© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

BOOKS - MARVEL PHYSICS (HINGLISH)

MAGNETIC EFFECT OF ELECTRIC

CURRENT

Mcq Standard Level

1. The magnetic field $(d \vec{B})$ at a point due to an elemental conductor $(d \vec{l})$ carrying a
current (i) at a distance (\vec{r}) from the elemetn, is given by

A. Faraday's Law

B. Columb's Law
C. Biot-Savart's Law
D. Ampere's Law

Answer: C
(Watch Video Solution

2. Tesla is a unit for measuring

A. magnetic flux

B. magnetic field

C. magnetic induction
D. magnetic moment

Answer: C

D Watch Video Solution

3.1 testa is equal to

A. 1 NA m
B. $1 \mathrm{Nm} / \mathrm{A}$
C. $1 \mathrm{NA} / \mathrm{m}$
D. $1 \mathrm{~N} / \mathrm{Am}$

Answer: D

D Watch Video Solution
4. For the magnetic field to be maximum due to a small element of current carrying conductor at a point, the angle between the element and the line joining the element to the given point must be
A. 0°
B. 45°
C. 90°
D. 180°

- Watch Video Solution

5. The magnetic field $d \vec{B}$ due to a small current element $d \vec{l}$ at a distance \vec{r} and element carrying current i is,

$$
\begin{aligned}
& \text { A. } d \vec{B}\left(=\frac{\mu_{0}}{4 \pi} I\left(\frac{d \vec{l} \times \vec{r}}{R}\right)\right. \\
& \text { B. } d \vec{B}=\frac{u_{0}}{4 \pi} i^{2}\left(\frac{d \vec{l} \times \vec{r}}{r^{2}}\right) \\
& \text { C. } d \vec{B}=\frac{\mu_{0}}{4 \pi} i^{2}\left(\frac{d \vec{l} \times \vec{r}}{r}\right) \\
& \text { D. } d \vec{B}=\frac{\mu_{0}}{4 \pi} I\left(\frac{d \vec{l} \times \vec{r}}{r^{3}}\right)
\end{aligned}
$$

Answer: D

- Watch Video Solution

6. A small currnet-carrying element of 1 cm
carries a current 4 A . The magnetic field induction due to the current element at a distancwe 10 cm from it is 2×10^{-7}. T. What is the angle between the direction of the current and the line joining the current elemetn to the point ?
[Take $\mu_{0}=4 \pi \times 10^{-7} W b^{-1} m^{-1}$]
A. 90°
B. 60°
C. 45°
D. 30°

Answer: D

D Watch Video Solution

7. The direction of magnetic field due to a
current carrying conductor can be determined
by Ampere's
A. Fleming left hand rule
B. Right hand thumb rule
C. Jouls's law
D. Ampers's law

Answer: B

- Watch Video Solution

8. A current of 10 A is folowing in a long stright wirre. What is the magnetic incucation produced at a distance of 0.2 m ?

A. $2 \times 10^{-5} W b / m^{2}$
 B. $10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}$
 C. $3 \times 10^{-5} W b / m^{2}$
 D. $4 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}$

Answer: B

D Watch Video Solution

9. What is the current in a straight wire, if a magnetic field of $10^{-6} W / m^{2}$ is produced at a distance of 2 cm from it ?
A. $0.1 A$
B. $0.2 A$
C. $0.5 A$
D. $0.4 A$

Answer: A

D Watch Video Solution

10. An electric current passes through a long straight copper wire. At a distance of 5 cm from the straight wire, the magnetic field is B.

What is the magnetic field at a distance of 20

cm from the wire ?

A. $\frac{B}{2}$
B. $\frac{B}{3}$
C. $\frac{B}{4}$
D. $\frac{B}{5}$

Answer: C
(Watch Video Solution
11. The magnetic induction at apoint P which is
at the distance 4 cm from a long current carrying wire is $10^{-3} T$. The field of induction at a distance 12 cm from the current will be

> A. $3.33 \times 10^{-4} T$
> B. $1.11 \times 10^{-4} T$
> C. $3 \times 10^{-3} T$
> D. $9 \times 10^{-3} T$

Answer: A
12. A straight wire of diameter 0.5 mm carrying a current of $1 A$ is replaced by another wire of $1 m m$ diameter carrying the same current. The strength of magnetic field far away is
A. Twice the fiest value
B. Same as the first value
C. One-half of the first value
D. One-quarter of the first value

Answer: B

D Watch Video Solution

13. At what distance from a long straight wire
carrying current of 12 A will be the magnetic
field be the equal to $3 \times 10^{-5}(W b) /\left(m^{2}\right)$?
A. $8 \times 10^{-2} m$
B. $12 \times 10^{-2} m$
C. $18 \times 10^{-2} m$
D. $24 \times 10^{-2} m$

Answer: A

- Watch Video Solution

14. What is the magnetic induction at a distance of 5 cm from a straight wire carrying a current of 5 mA ?

$$
\text { A. } 4 \times 10^{-8} W b / m^{2}
$$

B. $3 \times 10^{-8} \mathrm{~Wb} / \mathrm{m}^{2}$
C. $2 \times 10^{-8} W b / m^{2}$
D. $5.5 \times 10^{-8} W b / m^{2}$

Answer: C

D Watch Video Solution

Mcq Higher Level

1. A circular loop of a wire and long straight
wire carry currents I_{c} and I_{e} respectively as
shown in the figure. Assume that they are
placed in the same plane. For what value of d,
the net magnetic field will be zero at the
centre O of the loop?

A. $\frac{I_{e} R}{I_{c} \pi}$
B. $\frac{I_{c} R}{I_{e \pi}}$
C. $\left(I_{c} R\right)\left(I_{e} R\right)$
D. $\frac{I_{e} R}{I_{c} R}$

Answer: A

D View Text Solution

2. A horizontal overheadpowerline is at height
of $4 m$ from the ground and carries a current of $100 A$ from east to west. The magnetic field directly below it on the ground is

$$
\left(\nu_{0}=4 \pi \times 10^{-7} \operatorname{Tm} A^{-1}\right.
$$

A. $2.5 \times 10^{-7} \mathrm{~T}$ southward
B. $2.5 \times 10^{-7} \mathrm{~T}$ Northward
C. $5 \times 10^{-6} \mathrm{~T}$ southward
D. $5 \times 10^{-6} \mathrm{~T}$ Northward

Answer: C

D Watch Video Solution

3. Two identical conducting wires
$A O B$ and $C O D$ are placed at right angles to each other. The wire $A O B$ carries an electric current I_{1} and $C O D$ carries a current I_{2}. The magnetic field on a point lying at a distance d
from O , in a direction perpendicular to the
plane of the wires $A O B$ and $C O D$, will be given by

$$
\begin{aligned}
& \text { A. } \frac{\mu_{0}}{2 \pi d}\left(I_{1}+I_{2}\right) \\
& \text { B. } \frac{\mu_{0}}{2 \pi d}\left(I_{1}^{2}+I_{2}^{2}\right) \\
& \text { C. } \frac{\mu_{0}}{2 \pi d}\left(O_{1}^{2}+I_{2}^{2}\right) \\
& \text { D. } \frac{\mu_{0}}{2 \pi d}\left(\frac{I_{1}^{2}+I_{2}^{2}}{d}\right)^{1 / 2}
\end{aligned}
$$

Answer: C

Mcq Standard Level

1. A current carrying circular loop is freely
suspended by a long thread. The plane of the
loop will point in the direction
A. East-West
B. North-South
C. at 45° with $\mathrm{E}-\mathrm{W}$ directions
D. In any direction

- Watch Video Solution

2. The electric current in a circular coil of two turns produced a magnetic induction of 0.2 T at its centre. The coil is unwound and then rewound into a circular coil of four turns. If same current flows in the coil, the magnetic induction at the centre of the coil now is
A. 0.4 T
B. $0.8 T$
C. 1.2 T

D. 1.6 T

Answer: D

D Watch Video Solution

3. The magnetic fiedl at the cetre of a circular
loop of diameter 0.1 m and carrying a current of $1 A$ is

$$
\text { A. } 2.5 \times 10^{-5} T
$$

$$
\text { B. } 1.25 \times 10^{-5} T
$$

C. $3.8 \times 10^{-5} T$

$$
\text { D. } 4.6 \times 10^{-5} T
$$

Answer: B

D Watch Video Solution

4. Two current carying circular coils A and B, having the same number of turns are connected in series. What is the ratio of the magnetic inductions produced at their
centres, in the diameters of A and B are 10 cm
and 20 cm respectively?

> A. $\frac{1}{2}$
> B. $\frac{1}{3}$
C. 2:1
D. $3: 1$

Answer: C
(Watch Video Solution
5. In the following figure the circular coil carrying current I is not supposed to touch at point P on the straight conductor carrying same currnet I

The magnitude of magnetic induction B at the centre 'O' of the circular coil will be
A. $\frac{\mu_{0} I}{2 \pi r^{2}}$
B. $\frac{\mu_{0} I}{2 \pi r}$
C. $\frac{\mu_{0} I}{2 r}\left(1+\frac{1}{\pi}\right)$
D. $\frac{\mu_{0} I}{2 r}$

Answer: C

D View Text Solution

6. A circular coil of radius R carries an electric
current. The magnetic field due to the coil at a
point on the axis of the coil located at a distance r from the centre of the coil, such that $r \gg R$, varies as

> A. $\frac{1}{r^{4}}$
> B. $\frac{1}{r^{3}}$
> C. $\frac{1}{r^{2}}$
> D. $\frac{1}{r}$

Answer: B

D Watch Video Solution
7. On connecting a battery to the two corners
of a diagonal of a square conductor frame of
side a the magnitude of the magnetic field at
the centre will be
A. $\frac{\mu_{0}}{\pi a}$
B. $\frac{\mu_{0}}{\sqrt{2} \pi a}$
C. Zero
D. $\frac{\sqrt{2} \mu_{0}}{\pi a}$

Answer: C
(Watch Video Solution
8. In hydrogen atom, an electron is revolving in
the orbit of radius $0.53 \AA$ with
6.6×10^{15} rotations $/ \mathrm{sec}$ ond. Magnetic field produced at the centre of the orbit is

A. $6.28 W \frac{b}{m^{2}}$
B. $9 \mathrm{~Wb} / \mathrm{m}^{2}$
C. $12.56 \mathrm{~Wb} / \mathrm{m}^{2}$
D. $15 W b / m^{2}$

Answer: C

9. Two circular coils are made of two identical
wires of same length and carry same current. If
the number of turns of the two coils are 4 and

2 , then the ratio of magnetic induction at the
centres will be
A. $2: 1$
B. $1: 2$
C. 1: 4
D. $4: 1$

Answer: D

- Watch Video Solution

10. What is the magnetic induction at the centre of a circular coil of 10 turns, each of radius 5 cm and carrying a current of 5 A ?
A. $4.5 \times 10^{-4} W b / m^{2}$
B. $5.2 \times 10^{-4} \mathrm{~Wb} / \mathrm{m}^{2}$
C. $6.284 \times 10^{-4} W b / m^{2}$
D. $8.45 \times 10^{-4} W b / m^{2}$

Answer: C

D Watch Video Solution

11. A and B are any two points on a current
loop carrying a current. A butter of e.m.f (E)
and negligible internal resistance is connected across $A B$. What is the resultant magnetic
induction at the centre of the coil?

A. $5 W b / m^{2}$
B. $2.5 W b / m^{2}$
C. Zero
D. $7 \mathrm{~Wb} / \mathrm{m}^{2}$

Answer: C

D View Text Solution

12. A wire of length 10 cm is bent into an arc of
a circle such that it subtends an angle of 1
radian at the centre. If a current of $1 A$ is passed through the wire, the magnetic induction at the centre of the circle will be

$$
\text { A. } 6.284 \times 10^{-6} W b / m^{2}
$$

B. $4.284 \times 10^{-6} \mathrm{~Wb} / \mathrm{m}^{2}$

> C. $3.14 \times 10^{-6} \mathrm{~Wb} / \mathrm{m}^{2}$
> D. $1.57 \times 10^{-6} \mathrm{~Wb} / \mathrm{m}^{2}$

Answer: A

D Watch Video Solution

13. A circular coil of one turn carries a current
I. The same wire is then bent to from a smaller circular coil of 2 turns and the same current is passed through it. What is the relations
between the fields at the centre of the coils in
the second and first case ?

$$
\begin{aligned}
& \text { A. } B_{2}=B_{1} \\
& \text { B. } B_{2}=2 B_{1} \\
& \text { C. } B_{2}=\frac{B_{1}}{2} \\
& \text { D. } B_{2}=4 B_{1}
\end{aligned}
$$

Answer: D

- Watch Video Solution

14. A coil of 10 cm radius, carrying a current of

1 A produces magnetic field of induction $6.284 \times 10^{-3} \mathrm{~Wb} / \mathrm{m}^{2}$ at its cente. What is the number of turns of the coil?
A. 100
B. 200
C. 500
D. 1000

Answer: D
15. A current carrying conductior of length 2 m
is bent in the form of an orc of a circle of radius 80 cm . The magnetic induction at the centre of curvature of the arc is found to be
$2 \times 10^{-6} \mathrm{~Wb} / \mathrm{m}^{2}$. What is the current following through the conductor ?
A. $3.2 A$
B. $6.4 A$
C. $4.8 A$

D. 9.6 A

Answer: B

D Watch Video Solution

16. A current i ampere flows in a circular arc of
wire whose radius is R, which subtend an
angle $3 \pi / 2$ radian at its centre. The magnetic
induction B at the centre is

A. $\frac{3}{8} \frac{\mu_{0} i}{(\Omega}$
B. $\frac{8}{3} \frac{\mu_{0} i}{r}$
C. $\frac{3}{4} \frac{\mu_{0} i}{r}$
D. $\frac{5}{8} \frac{\mu_{0} i}{r}$

Answer: A

- Watch Video Solution

17. What is the magnetic field intensity produced at the centre O , due to the current carrying wire shown in the figure ?

A. $B=\frac{\mu_{0}}{4 \pi}\left(\frac{2 \pi l}{r}\right)$
B. $B=\frac{\mu_{0}}{4 \pi}\left(\frac{2 \pi l}{R}+2 L\right)$
C. $B=\frac{1}{2}\left[\frac{\mu_{0}}{4 \pi}\left(\frac{2 \pi I}{2}\right)\right]$
D. $B=2\left[\frac{\mu_{0}}{4 \pi}\left(\frac{2 \pi I}{R}\right)+2 L\right]$

Answer: C

D View Text Solution

18. If in circular coil of radius R, current I is
flowing and in another coil B of radius $2 R$ a current $2 I$ is flowing, then the raatio of the
magnetic fields B_{A} and B_{B}, produced by
them will be
A. 4
B. $1 / 2$
C. 2
D. 1

Answer: D
(Watch Video Solution
19. The magnetic field due to a current carrying circular loop of radius 3 cm at a point on the axis at a distance of 4 cm from the centre is $54 \mu T$. What will be its vlue at the centre of loop?
A. $75 \mu T$
B. $125 \mu T$
C. $150 \mu T$
D. $250 \mu T$

Answer: D
20. Two concentric coils each of radius equal to $2 \pi \mathrm{~cm}$ are placed at tight angles to each there. 3 A and 4 A are the currents flowing in each coil respectively.

The megnetic induction in $W b / m^{2}$ at the

$$
\begin{aligned}
& \text { centre of the coil will be } \\
& \left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{~Wb} / \mathrm{Am}\right)
\end{aligned}
$$

A. 7×10^{-5}
B. 5×10^{-5}
C. 10^{-5}
D. 12×10^{-5}

Answer: B

D Watch Video Solution

21. A current I enters a circlar coil of radius, R,
branches into two parts and then recombines
as shown in the figure, What is the resultant
magnetic field at the centre of the coil ?

A. zero
B. $\frac{\mu_{0} I}{R}$
C. $\frac{1}{4}\left(\frac{\mu_{0} I}{2 R}\right)$
D. $\frac{3}{4}\left(\frac{\mu_{0} I}{2 R}\right)$

Answer: A

D View Text Solution

22. What should be the current in a circular

$$
\begin{aligned}
& \text { coil of radius } 5 \mathrm{~cm} \text { to annule } \\
& B_{H}=5 \times 10^{-5} T ?
\end{aligned}
$$

A. $0.4 A$
B. $4 A$
C. 40 A
D. $1 A$

Answer: B

D Watch Video Solution

23. A circular current carrying coil has a radius
R. The distance from the centre of the coil on
the axis where the magnetic induction will be $(1 / 8)^{t h}$ of its value at the centre of the coil is,
A. $s q r r 3 R$

$$
\begin{aligned}
& \text { B. } \frac{R}{\sqrt{3}} \\
& \text { C. }\left(\frac{2}{\sqrt{3}}\right) R
\end{aligned}
$$

D. $\frac{R}{2 \sqrt{3}}$

Answer: A

D Watch Video Solution

24. A current of 10 A is pasing through a long
wire which has semicircular loop of radius 20
cm as shown in the figure. What is the magnetic field prioduced at the centre of the
loop?

A. $10 \pi \mu T$
B. $5 \pi \mu T$
C. $4 \pi \mu T$
D. $2 \pi \mu T$

Answer: B

D View Text Solution
25. A particle carrying a charge equal to 100 times the charge on an electron is rotating per second in a circular path of radius 0.8 metre. The value of the magnetic field produced at the centre will be ($\mu_{0}=$ permeability for vacuum)
A. $10^{-3} \mu_{0}$
B. $10^{-11} \mu_{0}$
C. $10^{-7} \mu_{0}$
D. $10^{-17} \mu_{0}$

Answer: D

D Watch Video Solution

26. A battery is connected between two points
A and B on the circumference of a uniform conducting ring of radius r and resistance R.

One of the arcs $A B$ of the ring subtends an
angle θ at the centre. The value of the magnetic induction at the centre due to the current in the ring is
A. propotation to $2\left(180^{\circ}-\theta\right)$
B. inversely proporational to r
C. zero, only if $\theta=180^{\circ}$
D. zero, for all values of θ

Answer: D

D Watch Video Solution

27. Two similar current loops are placed with
their planes along x-axis and y-axis
respectively. Then the ratio of resultant
magnetic field at a common point X to the individual magnetic field is

- $\sqrt{2}: 1$
- $1: \sqrt{2}$
- $3: 2$
- $\sqrt{3}: \sqrt{2}$

Answer: A

D View Text Solution

28. The two linear parallel conductors carrying
currents in the opposite direction.

each other.

A. attract each other
B. repel each other
C. do not affect each other
D. may attract or repel each other depending upon their materials

Answer: B

D Watch Video Solution
29. Two long parallel wires are at a disttance of

1 m . Both of them carry one ampare of current
in the same direction. What is the factor of attraction per unit length between the two wores?

> A. $2 \times 10^{-7} N / m$
> B. $2 \times 10^{-8} N / m$
> C. $5 \times 10^{-8} N / m$
> D. $10^{-7} N / m$

Answer: A
30. Two parallel beams of positrons moving in the same direction will
A. be deflected normal to the plane containing the two beams
B. will not interact with each other
C. attract each other
D. repel each other

Answer: C

D Watch Video Solution

31. If the distance between two currentcarrying parallel wires is halved, then the force between them is
A. Doubled
B. Tripled
C. Quadrupled
D. Halved

Answer: A

- Watch Video Solution

32. Two long parallel wires are separated by a distance of 2 m . They carry a current of $1 A$ each in opposite direction. The magnetic induction at the midpoint of a straight line connecting these two wires is
A. $\frac{\mu_{0}}{2 \pi}$
B. $\frac{\mu_{0}}{\pi}$
C. $\frac{2 \mu_{0}}{2 \pi}$
D. $\frac{2 \mu_{0}}{\pi}$

Answer: D

D Watch Video Solution

33. Two long straight wires are set parallel to
each other Each carries a current in the same
directionand the separation between them is
$2 r$. The intensity of the magnetic field midway
A. $\frac{2 \mu_{0} I}{r}$
B. Zero
C. $\frac{\mu_{0} I}{4 r}$
D. $\frac{\mu_{0} I}{2 r}$

Answer: B

D Watch Video Solution

34. Two long straight wires are arranged parallel to each other and are kept 10 cm apart in vacuum. They carry currents of 5 A and 10 A
respectively in the same direction. What is the magnetic force on a lergth of 20 cm of either wire?
A. $10^{-5} N$
B. $2 \times 10^{-5} M$
C. $3 \times 10^{-5} N$
D. $4 \times 10^{-5} N$

Answer: B

D Watch Video Solution
35. If a current is passed through a spring then the spring will
A. wxpand
B. remain same in length
C. be compressed

D. expand or get compressed, depending

upon the direction of the current

Answer: C

36. Two thin, long, parallel wires, separated by a distance ' d ' carry a current of ' i ' A in the same direction. They will
A. repel each other with a force of

$$
\left(\frac{\mu_{0} I^{2}}{2 \pi d^{2}}\right)
$$

B.attract each other with a force of

$$
\frac{\mu_{0} i^{2}}{\left(2 \pi d^{2}\right)}
$$

C. rapel each other with a force of $\frac{\mu_{0} i^{2}}{(2 \pi d)}$
D. attract each other with a force of $\frac{\mu_{0} i^{2}}{(2 \pi d)}$

Answer: D

D Watch Video Solution

37. A beam of electrons and protons move parallel to each other in the same direction, then they
A. attract each other
B. reple each other
C. attracty or replel depending upon the strenghts of the currents

D. neither attract not repel

Answer: B

D Watch Video Solution

38. Three long, straight parallel wires, carrying
current, aer arranged as shown in the figure.

What is the force experienced by a 25 cm
length of wire C ?

A. $10^{-3} N$
B. $2.5 \times 10^{-3} N$
C. zero
D. $1.5 \times 10^{3} \mathrm{~N}$

Answer: C
39. Wires 1 and 2 carrting i_{1} and i_{2}
respectively are inclined at an angel θ to each
other. What is the force on a smll element d/of
wire 2 at a distnce r from wire 1 (as shown in
gifure) due to the magnetic field of wore 1 ?

A. $\frac{\mu_{0}}{2 \pi r} i_{1} i_{2} d l \sin \theta$
B. $\frac{\mu_{0}}{2 \pi r} i_{1} i_{2} d l \cos \theta$
C. $\frac{\mu_{0}}{2 \pi r} i_{1} i_{2} d l \sin \theta$
D. $\frac{\mu_{0}}{2 \pi r} i_{1} i_{2} d l \tan \theta$

Answer: B

- View Text Solution

40. Two long conductors, separated by a distance d carry current I_{1} and I_{2} in the same direction. They exert a force F on each other.

Now the current in one of them is increased to
two times and its direction is reversed. The distance is also increased to $3 d$. The new value of the force between them is
A. $-F / 3$
B. $-2 F / 3$
C. $F / 3$
D. $-2 F$

Answer: B

D Watch Video Solution

41. Two parallel long wires carry currents i_{1} and i_{2} with $i_{1}>i_{2}$. When the currents are in
the same direction then the magnetic field
midway between the wires is $10 \mu T$. when the
direction of i_{2} is reversed ,then it becomes
$40 \mu T$. then ratio of i_{1} / i_{2} is

> A. $\frac{1}{2}$
> B. $\frac{2}{3}$
> C. $\frac{3}{4}$
> D. $\frac{3}{2}$

Answer: D

D Watch Video Solution
42. A reactangular loop carrrying a current I is
situated near a long straight wire such that
the wire is parallel to one of the sids of the loop. If steady current I is established in the wire as shown in figure, the loop will

A. rotate about an axis
B. move away from the wire

C. move towared the wire

D. remain stationary

Answer: C

D View Text Solution

43. A circular coil of 20 turns each of radius 10
cm and carrying a current of 5 A is placed in a
uniform magnetic field of induction 0.10 T normal to the plane of the coil?
A. $15 \mathrm{~N}-\mathrm{m}$
B. 3.14 N
C. Zero
D. 12.56 N

Answer: C

D Watch Video Solution

44. A current carrying coil is subjected to a uniform magnetic field. The coil will orient so
that its plane become
A. inclined at 45° to the magnetic field
B. inclined at any arbitray angle to the magnetic field
C. parallel to the magnetic field
D. perpendicular to magnetic field

Answer: C

D Watch Video Solution

45. A current carrying loop is placed in a uniform magnetic field. The torque acting on it does not depend upon

A. are of loop

B. no. of turns in loop
C. shape of loop
D. strength of current and magnetic field

Answer: C

D Watch Video Solution
46. A closed loop PQRS carrying a current is
placed in a uniform magnetic field. The field.
The magnetic forces on segments PS, SR and
PQ are F_{1}, F_{2} and F_{3} respectively and are in the plane of the paper and along the directions shown.

What is the force acting on the segment QP for the equilibrium of the loop?

A. $F_{3}-F_{1}-F_{2}$
B. $\sqrt{\left(F_{3}-F_{1}\right)^{2}+F_{2}^{2}}$
C. $\sqrt{\left(F_{3}-F_{1}\right)^{2}-F_{2}^{2}}$
D. $F_{3}-F_{1}+F_{2}$

Answer: B

D View Text Solution

Mcq Higher Level

1. What is the magnetic field at a distance R from a coil of radius r carrying current I ?
A. $\frac{\mu_{0} n I}{4 r}$
B. $\frac{\mu_{0} n I}{8 r}$
C. $\frac{\mu_{0} n l}{16 r}$
D. $\frac{\mu_{0} n l}{32 x}$

Answer: C

- Watch Video Solution

2. Magnetic induction at the center of a circular loop carrying a current is ' B^{\prime}. If ' A ' is the area of the coil, the magnetic dipole moment of the loop is
A. $\frac{B A^{2}}{\mu_{0} \pi}$
$2 B A^{3 / 2}$
$\mu_{0} \pi^{1 / 2}$
C. $\frac{B A^{3 / 2}}{\mu_{0} \pi}$
D. $\frac{\mu_{0} \pi^{1 / 2}}{B A^{3 / 2}}$

Answer: B

3. An electron moves in a circular orbit with a uniform speed v.lt produces a magnetic field B at the centre of the circle. The radius of the circle is proportional to
A. $\frac{B}{v}$
B. $\frac{v}{B}$
C. $\sqrt{\frac{v}{B}}$
D. $\sqrt{\frac{B}{v}}$

Answer: C

- Watch Video Solution

4. The current passing through a circular coil of two rurns produces a magnetic firld of $4 \mu T$ as its centre. The coil is then rewound, so as to have four turns and the current passing through it is doubled. What is the new magnetic firld at the centre of the coil ?
A. $8 \mu T$
B. $16 \mu T$
C. $24 \mu T$

D. $32 \mu T$

Answer: D

D Watch Video Solution

5. A straight wire carrying a current $10 A$ is bent into a semicircular arc of radius 5 cm . The magnitude of magnetic field at the center is
A. $8 A$
B. $4 A$
C. $2 A$
D. $1 A$

Answer: A

D Watch Video Solution
6. Two circular copper coils of radii 10 cm and

20 cm and having the same number of turns,
are connected in parallel. The two copper wires have the same area of cross-section.

What is the ratio of the magnetic inductions at the centres of the coils?
A. $2: 1$
B. 3:1
C. $4: 1$
D. 5:1

Answer: C
(Watch Video Solution

7. A current of 0.5 A is passed through a coil of

200 turns and radius 10 cm . Another currwent carrying coil of 250 turns and radius 15 cm is kept concentric with the first and in the same plane. What is the current through the second coil if the net magnetic induction at teh centre of the coils is zero ?
A. $0.3 A$
B. $0.4 A$
C. 0.6 A

D. 0.8 A

Answer: C

D Watch Video Solution

8. A long wire carries a steady curent. It is bent into a circle of one turn and the magnetic field at the centre of the coil is B. It is then bent into a circular loop of n turns. The magnetic field at the centre of the coil will be

$$
\text { A. } n^{2} B
$$

B. $2 n B$
C. $2 n^{2} B$
D. $n B$

Answer: A

D Watch Video Solution

9. The wire loop PQRSP formed by joining two semicircular wires of radii R_{1} and R_{2} carries
a current I as shown inh the figure. The megnitude of the magnetic induction at the
centreC is

A. $\mu_{0} J\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
B. $\frac{\mu_{0} I}{2 \pi}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
C. $\frac{2 \mu_{0} I}{\pi}\left(\frac{1}{R_{1}} \cdot \frac{1}{R_{2}}\right)$
D. $\frac{\mu_{0} I}{4 \pi}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$

Answer: D

D View Text Solution
10. A circular coi9l of radius r and nuber of turns n cirries a current I . The fields at a small distance h along the axis of the coil and the at the centre of the coil are measured. What is
the relation between $B_{\text {centre }}$ and $B_{\text {axis }}$?

$$
\begin{aligned}
& \text { A. } B_{c}=B_{\text {axis }}\left(1+\frac{h^{2}}{r^{2}}\right) \\
& \text { B. } B_{c}=B_{\text {axis }}\left(1+\frac{h^{2}}{r^{2}}\right)^{3 / 2} \\
& \text { C. } B_{c}=B_{\text {axis }}\left(1+\frac{h^{2}}{r^{2}}\right)^{3 / 2}
\end{aligned}
$$

D.

Answer: C

D Watch Video Solution

11. What is the force acting on a moving
charge in a uniform magnetic field? Discuss
the cases when the force is maximum and minimum and define the unit of magnetic field \vec{B}.
A. 0°
B. 30°
C. 90°
D. 45°

Answer: C

D Watch Video Solution

12. Write an expression in a vector form for the Lorentz magnetic force \vec{F} on a charge Q moving with velocity \vec{V} in a magnetic field \vec{B}.

What is the direction of the magnetic force?
A. qVB
B. $\frac{B V}{q}$
C. $\frac{q V}{B}$
D. Zero

Answer: D

D Watch Video Solution

13. A wire of length 1 m is kept perpendicular to a magnetic field of 0.98 T . What is the
current folowing through the wire if a force of

1 kg weight acts on the wire
A. $1 A$
B. 10 A
C. zero
D. $5 A$

Answer: B
(Watch Video Solution
14. A uniform electric field and a uniform magnetic field are acting along the same direction in a certain region. If an electron is projected along the direction of the fields with a certain velocity then
A. it will turn towards left of direction of motion
B. it will turn towards right of direacton of
motion
C. its velocity will increase

D. its velocity will decrease

Answer: D

D Watch Video Solution

15. A current- carrying straight wire is kept along the axis of a circular loop carrying a current. The straight wire
A. will exert an ineard force on the circular
B. will extra a force on the circular loop
parallel to itself
C. will exert a force on the circular loop
parallel to itself
D. will not exert any force on the circular loop

Answer: D

D Watch Video Solution
16. A straight wire of length 0.5 metre and carrying a current of 1.2 ampere is placed in a uniform magnetic field of induction 2 tesla. If the magnetic field is perpendicular to the length of the wire, the force acting on the wire is
A. 2.4 N
B. 1.2 N
C. 3.0 N
D. 2.0 N

Answer: B

D Watch Video Solution

17. A charge moving with velocity v in X direction is subjected to a field of magnetic induction in the negative X-direction. As a result, the charge will
A. remain unaffected
B. start moving in a circular Y-Z plane
C. reatard along X-axis

D. move along a helical path around X-axis

Answer: A

D Watch Video Solution

18. A charge q moves region in a electric field E
and the magnetic field B both exist, then the
force on its is

$$
\begin{aligned}
& \text { A. } q(\vec{v} \times \vec{B}) \\
& \text { В. } q \vec{E}+q(\vec{v} \times \vec{B})
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } q \vec{B}+q(\vec{B} \times \vec{v}) \\
& \text { D. } q \vec{B}+q(\vec{E} \times \vec{v})
\end{aligned}
$$

Answer: B

D Watch Video Solution

19. When a charged particle moving with velocity \vec{V} is subjected to a magnetic field of induction \vec{B} the force on it is non-zero. This implies that:
A. angle between \vec{v} and \vec{B} is necessarily 90°
B. angle between \vec{v} and \vec{B} can have any
value other than 90°
C. angle between \vec{v} and \vec{B} is either zero
or 180°
D. angle between \vec{v} and \vec{B} is either zero

$$
\text { or } 180^{\circ}
$$

Answer: C

20. An electron in a television picture tube travels at $3 \times 10^{7} \mathrm{~m} / \mathrm{s}$. It is subjected to a transverse magnetic field of
$2 \times 10^{-3} \mathrm{~Wb} / \mathrm{m}^{2}$. What is the magnitude of the lateral foce acting on the electron, due to the action of the magnetic field ?

Charge on the electron $=-1.6 \times 10^{-19} \mathrm{C}$.

$$
\begin{aligned}
& \text { А. } 4.8 \times 10^{-15} N \\
& \text { B. } 9.6 \times 10^{-15} N \\
& \text { C. } 7.2 \times 10^{-15} N
\end{aligned}
$$

$$
\text { D. } 2.4 \times 10^{-15} N
$$

Answer: B

D Watch Video Solution

21. A long wire carries a current of 5 A . An electron at a distance of 50 cm from this wire is moving with a speed of $10^{7} \mathrm{~m} / \mathrm{s}$ What is the force acting on the electron, when it moves directly towards the wire?

$$
\text { A. } 3.2 \times 10^{-18} N
$$

B. $5 \times 10^{-17} N$
C. $6.4 \times 10^{-18} N$
D. $1.6 \times 10^{-18} N$

Answer: A

D Watch Video Solution

22. A conductor of length 5 m and carrying current of 2 A is kept inclined at 30° to a uniform magnetic field of induction 0.4 tesla.

What is the force acting on the conductor ?
A. 5 N
B. 4 N
C. 3 N
D. 2 N

Answer: D

D Watch Video Solution

23. A straight wore of mass 2 gram and length

50 cm is kept horizontal in a uniform magnetic field on induction $2 \times 10^{-2} \mathrm{~Wb} / \mathrm{m}^{2}$. The field
is horizontal and is perpendicular to the length of the wire. How much current should be passed through wire, so to balance its weight ?
$\left(g=10 m / s^{2}\right)$
A. $1 A$
B. 1.5 A
C. $2 A$
D. 2.5 A

Answer: C
24. A positive ion having charge
$q=3.2 \times 10^{-19} C$, enters a uniform
magnetic field of induction $10^{-2} W / b m^{2}$, in a direction perpendicular to the field. If the force exerted by the field on the ions is $1.6 \times 10^{-16} N$, then the speed with which the ion enters the field, is

$$
\text { A. } 5 \times 10^{3} \mathrm{~m} / \mathrm{s}
$$

$$
\text { B. } 5 \times 10^{4} \mathrm{~m} / \mathrm{s}
$$

C. $8 \times 10^{5} \mathrm{~m} / \mathrm{s}$
D. $6 \times 10^{4} \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

25. A wire 1 m long is kept perpendicular to a magnetic field of 0.01 tesla.
(i) What is the forde on the wire when it carries a current of 10A?
(ii) What is the force on the wire if it is parallel to the magnetic field ?
A. $0.2 N, 0.1 N$
B. $0,0.1 N$
C. $0.1 N$, zero
D. $0.5 N, 0.2 N$

Answer: C

D Watch Video Solution

26. A conductor of length 2 m , carrying a current of 10 A is kept in a magnetic field of induction $5 \times 10^{-4} \mathrm{~Wb} / \mathrm{m}^{2}$. The conductor experiences a force of $5 \times 10^{-3} N$. What is
the angle made by the conductor, with the direction of the field?
A. 60°
B. 90°
C. 30°
D. 45°

Answer: C

- Watch Video Solution

27. A straight wire of lengt 2 m is kept horizontla in a uniform magnetic field of induction $4 \times 10^{-3} \mathrm{~Wb} / \mathrm{m}^{2}$. The field is horizontal and is at right angles to the length of the conductor. It is found that the conductor remains balanced, if a current of 4.9

A is passed through the conductor. What is the mass of the wire ?
A. 4 gram
B. 5 gram
C. 6 gram
D. 8 gram

Answer: A

D Watch Video Solution
28. A long straight wire carries a current of 10
A. An electron travels perpendicular to the plane of this wire at a distance 0.1 m with a
velocity of $5.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$. What is the force acting on the electron due to the current in wire ?

$$
\begin{aligned}
& \text { A. } 2.2 \times 10^{-17} N \\
& \text { B. } 1.6 \times 10^{-17} N \\
& \text { C. } 0.6 \times 10^{-17} N \\
& \text { D. Zero }
\end{aligned}
$$

Answer: D

- Watch Video Solution

29. An electron is projected along the axis of a circular conductor carrying some current.

Electron will experience force
A. a force along the axis.
B. a force perpendicular to the axis
C. a force at an angle of 45° with the axis
D. no force

Answer: D

30. A straight wire of mass 200 g and length
1.5 m carries a current of 2 A . It is suspended in midair by a uniform horizontal magnetic field
B. What is the magnitude of the magnetic field?

A. 2
B. 1.5

C. 0.55

D. 0.67

Answer: D

D Watch Video Solution

31. A wire $P Q R$ is bent as shown in the figure and is placed in a region of uniform magnetic
field B . The length of $P Q=Q R=l$. A
current I ampere flows through the wire as shown. The magnitude of the forece on $P Q$ and

QR will be

A. $B I l, 0$
B. $2 B l, 0$
C. $0, B I l$
D. 0,0

Answer: C
32. What is the magnitude of magnetic force per unit length of a wire carrying a current of 5 A and making an angle of 30° with the direction of a uniform magnetic field of 0.1 T ?
A. $0.45 \mathrm{~N} / \mathrm{m}$
B. $0.35 \mathrm{~N} / \mathrm{m}$
C. $0.25 \mathrm{~N} / \mathrm{m}$
D. $0.55 \mathrm{~N} / \mathrm{m}$

Answer: C

D Watch Video Solution

33. An α particel is projected with a velocity of
$10^{7} \mathrm{~m} / \mathrm{s}$, in a unifform magnetic fiedl on inductin, $1.2 \times 10^{-6} \mathrm{~Wb} / \mathrm{m}^{2}$, in a direction perpendicular to the field. If the lateral force acting on the particle is $3.84 \times 10^{-18} N$, what is the charge onn the a particle ?

$$
\text { A. } 1.6 \times 10^{-19} C
$$

B. $2.4 \times 10^{-19} C$
C. $3.2 \times 10^{-9} C$
D. $4 \times 10^{-19} C$

Answer: C

D Watch Video Solution

34. There is a uniform electric field of strength
$10^{3} \mathrm{~V} / \mathrm{m}$ along y-axis. A body of mass $1 g$ and charge $10^{-6} C$ is projected into the field from origin along the positive x-axis with a velocity
$10 m / s$. Its speed in m / s after $10 s$ is (Neglect gravitation)
A. 10
B. $5 \sqrt{2}$
C. $10 \sqrt{2}$
D. 20

Answer: C

D Watch Video Solution

1. Which one of the following graphs shows the variation of magnetic induction B which distance r from a long wire carrying a current ?
A.

B.
(b) $\xrightarrow{B}+$
C.
(c)

D.
(d)

Answer: D

D Watch Video Solution

2. The graph of force per unit legth between
two long parallel current carrying conductors
and the reciprocal of the distance between
them is
A. a parabola
B. a circle
C. a reactangular hyperbola

D. a straight line

Answer: D

D Watch Video Solution

Test Your Grasp

1. The magnetic induction at apoint P which is
at the distance 4 cm from a long current
carrying wire is $10^{-3} T$. The field of induction at a distance 12 cm from the current will be
A. $3.33 \times 10^{-4} T$
B. $1.11 \times 10^{-4} T$
C. $3 \times 10^{-3} T$
D. $9 \times 10^{-3} T$

Answer:

D Watch Video Solution

2. Two circular coils are made of two identical wires of same length and carry same current. If
the number of turns of the two coils are 4 and

2 , then the ratio of magnetic induction at the centres will be
A. $2: 1$
B. 1:2
C. 1:4
D. 4:1

Answer:

D Watch Video Solution
3. An α particles is projected with a velocity of $10^{7} \mathrm{~m} / \mathrm{s}$, in a uniform magnetic field of induction, $1.2 \times 10^{-6} \mathrm{~Wb} / \mathrm{m}^{2}$, in a direction perpendicular to the field. If the lateral force action on the particle is $3.84 \times 10^{-18} N$, what is the change on the a particle ?

$$
\text { A. } 1.6 \times 10^{-19} C
$$

B. $2.4 \times 10^{-19} C$
C. $3.2 \times 10^{-19} C$
D. $4 \times 10^{-19} C$

Answer:

D Watch Video Solution

4. Three long, straight parallel wires, carrying currents, are arraanged as shown in the figure.

What is the force experienced by a 25 cm lengtth of wire C?

A. $10^{-3} N$
B. $2.5 \times 10^{-3} N$
C. zero
D. $1.5 \times 10^{3} N$

Answer:

D View Text Solution
5. A current carrying loop is placed in a uniform magnetic field. The torque acting on it does not depend upon
A. area of loop
B. no. of turns in loop
C. shape of loop
D. strength of current and magnetic field

Answer:

D Watch Video Solution
6. A current carrying metal wire of diameter 2 mm produces a maxiumum magnetic field of
magnitude $4 \times 10^{-3} \mathrm{~T}$. What is the current in the wire ?
A. $5 A$
B. $10 \sqrt{2} A$
C. $15 A$
D. 20 A

Answer:
(Watch Video Solution
7. The magnitude of magnetic field at a point due to a current carrying small element of a conductor does not depend upon
A. currnt in the element
B. diameter of the element
C. length of the element
D. distance of the point from the element

Answer:

- Watch Video Solution

8. Using mass (M), length (L), time (T) and current (A) as fundamental quantities, the dimension of permittivity is:

$$
\begin{aligned}
& \text { A. }\left[M^{-1} L T^{-2} A\right] \\
& \text { B. }\left[M L^{-2} T^{-2} A^{-1}\right] \\
& \text { C. }\left[M L T^{-2} A^{-2}\right] \\
& \text { D. }\left[M L T^{-1} A^{-1}\right]
\end{aligned}
$$

Answer:

9. If the scattering intensity of a liquid is 8 units at a wavelentth of 500 nm , then the scatering insensity at a wavelength of 400 nm will be approximately
A. 13 units
B. 16 units
C. 20 units
D. 24 units

Answer:

10. Two similar coils each of radius r and no. of turns n are lying concentrically with their planes at right angle to each other. The corrents folowing in them are 1 A and $\sqrt{3} A$ respectively. What is the magnetic field at centre of the coils?
A. $\frac{\mu_{0} n}{2 \pi r}$
B. $\frac{\mu_{0} n}{\sqrt{3} \pi r}$
C. $\frac{\mu_{o} n}{r}$
D. $\frac{\sqrt{3} \mu_{0} n}{r}$

Answer:

- Watch Video Solution

