with a velocity ishit by a bat so that the ball is turned back with a velocity of $20 \mathrm{~m} / \mathrm{s}$. The force of blow acts for 0.01 s on the ball. What is the averate force exerted by the bat on the ball?
A. 240 N
B. 300 N
C. 380 N

D. 480 N

Answer: D

D View Text Solution

36. A machine gun fires a bullet of mass 50 gram with a velocity of $800 \mathrm{~m} / \mathrm{s}$. The man holding the machine gune can exert a maximum force o 200 N . What is the maximum number of bullets he can fire per second?
A. 2
B. 3
C. 5
D. Any number of bullets

Answer: C

D View Text Solution

37. A block (A) of mass 3 kg in contact with a second block (B) of mass 2 kg rests on a frictionless horizontal surface. A horizontal force of 20 N is applied to push the block A.

What is the force with which the block A pushes the block B ?
A. 4 N
B. 6 N
C. 8 N
D. 10 N

Answer: C

D View Text Solution
38. A force of 75 N is applied to a block of mass

25 kg , resting on a smooth horizontal surface.
In how much time, the block will acquire a speed of $12 \mathrm{~m} / \mathrm{s}$?
A. 1 sec
B. 2 sec
C. 4 sec
D. 8 sec

Answer: C

39. A ball of mass 500 gram strikes a wall with
a velocity of $80 \mathrm{~m} / \mathrm{s}$ and rebounds with the same velocity. If the tme of contact is $1 / 30 \mathrm{sec}$, then the force exerted by the ball on the wall is
A. 2000 N
B. 2200 N
C. 2400 N
D. 2500 N

Answer: C

- Watch Video Solution

40. If a force of 180 N acts on a body, its momentum charnges by $120 \mathrm{kgm} / \mathrm{s}$. What is the time for which the force acts on the body?

$$
\begin{aligned}
& \text { A. } \frac{1}{2} s \\
& \text { B. } \frac{1}{3} s \\
& \text { C. } \frac{2}{3} s \\
& \text { D. } \frac{3}{2} s
\end{aligned}
$$

Answer: C

D Watch Video Solution

41. The motion of a rocket is based on the principle of conservation of
A. mass
B. energy
C. angular momentum
D. linear momentum

Answer:

D Watch Video Solution

42. A body of mass 2 kg collides with a wall
with speed $100 \mathrm{~m} / \mathrm{s}$ and rebounds with same
speed. If the time of contact was $1 / 50$ second, the force exerted on the wall is
A. $10^{4} N$
B. $2 \times 10^{4} N$
C. $4 N$
D. 8 N

Answer: B

D Watch Video Solution

43. If a force of 250 N act on body, the momentum acquired is $125 \mathrm{~kg}-\mathrm{m} / \mathrm{s}$. What is the period for which force acts on the body
A. 0.5 s
B. 0.25 s
C. 0.4 s
D. 0.2 s

Answer: A

D Watch Video Solution

44. The engine of a car produces acceleration
$4 m / s^{2}$ in the car. If this acr pulls another car
of same mass, what will be the acceleration
produced
A. $4 m / s^{2}$
B. $2 m / s^{2}$
C. $8 m / s^{2}$
D. $\frac{1}{2} m / s^{2}$

Answer: B

D Watch Video Solution
45. A ball of weight 0.1 kg coming with speed
$30 \mathrm{~m} / \mathrm{s}$ strikes with a bat and returns in
opposite direction with speed $40 \mathrm{~m} / \mathrm{s}$, then
the impulse is (Taking final velocity as positive)

$$
\begin{aligned}
& \text { A. } 0.1 \times(40)+0.1+(-30) \\
& \text { B. } 0.1 \times(40)-0.1 \times(-30) \\
& \text { C. } 0.1 \times(40)-0.1 \times(20) \\
& \text { D. }-0.1 \times(40)-0.1 \times 30
\end{aligned}
$$

Answer: B

D Watch Video Solution

46. A body is subjected to a froce such that its
velocity is doubled ten
A. its potential energy is also doubled
B. its mometum is also doubled
C. its kinetic energy is also doubled
D. its acceleration is also doubled

Answer: B

D Watch Video Solution

47. When a horse pulls a cart, the force that helps the horse to move forward is the force exerted by
A. the horse on the cart
B. the horse on the ground
C. the ground on the horse
D. the ground on the cart

Answer: C

48. A constant force acts on a body of mass 5
kg at rest for 10 s . If the body moves through a
distance of 250 m , what is the magnitude of
the force?
A. 15 N
B. 25 N
C. 30 N
D. 40 N

Answer: B
49. The momentum of a body is numerically equal to its kinetic energy. What is the velocity of the body in m / s ?
A. $2 \mathrm{~m} / \mathrm{s}$
B. $3 \mathrm{~m} / \mathrm{s}$
C. $4 \mathrm{~m} / \mathrm{s}$
D. $1 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution
50. In non inertial frames,Newton's second law of motion is written as
where $a=$ acceleration of the body, relative to the non-inertial fram and F_{p} is the pseudo
force.

$$
\begin{aligned}
& \text { A. } \vec{F}=m \vec{a} \\
& \text { B. } \vec{F}=m \vec{a}+\vec{F}_{p} \\
& \text { C. } \vec{F}=m \vec{a}-\vec{F}_{p} \\
& \text { D. } \vec{F}=2 m a
\end{aligned}
$$

Answer: C

- Watch Video Solution

51. A body of mass 0.5 kg is moving with a velocity of $2 \mathrm{~m} / \mathrm{s}$. When a constant force of x newton acts on its fro 2 s , its velocity becomes $3 \mathrm{~m} / \mathrm{s}$. What is the value of x ?
A. 1 N
B. 5 N
C. 0.5 N

D. 0.25 N

Answer: D

- Watch Video Solution

52. The linear momentum p of a body moving in one dimension varies with time according to the equation $p=a+b t^{2}$, where a and b are positive constants. The net force acting on the body is
A. proportional to t^{2}

B. a constant

C. proportional to t
D. inversely proportional to t

Answer: C

D Watch Video Solution

53. A taxi without any passengers, moving on a frictionless horizontal road, with a velocity u can be stopped in a distance d. Now the passengers and 40% to its weight. What is the
stopping distance at veolcity u, if the retardation remains the same?
A. $\sqrt{1.4 d}$
B. $(1.4)^{2} d$
C. $1.4 d$
D. $\left(\frac{1}{1.4}\right) d$

Answer: C

D Watch Video Solution
54. A block of mass 15 kg is held by a string on
a smooth inclined plane of inclinatioin 60°.
What is the tension T is the string?
$\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. 55 N
B. 60 N
C. $75 N$
D. 90 N

Answer: C
55. A man weighing 60 kg is standing on a trolley weighting 240 kg . The trolley is resting on frictionless horizontal rails. If the man starts walking on the trolley with a velocity of $1 \mathrm{~m} / \mathrm{s}$, then after 5 s , his displacement relative to the ground is
A. $6 m$
B. $4.8 m$
C. $3.2 m$

D. $2.4 m$

Answer: C

D Watch Video Solution

56. A stream of water flowing horizontally with
a speed of $15 \mathrm{~ms}^{-1}$ pushes out of a tube of cross sectional area $10^{-2} m^{2}$ and hits a vertical wall near by what is the force exerted on the wall by the impact of water
assuming.that it does not rebound? (Density of water $=1000 \mathrm{kgm}^{3}$)
A. $4.25 \times 10^{3} N$
B. $3.25 \times 10^{3} \mathrm{~N}$
C. $2.25 \times 10^{3} \mathrm{~N}$
D. $1.25 \times 10^{3} N$

Answer: C

- Watch Video Solution

57. Water is poured from a height of 10 m into
a mepty vessel at the rate of 1 litre per second
. If the weight of the vessel is 10 kg ten th weight indicated at time $t=60 \mathrm{~s}$ will be
A. 70 kg
B. more than 70 kg
C. less than 790 kg
D. 50 kg

Answer: B
58. When forces F_{1}, F_{2}, F_{3} are acting on a particle of mass m such that F_{2} and F_{3} are mutually prependicular, then the particle remains stationary. If the force F_{1} is now rejmoved then the acceleration of the particle is

$$
\begin{aligned}
& \text { A. } \frac{F_{2}}{m} \\
& \text { B. } \frac{F_{2} F_{3}}{m F_{1}} \\
& \text { C. } \frac{F_{2}-F_{3}}{m}
\end{aligned}
$$

D. $\frac{F_{1}}{m}$

Answer: D

D Watch Video Solution

59. A ball of mass 0.2 kg thrown vertically upwards with a velcity of $30 \mathrm{~m} / \mathrm{s}$, reaces the highest point in 2.5 second. What is the air resistance experienced by the ball during its vertical motion? $\left[g=10 m / s^{2}\right]$
A. $0.5 N$
B. $0.4 N$

C. 10 N

D. 2.5 N

Answer: B

D Watch Video Solution

60. A triangular block of mass M with angle
$30,60,90$ rests with its $30-90$ side on a horizontal smooth fixed table. A cubical block of mass m rests on the $60-30$
sideofthe triangular block. What horizontal acceleration a must M have relative to the stationary table so that m remains stationary with respect to the triangular block [$M=9 \mathrm{~kg}$, $\mathrm{m}=1 \mathrm{~kg}$]
A. g
B. $\frac{g}{\sqrt{2}}$
C. $\frac{g}{\sqrt{3}}$
D. $\frac{g}{2}$

Answer: C
61. 500 steel ballls each of mass 1 gram strike normally one sq. cm area of a metal plate per second, with a velocity of $10 \mathrm{~m} / \mathrm{s}$ and rebound with the same velocity. What is the pressure exerted by the balls on the surface of the plate?
A. $10^{4} \mathrm{~N} / \mathrm{m}^{2}$
B. $10^{5} \mathrm{~N} / \mathrm{m}^{2}$
C. $2 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$

D. $4 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$

Answer: B

- Watch Video Solution

62. Two balls of same mass are dropped from
the same height onto the floor. The first ball bounces upwards from the floor elastically. The second ball stricks to the floor. The first applies an impulse to the floor of I_{1} and the
second applies an imupulse I_{2}. The impulses obey :-

$$
\begin{aligned}
& \text { A. } I_{1}=I_{2} \\
& \text { B. } I_{1}=\frac{I_{2}}{2} \\
& \text { C. } I_{1}=2 I_{2} \\
& \text { D. } I_{1}=\frac{I_{2}}{4}
\end{aligned}
$$

Answer: C
(Watch Video Solution
63. A body with mass 5 kg is acted upon by a force $\vec{F}=(-3 \hat{i}+4 \hat{j}) N$. If its initial velocity at $\mathrm{t}=0$ is $\vec{v}=6 \hat{i}-12 \hat{j} m s^{-1}$, the
time at which it will just have a velocity along the y-axis is :
A. 10s
B. 15 s
C. 5 s
D. 2 s

- Watch Video Solution

64. A cricket ball of mass $150 g$ moving with a speed of $126 \mathrm{~km} / \mathrm{h}$ hits at the middle of the bat, held firmly at its position by the batman.

The ball moves straight back to the bowler after hitting the bat. Assuming that collision between ball and bat is completely elastic and the two remain in contact for $0.001 s$, the force that the batsman had to apply to hold the bat firmly at its place would be
A. $1.05 \times 10^{4} N$
B. $2.1 \times 10^{4} N$
C. $21 N$
D. 10.5 N

Answer: A

D Watch Video Solution
65. The tension in the cable of a 1500 kg lift is

1500 kg-wt This implies that the lift
A. is accelerating upwards
B. is accelerating downwards
C. may be at rest or accelerating
D. may be at rest or in uniform motion

Answer: D

D Watch Video Solution

66. A student whose weight is 50 kg is standing in an elevator. The force felt by the
feet of the student will be maximum, when the lift is
A. stationary
B. moving downwards with an acceleration
of $5 m / s^{2}$
C. moving upwards with an acceleration of
$5 m / s^{2}$
D. moving downwards with a velocity of
$5 m / s$
67. A lift moving up with an acceleration equal to $1 / 2$ th of that due to gravity. What is the apparent weight of a 80 kg man standing in the lift?
A. 80 kg
B. 96 kg
C. 64 kg
D. 88 kg

Answer: B

D Watch Video Solution

68. A rocket with a lift-off mass $3.5 \times 10^{4} \mathrm{~kg}$ is
blasted upwards with an initial acceleration of
$10 \mathrm{~m} / \mathrm{s}^{2}$. Then the initial thrust of the blast is
A. $17.5 \times 10^{5} \mathrm{~N}$
B. $14.0 \times 10^{5} N$
C. $7.0 \times 10^{5} N$
D. $3.5 \times 10^{5} N$

Answer: C

D Watch Video Solution

69. A lift is moving down with acceleration a. A
man in the lift drops a ball inside the lift. The
acceleration of the ball as observed by the
man in the lift and a man standing stationary
on the ground are respectively
A. g,g
B. $g-a, g-a$
C. $g-a, g$
D. a, g

Answer: C

D Watch Video Solution

70. A mass of 1 kg is suspended by means of a thread. The system is (i) lifted up with an acceleration of $4.9 m s^{2}$ (ii) lowered with an acceleration of $4.9 \mathrm{~ms}^{-2}$. The ratio of tension in the first and second case is
A. $3: 1$
B. 1:2
C. 1:3
D. 2:1

Answer: A

- Watch Video Solution

71. A lift of mass 1000 kg is moving with an acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$ in upward direction.

Tension developed in the string, which is connected to the lift, is.
A. 10000 N
B. 10800 N
C. 9800 N
D. 11000 N

Answer: B
(Watch Video Solution
72. A man weighs 80 kg . He stands on a weighing scale in a lift which is moving upwords with a uniform acceleration of
$5 \mathrm{~m} / \mathrm{s}^{2}$. What would be the reading on the scale?
A. Zero

B. 1200 N

C. 400 N
D. 800 N

Answer: B
73. The mass of a lift is 2000 kg . When the tensioon in the supporting cable is 28000 N , then its acceleration is.
A. $30 \mathrm{~m} / \mathrm{s}^{2}$ downwards
B. $4 m / s^{2}$ upwards
C. $14 m / s^{2}$ upwards
D. $4 m / s^{2}$ downwards
74. A body is kept in a lift may be moving upwards or dowwards. It is found that durig the motion of the lift, the apparent weight of the body becomes twice its real weight. Then the lift is
A. moving up with a unifoirm velocity of 9.8 m / s
B. moving down with a uniform velocity of

$$
9.8 \mathrm{~m} / \mathrm{s}
$$

C. moving up with acceleration g
D. moving down with an acceleration g

Answer: C

D Watch Video Solution

75. The weight of a man standing on a weighing machine in a lift is noted when (i)
the lift is moving with a uniform velocity and
(ii) the lift is moving down with an acceleration a . The ratio of the two weights is

4
$\frac{4}{3}$. What is the value of a

$$
\begin{aligned}
& \text { A. } a=\frac{g}{2} \\
& \text { B. } a=\frac{g}{3} \\
& \text { C. } a=\frac{g}{4} \\
& \text { D. } a=\frac{g}{5}
\end{aligned}
$$

Answer: C

D Watch Video Solution
76. The force on a rocket moving with a veloctiy $300 \mathrm{~m} / \mathrm{s}$ is 210 N . The rate of consumption of fuel of rocket is
A. $0.7 \mathrm{kgs}^{-1}$
B. $1.4 \mathrm{kgs}^{-1}$
C. $0.07 \mathrm{kgs}^{-1}$
D. $10.7 \mathrm{kgs}^{-1}$

Answer: A

- Watch Video Solution

77. If a body of mass m is carried by a lift moving with an upward acceleration a, then the forces acting on the body are (i) the reaction R on the floor of the lift upwards (ii)
the weight mg of the body acting vertically downwards. The equation of motion will be given by
A. $R=m a-m g$
B. $R=m g+m a$
C. $R=m g \times m a$
D. $R=m g-m a$

Answer: B

D Watch Video Solution

78. A man of mass 60 kg records his wt. on a weighing machine placed inside a lift. The ratio of wts. Of man recorded when lift is ascending up with a uniform speed of $2 \mathrm{~m} / \mathrm{s}$ to
when it is descending down with a uniform
speed of $4 \mathrm{~m} / \mathrm{s}$ will be
A. 2
B. 1
C. 0.5
D. none of these

Answer: B

D Watch Video Solution
79. Rocket engines lift a rocket from the earth surface because hot gas with high velocity
A. push against the air
B. push against the earth
C. react against the rocket and push it up
D. heat up the air which lifts the rocket

Answer: C

D Watch Video Solution

80. In an elevator moving vertically up with an acceleration g , the force exerted on the floor by a passanger of mass M is
A. Zero
B. $\frac{1}{2} M g$
C. $M g$
D. $2 M g$

Answer: D

D Watch Video Solution

81. A spring balance is attached to the ceiling of a lift. A man hangs his bag on the spring and the spring reads 49 N , when the lift is
stationary. If the lift moves downward with an
acceleration of $5 \mathrm{~m} / 2^{2}$, the reading of the
spring balance will be
A. 15 N
B. 49 N
C. 24 N
D. 74 N

Answer: C

D Watch Video Solution
82. An object is suspended from a spring balance in a lift. The reading is 240 N when the
lift is at rest. If the spring balance reading now change to 220 N , then the lift is moving
A. downward with constant speed
B. downward with decreasing speed
C. downward with increasing speed
D. upward with increasing speed

Answer: C

D Watch Video Solution

83. A lift whose cage is 3 m high is moving up
with an acceleration of $2 m / s^{2}$. A piece of stone is dropped from the top of the cage of the lift when its velocity is $8 \mathrm{~m} / \mathrm{s}$. if $g=10 \mathrm{~m} / \mathrm{s}^{2}$, then the stone will reach the floor of the lift after
A. 0.7 s
B. 0.5 s
C. 0.4 s
D. 0.3 s

Answer: A

D Watch Video Solution

84. A 600 kg rocket is set for vertical firing. If
the exhaust speed is $1000 \mathrm{~m} / \mathrm{s}$, the mass of the gas ejected per second to supply the thrust needed to overcome the weight of rocket is
A. $58.6 \mathrm{~kg} / \mathrm{s}$
B. $76.4 \mathrm{~kg} / \mathrm{s}$
C. $6 \mathrm{~kg} / \mathrm{s}$

D. $117.6 \mathrm{~kg} / \mathrm{s}$

Answer: C

D Watch Video Solution

85. If the force on a rocket moving with a
velocity of $300 \mathrm{~m} / \mathrm{s}$ is 345 N , then the rate of combustion of the fuel is
A. $2.25 \mathrm{~kg} / \mathrm{s}$
B. $0.75 \mathrm{~kg} / \mathrm{s}$

C. $1.15 \mathrm{~kg} / \mathrm{s}$

D. $0.55 \mathrm{~kg} / \mathrm{s}$

Answer: C

- Watch Video Solution

86. A body is kept in the pan of a spring balance kept in an elevator. The reading of the spring scale will be maximum when the elevator
A. is at rest
B. moves down with an acceleration a
C. moves upwards with an acceleration a
D. cable breaks and the elevator falls freely under gravity

Answer: C

- Watch Video Solution

87. Liquid fuel is burnt in a rocket and its exhaust gas is rejected from its tail at a velocity of $10 \mathrm{~km} / \mathrm{s}$. The force acting on the rocket is $2 \times 10^{4} \mathrm{~N}$. At what rate the liquid fuel is burnt?
A. $1.5 \mathrm{~kg} / \mathrm{s}$
B. $2 \mathrm{~kg} / \mathrm{s}$
C. $2.5 \mathrm{~kg} / \mathrm{s}$
D. 3 kgs

Answer: B
88. A coin is dropped in a lift. It takes time t_{1} to reach the floor when lift is stationary. It takes time t_{2} when lift is moving up with costant acceleration. Then

$$
\text { A. } t_{1}=t_{2}
$$

B. $t_{1}>t_{2}$
C. $t_{1}<t_{2}$
D. $t_{1} \ll t_{2}$

Answer: B

- Watch Video Solution

89. When a liftman takes 5 persons in a lift, the
totla mass of the lift and the 5 persons
becomes 800 kg . What is the tension in the supporting cable, if the lift ascends with an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2} ?\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right.$
A. 8000 N
B. 8400 N

C. 9000N

D. 9600 N

Answer: D

D Watch Video Solution

90. A Diwali rocket is ejecting 5 gram of gases $/$ second at a velocity of $4 \mathrm{~m} / \mathrm{s}$. What is the accelerating force acting on the rocket?
A. 0.02 N
B. 0.5 N

C. 0.08 N

D. 0.1 N

Answer: A

- Watch Video Solution

91. The rate of mass of the gas emitted from
the rear of a rocket is initially $0.1 \mathrm{~kg} / \mathrm{s}$. If the
speed of the gas relative to the rocket is
$50 \mathrm{~m} / \mathrm{s}$ and the mass of the rocket is $2 k g$, then the acceleration of the rocket in m / s^{2} is
A. 5
B. 2.5
C. 7.5
D. 10

Answer: B
(Watch Video Solution
92. A thief stole a box full of valuable articles
of weight W and while carrying it on his back, he jumped down a wall of height ' h ' from the ground. Before he reached the ground he experienced a load of
A. 2 W
B. W
c. $\frac{W}{2}$
D. zero

Answer: D

- Watch Video Solution

93. (a) A rocket set for vertical firing weighs

50 kg and contains 450 kg of fuel. It can have a maximum exhaust velocity of $2 \mathrm{~km} / \mathrm{s}$. What should be its minimum rate of fuel consumption
(i) to just lift off the launching pad?
(ii) to give it an initial acceleration of $20 \mathrm{~m} / \mathrm{s}^{2}$?
(b) What will be the speed of the rocket when
the rate of consumption of fuel is $10 \mathrm{~kg} / \mathrm{s}$
after whole of the fuel is consumed? (Take

$$
\left.g=9.8 m / s^{2}\right)
$$

A. $2.5 \mathrm{~kg} / \mathrm{s}$
B. $10 \mathrm{~kg} / \mathrm{s}$
C. $5 \mathrm{~kg} / \mathrm{s}$
D. $20 \mathrm{~kg} / \mathrm{s}$

Answer: A

D Watch Video Solution
94. The mass of a rocket is 500 kg and the relative velocity of the gases ejecting from it is
$250 \mathrm{~m} / \mathrm{s}$ with respect to the rocket. The rate of burning of the fuel in order to give the rocket an initial acceleration $20 \mathrm{~m} / \mathrm{s}^{2}$ in the vertically
upward direction $g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$, will be -
A. $300 \mathrm{~kg} / \mathrm{s}$
B. $60 \mathrm{~kg} / \mathrm{s}$
C. $90 \mathrm{~kg} / \mathrm{s}$
D. $30 \mathrm{~kg} / \mathrm{s}$

Answer: B

- Watch Video Solution

95. A body stands on a weighing machine inside a lift. When the lift is going down wit acceleration $g / 4$, the machine shows a reading 30 kg . When the lift goes upwards with acceleration $g / 4$, the reading would be
A. 18 k
B. 37.5 kg

C. 50 kg

D. 67.5 kg

Answer: C

- Watch Video Solution

96. A body of mass 40 kg wants to climb up a rope hanging vertically. The rope can withstands a maximum tension of 500 N . What is the maximum acceleration with which the boy can climb rope? Tak e $g=10 \mathrm{~m} / \mathrm{s}^{2}$
A. $1.5 m / s^{2}$
B. $2.0 m / s^{2}$
C. $2.5 m / s^{2}$
D. $3.0 \mathrm{~m} / \mathrm{s}^{2}$

Answer: C

D Watch Video Solution

97. A man of mass 90 kg is standing in a lift whose cable broke suddenly. If thelift falls
freely, the force exerted by the floor on the man is
A. 90 N
B. 180 N
C. Zer N
D. $-90 N$

Answer: C
(Watch Video Solution
98. Three wagons, each of mass m are being
pulled by an engine exerting a froce F on the
lead wagon. What is the fore exerted on the last wagon by the middle wagon?
A. F
B. $\frac{F}{3}$
C. $\frac{2 F}{3}$
D. $\frac{F}{2}$

Answer: B
99. Three blocks A, B, C are masses
$m_{a}=10 \mathrm{~kg}, m_{B}=6 \mathrm{~kg}$ and $m_{C}=4 \mathrm{~kg}$ are
kept on a friction less table. They are connected by massless springs as shwon in
the figure. If thye are pulled by a force
$F=60 N$, then the tensioni T_{2} in the string
will be
A. 24 N
B. 36 N

C. 48 N

D. 60 N

Answer: C

D View Text Solution

100. Two blocks $m_{1}=5 g$ and $m_{2}=10 g$ are
hung vertically over a light frictionless pulley
as shown in the figure. What is the acceleration of the masses when left free?
(where g is acceleration due to gravity)
A. $\frac{g}{3}$
B. $\frac{g}{2}$
C. g
D. $\frac{g}{5}$

Answer: A

D View Text Solution
101. One end of massless rope, which passes
over a massless and frictionless pulley P is tied to a hook C while the other end is free.

Maximum tension that the rope can bear is

360 N.With what value of maximum safe acceleration (in $m s^{-2}$) can a of 60 kg climb on the rope?
A. 8
B. 4
C. 6

D. 16

Answer: B

D View Text Solution

102. Two masses $m_{1}=5 \mathrm{~kg}$ and $m_{2}=4.8 \mathrm{~kg}$
tied to a string are hanging over a light
frictionless pulley. What is the acceleration of
the masses when the system is free to move?
A. $9.8 m / s^{2}$
B. $0.2 m / s^{2}$
C. $4.8 \mathrm{~m} / \mathrm{s}^{2}$
D. $5 m / s^{2}$

Answer: B

D View Text Solution

103. The pulleys and strings shown in the
figure are smooth and of negligible mass. For the system to remain in equilibrium, the angle
θ should be
A. 60°
B. 45°
C. 30°
D. 0°

Answer: B

D View Text Solution
104. What is the value of the tension T_{3} in the given system?
A. g
B. $3 g$
C. $5 g$
D. $6 g$

Answer: D

D View Text Solution
105. Three blocks of masses $m, 3 m$ and $5 m$ are connected by massless strings and pulled by a
force F on a frictionless surface as shown in
the figure below. The tension T_{1} in the first string is 16 N .

The value fo $T_{1}{ }^{\prime}$ and T_{2}^{\prime} shall be
A. $16 \mathrm{~N}, 10 \mathrm{~N}$
B. $10 \mathrm{~N}, 16 \mathrm{~N}$
C. $2 \mathrm{~N}, 8 \mathrm{~N}$

D. $10 \mathrm{~N}, 6 \mathrm{~N}$

Answer: C

D View Text Solution

106. A light string over a frictionless pulley. To one of its ends, a mass of 6 kg is attached. To
its other end a mass of 10 kg is attached, as
shown in the figure. What is te tension in the
string?
(Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
A. 25 N
B. 30 N
C. 50 N
D. 75 N

Answer: D

- View Text Solution

107. Two masses M_{1} and M_{2} are accelerated
uniformly on a frictionless surface as shown in
the figure. The ratio of the tensions $\frac{T_{1}}{T_{2}}$ is

> A. $\frac{M_{1}}{M_{2}}$
> B. $\frac{M_{2}}{M_{1}}$
> C. $\frac{\left(M_{1}+M_{2}\right)}{M_{2}}$
> D. $\frac{M_{1}}{\left(M_{1}+M_{2}\right)}$

Answer: D

108. Three masses of $1 \mathrm{~kg}, 6 \mathrm{~kg}$ and 3 kg are connected to each other with strings and are placed on a table as shown in the figure. What is the acceleration with which the system is moving? (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
A. Zero
B. $1 m / s^{2}$
C. $2 m / s^{2}$
D. $3 m / s^{2}$

Answer: C

D View Text Solution

109. Two masses $m_{1}=1 \mathrm{~kg}$ and $m_{2}=2 \mathrm{~kg}$ are
connected by a light inextensibkle string and
suspended by means of a weightless pulley as
shown in the figure. Assuming that both the masses start from rest the distance travelled by the centre of mass in two second is (Take
$g=10 \mathrm{~m} / \mathrm{s}^{2}$)

$$
\begin{aligned}
& \text { A. } \frac{20}{9} m \\
& \text { B. } \frac{40}{9} m \\
& \text { C. } \frac{2}{3} m \\
& \text { D. } \frac{1}{3} m
\end{aligned}
$$

Answer: A

D View Text Solution
110. A ball of mass 1 kg hangs in equilibrium
from two strings $A O$ and $B O$ as shown in the
figure. What are the tensions in strings OA
and OB? (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
A. 5 N , zero
B. Zero, N
C. $5 \mathrm{~N}, 5 \sqrt{3} N$
D. $5 \sqrt{3} N, 5 N$

Answer: C
111. In the following figure, the tension in the
horizontal cord is 30 N . What is the weight of the boyd B ?
A. 40 N
B. 30 N
C. 20N
D. 10 N

Answer: B

D View Text Solution

112. Three blocks A, B and C each of mass m are attached to a stirng, pasing over a smooth pulley. What is the tension in the string connecting A and B ?
A. $\frac{2}{3} m g$
B. $m g$

> C. $\frac{4}{3} m g$
> D. $\frac{5}{3} m g$

Answer: C

D View Text Solution

113. Three bodies A, B, C each of mass 2 kg are
hanging from a string passing over a fixed
frictionless pulley as shown in the figure. What is the tension in the part of the string connecting the bodies B and C ?
$\left[g=10 m / s^{2}\right]$
A. 5 N , zero
B. 13 N
C. 8.5 N
D. 19.6 N

Answer: B

D View Text Solution
114. A mass of 20 kg is suspended by a rope of
length 4 m from the ceiling. A force of 60 N is
applied at the midpoint of the rope in the horizontal direction. What is the angle made by the rope with the vertical in equilibrium?

Assume that the mass of the rope is negligible and $g=10 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
& \text { A. } \theta=\tan ^{-1}\left(\frac{1}{10}\right) \\
& \text { B. } \theta=\tan ^{-1}\left(\frac{1}{5}\right) \\
& \text { C. } \theta=\tan ^{-1}\left(\frac{3}{10}\right)
\end{aligned}
$$

D. $\theta=\tan ^{-1}\left(\frac{1}{2}\right)$

Answer: C

D Watch Video Solution

115. Two blocks of masses 2 kg and 4 kg are in close contact on a frictionless horizontal table.

A horizontal force of 18 N is applied to the larger mass. What is the force at the surface of contact between the blocks?
A. 4 N
B. 5 N
C. 6 N
D. 8 N

Answer: C

D Watch Video Solution

116. A mass is hung with a light inextensible string as shown in the figure. What is the tension in the horizontal portion of the
string?

$$
\begin{aligned}
& \text { А. } T_{1}=\frac{M g}{\sqrt{3}} \\
& \text { В. } T_{1}=\sqrt{3} M g \\
& \text { С. } T_{1}=\frac{M g}{3} \\
& \text { D. } T_{1}=\frac{\sqrt{3}}{2} M g
\end{aligned}
$$

Answer: B

D View Text Solution
117. A block of mass m is resting one a smooth
horizontal surface. One end of a uniform rope
of mass $m / 3$ is fixed to the block, which is
pulled in the horizontal direction by applying
force F at the other end. The tension in the middle of the rope is
A. $\frac{2}{7} F$
B. $\frac{8}{7} F$
C. $\frac{7}{8} F$
D. $\frac{5}{8} F$

Answer: C

- Watch Video Solution

118. Two bodies A and B of masses 10 kg and 15
kg respectively kept on a smooth horizontal
surface are tied to the ends of a light string. If

T represents the tensiion in the string when a
horizontal force $F=500 N$ is applied to A as
shown in fig 1 and T^{\prime} be the tension in the string when it is applied to B fig, which of the
following is true?

$$
\begin{aligned}
& \text { А. } T=T^{\prime}=500 N \\
& \text { В. } T=T^{\prime}=250 N \\
& \text { С. } T=200 N, T^{\prime}=300 N \\
& \text { D. } T=300 N, T^{\prime}=200 N
\end{aligned}
$$

Answer: D

D View Text Solution

119. A 10 kg stone is suspended with a rope of breaking strength $30 \mathrm{~kg}-\mathrm{wt}$. The minimum time in which the stone can be raised through a height 10 m starting from rest is (Take,

$$
\left.g=10 N k g^{-1}\right)
$$

A. 2.0 sec
B. 1.0 sec
C. $\sqrt{\frac{2}{3}} \mathrm{sec}$
D. 0.5 sec

Answer: B

- Watch Video Solution

120. Two identical blocks eac of mass M are
linked by a thread wrapped around a pulley block with a fixed axis. A small mass ' m ' is placed on the block B. What is the acceleration with which the two blocks move?
A. $\frac{m g}{M+2 m}$
B. $\frac{m g}{2 M+m}$
C. $\frac{M g}{M+2 m}$
D. $\frac{M g}{2 M+m}$

Answer: D

D View Text Solution

121. A and B are two identical pulleys. The ropes over A and B have negligible mass. For pulley A the mass m is lifted up by attaching a mass 2 m at the other end (case 1) and produces an acceleration $\left(a_{1}\right)$ in the system.

For pulley B, the mass is lifted up by pulling
the other end of the rope with a consant dowward force $F=2 m g$ (case 2). If a_{2} is the acceleration of the system, then
A. $a_{1}=a_{2}$
B. $a_{1}=2 a_{2}$
C. $a_{1}=\frac{a_{2}}{2}$
D. $a_{1}=\frac{a_{2}}{3}$

Answer: D

122. A mass M of 10 kg is suspended with the
use strings A, B and C as shown in the figure
below where W is the vertical wall and R is a rigid horizonal rod. What is the tension in the string B ?
A. 10 gN
B. 0
C. $100 \sqrt{2 g} N$
D. $\frac{100}{\sqrt{2}} g N$

Answer: A

D View Text Solution

123. A light string passes over a frictionless
pulley. To one of its ends a mass of 6 kg is attached to its other end a mass of 10 kg is attached as shown in the figure below. The tension in the thread will be
A. 24.5 N

B. 2.45 N

C. 79 N
D. 73.5 N

Answer: D

D View Text Solution

124. A block A of mass 7 kg is placed on a frictionless table A thread tied to it passes over a frictionless pulley and carries a body B of mass 3 kg at the other end. The acceleration
of the system is
(Give: $g=10 m / s^{2}$)
A. $30 m / s^{2}$ downwards
B. $3 m / s^{2}$
C. $100 m / s^{2}$
D. $10 \mathrm{~m} / \mathrm{s}^{2}$

Answer: B

D View Text Solution
125. A block of mass M is pulled along a horizontal frictionless surface by a rope of mass m. Force P is applied at one end of rope.

The force which the rope exerts on the block is:

$$
\begin{aligned}
& \text { A. } \frac{P}{M(m+M)} \\
& \text { B. } \frac{P}{M-m} \\
& \text { C. } \frac{P m}{M-m} \\
& \text { D. } \frac{P M}{m+M}
\end{aligned}
$$

Watch Video Solution

126. Three identical blocks of mass $m=2 \mathrm{~kg}$ each are drawn by a force $F=10.2 N$ with an acceleration of $0.6 \mathrm{~m} / \mathrm{s}^{2}$ on the frictionlesss
surface. What is the tensioni (in N) in the string between the blocks B and C ?
A. 7.8 N
B. 9.2 N
C. 9.N

D. 4 N

Answer: A

D View Text Solution

127. The law of conservation of linear mometum is a logical consequence of

Newton's
A. First law of motion
B. Second law of motion

C. third law of motion

D. All the three laws

Answer: B

D Watch Video Solution

128. A bomb at rest explodes into 3 parts of
the same mas. The momenta of the two parts
are $-2 p \hat{i}$ and $p \hat{j}$. What is the magnitude of the momentum of the third part?
A. $\sqrt{3} p$
B. $\sqrt{5} p$
C. \sqrt{P}
D. $\sqrt{7} p$

Answer: B

D Watch Video Solution

129. In the motion of a rocket, the quantity which is conserved is
A. Froce
B. mass
C. Linear momentum
D. Kinetic energy

Answer: C

D Watch Video Solution

130. A body of mass m moving with a velocity v strikes a statioinalry body of mass m and sticks to it. What is the speed of the system?
A. 2 v
B. v
C. $\frac{v}{2}$
D. $\frac{v}{3}$

Answer: D

D Watch Video Solution
131. A wagon weighing 1000 kg is moving with
a velocity $50 \mathrm{~km} / \mathrm{h}$ on smooth horizontal
rails. A mass of 250 kg is dropped into it. The velocity with which it moves now is
A. $50 \mathrm{~km} / \mathrm{h}$
B. $12.5 \mathrm{~km} / \mathrm{h}$
C. $40 \mathrm{~km} / \mathrm{h}$
D. $20 \mathrm{~km} / \mathrm{h}$

Answer: C
(Watch Video Solution
132. A bullet of mass 0.1 kg is fired with a speed of $100 \mathrm{~m} / \mathrm{sec}$, the mass of gun is 50 kg
. The velocity of recoil is
A. $0.2 \mathrm{~m} / \mathrm{s}$
B. $0.05 \mathrm{~m} / \mathrm{s}$
C. $0.1 \mathrm{~m} / \mathrm{s}$
D. $0.5 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution
133. A bullet of mass A and velocity B is fried
into a block of mass C and sticks to it. The final
velocity of the system equals

$$
\begin{aligned}
& \text { A. } \frac{A+B}{C} A \\
& \text { B. } \frac{A}{A+C} B \\
& \text { C. } \frac{A+C}{B} \\
& \text { D. } \frac{A}{A+B} B
\end{aligned}
$$

Answer: B
134. Four identical railway wagons each of m, are coupled together and rest on a smooth
horizontal track. A fifth wagon of mass 2 m and movingk at $5 \mathrm{~m} / \mathrm{s}$ collides and couple with the statioinary wagons. What is the speed of the wagons after the impact?
A. $\frac{5}{6} m / s$
B. $1 m / s$
C. $\frac{5}{4} m / s$
D. $\frac{5}{3} \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution

135. A body of mass m_{1} moving with uniform
velocity of $40 \mathrm{~m} / \mathrm{s}$ collides with another mass
m_{2} at rest and then the two together begin to
moe wit h uniform velocity of $30 \mathrm{~m} / \mathrm{s}$. the ratio
of their masses $\frac{m_{1}}{m_{2}}$ is
A. $3: 4$
B. $3: 2$
C. 12:1
D. 3:1

Answer: D

D Watch Video Solution

136. A body A of mass 5 kg is moving along the x-axis with a velocity $2 \mathrm{~m} / \mathrm{s}$. Another body (B) of mass 10 kg is moving along the y -axis with a velocity $\sqrt{3} m / s$. They collide at the origin and
stick together. What is the final velocity of the

combined mass?

A. $\sqrt{3} m / s$
B. $(\sqrt{3}+1) m / s$
C. $\frac{4}{3} m / s$
D. $2(\sqrt{3}+1) m / s$

Answer: C

D Watch Video Solution

137. A car of mass 400 kg and travelling at 72
km / h hits a truck of mass 4000 kg and travelling at $9 \mathrm{~km} / \mathrm{hr}$ in the same direction. The car bounces bact at a speed of $18 \mathrm{~km} / \mathrm{h}$. What is the speed of the truck after the impact?
A. $9 \mathrm{~km} / \mathrm{h}$
B. $18 \mathrm{~km} / \mathrm{h}$
C. $27 \mathrm{~km} / \mathrm{h}$
D. $36 \mathrm{~km} / \mathrm{h}$

Answer: B
138. A uranium 238 nucleus, originally at rest, emits and α particle. The α particle travels with a speed of $\mathrm{v} \mathrm{m} / \mathrm{s}$. What is the recoil speed of the residual necleus?
A. $\frac{v}{4} m / s$
B. $-\frac{2 v}{117} m / s$
C. $-\frac{117 v}{2} m / s$
D. $\frac{4 v}{238} m / s$

Answer: B

D Watch Video Solution

139. A particle of mass m moving eastward with a speed v collides with another particle of
the same mass moving northward coalesce on
collision. The new particle of mass $2 m$ will
move in the north - easterly direction with a
velocity
A. v
B. $\frac{v}{2}$
C. $\frac{v}{\sqrt{2}}$
D. $v \sqrt{2}$

Answer: C

D Watch Video Solution

140. A body of mass 1 kg is projected vertically upwards wit a speed of $100 \mathrm{~m} / \mathrm{s}$. After 6 s it explodes into two parts. One part of mass 400
g comes back with speed $25 \mathrm{~m} / \mathrm{s}$. What is the velocity of other part just after explosion?
A. $83.3 \mathrm{~m} / \mathrm{s}$ upward
B. $600 \mathrm{~m} / \mathrm{s}$ upward
C. $100 \mathrm{~m} / \mathrm{s}$ downward
D. $300 \mathrm{~m} / \mathrm{s}$ upward

Answer: A
(Watch Video Solution
141. A neutron having a mass of $1.67 \times 10^{-27} \mathrm{~kg}$ and moving at $10^{8} \mathrm{~m} / \mathrm{s}$ collides with a deuteron at rest and sticks to it. If the mass of the deuteron is
$3.33 \times 10^{-27} \mathrm{~kg}$ then the speed of the combination is
A. $0.25 \times 10^{8} \mathrm{~m} / \mathrm{s}$
B. $0.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$
C. $0.33 \times 10^{8} \mathrm{~m} / \mathrm{s}$
D. $0.65 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

142. A shell moving with a velocity of $500 \mathrm{~m} / \mathrm{s}$,
suddenly explodes into two pieces of masses
m_{1} and m_{2}. They continue to move with velocities of $600 \mathrm{~m} / \mathrm{s}$ and $200 \mathrm{~m} / \mathrm{s}$ in the same direction. What is the ratio $\frac{m_{1}}{m_{2}}$ of the two pieces?
A. $2: 1$
B. 1:1
C. 3:1
D. $4: 1$

Answer: C

- Watch Video Solution

143. A body of mass M at rest explodes into 3 pieces, A, B and C of masses $\frac{M}{4}, \frac{M}{4}$ and $\frac{M}{2}$ respectively. A and B move in perpendicular directions with velocities $5 \mathrm{~m} / \mathrm{s}$ and $12 \mathrm{~m} / \mathrm{s}$
respectively. What is the speed of the third piece?
A. $3.5 \mathrm{~m} / \mathrm{s}$
B. $5.5 \mathrm{~m} / \mathrm{s}$
C. $6.5 \mathrm{~m} / \mathrm{s}$
D. $8 \mathrm{~m} / \mathrm{s}$

Answer: C
(Watch Video Solution
144. A shell at rest at the origin explodes into

3 fragments A, B and C of masses $1 \mathrm{~kg}, 2 \mathrm{~kg}$ and m kg respectively. A moves along the X -axis with a speed of $12 \mathrm{~m} / \mathrm{s}, \mathrm{B}$ moves along the Y axis with a speed of $16 \mathrm{~m} / \mathrm{s}$ and C flies off with
a speed of $40 \mathrm{~m} / \mathrm{s}$. What is the total mass of the shell before explosion?
A. 3.85 kg
B. 4.6 k
C. 5.35 kg

D. 8.2 kg

Answer: A

D Watch Video Solution

145. A man of 50 kg mass is standing in a gravity free space at a height of 10 m above the floor. He throws a stone of 0.5 kg mass downwards with a speed $2 m / s$. When the stone reaches the floor, the distance of the man above the floor will be

A. 10 m

B. 10.1 m

C. 9.9 m
D. 20 m

Answer: B

D Watch Video Solution
146. What is the amount of work done by a boy when
(i) he holds a bundle of books of mass 2 kg for

5 minute?

(ii) be lifts up the same bundle of books through 1 metre to keep it on his study table?
A. 0,4.9
B. 0,19.6J
C. 19.6J,0
D. 0,9.8

Answer: B

- Watch Video Solution

147. The work done by a force is given by W $=\vec{F} \cdot \vec{s}$ if $W=0$ but $F \neq 0$ and $s \neq 0$ then both \vec{F} and \vec{s} are
A. in opposite directions
B. in te same direction
C. perpendicular to each other
D. parallel to each other

Answer: C

- Watch Video Solution

148. A body covers a distance of 5 m along a straight line under the action of a fore of 10 N .

What is the angle made by the force with the direction of motionof the body if the work done is 25)?
A. 0°
B. 30°
C. 45°
D. 60°
149. A force $\vec{F}=6 \hat{i}+2 \hat{j}-3 \hat{k}$ acts on a particle and produces a displacement of $\vec{s}=2 \hat{i}-3 \hat{j}+x \hat{k}$. If the work done is zero, the value of x is
A. 4
B. 3
C. -2
D. 2

Answer: D

D Watch Video Solution

150. A block of mass 2 kg is pulled through 3 m
by a constnat horizontal force of 10 N , along a
frictionless horizontal table. What is the work doen by (i) the applied force and (ii) the gravitational force?

A. $20 \mathrm{~N}, 60 \mathrm{~N}$

B. $30 \mathrm{~N}, 15 \mathrm{~N}$

C. 30N,zero

D. $10 \mathrm{n}, 5 \mathrm{~N}$

Answer: C

- Watch Video Solution

151. A body of mass 10 kg is dropped to the ground from a height of 10 metres. The work done by the gravitational force is $\left(g=9.8 m / \sec ^{2}\right)$
A. -490 J
B. $-980 J$
C. $+490 J$
D. +980 J

Answer: D

D Watch Video Solution

152. A particle constrained to move along the Y axis of a co-ordinate system is subject to a constant force
$\vec{F}=(5 \hat{i}+4 \hat{j}-3 \hat{k})$ newton.
What is the work done by this force, in movong the particle trough 5 m along the Y axis?
A. 12]
B. 15J
C. 18J
D. 20 J

Answer: D

153. A position dependent force
$F=7-2 x+3 x^{2}$ acts on a small body of
mass 2 kg and displaced it from $x=0$ to
$x=5 m$. Calculate the work done in joule.
A. 35
B. 70
C. 135
D. 270
154. A force of $3 x^{2}-2 x+5$ acts on a body of mass 5 kg and displaces it from $x=0$ to $x=4 \mathrm{~m}$. What is the work done by the force?
A. 42 J
B. 55J
C. 68J
D. 84 J
155. The work done in taking a body from the
floor to the to of table depends upon
A. the speed of the particle
B. the actual path taken
C. the time taken in this work
D. the heigh of the table

Answer: D
156. 300 J of work is done in slinding a 2 kg block up an inclined plane of height 10m.

Taking $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, work done against friction is
A. zero
B. 100J
C. 200J
D. 1000J

Answer: B

- Watch Video Solution

157. A metre scale of mass 200 g , is lying on a
horizontal table. What is the work done by
student in making it stand vertically on one of its ends?
A. 2J
B. 1.5J
C. 1 J
D. 2.5J

Answer: C

D Watch Video Solution

158. A truck and a car are moving with the same K.E. on a straight road. Their engines are
simultaneously switched off. Which one will stop at a lesser distance?

$$
\text { A. } d_{1}=d_{2}
$$

B. $d_{1}>d_{2}$
C. $d_{1}<d_{2}$

$$
\text { D. } d_{1}=2 d_{2}
$$

Answer: C

D Watch Video Solution

159. A body of mass 10 kg dropped from a
height 20 m , acquires a velocity of $10 \mathrm{~m} / \mathrm{s}$ after a falling through a distance of 20 m . What is
the work done by the air resistance on the body?
A. 750 J
B. 1000J
C. 1500J
D. 2000J

Answer: C
(Watch Video Solution
160. The displacement (x) and time (t) for particle are related as $t=\sqrt{x}+3$. What is the work done in te first six sexond of its motion?
A. 3 J
B. 4 J
C. zero
D. 5J

Answer: C

161. If W_{1}, W_{2} and W_{3} represent the work done in movint a particle from A and B along 3 different paths, 1, 2, and 3 (as shown in the
figure) in the gravitational field of a point mass m. Then
A. $W_{1}>W_{2}>W_{3}$
B. $W_{1}<W_{2}<W_{3}$
C. $W_{1}=W_{2}=W_{3}$

D. $W_{1}>W_{2}<W_{3}$

Answer: C

D View Text Solution

162. A block of mass m is kept on a rough
horizontal surface. It is moved through a distance (s) by applyig a force F in the horizontal direction. What is the work done by
the normal reaction?
A. $R \times s$
B. zero
C. $-R \times s$
D. $\frac{R s}{2}$

Answer: B

- Watch Video Solution

163. A plate of mass m, length b, and breadth a
is initially lying on a horizontal floor with
length parallel to the floor and breath perpendicular to the floor. Find the work done
to erect it on its breadth.

A. $m g\left(\frac{L}{2}\right)$
B. $m g\left(\frac{b}{2}\right)$
C. $m g\left(\frac{L+b}{2}\right)$
D. $m g\left(\frac{L-b}{2}\right)$

Answer: D
164. A man tries hard to push a loaded truck but fails to move it. In tis case he does
A. negative work
B. postive work
C. zero work
D. maximum +ve work

Answer: C
165. A box of mass 50 k is pulled up on an incline 12 m long and 2 m high by a constant force of 100 N from rest. It acquires a velocity of $2 \mathrm{~m} / \mathrm{s}$ on reaching the top. Work done against friction is (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
A. 50J
B. 100J
C. 150 J
D. 200J

Answer: B

- Watch Video Solution

166. A 100 kg elevator rises from rest in the
basement to the fourth flor, a distance of 20
m . As it passes the fourth floor its speed is
$4 \mathrm{~m} / \mathrm{s}$. There is a constant frictional force of 500 N . The work done by the lifting mechanism
is (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
A. $200 \times 10^{3} J$
B. $205 \times 10^{3} \mathrm{~J}$
C. $218 \times 10^{3} \mathrm{~J}$
D. $210 \times 10^{3} \mathrm{~J}$

Answer: C

D Watch Video Solution

167. A body of mass 0.5 kg travels in a straight
line with velocity $v=5 x^{3 / 2}$. The work done by
the net force during its displacement from
$x=0$ to $x=2 \mathrm{~m}$ is
A. 50J
B. 45 J
C. 25J
D. none of these

Answer: A

D Watch Video Solution

168. A body of mass 2 kg , initially at rest, is moved through 3 m along the horizontal by a force of 10 N acting at an angle of 60° with
the horizontal. The kinetic energy gained by the body is
A. 15J
B. 20J
C. 25J
D. 30 K

Answer: A
(Watch Video Solution
169. A 5 kg brick of dimensions
$20 \mathrm{~cm} \times 10 \mathrm{~cm} \times 8 \mathrm{~cm}$ is lying on the largest
base. It is now made to stand with length
vertical. If $g=10 \mathrm{~m} / \mathrm{s}^{2}$, then the amount of
work done is
A. 3J
B. 5J
C. 7J
D. 9J
170. A ball of mass m collides with a wall with
speed v and rebounds on the same line with
the same speed. If the mass of the wall is
taken as infinite, then the work done by the
ball on the wall is
A. $m v^{2}$
B. $\frac{1}{2} m v^{2}$
C. $2 m v$

D. zero

Answer: D

D Watch Video Solution

171. A bullet of mass 10 g leaves a rifle at an
initial velocit of $1000 \mathrm{~m} / \mathrm{s}$ and strikes a target
at the same level with a velocity of $100 \mathrm{~m} / \mathrm{s}$.

The work done in joule to overcome the resistance of air will be
B. 3750
C. 500
D. 375

Answer: B

D Watch Video Solution

172. A body of mass $3 k g$ is under a constant force which causes a displacement s metre in
it, given by the relation $s=\frac{1}{3} t^{2}$, where t is in
seconds. Work done by the force in 2 seconds
is

> A. $\frac{5}{19} J$
> B. $\frac{19}{5} J$
> C. $\frac{8}{3} J$
> D. $\frac{3}{8} J$

Answer: C

D Watch Video Solution

173. A force acts on a 3.0 gm particle in such a way that the position of the particle as a function of time is given by $x=3 t-4 t^{2}+t^{3}$, where $x x$ is in metres and t is in seconds. The work done during the first 4 seconds is
A. 450 m
B. 490 mJ
C. 570 mJ
D. 528 mJ
174. Under the action of a force a block of mass 2 kg is moved in such a way that its position is given by $x=\frac{t^{3}}{3}$ metre. What is the work done by the force in the first two second?
A. 8 J
B. 12
C. 16J

D. 20J

Answer: C

D Watch Video Solution

175. A rain drop of radius 2 mm , falls from a height of 500 m above the ground. It falls with decreasing acceleration due to viscous resistance of air until half its original height. It attains its maximum (terminal) speed, and moves with uniform speed there after. What is
the work done by the gravitational force on
the drop in the first half and second half of its
journey? Take density of water $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.
What is the work done by the resistive force in
the entire journey if its speed on reaching the ground is $10 \mathrm{~ms}^{-1}$?
A. $W_{1}>W_{2}$
B. $W_{1}<W_{2}$
C. $W_{1}=W_{2}$
D. $W_{1}=\frac{3}{2} W_{2}$
176. If $W_{a c}$ and $W_{A B C}$ denote the works doen in taking a bdoy of mass m from A to C in the gravitational field via the paths $A C$ and $A \rightarrow B \rightarrow C$, along a smooth inclined plane.
A. $W_{A C}<W_{A B C}$
B. $W_{A C} t W_{A B C}$
c. $W_{A C}=W_{A B C}$
D. $W_{A C}=\left(\sqrt{L^{2}-h^{2}}\right) W_{A B C}$

Answer: C

D View Text Solution

177. The force acting on a bod moving parallel to the X -axis is $F=3 x+2 x^{2}$. What is the work done in displacing the body from $x=1$ to $x=2$?
A. $\frac{65}{6}$ units
B. $\frac{25}{6}$ units
C. $\frac{55}{6}$ units
D. $\frac{35}{6}$ units

Answer: C

D Watch Video Solution

178. A uniform chain of length L and mass M
is lying on a smooth table and one-third of its
length is hanging vertically down over the edge of the table. If g is the acceleration due
to gravity, the work required to pull the hanging part on to the table is

> A. $\frac{M g L}{18}$
> B. $\frac{M g L}{9}$
> C. $M g L$
> D. $\frac{M g L}{3}$

Answer: A

D Watch Video Solution
179. A particle moved from position
$\vec{r}_{1}=3 \hat{i}+2 \hat{j}-6 \hat{k}$ to position
$\vec{r}_{2}=14 \hat{i}+13 \hat{j}+9 \hat{k}$ undre the action of a
force $(4 \hat{i}+\hat{j}+3 \hat{k})$ newtons. Find the work done.
A. 10 j
B. 100
C. 0.01
D. 1J
180. In one dimensional motin, a 1 kg body experiences a force, which is linear function of time t viz. $F=2 t$ acting in the direction of motion. What is the work done by the force in the first 4 second?
A. 16J
B. 32J
C. 64J
D. 128J

Answer: D

D Watch Video Solution

181. A body is being raised to a height h from
the surface of earth. What is the sign of work done by
(a) applied force (b) gravitational force?
A. Positive, Negative
B. Negative, Negative
C. Positive, Positive
D. Negative, Positive

Answer: A

D Watch Video Solution

182. When a spring a stretched through a distance x, it exerts a force given by $F=\left(-5 x-16 x^{3}\right) N$. What is the work
done, when the spring is stretched from 0.1 m to 0.2 m ?
A. $8.1 \times 10^{-1} J$
B. $12.2 \times 10^{-2} J$
C. $12.2 \times 10^{-1} J$
D. $8.1 \times 10^{-2} J$

Answer: D
(Watch Video Solution
183. A car moving with a velocity v is stopped
within a distance x by applying a retarding
force F. If the speed of the car is doubled, then
the force required to stop the car with the same distance is
A. 2 F
B. 3 F
C. 4 F
D. $F / 4$

Answer: C

- Watch Video Solution

184. Two masses of 2 kg and 3 kg are connected at the two ends of a light inxtensible string passing over a frictonless pullye as shown in the figure. Initially the masses are at rest and then they are released.

What is the speed of each mass, at the instant, both of them have moved through 50 cm ?
A. $1.4 m / s$
B. $1.8 m / s$
C. $3.2 m n / s$
D. $5.5 \mathrm{~m} / \mathrm{s}$

Answer: A

D View Text Solution
185. A light body and a heavy body have same
linear momentum. Which one has a greater kinetic energy ?
A. the heavy body
B. the light body
C. both have equal kinetic energy
D. data given is insufficient

Answer: B

D Watch Video Solution
186. A light and a heavy body have equal K.E.

Which body possesses greater momentum?
A. the heavy body
B. the light body
C. both have equal momentum
D. data given is insufficient

Answer: A

D Watch Video Solution
187. Two bodies of masses m and 4 m are moving with equal K.E. The ratio of their linear momentums is
A. $1: 1$
B. 1: 4
C. $4: 1$
D. 1:2

Answer: D

D Watch Video Solution

188. A bomb of 12 kg explodes into two pieces
of masses 4 kg and 8 kg . The velocity of 8 kg
mass is $6 \mathrm{~m} / \mathrm{sec}$. The kinetic energy of the other mass is
A. 240 J
B. 320J
C. 288J
D. 160 J

Answer: C
(Watch Video Solution
189. Two masses of 1 kg and 9 kg are moving
with equal kinetic energies. What is the ratio
of the magnitudes of their respective linear momenta?
A. $1: 9$
B. $3: 1$
C. $9: 1$
D. $1: 3$

Answer: D

190. Two masses of 1 kg and 4 kg are moving with equal kinetic energies. What is the ratio of the magnitudes of their momenta?
A. $2: 1$
B. 1:2
C. 1:16
D. $\sqrt{2}: 1$

Answer: B
191. Which one of the following is not a unit of energy?
A. electorn-volt
B. calorie
C. joule
D. watt

Answer: D

192. A ship of mass $3 \times 10^{7} \mathrm{~kg}$ initially at rest,
is pulled by a force of $5 \times 10^{5} \mathrm{~N}$ through a distance of 3 m . Assuming that the resistance due to water is negligible, the speed of the ship is
A. $0.1 \mathrm{~m} / \mathrm{s}$
B. $1.5 \mathrm{~m} / \mathrm{s}$
C. $60 \mathrm{~m} / \mathrm{s}$
D. $5 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

193. A car travelling at a speed of $30 \mathrm{~km} / \mathrm{hour}$
is brought to a halt in 8 m by applying brakes.

If the same car is travelling at $60 \mathrm{~km} / \mathrm{hour}$, it
can be brought to a halt with the same braking force in
A. 32 m
B. 18 m
C. 16 m
D. $2 m$

Answer: A

D Watch Video Solution

194. A ball of mass 2 kg and another of mass
$4 k g$ are dropped together from a 60 feet tall
building. After a fall of 30 feet each towards
earth , their respective kinetic energies will be
the ratio of
A. $\sqrt{2}: 1$
B. $1: \sqrt{2}$
C. 1:2
D. 1: 4

Answer: C

D Watch Video Solution
195. If the momentum of a body is increased by
50%, then the percentage increase in its
kinetic energy is
A. 2
B. 1
C. 1.25
D. 0.5

Answer: C

D Watch Video Solution
196. If kinetic energy of a body is increased by
300%, then percentage change in momentum
A. 1
B. 1.5
C. 0.732
D. 2.5

Answer: A

- Watch Video Solution

197. A particle of mass m 1 is moving with a velocity v_{1} and another particle of mass m_{2} is moving with a velocity v2. Both of them have
the same momentum but their different kinetic energies are E1 and E2 respectively. If $m_{1}>m_{2}$ then
A. $K_{1}<K_{2}$
B. $K_{1}>K_{2}$
C. $K_{1}=K_{2}$
D. $\frac{K_{1}}{K_{2}}$

Answer: A

D Watch Video Solution
198. A ball of mass of 500 gram is projected vertically upwards with a speed of $4 \mathrm{~m} / \mathrm{s}$. What is the maximum gravitational potential energy of the ball?
A. 2.5
B. 3J
C. 3.5
D. $4 J$

Answer: D

- Watch Video Solution

199. In an NCC traiign camp, a cadet fired a bullet of mass 50 gram with a speed of $200 \mathrm{~m} / \mathrm{s}$, on a soft plywood board of thickness

20 mm . It was found that the kinetic energy of
the emerging bullet was only 25% of its initial
K.E. What is the percentage decrease in the speed of the bullet?
A. 0.25
B. 0.5
C. 0.6

D. 755

Answer: B

D Watch Video Solution

200. A constant force of 20 N is applied to pull
a body of mass 10 k , kept on a smooth
horizontal surface. What is the increase in its
kinetic energy if the body starts from rest and covers a distance of 5 m ?
A. 100J
B. 150J
C. 80J
D. 60J

Answer: A

D Watch Video Solution

201. A stone is projected vertically upwards to reac a maximum heiht h. What is the ratio of its kinetic energy to its potential energy at a heigth of $\frac{3}{5} h$?
A. $2: 3$
B. $4: 5$
C. $3: 4$
D. $3: 2$

Answer: A

D Watch Video Solution

202. A spring of force constant $800 \mathrm{~N} / \mathrm{m}$ has
an extension of 5 cm . The work done in extending it from 5 cm to 15 cm is
A. 24J
B. 32J
C. 8J
D. 16J

Answer: C

D Watch Video Solution

203. A block of mass M moving on a frictionless horizontal surface collides with a spring of spring constant k and compresses it
by length L. The maximum momentum of the block after collision is
A. $\frac{M L^{2}}{k}$
B. zero
C. $\frac{k L^{2}}{2 M}$
D. $\sqrt{M k} L$

Answer: D

D View Text Solution
204. A uniform rod of mas m and length l is made to stand at an angle of 60° with the vertical. What is the potential energy of the rod in this position?
A. $m g l$
B. $\frac{m g l}{2}$
C. $\frac{m g l}{3}$
D. $\frac{m g l}{4}$

Answer: D

D Watch Video Solution
205. When a long spring is stretched by 2 cm , its potential energy is U. If the spring is stretched by 10 cm , the potential energy stored in it will be
A. 25 U
B. $\frac{U}{25}$
C. $5 U$
D. $\frac{U}{5}$
206. Abody of mass of 0.5 kg moving with a speed of $1.5 \mathrm{~m} / \mathrm{s}$, on a smooth horizontal
surface, colloids with a nearly weightless spring of force constant $K=50 \frac{\mathrm{~N}}{\mathrm{~m}}$. The maximum compression of the sprint would be
A. 0.15 m
B. 0.25 m
C. 0.5 m

D. 1.5 m

Answer: A

D View Text Solution

207. A ball is dropped from a height of 100 m .

At the surface of the earth, 20% of its energy
is lost. To what height the ball will rise?
A. 80 m
B. 20 m

C. 40 m

D. 60 m

Answer: A

D Watch Video Solution

208. The kinetic energy of a body of mass 2 kg and momentum of 2 Ns is
A. 1J
B. 3J
C. 2J
D. 4J

Answer: A
(D) Watch Video Solution
209. If a body of mass 3 kg is dropped from the
top of a tower, then its kinetic energy after 3
second will be
A. 1296.5J
B. 735J
C. zero
D. 1048J

Answer: A

D Watch Video Solution

210. A body is thrown from a height h with speed, u it hits the ground with speed v
A. the value of v is minimum if the body is
thrown horizontally
B. the value of v is maximum if the body is
thrown vertically upwards
C. the value of v is maximum if the body is
thrown vertically downwards
D. The value of v does not depend on the
direction in which it is thrown

Answer: D

D Watch Video Solution
211. A body falling with a speed of $2 \mathrm{~m} / \mathrm{s}$ strikes
the floor and rebounds with a speed of $1 \mathrm{~m} / \mathrm{s}$.
The loss of kinetic energy is
A. 12.5%
B. 50%
C. 25%
D. 75%

Answer: D

D Watch Video Solution
212. A block of mass m at rest is acted upon by
a force F for a time t. The kinetic energy of
block after time t is

$$
\begin{aligned}
& \text { A. } \frac{F^{2} t^{2}}{2 m} \\
& \text { B. } \frac{2 F^{2} t^{2}}{m} \\
& \text { C. } \frac{F^{2} t^{2}}{m} \\
& \text { D. } \frac{F^{2} t^{2}}{3 m}
\end{aligned}
$$

Answer: A

Watch Video Solution

213. The kinetic energy of a body of mass 5 kg
is 100 J . When it is thrown up then the height to which it goes up, is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. 5 m
B. 1 m
C. 2 m

D. 10 m

214. The decrease in the potential energy of a ball of mass 20 kg which falls from a height of 50 cm is
A. 1980 J
B. 98J
C. 49J
D. 968J
215. If the momentum of a body increases by
0.01%, its kinetic energy will increase by
A. 0.0008
B. 0.0002
C. 0.0004
D. 0.0001

Answer: B
216. A body of mass 10 kg at rest is acted upon simultaneously by two forces 4 N and 3 N at right angles to each other. The kinetic energy of the body at the end of 10 sec is
A. 300 J
B. 50 J
C. 100J
D. 125J

Answer: D

D Watch Video Solution

217. A body swinging on a swing is 1 metre above the ground at the lowest point. He is

2 m above the ground at the highest postiion.

What is the velocity at the lowest point of the
swing?
A. $\sqrt{20} m s^{-1}$
B. $20 \mathrm{~ms}^{-1}$

C. $2 m s^{-1}$

D. $1 m s^{-1}$

Answer: A

- Watch Video Solution

218. Identify the wrong statement from the following:
A. A body can have energy without
B. Kinetic energy is not conserved in a inelastic collision
C. A body can have momentum without
energy
D. The momentum is conserved in an
elastic collision

Answer: C

- Watch Video Solution

219. Two bodies of masses 1 kg and 5 kg are dropped gently from the top of a tower. At a point 20 cm from the ground, both the bodies
will have the same
A. momentum
B. kinetic energy
C. velocity
D. total energy

Answer: C

220. A body dropped from a height of 20 m
rebounds to a height of 15 m . What is the loss
is energy?
A. 0.4
B. 0.3
C. 0.2
D. 0.25

Answer: D
221. A body is projected vertically upwards with velocity of $10 \mathrm{~m} / \mathrm{s}$. At a point P in its path, its P.E. and K.E. are equal. What is the height of the point?
A. 2 m
B. 4 m
C. 5 m
D. 6 m

Answer: C

- Watch Video Solution

222. A bal is thrown vertically upwards with a
velocity of $4 \mathrm{~m} / \mathrm{s}$. At what heiht will its K.E.
reduce to half its initial value? $\left(g=10 m /^{2}\right)$
A. 0.1 m
B. 0.2 m
C. 0.3 m
D. 0.4 m

Answer: D

D Watch Video Solution

223. The potential energy of a body is given by
$U=A-B x^{2}$ (where x is the displacement).

The magnitude of force acting on the partical is
A. constant
B. proportional to x^{2}
C. proportional to x

D. inversely proportional to x

Answer: C

D Watch Video Solution

224. A ball dropped from a height of 2 m
rebounds to a height of 1.5 m after hitting the ground. Then the percentage of energy lost is
A. 0.25
B. 0.3
C. 0.5
D. 0.6

Answer: A

D Watch Video Solution

225. A body of mass 2 kg is thrown up vertically
with kinetic energy of 490 J . If $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$,
the height at which the kinetic energy of the body becomes half of the original value, is
A. 50 m
B. 12.25 m
C. 25 m
D. 10 m

Answer: B

D Watch Video Solution

226. A body of mass 4 kg is moving with momentum of $8 \mathrm{kgms}^{-1}$. A force of 0.2 N acts
on it in the direction of motion of the body for 10 s . The increase in kinetic energy is
A. 10
B. 8.5
C. 4.5
D. 4

Answer: C
(Watch Video Solution
227. If K_{1} and K_{f} are the initial and final value
of kinetic energy of a body respectively, then
the work done by the net force on the body is equal to

$$
\begin{aligned}
& \text { A. } \frac{K_{f} K_{i}}{K_{f}-K_{i}} \\
& \text { B. } K_{f}+K_{i} \\
& \text { с. } \frac{K_{f}+K_{i}}{2} \\
& \text { D. } K_{f}-K_{i}
\end{aligned}
$$

Answer: D

228. An open water tight railway wagon of mass $5 \times 10^{3} \mathrm{~kg}$ coasts at initial velocity of $1.2 m / s$ without friction on a railway track. Rain falls vertically downwards into the wagon. What change then occurred in the kinetic energy of the wagon, when it has collected 10^{3} kg of water
A. 1200J
B. 300J

C. 600J

D. 900J

Answer: C

D Watch Video Solution

229. A stone is projected vertically up to reach
maximum height h. The ratio of its potential
energy to its kinetic energy at a height $\frac{4}{5} h$,
will be
A. $5: 4$
B. $4: 5$
C. 1: 4
D. $4: 1$

Answer: D

D Watch Video Solution

230. A body of mass 5 kg rests on a rough horizontal surface of coefficient of friction 0.2.

The body is pulled through a distance of 10 m
by a horizontal force of 25 N . The kinetic energy acquired by it is $\left(g=10 m s^{2}\right)$
A. 200J
B. 150 J
C. 100J
D. 50 J

Answer: B

D Watch Video Solution
231. A vehicle of mass m is moving on a rough
horizontal road with momentum P. If the coefficient of friction between the tyres and the road be μ, then the stopping distance is:
A. $\frac{p}{2 \mu m g}$
B. $\frac{p^{2}}{2 \mu m g}$
C. $\frac{p}{2 \mu m^{2} g}$
D. $\frac{p^{2}}{2 \mu m^{2} g}$

Answer: D

232. A bullet fired into a fixed target loses half

 of its velocity after penetrating 3 cm . How much further it will penetrate before coming to rest assuming that it faces constant resistance to motion?A. 1.0 cm
B. 1.5 cm
C. 2.0 cm
D. 3.0 cm

Answer: A

D Watch Video Solution

233. A particle moves in a straight line with retardation proportional to its displacement.

Its loss in kinetic energy for any displacement x is proportional to
A. $\log _{e} x$
B. x
C. e^{x}
D. x^{2}

Answer: D

D Watch Video Solution

234. If the force acting on a body is inversely
proportional to its speed, then its kinetic energy is
A. t^{2}
B. \sqrt{t}
C. t
D. t^{3}

Answer: C

- Watch Video Solution

235. A ball falls on the ground from a height of

10 m and rebounds to a height of 8 m . What is
the percentage loss kinetic energy of the ball?
$\left(g=10 m / s^{2}\right)$
A. 0.2
B. 0.3
C. 0.1
D. 155

Answer: A

D Watch Video Solution
236. The $K . E$. acquired by a mass m in travelling a certain distance d, starting from
rest, under the action of a constant force is

directly propotional to

A. \sqrt{m}
B. $\frac{1}{\sqrt{m}}$
C. m
D. independent of m

Answer: D

D Watch Video Solution
237. A child is swinging a swing. Minimum and maximum heights fo swing from the earth's
surface are 0.75 m and 2 m respectively. The maximum velocity of this swing is
A. $5 \mathrm{~m} / \mathrm{s}$
B. $15 \mathrm{~m} / \mathrm{s}$
C. $10 \mathrm{~m} / \mathrm{s}$
D. $20 \mathrm{~m} / \mathrm{s}$

Answer: A
238. A body of mass $1 k g$ is thrown upwards
with a velocity $20 \mathrm{~ms}^{-1}$. It momentarily comes
to rest after attaining a height of 18 m . How
much energy is lost due to air friction?
$\left(g=10 m s^{-2}\right)$
A. 20 J
B. 10 J
C. 30J
D. 40J

Answer: A

- Watch Video Solution

239. A spherical ball of mass 2 kg is stationalry
at the top of a hill of height 100 m . It rolls
down a smooth surface to the ground, then
cilimbs up another hill of height 30 m and
finally rolls down on a smooth surface to a horizontal base at a height of 20 m abvoe the ground. What is the final velocity attained by the ball? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. $10 \sqrt{30} \mathrm{~m} / \mathrm{s}$
B. $10 m / s$
C. $20 \mathrm{~m} / \mathrm{s}$
D. $40 \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution

240. A particle is released from height H. At cartain height from the ground its kinetic energy is twice its gravitational potential
energy. Find the height and speed of particle at that height.

$$
\begin{aligned}
& \text { A. } x=\frac{h}{3} \text { and } v=\sqrt{\frac{g h}{3}} \\
& \text { B. } x=\frac{2 h}{3} \text { and } v=\sqrt{\frac{2 g h}{3}} \\
& \text { C. } x=\frac{h}{3} \text { and } v=2 \sqrt{\frac{g h}{3}} \\
& \text { D. } x=\frac{2 h}{3} \text { and } v=\sqrt{2 g h}
\end{aligned}
$$

Answer: C

D Watch Video Solution

241. A bullet is fired at a target with a velocity
v. It is found that its velocity decreases from v
to $v / 2$ when it penetrates 30 cm in the target.
Through what thickness it will penetrate
further in the targer, before coming to rest?
A. 5 cm
B. 10 cm
C. 15 cm
D. 20 cm

Answer: B

- Watch Video Solution

242. A waterfall whose vertical height is 100 m discharges water into a pool below the fall.

Calculate the rise in temperature of water assuming that all the heat remains in the water. (Specific heat capacity of water

$$
\left.=4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}\right)
$$

A. $0.15^{\circ} \mathrm{C}$
B. $0.75^{\circ} \mathrm{C}$
C. $0.24^{\circ} \mathrm{C}$

D. $0.48^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution

243. A body of mass 5 kg is moving with a momentum of $10 \mathrm{kgm} / \mathrm{s}$. A force of 0.2 N acts on it in the direction of motion of the body for

10 sec . The increase in its kinetic energy.
A. 3.8 joule
B. 2.8 joule
C. 3.2 joule
D. 4.4 joule

Answer: D

D Watch Video Solution

244. A vertical spring with force constant k is
fixed on a table. A ball of mass m at a height h
above the free upper end of the spring falls
vertically on the spring, so that the spring is
compressed by a distance d. The net work done in the process is

$$
\begin{aligned}
& \text { A. } m g(h+d)+\frac{1}{2} k d^{2} \\
& \text { B. } m g(h-d)+\frac{1}{2} k d^{2} \\
& \text { C. } m g(h-d)-\frac{1}{2} k d^{2} \\
& \text { D. } m g(h+d)-\frac{1}{2} k d^{2}
\end{aligned}
$$

Answer: D

D Watch Video Solution

245. From a waterfall, water is falling down at the rate of $100 \mathrm{~kg} / \mathrm{s}$ on the blades of turbine.

If the height of the fall is 100 m , then the power delivered to the turbine is approximately equal to
A. 100 W
B. 10 kW
C. 100 kW
D. 20 kW

Answer: C
246. A lift weighing 900 kg is to be lifted at a constant speed of $0.5 \mathrm{~m} / \mathrm{s}$. What shoud be the
horse power of the motor used for running the lift?
[Use $g=10 \mathrm{~m} / \mathrm{s}^{2}$ and 1 Horse power $=750$ watt]
A. 2.5
B. 4
C. 5
D. 6

Answer: D

D Watch Video Solution

247. A body is initially at rest. It undergoes one dimensional motion with constant
acceleration. The power delivered to it at time t is proportional to
A. \sqrt{t}
B. t
C. $t^{3 / 2}$
D. t^{2}

Answer: B

D Watch Video Solution

248. A motor car needs an engine of 7.5 kilowat
to keep it moving with a constant velocity of
$72 \mathrm{~km} / \mathrm{h}$ on a rough horizontal road. What is
the force of friction between the tyres of the car and the ground?
A. $1.5 \times 10^{3} N$
B. 375 N
C. 650 N
D. 250 N

Answer: B
(Watch Video Solution
249. An engine can develop a power of 5 kW .

How much time it will take to lift a mass of 100
kg to a height of 80 m ?
$\left(g=10 m / s^{2}\right)$
A. 5 s
B. 10 s
C. 12s
D. 16 s

Answer: D
250. A body of mass 1000 kg is lifted up by a crane through a distance 15 min 1 minute. A second crane does the same job in two minute. What is the amount of work done by each crane and what is the ratio of their powers? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

$$
\begin{aligned}
& \text { A. } 15 \times 10^{4} J, 1: 2 \\
& \text { B. } 15 \times 10^{3} J, 2: 1 \\
& \text { C. } 15 \times 10^{4} J, 2: 1
\end{aligned}
$$

D. $10 \times 10^{4} J, 1: 2$

Answer: C

D Watch Video Solution

251. Water falls from a height of 60 m at the rate $15 \mathrm{~kg} / \mathrm{s}$ to operate a turbine. The losses due to frictional forces are 10% of energy .

How much power is generated to by the turbine? $\left(g=10 \mathrm{~m} / / \mathrm{s}^{\wedge}(2)\right)^{\wedge}$.
A. 8.1 kW

B. 7.0 kw

C. 10.2 kW

D. 12.3 kW

Answer: A

D Watch Video Solution
252. The engine of a water pump develops a power of 5 kW . How much time it will takes to
lit 500 litre of water from the bottom of the
building to the terrace at a height of 20 m ?

$$
\left[g=10 \mathrm{~m} / \mathrm{s}^{2}\right]
$$

A. 8 s
B. 12 s
C. 16 s
D. 20 s

Answer: D
(Watch Video Solution
253. A boy climbs up a hill, which rises 1 in
every 25 , on his bicycle. The mass of the boy
and his bicycle is 120 kg . What is the power
applied by the body if he is cycling at the rate of $6 \mathrm{~km} / \mathrm{h}$ hour? (Assume the friction is absent and $g=10 m / s^{2}$)
A. 80 watt
B. 70 watt
C. 100 watt
D. 120 watt

Answer: A

D Watch Video Solution

254. if a particle F is applied on a body and it moves with a velocity v , the power will be
A. $F v^{2}$
B. F / v
C. $F v$
D. $\frac{1}{2} F v^{2}$

Answer: C

- Watch Video Solution

255. What is the power of a pump which can pump 300 kg of water to the terrace of a building of height 20 m , in 10 s ?
A. 4 kW
B. 5 kW
C. 6 kW
D. 8 kW

Answer: C

D Watch Video Solution

256. A car manufacturer claims that his car can
be accelerated from rest to a velocity of $10 \mathrm{~m} / \mathrm{s}$
in 5 s. If the total mass of the car and its
occupants is 1000 kg , then the average horse
power developed by the engine is
A. $\frac{10^{3}}{746}$
B. $\frac{10^{4}}{746}$
C. $\frac{10^{5}}{746}$
D. 8

Answer: B

D Watch Video Solution

257. A truck of amss 10 ton is movng up an incline of 1 in 50 with a uniform velocity of 72 km / h. If the resistance opposing the motion of the truck due to friction is 5 kg per ton, the power of the engine is $\left(g=10 m / s^{2}\right)$
A. 35 kW
B. 40 kW
C. 45 kW
D. 50 kW

Answer: D

D Watch Video Solution

258. The average work done by a human heart while it beats once is 0.5 J . Calculate the
power used by heart if it beats 72 times in a minute.
A. 0.4 W
B. 0.6 w
C. 0.8 W
D. 0.2 W

Answer: B
(Watch Video Solution
259. A machine gun fires 240 bullets per minute. If the mass of each bullet is 10 g and the velocity of the bullets is $600 \mathrm{~ms}^{-1}$, then find power (in kW) of the gun.
A. 12
B. 72
C. 7.2
D. 4.32

Answer: C

260. A body of mass m is acceleratad uniformaly from rest to a speed v in a time T.

The instanseous power delivered to the body as a function of time is given by

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \frac{m v^{2}}{T^{2}} t^{2} \\
& \text { B. } \frac{1}{2} \frac{m v^{2}}{T^{2}} t \\
& \text { C. } \frac{m v^{2}}{T^{2}} t^{2} \\
& \text { D. } \frac{m v^{2}}{T^{2}} t
\end{aligned}
$$

Answer: D

D Watch Video Solution

261. A man weighing 50 kg , climbs up a staircase carrying a bag of 10 kg on bis head.

The staircase has 15 steps and each steps has
a height of 20 cm . What is the power required
by the man, if he takes 10 seconds to climb the staircase?
A. 120 w
B. 150.5 W
C. 176.4 w
D. 200W

Answer: C

D Watch Video Solution

262. An electric pump is used to pump water to fill a water tank of volume $30 \mathrm{~m}^{3}$ in 20 minute. The pump is on the ground floor and the tank is one the terrace of the building. The
centre of the tank is at 400 m above the ground. How much electric power is consumed by the pump, in filling the tank, if the efficiency of the pump is 50% ?
$\left(g=10 m / s^{2} \quad\right.$ and density of water
$\left.=10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)$
A. 100 kW
B. 125 kW
C. 150 kW
D. 200 kW
263. Power supplied to a mass 2 kg varies with
time as $P=\frac{3 t^{2}}{2}$ watt. Here t is in second. If velocity of particle at $t=0 i s v=0$, the velocity of particle at time $t=2 s$ will be:
A. $2 m / s$
B. $3 m / s$
C. $1.5 m / s$
D. $4.5 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

264. An engine pumps up 1 quintal of coal
from a coal mine 100 m deep in 0.5 seocnd. If
its efficienty is 60% then the power of the engine is
(take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
A. 250 kW
B. 330 kW

C. 400 kW

D. 70kW

Answer: B

D Watch Video Solution

265. A man cycling up a smooth inclne road,
climbs the road at a constant spped of $2 \mathrm{~m} / \mathrm{s}$.

The total mass of the man and the cycle is 150 kg and the inclination of the road with the horizonal is 30°. What is the minimum horse
power spend by the man?
[Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$ and 1 horse power $=750$ watt]
A. 1.25H.P
B. 1.5H.P
C. 2H.P
D. 5H.P

Answer: C

D Watch Video Solution
266. A force F acting on a body depends on its displacement S as $F \propto S^{-1 / 3}$. The power delivered by F will depend on displacement as
A. $S^{-5 / 3}$
B. $S^{2 / 3}$
C. $S^{1 / 2}$
D. S°

Answer: D

267. A car of mass m is driven with acceleration a along a straight level road against a constant external resistive force R.

When the velocity of the car V , the rate at which the engine of the car is doing work will be
A. $R v$
B. mav
C. $(R+m a) v$
D. $(m a-R) v$

Answer: C

- Watch Video Solution

268. A car of mass m has an engine which can
deliver power P. The minimum time in which
car can be accelerated from rest to a speed v is :-
A. $P m v^{2}$
B. $\frac{m v^{2}}{2 P}$
C. $2 P m v^{2}$

D. $m v^{2} P$

Answer: B

D Watch Video Solution

269. An elevator can carry a maximum load of

1800 kg (elevator + passengers) is moving up
with a constant speed of $2 m s^{-1}$. The friction
force opposite the motion is $4000 N$. What is
minimum power delivered by the motor to the elevator?
A. 24 kW
B. 32 kW
C. 44 kW
D. 52 kW

Answer: C

D Watch Video Solution

270. The power of a motor pump is 2 kW . How much water per minute the pump can raise to
a heiht of 10 m ? (Given $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
A. 100L
B. 1200 L
C. 1000L
D. 2000 L

Answer: B

D Watch Video Solution
271. A car drives along a straight level frictionless road by an engine delivering
constant power. Then velocity is directly proportional to
A. t^{2}
B. t
C. \sqrt{t}
D. $\frac{1}{\sqrt{t}}$

Answer: C
(Watch Video Solution

272. Water enter in a turbine at a speed of 500

 m / s and leaves at $400 \mathrm{~m} / \mathrm{s}$. If $2 \times 10^{3} \mathrm{~kg} / \mathrm{s}$ of water flows and efficiency is 75% then output power isA. $6.75 \times 10^{7} W$
B. 100 kW
C. 1000 kW
D. 400 W

Answer: A
273. The coefficient of restitution e for a perfectly elastic collision is
A. 1
B. -1
C. zero
D. infinite

Answer: A

- Watch Video Solution

274. Two identical balls A and B having
velocity of $0.5 m / s$ and $-0.3 m / s$
respectively collide elastically in one dimension. The velocities of B and A after the collision respectively will be
A. $+0.3 \mathrm{~m} / \mathrm{s}$ and $+0.5 \mathrm{~m} / \mathrm{s}$
B. -0.3 and $+0.5 \mathrm{~m} / \mathrm{s}$
C. $+0.5 \mathrm{~m} / \mathrm{s}$ and $+0.3 \mathrm{~m} / \mathrm{s}$
D. -0.5 ms and $+0.3 \mathrm{~m} / \mathrm{s}$

Answer: B

- Watch Video Solution

275. A body of mass moving with velocity
$3 \mathrm{~km} / \mathrm{h}$ collides with a body of mass 2 m at
rest. Now, the coalesced mass starts to move
with a velocity
A. $1 \mathrm{~km} / \mathrm{h}$
B. $3 \mathrm{~km} / \mathrm{h}$
C. $2 \mathrm{~km} / \mathrm{h}$
D. $4 \mathrm{~km} / \mathrm{h}$

Answer: A

D Watch Video Solution

276. A metal ball of mass 2 kg moving with a velocity of $36 \mathrm{~km} / \mathrm{h}$ has a head on collision with a stationery ball of mass 3 kg . If after the collision, the two balls move together, the loss
in kinetic energy dur to collision is
A. 40 J

B. 100J

C. 60J
D. 140J

Answer: C

D Watch Video Solution

277. Two equal masses m_{1} and m_{2} moving
along the same straight line with velocites
$+3 m / s$ and $-5 m / s$ respectively collide
elastically. Their velocities after the collision will be respectively.
A. $-3 \mathrm{~m} / \mathrm{s}$ and $+5 \mathrm{~m} / \mathrm{s}$
B. $-4 \mathrm{~m} / \mathrm{s}$ and $+4 \mathrm{~m} / \mathrm{s}$
C. $+4 \mathrm{~m} / \mathrm{s}$ for both
D. $-5 \mathrm{~m} / \mathrm{s}$ and $+3 \mathrm{~m} / \mathrm{s}$

Answer: D
(Watch Video Solution
278. A bomb of mass 30 kg at rest explodes into two pieces of mass 18 kg and 12 kg . The velocity of mass $18 \mathrm{kgis} 6 \mathrm{~m} / \mathrm{s}$. The kinetic energy of the other mass is
A. 524J
B. 486J
C. 324J
D. 256J

Answer: B
279. An explosion blows a rock into three parts. Two parts go off at right angles to each other. These two are 1 kg first part moving with a velocity of $12 m s^{-1}$ and $2 k g$ second part moving with a velocity of $8 m s^{-1}$. If the third part flies off with a velocity of $4 m s^{-1}$. Its mass would be
A. 5 kg
B. 3 kg
C. 7 kg

D. 17 kg

Answer: A

D Watch Video Solution

280. A body dropped from a certain height strikes the ground and rises to a height of 108 cm , after striking the ground. The Coefficient of restitution is 0.6 . What is the height form which the body was dropped ?
A. 2 m
B. 3 m
C. 3.5 m
D. 4 m

Answer: B

- Watch Video Solution

281. A ball kept at a height of 5 m , is allowed to
tall freely. It hits the ground. The coefficient of
restitution is 0.6 . What is the time interval
between the first and second rebound? (

$$
\left.g=10 m / s^{2}\right)
$$

A. 1 s
B. 1.1s
C. 1.2s
D. 1.5 s

Answer: C
(Watch Video Solution
282. There is a head on collision between two bodies A and B. The mass of A is 5 kg and it is moving with a velocity of $4 \mathrm{~m} / \mathrm{s}$ towards right.

The mass of B is 4 kg and it is moving with a velocity of $5 \mathrm{~m} / \mathrm{s}$ in the opposite direction.

After collision, they stick together. What is their common velocity after collision?
A. $1 \mathrm{~m} / \mathrm{s}$ towards left
B. $\frac{5}{4} \mathrm{~m} / \mathrm{s}$ towards right
C. $\frac{4}{5} \mathrm{~m}$ towards left
D. zero

Answer: D

D Watch Video Solution

283. During an elastic collision between two
bodies, both of the exert forces on each other.

These forces are
A. conservative
B. non conservative

C. nuclear

D. either conservative or non conservative

Answer: A

D Watch Video Solution

284. A bullet hits and gets embedded in a solid block resting on a frictionless surface. In this process, which of the following is correct ?
A. only kinetic energy is conserved
B. only linear momentum is consrved
C. neither linear momentum nor kinetic
energy is conserved
D. both linear momentum and K.E.are

conserved

Answer: B

- Watch Video Solution

285. If e is the coefficient of restitution, then

which one of the following condition
represents a perfectly elastic collision?
A. $e=0$
B. $e=0.5$
C. $e=1$
D. $e=0.75$

Answer: C

D Watch Video Solution
286. Two masses m_{A} and m_{B} moving with
velocities v_{A} and v_{B} in opposite direction
collide elastically after that the masses m_{A}
and m_{B} move with velocity v_{B} and v_{A}
respectively. The ratio $\left(m_{A} / m_{B}\right)$ is
A. $\frac{1}{2}$
B. 1
C. $\frac{V_{a}+V_{b}}{V_{a}-V_{b}}$
D. $\left(V_{a}-V_{b}\right)\left(V_{a}+V_{b}\right)$

Answer: B
287. In an inelastic collision
A. momentum, kinetic energy and total
energy are conserved
B. momentum, kinetic energy and total
energy are not conserved
C. momentum and kinetic energy are
conserved but total energy is not
conserved
D.total energy and momentum are conserved but kinetic energy is not conserved.

Answer: D

D View Text Solution

288. A bullet of mass a and velocity b is fired into a large block of mass c. The final velocity of the system is

$$
\begin{aligned}
& \text { A. } \frac{m+\alpha}{M} \alpha \\
& \text { B. } \frac{M}{M+\alpha} \alpha \\
& \text { C. } \frac{m+M}{m} \alpha \\
& \text { D. } \frac{m}{m+M} \alpha
\end{aligned}
$$

Answer: D

- Watch Video Solution

289. A body falls on a surface of coefficient of restitution 0.6 from a height of 1 m . Then the body rebounds to a height of
A. 1 m
B. 0.4 m
C. 0.6 m
D. 0.36 m

Answer: D

D Watch Video Solution

290. A body of mass 2 kg moving with a velocity of $3 \mathrm{~m} / \mathrm{sec}$ collides head on with a body of mass 1 kg moving in opposite
direction with a velocity of $4 \mathrm{~m} / \mathrm{sec}$. After collision, two bodies stick together and move with a common velocity which in $\mathrm{m} / \mathrm{sec}$ is equal to

$$
\begin{aligned}
& \text { A. } \frac{3}{4} \mathrm{~m} / \mathrm{s} \\
& \text { B. } \frac{1}{4} \mathrm{~m} / \mathrm{s} \\
& \text { C. } \frac{2}{3} \mathrm{~m} / \mathrm{s} \\
& \text { D. } \frac{1}{3} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Answer: C

291. A body of mass moving with velocity
$3 \mathrm{~km} / \mathrm{h}$ collides with a body of mass 2 m at
rest. Now, the coalesced mass starts to move with a velocity
A. $3 \mathrm{~km} / \mathrm{h}$
B. $2 \mathrm{~km} / \mathrm{h}$
C. $1 \mathrm{~km} / \mathrm{h}$
D. $4 \mathrm{~km} / \mathrm{h}$

- Watch Video Solution

292. A particle is projected with a velocity $200 \mathrm{~m} / \mathrm{s}$ at an angle of 60°. At the highest point it explodes into three particle of equal masses. One goes vertically upward with a velocity $100 \mathrm{~m} / \mathrm{s}$ the second particle goes
vertically downwards at same speed. What is
the velocity of the third particle?
A. $120 \mathrm{~m} / \mathrm{s}$ with 60° angle
B. $200 \mathrm{~m} / \mathrm{s}$
C. $300 \mathrm{~m} / \mathrm{s}$
D. $200 \mathrm{~m} / \mathrm{s}$ with 30° angle

Answer: C

D Watch Video Solution

293. A billiard ball moving with a speed of $5 \mathrm{~m} / \mathrm{s}$ collides with an identical ball, originally at rest. If the first ball stop dead after collision, then the second ball will move forward with a speed of:
A. $1.0 \mathrm{~m} / \mathrm{s}$
B. $5 \mathrm{~m} / \mathrm{s}$
C. $10 \mathrm{~m} / \mathrm{s}$
D. $2.5 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

294. A shell of mass m moving with velocity v suddenly breaks into 2 pieces. The part having
mass m/4 remains stationary. The velocity of the other shell will be
A. $2 v$
B. v
C. $\frac{3}{4} v$
D. $\frac{4}{3} v$

Answer: D
(Watch Video Solution
295. A bullet $\left(m_{1}=25 g\right)$ is fired with a
velocity $400 \mathrm{~m} / \mathrm{s}$ gets embedded into a bag of
sand ($m_{2}=4.975 g$) suspended by a rope. The velocity gained by the bag is
A. $0.2 \mathrm{~m} / \mathrm{s}$
B. $3 \mathrm{~m} / \mathrm{s}$
C. $4 \mathrm{~m} / \mathrm{s}$
D. $2 \mathrm{~m} / \mathrm{s}$

Answer: D
296. A srtone of mass m_{1} moving at uniform
speed v suddenly explodes into two
fragments. If the fragment of mass m_{2} is at rest, the speed of the other fragment is

$$
\begin{aligned}
& \text { A. } \frac{m_{1} v}{\left(m_{1}-m_{2}\right)} \\
& \text { B. } \frac{m_{2} v}{m_{1}-m_{2}} \\
& \text { C. } \frac{m_{1} v}{\left(m_{1}+m_{2}\right)} \\
& \text { D. } \frac{m_{1} v}{m_{2}}
\end{aligned}
$$

D Watch Video Solution

297. Which one of the following is true?
A. Both momentum and kinetic energy are
conserved in all collisions
B. Neither momentum nor kinetic energy is
conserved in inelastic collisions

C. Momentum is conserved in all collisions

but not kinetic energy

D. Momentum is conserved in all collisions

but kinetic energy is conserved only in inelastic collisions.

Answer: C

- Watch Video Solution

298. A particle of mass moving with velocity
\vec{V} makes a head on elastic collision with
another particle of same mass initially at rest.
The velocity of the first particle after the collision will be
A. $-2 \vec{v}$
B. \vec{v}
C. $-\vec{v}$
D. zero

Answer: D

299. A bullet of mass m hits a block of mass M.

The transfer of energy is maximum when
A. $M^{\prime}=M$
B. $M^{\prime} \gg M$
C. $M^{\prime}=2 M$
D. $M^{\prime} \ll M e$

Answer: A
300. A bob A of a simple pendulum is released when the string makes an angle of 45° with the vertical. It hits another bob B of the same material and same mass kept at rest on the table. If the collision is perfectly elastic then
A. B will rise to a height equal to A and A comes to rest
B. B moves first and A follows it with half of its initial velocity
C. both A and B come to rest at B
D. both A and B move with the same

velocity of A

Answer: A

D View Text Solution
301. A 5 kg stationary bomb explodes in three parts having mass 1:1:3 respectively. Parts having same mass move in perpendicular directions with velocities $30 \mathrm{~m} / \mathrm{s}$ and $30 \mathrm{~m} / \mathrm{s}$.

The velocity of the bigger part will be
A. $10 \sqrt{2} m / s$
B. $\frac{10}{\sqrt{2}} \frac{m}{s}$
C. $15 \sqrt{2} m / s$
D. $\frac{15}{\sqrt{2}} m / s$

Answer: A

- Watch Video Solution

302. Consider the following statements A and
B identify the correct choice in the give answers.
a. n a one -dimensional perfectly elastic collision between two moving bodies of equal masses, the bodies merely exhange their velocities after collision.
b.If a lighter body at rest suffers perfectly elastic collision with a very heavy body moving
with a certain velocity, after collision both travel with same velocity.
A. A and B are correct
B. Both A and B are wrong
C. A is correct B is wrong
D. A is wrong, B is correct

Answer: C

D Watch Video Solution

303. For inelastic collsion between two spherical rigid bodies
A. the total kinetic energy is conserved
B. the total potential energ is conserved
C. the linear momentum is not conserved
D. the linear momentum is conserved

Answer: D

D Watch Video Solution

304. Which of the following is not a perfectly inelastic collision
A. an electron captured by a proton
B. a bullet striking a ball of sand
C. striking of two glass balls
D. a man jumping into a moving cart

Answer: C

D Watch Video Solution
305. A rubber ball is dropped on the ground
from a height of 1 m . What is the height to which the ball will rebound, if the coefficient of restitution between the ball and the ground is $0.8 ?$
A. 0.5 m
B. 0.25 n
C. 0.64 m
D. 0.8 m

Answer: C
306. Two masses m_{A} and m_{B} moving with velocities v_{A} and v_{B} in opposite direction collide elastically after that the masses m_{A} and m_{B} move with velocity v_{B} and v_{A} respectively. The ratio $\left(m_{A} / m_{B}\right)$ is
A. $\frac{v_{a}-v_{b}}{v_{a}+v_{b}}$
B. $\frac{v_{a}+v_{b}}{v_{a}-v_{b}}$
C. 1
D. $\frac{1}{2}$

Answer: C

D Watch Video Solution

307. A particle of mass moving with a speed
v hits elastically another stationary particle of
same mass m on a smooth horizontal circular tube of radius r, as shown in figure. The time in which in the next collision will take place is

equal to

$$
\begin{aligned}
& \text { A. } \frac{4 \pi r}{v} \\
& \text { B. } \frac{2 \pi r}{v} \\
& \text { C. } \frac{3 \pi r}{2 v} \\
& \text { D. } \frac{\pi r}{v}
\end{aligned}
$$

D View Text Solution

308. A particle strikes a horizontal frictionless
floor with a speed u, at an angle θ to the vertical, and rebounds with a speed v, at an angle ϕ to the vertical. The coefficient of restitution between the particle and the floor is e. The magnitude of v is

A. $e u$
B. $(1-e) u$
C. $u \sqrt{e^{2} \sin ^{2} \theta+\cos ^{2} \theta}$
D. $u \sqrt{\sin ^{2() \theta+e^{2} \cos ^{2} \theta}}$

Answer: D

D Watch Video Solution

309. A stationary partical explodes into two partical of a masses m_{1} and m_{2} which move
in opposite direction with velocities v_{1} and v_{2}
. The ratio of their kinetic energies E_{1} / E_{2} is
A. $\frac{m_{1}}{m_{2}}$
B. 1
C. $\frac{m_{2}}{m_{1}}$
D. $\frac{m_{1} v_{2}}{m_{2} v_{1}}$

Answer: C

- Watch Video Solution

310. A ball A of mass 3 kg and a ball B of mass

4 kg are moving alogn the same straight line with speeds of $7 \mathrm{~m} / \mathrm{s}$ and $5 \mathrm{~m} / \mathrm{s}$ respectively. They approach each other and collide. What is the speed of B after collision, If the coefficient of restitution is $\frac{3}{4}$?
A. $4 \mathrm{~m} / \mathrm{s}$
B. $-5 \mathrm{~m} / \mathrm{s}$
C. $-4 \mathrm{~m} / \mathrm{s}$
D. ${ }^{`} 6 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

311. A boy throws a rubber ball vertically downwards. He wants the ball to rebound
from the floor and touch the ceiling of the room which is at a height of 5 m . The coefficient of restitution is 0.9 . With what velocity should the ball strike the floor?
A. $8 \mathrm{~m} / \mathrm{s}$
B. $10 \mathrm{~m} / \mathrm{s}$

C. $11 \mathrm{~m} / \mathrm{s}$

D. $15 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

312. Two spheres of masses 1 kg and 2 kg are moving with velocities of $10 \mathrm{~m} / \mathrm{s}$ and $5 \mathrm{~m} / \mathrm{s}$ respectively in the same direction. After the collision the velocity of the lighter sphere
decreases by $4 \mathrm{~m} / \mathrm{s}$. What is the coefficient of

restitution?

A. 0.1
B. 0.15
C. 0.2
D. 0.25

Answer: C

D Watch Video Solution
313. A small metal spehre is released from a
height of 2 m . After striking the ground, it rises
to a height of 1.28 m . What is the coefficient of restitution?
A. 0.8
B. 0.6
C. 0.5
D. 0.4

Answer: A
314. A ball released from a certain height strikes the ground after 2 second. After bouncing from the ground it rises to the highest point in 1 second. What is the coefficient of restitution?
A. 0.3
B. 0.4
C. 0.5
D. 0.6

Answer: C

- Watch Video Solution

315. A ball collides impinges directly on a similar ball at rest. The first ball is brought to rest after the impact. If half of the kinetic energy is lost by impact, the value of coefficient of restitution (e) is
A. $\sqrt{2}$
B. $\frac{1}{2}$

> C. $\frac{1}{\sqrt{2}}$
> D. $\frac{1}{2 \sqrt{2}}$

Answer: C

- Watch Video Solution

316. A ball is dropped from a height ' h ' on to a floor of coefficient of restitution 'e'. The total distance covered by the ball just before second hit is
A. $h\left[1+e^{2}\right]$
B. $h e^{2}$
C. $h\left[1-2 e^{2}\right]$
D. $h\left[1+2 e^{2}\right]$

Answer: D

D Watch Video Solution

317. A shell is fires from a cannon with a velocity v at an angle θ with the horiziontal. At
the highetst point in its path it explodes into
two pieces of equal mass. One of the pieces
retraces its path to the canon. What is the speed of the other piece immediately after the explosion?
A. $2 v \cos \theta$
B. $\frac{3}{2} v \cos \theta$
C. $\sqrt{\frac{3}{2}} v \cos \theta$
D. $3 v \cos \theta$

Answer: D
318. A particle of mass 4 m which is at rest explodes into three fragments. Two of the fragments each of mass m are found to move with a speed v each in mutually perpendicular directions. The total energy released in the process of explosion is

> A. $\frac{3}{2} m v^{2}$
> B. $\frac{2}{3} m v^{2}$
> C. $\frac{m v^{2}}{2}$

D. $4 m v^{2}$

Answer: A

D Watch Video Solution

319. A body of mass $5 m$ initially at rest explodes into 3 fragments with mass ratio
$3: 1: 1$. Two of fragments each of mass ' m ' are found to move with a speed $60 \mathrm{~m} / \mathrm{s}$ in mutually perpendicular direction. The velocity of third fragment is
A. $60 \sqrt{2} m / s$
B. $20 \sqrt{3} \mathrm{~m} / \mathrm{s}$
C. $10 \sqrt{2} m / s$
D. $20 s q r s t(2) m / s$

Answer: D

D Watch Video Solution

320. A ball of mass M falls from a height on a
floor for which the coefficient of restitution is
e. The height attained by the ball after two rebounds is
A. $e^{2} h$
B. $e h^{2}$
C. $e^{4} h$
D. h / e^{2}

Answer: C
(Watch Video Solution
321. A bomb of mass 3.0 kg explodes in air into two pieces of masses 2.0 kg and 1.0 kg . The smaller mass goes at a speed of $80 \mathrm{~m} / \mathrm{s}$. The total energy imparted to the two fragments is
A. 1.07 kJ
B. 2014 kJ
C. 2.4 kJ
D. 4.8 kJ
322. A ball of mass m moving with a constant velocity strikes against a ball of same mass at rest. If $e=$ coefficient of restitution, then what will the the ratio of the velocities of the two balls after collision?
A. $\frac{1-e}{1+e}$
B. $\frac{e-1}{e+1}$
C. $\frac{1+e}{1-e}$
D. $\frac{2+e}{e-1}$

Answer: A

D Watch Video Solution

323. Particle A makes a perfectly elastic collision with anther particle B at rest. They fly apart in opposite direction with equal speeds.

If the masses are $m_{A} \& m_{B}$ respectively, then
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{1}{\sqrt{3}}$

Answer: B

- Watch Video Solution

324. A ball of mass moving with a velocity u collides head on with a ball B of mass m at rest. If the coefficient of restitution is e. the
ratio of final velocity of B to the initial velocity of A is

$$
\begin{aligned}
& \text { A. } \frac{1-e}{1+e} \\
& \text { B. } \frac{1+e}{1-e} \\
& \text { C. } \frac{1+e}{2} \\
& \text { D. } \frac{1-e}{2}
\end{aligned}
$$

Answer: C
(Watch Video Solution
325. A block of mass 0.50 kg is moving with a speed of $2.00 \mathrm{~m} / \mathrm{s}$ on a smooth surface. It strikes another mass of 1 kg at rest and they move as a single body. The energy loss during the collision is
A. 0.67 J
B. 1.00 J
C. 0.16 J
D. 0.34 J

- Watch Video Solution

326. The bob a of a simple pendulum of length

1 m , is released from the position X . It hits another bob B of the same mass at rest on a
table as shown in the figure. After the collision, A comes to rest. What is the speed with which bob B starts moving? Neglect the size of the bobs and assume that the collisioni is elastic.
A. $5.47 \mathrm{~m} / \mathrm{s}$
B. $6.47 \mathrm{~m} / \mathrm{s}$
C. $3.47 \mathrm{~m} / \mathrm{s}$
D. $4.47 \mathrm{~m} / \mathrm{s}$

Answer: D

D View Text Solution

327. A particle of mass m, collides with another stationary particle of mass M. If the particle m
stops just after collision, then the coefficient of restitution for collision is equal to

$$
\begin{aligned}
& \text { A. } \frac{m}{M} \\
& \text { B. } \frac{M-m}{M+m} \\
& \text { C. } 1 \\
& \text { D. } \frac{m}{M+m}
\end{aligned}
$$

Answer: A
(Watch Video Solution
328. A mass m moving horizontal (along the x axis) with velocity v collides and stricks to mass of $3 m$ moving vertically upward (along the y -axis) with velocity $2 v$. The final velocity of the combination is

$$
\begin{aligned}
& \text { A. } \frac{v}{4} \hat{i}+\frac{3}{2} v \hat{j} \\
& \text { B. } \frac{2}{3} v \hat{i}+\frac{v}{3} \hat{j} \\
& \text { C. } \frac{v}{3} \hat{i}+\frac{v}{4} \hat{j} \\
& \text { D. } \frac{v}{3} \hat{i}+\frac{2}{3} v \hat{j}
\end{aligned}
$$

$$
\begin{aligned}
& \text { A. }\left[\tau \left[=\left[L^{1} M^{1} T^{-2}\right]\right.\right. \\
& \text { B. }[\tau]=\left[L^{2} M^{1} T^{-2}\right] \\
& \text { C. }[\tau]=\left[L^{2} M^{2} T^{2}\right] \\
& \text { D. }[\tau]=\left[L^{2} M^{1} T^{-1}\right]
\end{aligned}
$$

Answer: B
330. A water tap can be opperated easily using two fingers because
A. the force by one finger overcomes the
friction and the other finger provides
the force for operation
B. the force available for operation will be
more
C. the rotational effect is produced by the
couple formed by the fingers

D. none of these

Answer: C

D Watch Video Solution

331. A see-saw of length $6 m$ is pivoted at its centre. A child (A) of mass 20 kg is sitting at one end of the see-saw. Where should anolther child (B) of mass 30 kg , sit, so that the see saw is balanced?
B. 1.5 m
C. 2 m
D. 2.5 m

Answer: C

- Watch Video Solution

332. A metre scale is supported on a wedge at
its centre of gravity. A body of weight w is
suspended from the 15 cm mark and another
weight of 30 gram suspended from 71 cm mark
balances it the metre scale remains perfectly
horizontal. What is the weight of the body?
Neglect the weight of the centre scale.
A. 15 gram wt
B. 18 gram wt
C. 20 gram wt
D. 25 gram wt.

Answer: B

D Watch Video Solution
333. A metre scale is balanced on a knife edge at its centre. When a coin of mass 15 g is kept at the 12 cm mark, the scale is found to be balanced at 45 cm . What is the mass of the metre scale?
A. 33 gr
B. 99 gr
C. 66 gr
D. 45 gr

Answer: B

D Watch Video Solution

334. Two equal and opposite parallel forces, each of magnitude 40 N form a couple. The magnitude of the couble is 100 Nm . What is the perpendicular distance between their lines of action?
A. 2 m
B. 2.5 m
C. 3 m
D. 3.5 m

Answer: B

- Watch Video Solution

335. A force of 100 N is applied tangentially to
the rim of a wheel of diameter 120 cm . The wheel rotates about an axis passing through its centre. What is the torque acting on the wheel?

A. 40 Nm

B. 50 Nm

C. 60 Nm

D. 70 Nm

Answer: C

D Watch Video Solution

336. A horizontal beam is pivoted at 0 as
shown in the figure. What is the value of the mass m to make the beam horizontal?
A. 2 kg
B. 1 kg
C. 4 kg
D. 2.5 kg

Answer: C

D View Text Solution

337. A uniform metre scale is balanced horizontally on a knife edge at a distance of 10 cm from its centre of gravity, when masses of

50 gm and 30 g are suspended from the 5 cm and 90 cm marks of the rod. What is the weight of the rod?
A. 20 gram weight
B. 25 gram weight
C. 40 gram weight
D. 10 gram weight

Answer: B

D Watch Video Solution
338. Two children weighing 15 kg , wt and 25
kgwt. sit at the ends of a see-saw, pivoted at
its centre. The see-saw is 4 m long. Where should a third child, weighing 20 kg wt . sit, in order to balance the see-saw? (Neglect the weight of the see-saw)
A. 1.5 m from A
B. 1 m from A
C. 1.25 m from A
D. 0.75 m from A

Answer: B

D Watch Video Solution

339. A force $\vec{F}=(\hat{i}+3 \hat{j}) N$ acts on a body
at a point P, which is at a distance given by
$\vec{r}=(3 \hat{i}+\hat{j}) m$ from the axis of rotation.
What is the direction of the torque acting on
the body?
A. Positive X axis
B. Positive Y axis

C. Positive Z axis

D. Negative Z axis

Answer: C

D Watch Video Solution

340. Three bodies of masses 3 kg , 2 kg and 1 kg kept at points $(3 \hat{i}+2 \hat{j}),(5 \hat{j}+\hat{k})$ and $(2 \hat{i}+\hat{k})$ respectively. Then the position vector of their centre of mass is given by
A. $\vec{R}_{c m}=\frac{11 \hat{i}}{6}+\frac{3}{8} \hat{j}+2 \hat{k}$
В. $\vec{R}_{c m}=\frac{11 \hat{i}}{6}+\frac{8}{3} \hat{j}+\frac{\hat{k}}{2}$
C. $\vec{R}_{c m}=\frac{7 \hat{i}}{6}+\frac{5}{8} \hat{j}+2 \hat{k}$
D. $\vec{R}_{C M}=\frac{11 \hat{i}}{6}+\frac{8}{5} \hat{j}+3 \hat{k}$

Answer: B

D Watch Video Solution

341. A body has its centre of maas at the origin. The x-coordinates of the particles
A. all positive

B. al negative

C. zero
D. positive for some particles and negative

for some particles

Answer: D

- Watch Video Solution

342. The centres of three spherical masses of 1
$\mathrm{kg}, 2 \mathrm{~kg}$ and 3 kg have co-orinates $(4,0) \mathrm{m}$,
$(0,3) \mathrm{m}$ and $(-2,5) \mathrm{m}$ respectively. What is the position vector of its centre of mass is terms of its x and y co-ordinates?

$$
\begin{aligned}
& \text { A. } \vec{R}_{c m}=2 \hat{i}+3 \hat{j} \\
& \text { B. } \vec{R}_{c M}=\frac{1}{3} \hat{i}+\frac{5}{2} \hat{j} \\
& \text { C. ve } R_{c m}=\equiv-\frac{1}{3} \hat{i}+3.5 \hat{j} \\
& \text { D. } \vec{r}_{c m}=\frac{2}{3} \hat{i}-\frac{5}{3} \hat{j}
\end{aligned}
$$

Answer: C

343. Three particles of masses
$m_{1}=1 k g, m_{2}=2 k g$ and $m_{3}=3 k g$ are kept
at the vertices of an equilateral triangle of
side 1 m . What is the x co-ordinate of its centre
of mass?
A. $\frac{3}{4} m$
B. $\frac{4}{5} m$
C. $\frac{6}{7} m$
D. $\frac{7}{12} m$

Answer: D

D Watch Video Solution

344. The front wheels of a truck together support 1000 N and its rear wheels together support 15000 N . The distance between the axies is 4 m . At what distance behind the front axle, the centre of gravity of the truck is situated?
A. 2.5 m
B. 3 m
C. 3.25 m
D. 3.75 m

Answer: D

D Watch Video Solution
345. Centre of mass is point
A. which is the orign of refernece frame
B. which is the geometric centre of a body
C. where the whole mass of the body is
supposed to be centred
D. from which distances of all particles are
the same

Answer: C

D Watch Video Solution

346. Three identical metal balls each of radius
r are placed touching each other on a
horizontal surface such that an equilateral triangle is formed, when the center of three balls are joined. The center of mass of system is located at the
A. centre of one of the balls
B. line joining centres of any two balls
C. horizontal surface
D. point of intersection of medians

Answer: D

D Watch Video Solution

347. Which is the correct statement about the centre of gravity and centre of mass?
A. Centre of mass changes but centre of gravity always remains the same
B. Centre of gravity changes as one goes
away from the earth but centre of mass
C. they are always at the same point
D. none of these

Answer: B

- Watch Video Solution

348. The centre of mas of a system
A. is always at its geometrical centre
B. is always somewhere inside it
C. is always outside it
D. may be inside or outside it

Answer: D

D Watch Video Solution

349. A system consisting of two masses connected by a massles rod, lies along the X axis. A body of mass 0.4 kg is kept at a distnce $x=2 m$ and another body of mass 0.6 kg is kept at the distance $x=6 \mathrm{~m}$ from the origin.

What is the x-coordinate of the centre of mass?
A. 3 m
B. 4 m
C. 4.5 m
D. 4.4 m

Answer: D
(Watch Video Solution
350. The motion of the centre of mass is the result of
A. Attractive forces
B. Repulsive forces
C. External forces
D. Internal forces

Answer: C

- Watch Video Solution

351. The center of mass of a system of two particles divides the distance between them.
A. in direct ratio of their masses
B. in inverse ratio of their masses
C. in inverse ratio of the squares of their masses
D. in direct ratio of the squares of their
masses

Answer: B
352. A system consists of 3 particles each of mass ' m ' are located at $(1,1)(2,2)$ and $(3,3)$. The co-ordinates of the centre of mass are
A. $(1,1)$
B. $(2,2)$
C. $(3,3)$
D. $(4,4)$

Answer: B
353. Two bodies of mass 1 kg and 3 kg have position vectors $\hat{i}+2 \hat{j}+\hat{k} \quad$ and $-3 \hat{i}-2 \hat{j}+\hat{k}$, respectively. The centre of mass of this system has a position vector.
A. $-2 \hat{i}-\hat{j}+\hat{k}$
B. $2 \hat{i}-\hat{j}+\hat{k}$
C. $-\hat{i}+\hat{j}+\hat{k}$
D. $-2 \hat{i}+2 \hat{k}$

- Watch Video Solution

354. Five the masses are placed in a plane as
shown in the figure. The co-ordinates of the centre of mass are nearest to
A. 1..2,1.4
B. 1.3,1.1
C. 1.15,1.25

D. 1.1,1.1

Answer: C

D View Text Solution

355. A metre scale is balanced on a knife edge at its centre. When a mass of 10 kg is kept at the 12 cm mark, the scale is balanced at 45 cm . What is the mass of the metre scale?
A. 56 g
B. 76 g
C. 86 g
D. 66 g

Answer: D

D Watch Video Solution

356. Consider a sytem of two particles having masses m_{1} and m_{2}. If the particle of mass m_{1} is pushed towards the centre of mass of particles through a distance d, by what
distance would the particle of mass m_{2} move so as to keep the mass centre of particles at the original position?

$$
\begin{aligned}
& \text { A. } \frac{m_{1}}{m_{2}} x \\
& \text { B. } \frac{m_{2}}{m_{1}} x \\
& \text { C. } \sqrt{m_{1} m_{2}} x \\
& \text { D. }\left(m_{1}+m_{2} x\right.
\end{aligned}
$$

Answer: A

D Watch Video Solution
357. You are given a U shaped uniform wire
$A B C D$ of slides of length, $L, 2 L$ and L as shown
in the figure. Let $m, 2 m$ and m be the masses
of the sections $A B, B C$ and $C D$ respectively.
What are the x and y co-ordinates of the centre of mass of wire?
A. (L,L)
B. $\left(\frac{L}{4}, L\right)$
C. $\left(\frac{L}{2}, L\right)$
D. $\left(L, \frac{L}{4}\right)$

Answer: B

D View Text Solution

358. Consider a system of two spheres of masses 5 kg and 25 kg . The distance between their centres is 1.2 m . What is the distance of their centre of mass from the centre of the sphere of mass 5 g ?
A. 0.5 m
B. 0.6 m
C. 08 m
D. 1 m

Answer: D

D Watch Video Solution

359. Two homogeneous spheres P and Q of different materials and masses 1 kg and 2 kg are kept in contact. The radii of A and B are 20 cm and 10 cm respectively. What is the

centre of A ?

A. 0.1 m
B. 0.15 m
C. 0.2 m
D. 0.25 m

Answer: C
(Watch Video Solution
360. Two spheres A and B of masses 500 g and

10 kg are connected by a light rod of length 21
m . What is the position of the centres of mass? [Treat the spheres as particles]
A. At 10 m from A
B. At 15 m from A
C. At 20 m from A
D. At 5 m from A

Answer: C
361. A coolie pushes a box on a railway platform, having a rough surface. He applies a force F over a distance of 20 m as show in the graph. What is the done by the coolie?
A. 2000J
B. 1750 J
C. 2250 J
D. 1500J

Answer: B

D View Text Solution

362. Four forces produced by strings are aciong at a point P, as shown in the figure.

What are magnitude of the forces F_{1} and F_{2}. If P is at rest?
A. $\frac{3}{\sqrt{2}} N, \frac{1}{\sqrt{2}} N$
B. $\frac{3}{\sqrt{2}} N, \frac{3}{\sqrt{2}} N$

$$
\begin{aligned}
& \text { C. } \frac{1}{\sqrt{2}} N, \frac{3}{\sqrt{N}} N \\
& \text { D. } \frac{1}{\sqrt{2}} N, \frac{1}{\sqrt{2}} N
\end{aligned}
$$

Answer: C

D View Text Solution

363. The magnitude of the force (in newton)
acting on a body varies with time t (in micro second) as is shown in the figure. $A B, B C$ and
$C D$ are straigt line segments. The magnitude of total impulse of the force on the body from
$t=4 m s$ and $t=16 \mu s$ is
A. $\frac{1}{500} N s$
B. 5000 Ns
C. 5 Ns
D. $5 \times 10^{-3} \mathrm{Ns}$

Answer: D

D View Text Solution
364. A 10 kg block moves in a straight line on a horizontal frictionless surface under the influenece of force that varies with position as
shown in the figure. The work done by the
force as it moves from the orign to a point $x=10 \mathrm{~m}$ is
A. $-10 J$
B. 30 J
C. 22 J

D. 5 J

Answer: B

D View Text Solution

365. Figure 1 and 2 give $(x, t),(y, t)$ diagrams
of a body of mass 0.5 kg moving in 2 dimensions.

What is the force acting on the body?
A. 0.5 N along x -axis
B. 1 N along y -axis
C. 0.5 along y-axis
D. 1 N along x -axis

Answer: B

D View Text Solution

366. A particle is acted by a force $F=k x$, where k is a + ve constant. Its potential energy at $x=0$ is zero. Which curve correctly represents the variation of potential energy of
the block with respect to x ?
A. 1
B. 2
C. 3
D. 4

Answer: D

D View Text Solution
367. The figure shows the position time ($x-t$)
graph of onc-dimensional motion of body of mass 0.4 kg . The magnitude of each impulse is
A. 0.2 Ns
B. 0.4 Ns
C. 0.8 Ns
D. 1.6 Ns

Answer: C
368. A particle of mass m is at rest at the origin at time $t=0$ It is subjected to a force
$F(t)=F_{0} e^{-b t}$ in the X-direction. Its speed
$V(t)$ is depicted by which of the following

curves

4)

A.
B.
c.
D.

Answer: B

D Watch Video Solution

369. A force time graph for the linear motion of a particle is as shown in the figure. What is the change in linear momentum of the particle

between 0 and 8 second?

$$
\text { A. }-2 \pi N-S
$$

B. $4 \pi N-S$
C. Zero

$$
\text { D. }-4 \pi N-S
$$

Answer: C

D View Text Solution
370. A body of mas 5 kg is acted upon by a
force F which varies with time t as shown in
the figure. The momentum gaind by the body at the end of 10 seconds is
A. $0 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
B. $40 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
C. $100 \mathrm{kgm} / \mathrm{s}$
D. $140 \mathrm{kgm} / \mathrm{s}$

Answer: D
371. Figure I, II III and IV represent the variation of force with time.

The impulse is highest in the case of situations depicted in figure
A. IV
B. II
C. III
D. I

Answer: C

D View Text Solution

372. Force is applied to a body of mass 2 kg at rest on a friction horizontal surfaces as shown in the (F-t) graph. What is the speed of the body after Is?
A. $7.5 \mathrm{~m} / \mathrm{s}$
B. $12.5 \mathrm{~m} / \mathrm{s}$
C. $15 \mathrm{~m} / \mathrm{s}$
D. $10 \mathrm{~m} / \mathrm{s}$

Answer: A

D View Text Solution
373. The position time graph of a particle of mass 50 gram is as shown in the figure. What is the impulse at $t=2 s$?
A. $-0.2 \mathrm{kgm} / \mathrm{s}$
B. $-0.1 \mathrm{kgm} / \mathrm{s}$
C. $+0.1 \mathrm{kgm} / \mathrm{s} 0.5 \mathrm{kgm} / \mathrm{s}$
D.

Answer: B

D View Text Solution

374. A force is applied to pull a block kept on a smooth horizotnal surface. The force time graph for its motion is as shown in the figure.

Then the find the wrong conclusion from the

following

A. At O the block is at rest
B. The force is constant along $A B$
C. along OA the acceleration is constant
D. The block stops after time $t=O C$

Answer: C

D View Text Solution
375. The figure below shows the force displacement grapoh of a moving body. What is the work done in displacing the body from $x=0$ to $x=35 m$?
A. 200J
B. 50J
C. 250J
D. 25J

- View Text Solution

376. Which one of the following physical quantities is represented by the shaded area
in given graph?
A. impulse
B. power
C. torque
D. work done

Answer: D

D View Text Solution

377. A force F acting on an object varies with
distance x as shown in the figure. The force is
in N and x is in m . What is the work done by
the force in moving the object from $x=0$ to
$x=6 \mathrm{~m}$?
A. 18.0J
B. 13.5J
C. 4.5 J
D. 9.0J

Answer: B

D View Text Solution

378. A body of mass 0.1 kg is subjected to a force which varies with distance as shown below.If it starts its journey from rest at $x=0$
its velocity at $x=12 m$ is
A. $20 \sqrt{2} m / s$
B. $20 \sqrt{3} \mathrm{~m} / \mathrm{s}$
C. $0 m / s$
D. $40 \mathrm{~m} / \mathrm{s}$

Answer: D

D View Text Solution
379. The work done by a force acting on a body
is as shown in the graph. What is the total doen in covering an initial distance of 20 m ?
A. 400 J
B. 200J
C. 175 J
D. 225 J

Answer: B
380. If the distance is plotted on the x-axis and
kinetic energy is plotted on the y-axis, then the slope of the graph so obained is proportional to
A. Distance
B. kinetic energy
C. velocity
D. acceleration

Answer: D

- Watch Video Solution

381. Consider a rubber ball freely falling from a height $h=4.9 m$ onto a horizontally elastic plate. Assume that the duration of collision is negligible and the collisions with the plate is totally elastic .

Then the velocity as a function of time and the height as a function of time will be :
A.
B.
C.
D.

Answer: C

- Watch Video Solution

Test Your Grasp

1. A ball of mass 500 gram strikes a wall with a
velocity of $80 \mathrm{~m} / \mathrm{s}$ and rebounds with the same
velocity. If the tme of contact is $1 / 30 \mathrm{sec}$, then
the force exerted by the ball on the wall is
A. 2000 N
B. 2200 N
C. 2400 N
D. 2500 N

Answer: C

2. A spring balance is attached to the ceiling of a lift. A man hangs his bag on the spring and the spring reads 49 N , when the lift is stationary. If the lift moves downward with an acceleration of $5 m / 2^{2}$, the reading of the spring balance will be
A. 15 N
B. 49 N
C. 24 N

Answer: C

D Watch Video Solution

3. Liquid fuel is burnt in a rocket and its exhaust gas is rejected from its tail at a velocity of $10 \mathrm{~km} / \mathrm{s}$. The force acting on the rocket is $2 \times 10^{4} \mathrm{~N}$. At what rate the liquid fuel is burnt?
A. $1.5 \mathrm{~kg} / \mathrm{s}$
B. $2 \mathrm{~kg} / \mathrm{s}$
C. $2.5 \mathrm{~kg} / \mathrm{s}$
D. $3 \mathrm{~kg} / \mathrm{s}$

Answer: B

D Watch Video Solution

4. Two masses $m_{1}=5 \mathrm{~kg}$ and $m_{2}=4.8 \mathrm{~kg}$ tied to a string are hanging over a light friction
less pulley. What is the acceleration of the
massess when the system is free to move?
A. $9.8 m / s^{2}$
B. $0.2 m / s^{2}$
C. $4.8 m / s^{2}$
D. $5 m / s^{2}$

Answer: B
(D) View Text Solution
5. A particle constrained to move along the Y
axis of a coordinate system in subject to a
constant force.
$\vec{F}=(5 \hat{i}+4 \hat{j}+3 \hat{k})$ newton.
What is the work done by this force is moving the particle throught 5 m along the Y axis ?
A. 12 J
B. 15 J
C. 18 J
D. 20 J

Answer: D

D Watch Video Solution

6. A light body and a heavy body have same
linear momentum. Which one has a greater kinetic energy ?
A. the heavy boby
B. the light body
C. both have equal kinetic energy
D.

Answer: B

- Watch Video Solution

7. An electric pump is used to pump water to
fill a water tank of volume $30 \mathrm{~m}^{3}$ is 20 minute.

The pump is on the ground floor and the tank is on the terrace of the builiding. The centre of
the tank is at 40 m above the ground. How much electric power is consumed by the pump, in filing the tank, if the efficiecy of the pump is 50 ?
$\left(g=10 m / s^{2} \quad\right.$ and density of water $10={ }^{3} \mathrm{~kg} / \mathrm{m}^{3}$)
A. 10 kW
B. 12.5 kW
C. 15 kW
D. 20 KW

Answer: D
(Watch Video Solution
8. A body dropped form a certain height strikes the ground and rises to a height of 108 cm , after striking the ground. The Coeffiednt of restitution is 0.6 . What is the height form which the body was dropped ?
A. 2 m
B. 3 m
C. 3.5 m
D. 4 m

Answer: B

- Watch Video Solution

9. A metre scale is supported on a wedge at its
centre of gravity. A body of weight w is
suspended from the 15 cm mark and another weight of 30 gram suspended from 71 cm mark balances it the metre scale remains perfectly horizontal. What is the weight of the body?

Neglect the weight of the centre scale.
A. 15 gram wt.
B. 18 gram wt.
C. 20 gram wt.
D. 25 gram wt.

Answer: B

- Watch Video Solution

10. A force $\vec{F}=(\hat{i}+3 \hat{j}) N$ acts on a body at
a point P, which is at a distance, give by
$\vec{r}=(3 \hat{i}+\hat{j}) \mathrm{m}$ form the axis of rotation.
What is the direction of the torque acting on
the body?
A. Positive X axis
B. Positive Y axis
C. Positive Z axis
D. Negative Z axis

Answer: C

- Watch Video Solution

