©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MARVEL PHYSICS (HINGLISH)

MEASUREMENTS

Mcqs

1. An atomic clock is based upon the periodic
vibrations produced is
A. Sodium atoms
B. Germanium atoms
C. Cesium atoms
D. Neon atoms

Answer: c

D View Text Solution
2. Which one of the following is not a unit of mass?
A. metric ton
B. amu (atomic mass unit)
C. mN (millinewton)
D. quintal

Answer: c

D Watch Video Solution
3. Which one from the following lies in the microscopic domain?
A. Motion of the planets round the sun
B. Diameter of the nucleus of the atom
C. Focal length of a lens
D. Rockets

Answer: b

D Watch Video Solution
4. What is the solid angle subtended by a hemisphere at its centre?
A. π steradian
B. 2π steradian
C. 3π steradian
D. 4π steradian

Answer: b

D Watch Video Solution
5. Which one of the following is not a unit in SI
system?
A. farad
B. poise
C. pascal
D. tesla

Answer: b

- Watch Video Solution

6. Which one of the following is the smallest unit?
A. Fermi
B. Angstrom
C. Micron
D. Nanometre

Answer: a

D Watch Video Solution

7. The fundamental unit of time viz. the second, is based upon the vibrations of the atoms of the following element.

A. Krypton

B. Xenon
C. Cesium
D. Lithium

Answer: c

D Watch Video Solution

8. Length cannot be measured in terms of

A. Fermi

B. Micron

C. Bar

D. Astronomical unit

Answer: c

D Watch Video Solution

9. Which is the odd physical quantity from the

following?

A. Leap year

B. Millisecond

C. Light year
D. Lunar month

Answer: c

D Watch Video Solution

10. When an unknown physical quantity X is divided by the force, acting on the body, we get the velocity of the body. What is X ?
A. Work
B. Kinetic energy
C. Power
D. Linear momentum

Answer: c

D Watch Video Solution

11. The total surface area and the volume of a
cube are found to be equal in magnitude.

What is the volume of the cube, if the length of each side is measured in cm ?
A. $175 \mathrm{~cm}^{3}$
B. $216 \mathrm{~cm}^{3}$
C. $200 \mathrm{~cm}^{3}$
D. $125 \mathrm{~cm}^{3}$

Answer: b
(Watch Video Solution
12. Which one of the following is not a unit of length?
A. Angstrom
B. Pascal
C. Ligth year
D. Parsec

Answer: b

D Watch Video Solution
13. If $x=a t+b t^{2}$, where x is the distance travelled by the body in kilometres while t is the time in seconds, then the units of b are
A. $k m s^{2}$
B. $k m s$
C. $k m / s^{2}$
D. $k m / s$

Answer: c

14. Which one of the following is not a unit of energy?
A. Calorie
B. Electron volt
C. Megawatt

D. Watt hour

Answer: c
(Watch Video Solution

15. One micron is related to centimetre as

A. 1 micron $=10^{-8} \mathrm{~cm}$
B. 1 micron $=10^{-6} \mathrm{~cm}$
C. 1 micron $=10^{-5} \mathrm{~cm}$
D. 1 micron $=10^{-4} \mathrm{~cm}$

Answer: d

16. A volume of 100 cubic metre is equal to

A. $10^{4} \mathrm{~cm}^{3}$
B. $10^{5} \mathrm{~cm}^{3}$
C. $10^{6} \mathrm{~cm}^{3}$
D. $10^{8} \mathrm{~cm}^{3}$

Answer: d
17. SI unit of temperature is
A. celsius
B. kelvin
C. degree celsius
D. degree kelvin

Answer: b

18. Which one of the following is not related to

time?
A. Month
B. Nanosecond
C. Year
D. Light year

Answer: d
(Watch Video Solution
19. The wavelength of a spectral line is 480 nm .

What is its value in mn ?
A. $480 \times 10^{-7} \mathrm{~mm}$
B. $48 \times 10^{-5} \mathrm{~mm}$
C. $48 \times 10^{-6} \mathrm{~mm}$
D. $4.8 \times 10^{-5} \mathrm{~mm}$

Answer: b

D Watch Video Solution
20. Which one of the following units is

correctly expressed?

A. Metre
B. Newton
C. newton
D. Joule/secc

Answer: c

D Watch Video Solution
21. Which one of the following system of units
is not based on the units of length, mass and time alone?
A. C.G.S.
B. F.D.S.
C. S.I.
D. M.K.S.

Answer: c

22. The unit of which one of the following physical quantities is not a derived unit?
A. Frequency
B. Charge
C. Gravitational constant
D. Electric current

Answer: d

23. The S.I. unit of planck's constant (h) is

A. J / s^{2}
B. $J s^{2}$
C. J / s
D. $J s$

Answer: d
24. If the units of force and length are doubled, then the unit of energy will be
A. 2 times the original
B. 4 times the original
C. $\frac{1}{4}$ times the original
D. $\frac{1}{2}$ times the original

Answer: b

D Watch Video Solution
25. Which one of the following quantities is not expressed in proper units?
A. Surface tension $-J / m^{2}$
B. Rigidity modulus - N / m^{2}
C. Coefficient of viscosity $-N-S / m^{2}$
D. Potential energy - $\mathrm{kgm} / \mathrm{s}^{2}$

Answer: d

D Watch Video Solution
26. In unit of time is taken as one year and the
unit of speed is taken as the speed of light, then the unit of distance (length) is known as
A. $1 \AA$
B. 1 fermi
C. One light year
D. 1 Parsec

Answer: c

D Watch Video Solution
27. Numerical value of the magnitude of a physical quantity is
A. directly proportional to magnitude of
the unit
B. inversely proportional to magnitude of
the unit
C. independent of system of unit
D. either (a) or (b)

Answer: b

28. The unit $1 \mathrm{~N} / \mathrm{m}$ is equivalent to

A. $1 \mathrm{erg} / \mathrm{cm}$
B. $1 \mathrm{erg} / \mathrm{cm}^{2}$
C. $1 \mathrm{~J} / \mathrm{m}$
D. $1 \mathrm{~J} / \mathrm{m}^{2}$

Answer: d
29. A new unit of length is so chosen that the speed of light in vacuum is unity. What is the distance (in this new unit) between the sun and the earth if light takes 8 min and 20 second to reach the earth from the sun?
A. 300
B. 400
C. 500
D. 600
30. What is the relation between 1 astronomical unit (AU) and one parsec (P)?
A. $\frac{1 A U}{1 P}=5$ second of an arc
B. $\frac{1 A U}{1 P}=1$ second (1) of an arc
c. $\frac{1 A U}{1 P}=3$ second of an arc
D. $\frac{1 A U}{1 P}=0.1$ second of an arc

Answer: b
31. How many metre are there in a light year?
A. $5.5 \times 10^{15} \mathrm{~m}$
B. $7.6 \times 10^{15} \mathrm{~m}$
C. $9.46 \times 10^{15} \mathrm{~m}$
D. $3.8 \times 10^{14} \mathrm{~m}$

Answer: c
(Watch Video Solution

$32.2 \times 10^{-12} \mathrm{~m}$ can be expressed as

A. 2 peta metre
B. 2 pico metre
C. 2 nano metre
D. 2 tera metre

Answer: b
(Watch Video Solution
33. Joule/ cm^{3} can be a unit of
A. Impulse
B. Force
C. Pressure

D. Momentum

Answer: c
34. Parsec' is the unit of :

A. time

B. distance
C. frequency

D. angular acceleration

Answer: b
35. In a particular measurement system, the units of length, mass and time are chosen as $10 \mathrm{~cm}, 10 \mathrm{~g}$ and 0.1 s respectively. What is the unit of force in this system in terms of the units in SI system?
A. 0.1 N
B. 1 N
C. 0.5 N
D. 5 N

Answer: a
36. The equation $\left(P+\frac{a}{V^{2}}\right)(V-b)$ constant. The units of a are
A. dyne $\times \mathrm{cm}^{5}$
B. dyne $\times \mathrm{cm}^{4}$
C. dyne cm^{-3}
D. dyne cm^{-2}

Answer: b
37. If the units of length, mass and time are doubled, then the new unit of work expressed in terms of L, M and T
A. becomes four times
B. becomes two times
C. becomes eight times
D. is not changed

A. 2.25×10^{19}
B. 2.25×10^{17}
C. 2.25×10^{23}
D. 2.25×10^{12}

Answer: a
39. How will you express the number $43,410,00$ in powers of ten?
A. 4.341×10^{5}
B. 4.341×10^{6}
C. 4.341×10^{7}
D. 4.341×10^{8}

Answer: b

- Watch Video Solution

40. The distance between the sun and the earth is $1,49,500,000,000 \mathrm{~m}$. How will you express it in powers of ten?
A. $1.495 \times 10^{10} m$
B. $1.495 \times 10^{12} m$
C. $1.495 \times 10^{11} m$
D. $1.495 \times 10^{-11} m$

Answer: c

41. What is the order of magnitude of the number 8245 ?
A. 3
B. 4
C. 2
D. 5

Answer: b
42. A student measured the diameter of a wire using a micrometer screw gauge of least count 0.001 cm . He recorded the following measurements. The correct measurement is
A. 5.3 cm
B. 5.320 cm
C. 5.32 cm
D. 5.3200 cm

Answer: b

43. What are the orders of magnitude of the following numbers?
(i) 43760 (ii) 0.00025432 (iii) 8346002
A. $10^{4}, 10^{-4}, 10^{7}$
B. $10^{4}, 10^{-3}, 10^{7}$
C. $10^{4}, 10^{-5}, 10^{6}$
D. $10^{4}, 10^{-4}, 10^{5}$

Answer: a
44. What is order of magnitude of $\left(10^{4}+10^{2}\right)$

?

A. 10^{6}
B. 10^{8}
C. 10^{4}
D. 10^{2}

Answer: c

- Watch Video Solution

45. The wavelength of sodium light is
0.0000005893 m . This can be expressed in powers of ten as
A. $5.893 \times 10^{-6} m$
B. $5.893 \times 10^{-7} m$
C. $5.893 \times 10^{5} m$
D. $5.893 \times 10^{-8} m$

Answer: b
46. What is the order of magnitude of 1 light year expressed in metre?
A. 10^{14}
B. 10^{15}
C. 10^{16}
D. 10^{17}

Answer: c

- Watch Video Solution

47. A student measured the diameter of a wire using a screw gauge with least count 0.001 cm and listed the measurements. The correct measurement is
A. 5.3 cm
B. 5.32 cm
C. 5.320 cm
D. 5.3200 cm
48. A student measured the diameter of a solid cylinder using a micrometer screw gauge of least count 0.001 cm and took the following readings. Which is the correct measurement?
A. 1.32 cm
B. 1.3 cm
C. 1.320 cm
D. 1.3200 cm

Answer: c

- Watch Video Solution

49. Give the number of significant figures in the following numbers.
(i) 15.00 kg (ii) 0.0042 m
(iii) 242.005 kg (iv) $3.638 \times 10^{2} \mathrm{~km}$
A. $2,3,4,6$
B. $4,2,6,4$
C. $2,4,3,4$
D. 2, 2, 3, 4

Answer: b

D Watch Video Solution

50. In the following numbers, the one having four significant figures is
A. 0.0004
B. 0.0078
C. 0.530

D. 5.038

Answer: d

D Watch Video Solution

51. The maximum possible error in a measurement
A. is equal to the zero error of the measuring instrument
B. does not have any limit
C. is equal to the least count of the measuring instrument

D. is equal to the square of the least count

of the measuring instrument

Answer: c

D Watch Video Solution
52. The number of significant figures in 5.00456 is
A. 5
B. 3
C. 4
D. 6

Answer: d

D Watch Video Solution
53. The length and breadth of a metal sheet are 2.325 m and 3.142 m respectively. What is
the area of this sheet using proper number of significant figures?
A. $7.30515 m^{2}$
B. $7.3051 m^{2}$
C. $7.305 m^{2}$
D. $7.31 m^{2}$

Answer: c

D Watch Video Solution
54. The side of a cube is 5.052 cm . What is the
volume of this cube to appropriate significant figures?

> А. $V=118.9 \mathrm{~cm}^{3}$
> B. $V=128.9 \mathrm{~cm}^{3}$
> C. $V=138.9 \mathrm{~cm}^{3}$
> D. $V=148.9 \mathrm{~cm}^{3}$

Answer: b

- Watch Video Solution

55. The number of significant figures in 3257000 is
A. 7
B. 6
C. 5
D. 4

Answer: d

D Watch Video Solution
56. You are given three numbers : 14.2, 0.142
and 0.00142 The number of significant figures
for the three numbers are
A. $3,3,5$
B. 3, 4, 6
C. $3,3,3$
D. 2, 3, 3

Answer: c

57. The number of significant figures in 52340000 is
A. 8
B. 4
C. 5
D. 6

Answer: b

D Watch Video Solution
58. The length and breadth of a metal sheet are 3.124 m and 3.002 m respectively. What is the area of this metal plate ? (Use significant figures)
A. $9.378 m^{2}$
B. $9.37 m^{2}$
C. $9.3782 m^{2}$
D. $9.378248 m^{2}$

Answer: a
-

59. The diameter of a circular ring is 6.28 cm .

What is its circumference, taking into account the significant figures?
A. 19.72 cm
B. 19.7 cm
C. 19.73 cm
D. 19.8 cm

Answer: b
60. Which one of the following is an example of systematic error?
A. Error in removing the parallax
B. The pointer of a voltmeter is not pivoted
at the centre of the scale
C. The thermometer scale is calibrated in
such a way that one degree on the thermometer is actually equal to 0.98°

D. In performing an electrical experiment,

 there were large voltage fluctuations.
Answer: b

- Watch Video Solution

61. Error committed by a student in removing the parallax is
A. an instrumental error
B. a personal error

C. systematic error

D. a random error

Answer: b

D Watch Video Solution

62. The percentage errors in the measurement of mass and speed of a body are 2% and 3% respectively. What is the percentage error in the kinetic energy obtained by measuring its mass and speed?
A. 12%
B. 10%
C. 8%
D. 2%

Answer: c

D Watch Video Solution

63. The distance between two points is measured as 2.784843 m . This is to be rounded
off to 4 significant figures. Hence the value of the distance should be written as
A. 2.784 m
B. 2.785 m
C. 2.7848 m
D. 2.7849 m

Answer: b
(Watch Video Solution
64. The error in the measurement of the radius of a sphere is 0.2%. What is the percentage error in the measurement of its surface area?
A. 0.2%
B. 0.4%
C. 0.6%
D. 0.8%

Answer: b
65. What is the percentage error in the value of the density of a copper cube, if the errors in the measurement of its mass and the length of one side are 3% and 4% respectively?
A. 15%
B. 13%
C. 11%
D. 9%

Answer: a

- Watch Video Solution

66. A force F is applied on a square plate of
side L. If the percentage error in the determination of L is 2% and that in F is 4%.

What is the permissible error in pressure?
A. 2%
B. 6%
C. 4%

D. 8%

Answer: d

D Watch Video Solution

67. The density of a cube is measured by measuring its mass and length of its sides. If the maximum error in the measurement of mass and length are 4% and 3% respectively,
the maximum error in the measurement of density will be
A. 9%
B. 13%
C. 12%
D. 7%

Answer: b

- Watch Video Solution

68. The error in the measurement of the diameter of a sphere is 2%. What is the
percentage error in the measurement of its

volume?

A. 4%
B. 6%
C. 8%
D. 10%

Answer: b
(Watch Video Solution
69. In a simple pendulum experiment, the length of the thread is measured as 102.3 cm and the diameter of the bob as 2.24 cm . What is the maximum possible error in the value of the effective length of the pendulum?

A. 1.1 cm

B. 0.011 cm
C. 0.11 cm
D. 0.111 cm

- Watch Video Solution

70. The potential difference across the ends of a wire is found to be (100 ± 2) volt and the current flowing in the wire is found to be (10 ± 0.1)A. What is the maximum percentage error in the measurement of resistance?
A. 2%
B. 3%
C. 4%

D. 5%

Answer: b

D Watch Video Solution

71. A student uses a metre scale, measuring
upto 1 mm , to measure the length and breadth of a rectangular plate. He finds that length $=5.7 \mathrm{~cm}$ and breadth $=3.4 \mathrm{~cm}$. What is
the percentage error in the area of the plate?

$$
\text { A. } 3.5 \%
$$

B. 4.7%
C. 5.3%
D. 6.2%

Answer: b

D Watch Video Solution

72. While measuring the acceleration due to gravity by a simple pendulum, a student makes an error of 1% in the measurement of length and an error of 2% in the measurement of
time. If he uses the formula for g as
$g=4 \pi^{2}\left(\frac{L}{T^{2}}\right)$, then the percentage error in the measurement of g will be
A. 3%
B. 4%
C. 5%
D. 6%

Answer: c

D Watch Video Solution
73. A cube has a side of length $1.2 \times 10^{-2} \mathrm{~m}$. What is its volume?

A. $1.7 \times 10^{-6} \mathrm{~m}^{3}$
B. $1.73 \times 10^{-6} \mathrm{~m}^{3}$
C. $1.70 \times 10^{-6} \mathrm{~m}^{3}$
D. $1.732 \times 10^{-6} m^{3}$

Answer: a

- Watch Video Solution

74. In an experiment, we measure the quantities a, b, c and then calculate x by using the formula $x=a b^{3} / c^{2}$. The percentage errors in $a, \quad b, \quad c \quad$ are
$\pm 1 \%, \pm 3 \%$ and $\pm 2 \% \quad$ respectively.

What is the percentage error in x ?
A. $\pm 1 \%$
B. $\pm 14 \%$
C. $\pm 10 \%$
D. $\pm 8 \%$

Answer: b

D Watch Video Solution

75. Zero error is included in the category of
A. Personal errors
B. Instrumental errors
C. Accidental errors
D. Constant errors

76. The error in the measurement of the radius

 of a sphere is 1%. Find the error in the measurement of volume.A. 1%
B. 2%
C. 3%
D. 5%
77. The least count of a stopwatch is 0.2 s . A student found the time of 25 oscillations of a simple pendulum to be 50 second. What will be the percentage error in the measurement of time?
A. 0.2%
B. 0.4%
C. 0.01%

D. 1.5%

Answer: b

D Watch Video Solution

78. The dimensions of a rectangular block measured with vernier callipers having least count of 0.01 cm are $5 \mathrm{~mm} \times 10 \mathrm{~mm} \times 5$ mm . What is the maximum percentage error in
the measurement of the volume of the block?

$$
\text { A. } 5 \%
$$

B. 10%
C. 15%
D. 20%

Answer: a

- Watch Video Solution

79. Poiseuille's's law for the flow of a liquid in a
capillary tube is given by
$\eta=\frac{\pi \Delta P a^{4}}{8 L V}$
where $\eta=$ co-efficient of viscosity of a liquid
$\Delta P=$ Pressure difference across a length (L) of a tube of radius (a)
and $\mathrm{V}=$ Volume of the liquid flowing per second The maximum error that enters the calculations of η is due to the measurement of
A. L
B. a
C. ΔP
D. V

Answer: b
80. The radius of a thin wire is 0.16 mm . The area of cross section taking significant figures
into consideration in square millimeter is
A. 0.081
B. 0.0804
C. 0.080457
D. 0.08

Watch Video Solution

81. To calculate the volume of cylinder, a student is given a metre scale of least count 1 mm to measure its length and vernier callipers of least count 0.1 mm to measure its diameter.

If its length and radius are 10 cm and 2 cm respectively then the percentage error in the calculated value of the volume of the cylinder will be

$$
\text { A. } 5 \%
$$

B. 4%
C. 3%
D. 2%

Answer: d

D Watch Video Solution

82. In an experiment to measure the height of
a bridge by dropping stone into water
underneath, if the error in measurement of
time of 0.1 s at the end of 2 s , then the error in estimation of height of bridge will be
A. 0.49 m
B. 0.98 m
C. 1.96 m
D. 2.12 m

Answer: c
(Watch Video Solution
83. Two carbon resistances are given by
$R_{1}=(4 \pm 0.4)$ ohm and $R_{2}=(12 \pm 0.6) \Omega$.

What is their net resistance with percentage error, if they are connected in series?
A. $16 \Omega \pm 5 \%$
B. $16 \Omega \pm 6.25 \%$
C. $16 \Omega \pm 8 \%$
D. $16 \Omega \pm 12 \%$

Answer: b
84. The length of the string of a simple pendulum is 102.6 cm and the diameter of the bob is 2.56 cm . What is the effective length of the simple pendulum by using the correct number of significant figures? (Rounding off is not to be considered.)
A. 103 cm
B. 103.88 cm
C. 103.8 cm

D. 103.9 cm

Answer: c

D Watch Video Solution

85. A student obtained the value of Young's modulus of steel as $1.9 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ while the standard value of Y is $2.1 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$.

What is the percentage error in his measurement?

$$
\text { A. } 8.5 \%
$$

B. 9.5%
C. 9%
D. 10%

Answer: b

- Watch Video Solution

86. The pressure on a square plate is measured by measuring the force on the plate and the length of one side of the plate. The errors in the measurement of force and length
are 3% and 2% respectively. The maximum error in the value of the pressure would be
A. 5%
B. 6%
C. 7%
D. 8%

Answer: c
(Watch Video Solution
87. For finding the specific resistance of a wire,
a student took the following readings by using
a metre scale, a micrometer and a resistance box.

Length of the wire $(\mathrm{L})=100.0 \mathrm{~cm}$
Radius $(r)=0.100 \mathrm{~cm}$ and $\mathrm{R}=10 \Omega$
What is the maximum possible percentage error in the value of the specific resistance?
A. 9.8%
B. 12.1%
C. 15.5%

D. 18%

Answer: b

D Watch Video Solution

88. The Young's modulus (Y) of the material of
a wire is given by $Y=\frac{M g L}{\pi r^{2} l}$.
The percentage errors in the load (Mg)
suspended at the lower end, original length
(L), radius (r) and the extension (I) are 1%,
$1.5 \%, 2 \%$ and 2.5% respectively. What is the
maximum possible percentage error in Y ?
[Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$]
A. 5.5%
B. 7.5%
C. 9%
D. 11%

Answer: c
(Watch Video Solution
89. If $X=\frac{a^{3} b^{2}}{\sqrt{c} d}$ and percentage errors in a, b,
c and d are $1 \%, 2 \%, 4 \%$ and 4%
respectively, then the error in X will be
A. 10%
B. 11%
C. 13%
D. 5%

Answer: c

90. When a metal sphere is heated, then the
maximum percentage change will be observed in its
A. area
B. radius
C. Volume
D. mass

Answer: c

- Watch Video Solution

91. A wire has a mass $(0.3 \pm 0.003) \mathrm{g}$, radius $(0.5 \pm 0.005) \mathrm{mm}$ and length $(6 \pm 0.06) \mathrm{cm}$.

The maximum percentage error in the measurement of its density is
A. 4%
B. 3%
C. 2%
D. 1%
92. The respective number of significant
figures for the numbers 23.023, 0.0003 and
2.1×10^{-3} are
A. $4,4,2$
B. 5, 1, 2
C. $5,1,5$
D. 5, 5, 2

- Watch Video Solution

93. Resistance of a given wire is obtained by measuring the current flowing in it and the voltage difference applied across it. If the percentage errors in the measurement of the current and the voltage difference are 3% each, then error in the value of resistance of the wire is
A. Zero
B. 1%
C. 3%
D. 6%

Answer: d

- Watch Video Solution

94. Identify the pair whose dimensions are equal.
A. Stress and Energy
B. Torque and Work

C. Force and Work

D. Force and Stress

Answer: b

- Watch Video Solution

95. Which one of the following is
dimensionally correct?
A. Moment of a force $=$ Force per unit
length
B. Moment of a force = Force per unit area
C. Moment of a force $=$ Force per unit volume
D. Moment of a force = Force \times length

Answer: d

D Watch Video Solution
96. Which one of the following quantities has
dimensions ?
A. Relative Density
B. Relative Refractive Index
C. Relative Velocity
D. Relative Permittivity

Answer: c

D Watch Video Solution
97. Which one of the following pairs has the same dimensions ?
A. Torque and Force
B. Energy and Acceleration
C. Light Year and Wavelength
D. Velocity and Momentum

Answer: c

D Watch Video Solution

98. A force F is given by $F=a t+b t^{2}$, where
t is time. What are the dimensions of a and b
A. $\left[M^{1} L^{1} T^{3}\right],\left[M^{1} L^{1} T^{-4}\right]$
B. $\left[M^{2} L^{1} T^{2}\right],\left[M^{1} L^{1} T^{-2}\right]$
C. $\left[M^{1} L^{-1} T^{-2}\right],\left[M^{1} L^{2} T^{-3}\right]$
D. $\left[M^{-1} L^{1} T^{-4}\right],\left[M^{1} L^{1} T^{-3}\right]$

Answer: a

D Watch Video Solution

99. Solar constant is defined as energy received by Earth per cm^{2} per minute. Find the dimensions of solar constant.
A. $\left[M^{0} L^{0} T^{-2}\right]$
B. $\left[M^{1} L^{0} T^{-3}\right]$
C. $\left[M^{1} L^{1} T^{-2}\right]$
D. $\left[M^{2} L^{0} T^{-2}\right]$

Answer: b

D Watch Video Solution
100. The dimensions of velocity gradient are
the same as that of
A. Frequency
B. Periodic time
C. Acceleration
D. angular acceleration

Answer: a

D Watch Video Solution
101. According to Laplace's formula, the velocity (V) of sound in a gas is given by
$v=\sqrt{\frac{\gamma P}{\rho}}$, where P is the pressure and ρ is
the density of the gas. What is the dimensional formula for γ ?
A. $\left[L^{1} M^{1} T^{1}\right]$
B. $\left[L^{-1} M^{0} T^{-1}\right]$
C. $\left[L^{-1} M^{0} T^{1}\right]$
D. $\left[L^{0} M^{0} T^{0}\right]$

Answer: d
102. Kepler stated that the areal velocity of a
planet remains constant. What are the units
and dimensions of areal velocity?

$$
\begin{aligned}
& \text { A. } m / s\left[M^{0} L^{1} T^{-2}\right] \\
& \text { B. } m^{2} / s\left[M^{0} L^{2} T^{-1}\right] \\
& \text { C. } m^{2} / s\left[M^{0} L^{2} T^{2}\right] \\
& \text { D. } m / s\left[M^{0} L^{1} T^{-1}\right]
\end{aligned}
$$

Answer: b
103. If Force (F) and time (t) are related by the equation $F=a t+b t^{2}$ then the dimensions of a and b are respectively given by

$$
\begin{aligned}
& \text { A. }\left[M^{1} L^{1} T^{-1}\right]\left[M^{1} L^{-1} T^{-2}\right] \\
& \text { B. }\left[M^{2} L^{1} T^{2}\right]\left[M^{1} L^{1} T^{-3}\right] \\
& \text { C. }\left[M^{1} L^{1} T^{-3}\right]\left[M^{1} L^{1} T^{-4}\right] \\
& \text { D. }\left[M^{2} L^{2} T^{-3}\right]\left[M^{-1} L^{2} T^{-2}\right]
\end{aligned}
$$

Answer: c

104. Which group of the following has all quantities with the same dimensions?
A. mass, length, time
B. momentum, force and impulse
C. Young's modulus, stress and pressure
D. surface tension, force constant and acceleration

Answer: c

105. Which is the dimensional constant among
the following?
A. Relative Density
B. Refractive index
C. Universal gas constant
D. Dielectric constant

Answer: c

D Watch Video Solution
106. When light of wavelength λ travels through glass, the refractive index of glass varies with wavelength as $\mu=A+\frac{B}{\lambda^{2}}$. What are the dimensional formulae of A and B ?

> A. $\left[M^{0} L^{0} T^{0}\right]\left[M^{0} L^{2} T^{-1}\right]$
> B. $\left[M^{0} L^{1} T^{-1}\right]\left[M^{0} L^{2} T^{0}\right]$
> C. $\left[M^{0} L^{0} T^{0}\right]\left[M^{0} L^{2} T^{0}\right]$
> D. $\left[M^{1} L^{0} T^{1}\right]\left[M^{0} L^{1} T^{1}\right]$

Answer: c
107. A particle with initial velocity u is moving with uniform acceleration (a). The distance moved by the particle in the $t^{t h}$ second is given by
$S=u+\frac{1}{2} a(2 t-1)$
The dimensions of S must be
A. L
B. $L T^{-1}$
C. $L T^{-2}$

D. T^{1}

Answer: b

D Watch Video Solution

108. The Bernoulli's equation is given by
$P+\frac{1}{2} \rho v^{2}+h \rho g=k$. Where $\mathrm{P}=$ pressure, $\rho=$ density, $v=$ speed, $h=h e i g h t ~ o f ~ t h e ~ l i q u i d ~$ column, $g=$ acceleration due to gravity and k is constant. The dimensional formula for k is same as that for:
A. Thrust
B. Pressure
C. Pressure gradient
D. Velocity gradient

Answer: b

D Watch Video Solution
109. C and R denote the capacitance and resistance respectively. What is the dimensional formula of CR?
A. $\left[M^{0} L^{0} T^{0}\right]$
B. $\left[M^{0} L^{0} T^{1}\right]$
C. $\left[M^{0} L^{0} T^{-1}\right]$
D. $\left[M^{1} L^{0} T^{-1}\right]$

Answer: b

D Watch Video Solution
110. Which one of the following is a dimensional constant?
A. Refractive index
B. Dielectric constant
C. Relative density
D. Gravitational constant

Answer: d

D Watch Video Solution
111. According to Laplace's formula, the velocity
(V) of sound in a gas is given by $v=\sqrt{\frac{\gamma P}{\rho}}$,
where P is the pressure and ρ is the density of
the gas. What is the dimensional formula for γ
?
A. $\left[L^{1} M^{1} T^{1}\right]$
B. $\left[L^{-1} M^{0} T^{-1}\right]$
C. $\left[L^{-1} M^{0} T^{1}\right]$
D. $\left[L^{0} M^{0} T^{0}\right]$

Answer: c

D Watch Video Solution
112. Kepler stated that the areal velocity of a planet remains constant. What are the units and dimensions of areal velocity?
A. $m / s\left[M^{0} L^{1} T^{-2}\right]$
B. $m^{2} / s\left[M^{0} L^{2} T^{-1}\right]$
C. $m^{2} / s\left[M^{0} L^{2} T^{2}\right]$
D. $m / s\left[M^{0} L^{1} T^{-1}\right]$

Answer: c

113. Which one of the following gives the dimensional formula of coefficient of friction?
A. $\left[M L T^{-2}\right]$
B. $\left[M^{2} L T^{-2}\right]$
C. $\left[M^{0} L^{0} T^{0}\right]$
D. $\left[M^{2} L T\right]$

Answer: c

D Watch Video Solution
114. What is the dimensional formula for pressure gradient?
A. $\left[M^{1} L^{2} T^{-1}\right]$
B. $\left[M L^{-2} T^{-2}\right]$
C. $\left[M^{-2} L^{-2} T^{0}\right]$
D. $\left[M^{0} L^{2} T^{-2}\right]$

Answer: b

D Watch Video Solution

115. The periodic time (T) of a simple pendulum
of length (L) is given by $T=2 \pi \sqrt{\frac{L}{g}}$. What is
the dimensional formula of $T \sqrt{\frac{g}{L}}$?
A. $\left[M^{0} L^{1} T^{0}\right]$
B. $\left[M^{0} L^{0} T^{0}\right]$
C. $\left[M^{1} L^{1} T^{-1}\right]$
D. $\left[M^{0} L^{-1} T^{1}\right]$

Answer: b
116. What is the dimensional formula of the term $\frac{a}{b}$ in the equation $P=\left(\frac{a+x}{b}\right)$, where P is the pressure and x is the distance?
A. $\left[M^{1} L^{-1} T^{2}\right]$
B. $\left[M L^{-1} T^{-2}\right]$
C. $\left[M^{1} L^{2} T^{-1}\right]$
D. $\left[M^{-1} L^{-2} T^{1}\right]$

Answer: b
117. In the following dimensionally correct equation $F=\frac{X}{\text { Linear Density }}$, where F is the force. What is the dimensional formula for X ?
A. $M^{0} L^{0} T^{0}$
B. $M L T^{-2}$
C. $M^{2} L^{-2} T^{-2}$
D. $M^{2} L^{0} T^{-2}$
118. The distance travelled by a body moving along a straight line with uniform acceleration
(a) in the nth second of its motion is given by $S_{n}=u+\frac{a}{2}(2 n-1)$. This equation is
A. only numerically correct only
B. only dimensionally correct only
C. correct both dimensionally and
numerically

D. neither numerically nor dimensionally

correct

Answer: c

D Watch Video Solution

119. The damping force acting on an oscillating body is proportional to its velocity i.e. $\mathrm{F}=\mathrm{Kv}$. What is the dimensional formula for K ?
A. $\left[M^{1} L^{1} T^{-1}\right]$
B. $\left[M^{1} L^{0} T^{-1}\right]$
C. $\left[M^{0} L^{1} T^{-2}\right]$
D. $\left[M^{1} L^{0} T^{1}\right]$

Answer: b

D Watch Video Solution
120. The dimensional formula for the ratio of angular to linear momentum is
A. $\left[M^{1} L^{1} T^{0}\right]$
B. $\left[M^{0} L^{1} T^{0}\right]$
C. $\left[M^{0} L^{2} T^{1}\right]$
D. $\left[M^{1} L^{2} T^{0}\right]$

Answer: b

D Watch Video Solution
121. Which physical quantities have the same dimension?
A. Couple and Work
B. Work and Power
C. Force and Power
D. Latent Heat and Specific Heat

Answer: a

D Watch Video Solution

122. The expression $\left[M^{1} L^{2} T^{-2}\right]$ represents
A. Power
B. Momentum

C. Pressure

D. Kinetic Energy

Answer: d

D Watch Video Solution

123. Which one of the following represents the
correct dimensions of the coefficient of viscosity?
A. $\left[M L^{-1} T^{-2}\right]$

> B. $\left[M^{1} L^{1} T^{-1}\right]$
> C. $\left[M^{1} L^{2} T^{-2}\right]$
> D. $\left[M^{1} L^{-1} T^{-1}\right]$

Answer: d

D Watch Video Solution
124. The surface tension of a liquid is 90 dyne/cm. What is the value in SI system?
A. $9 \times 10^{-4} N / m$
B. $9 \times 10^{-2} \mathrm{~N} / \mathrm{m}$
C. $9 \times 10^{-1} \mathrm{~N} / \mathrm{m}$
D. $9 \times 10^{2} \mathrm{~N} / \mathrm{m}$

Answer: b

D Watch Video Solution
125. The dimensional formul for impulse is
same as the dimensional formula for
A. momentum

B. Force

C. rate of change in momentum
D. acceleration

Answer: a

- Watch Video Solution

126. The dimensional formula of torque is
A. $M L^{2} T^{-1}$
B. $M L T^{-2}$
C. $M L T^{-1}$
D. $M L^{2} T^{-2}$

Answer: d

D Watch Video Solution

127. What is the dimensional formula for $m c^{2}$,
where m and c denote the mass and velocity of a body?
A. $M^{1} L^{1} T^{-1}$
B. $M^{1} L^{1} T^{-3}$
C. $M^{2} L^{1} T^{-2}$
D. $M^{1} L^{2} T^{-2}$

Answer: d

D Watch Video Solution

128. The viscous force acting on a body moving through a liquid is proportional to its velocity. What is the dimensional formula for the constant of proportional to its velocity. What
is the dimensional formula for the constant of proportionality?

> A. $\left[M^{1} L^{1} T^{-1}\right]$
> B. $\left[M^{1} L^{1} T^{-2}\right]$
> C. $\left[M^{1} L^{0} T^{-1}\right]$
> D. $\left[M^{0} L^{1} T^{-1}\right]$

Answer: c

- Watch Video Solution

129. Refractive index mu is given as
$\mu=A+\frac{B}{\lambda^{2}}$, where A and B are constants
and lambda is wavelength, then dimensions of
B are same as that of
A. Wavelength
B. Area
C. Volume
D. Velocity

Answer: b

130. The ratio of the dimension of Planck's constant and that of moment of inertia is the dimension of
A. Velocity
B. Time
C. Frequency
D. Mass

Answer: c
131. The unit of solid angle is steradian. What is the dimensional formula for steradian?
A. $\left[L^{1} M^{1} T^{-1}\right]$
B. $\left[L^{0} M^{0} T^{0}\right]$
C. $\left[L^{2} M^{-1} T^{1}\right]$
D. $\left[L^{-2} M^{1} T^{0}\right]$

Answer: b
132. The density of a substance in C.G.S. system
is $0.475 \mathrm{gram} / \mathrm{cm}^{3}$. What is its value in SI
system?
A. $0.475 \mathrm{~kg} / \mathrm{m}^{3}$
B. $475 \mathrm{~kg} / \mathrm{m}^{3}$
C. $0.0475 \mathrm{~kg} / \mathrm{m}^{3}$
D. $4.75 \mathrm{~kg} / \mathrm{m}^{3}$

Answer: b
133. $\left(\frac{X^{2}}{\text { Mass }}\right)$ has the dimensions of kinetic energy. Then X has the dimensions of
A. Pressure
B. Impulse
C. Torque
D. Force

Answer: b

D Watch Video Solution
134. Which one of the following is a dimensional constant?
A. Relative Density
B. Refractive index
C. Dielectric constant
D. Gravitational constant

Answer: d

135. Which one of the following is not a dimensionless variable?
A. Dielectric constant
B. Strain
C. π
D. Refractive index

Answer: c

- Watch Video Solution

136. Treating force F, length L and time T as
fundamental units, what is the dimensional formula of mass?
A. $F^{+1} L^{+2} T^{+1}$
B. $F^{+2} L^{+1} T^{-1}$
C. $F^{+1} L^{-1} T^{+2}$
D. $F^{+1} L^{+1} T^{+2}$

Answer: c

137. If the energy (E), velocity (v) and force (F) are taken as fundamental quantities, then what is the dimensional formula for mass?
A. $E^{1} v^{2} F^{1}$
B. $F^{1} v^{-1} E^{1}$
C. $E^{1} v^{-2} F^{0}$
D. $F^{1} v^{-2} E^{0}$

Answer: c

- Watch Video Solution

138. Which one of the following physical quantities is a dimensional variable?
A. Angle
B. Relative velocity
C. Refractive index
D. Relative density

Answer: b
(Watch Video Solution
139. In a system of units, the units of force and energy are 10 N and 50 J respectively. What is the unit of length in this system?
A. 3 m
B. 5 m
C. 7 m
D. 10 m

Answer: b

140. What is the unit of 'a' in terms of fundamental units in Van der waal's equation
$\left(P+\frac{a}{V^{2}}\right)(V-b)=R T ?$
A. $k g m^{5} / s^{2}$
B. $\mathrm{kgm} / \mathrm{s}$
C. $k g m^{4} s^{2}$
D. $k g^{2} m^{3} / s^{2}$

Answer: a

D Watch Video Solution
141. The equation of state for a real gas having pressure P , volume V and temperature T is expressed as
$\left(P+\frac{a}{V^{2}}\right)(V-b)=R T$
where a, b and R are constant. What are the dimensional formula of $\frac{a}{b}$?

$$
\begin{aligned}
& \text { A. }\left[M^{2} L^{2} T^{-2}\right] \\
& \text { B. }\left[M^{1} L^{1} T^{-2}\right] \\
& \text { C. }\left[M^{1} L^{2} T^{-2}\right] \\
& \text { D. }\left[M^{2} L^{3} T^{-1}\right]
\end{aligned}
$$

Answer: c

- Watch Video Solution

142. The velocity (V) of a particle (in cm / s) is given in terms of time (t) in sec by the equation $V=a t+\frac{b}{c+t}$. The dimensions of a, b and c are

A $a b c$
A.
$L^{2} \quad T \quad L^{1} T^{-2}$
B. $a \quad b$
c
$L^{1} T^{2} \quad L^{1} T \quad L^{1}$
C. ${ }^{a}$

$$
L^{1} T^{-2} \quad L^{1} \quad T^{1}
$$

$$
\text { D. } \begin{array}{lll}
a & b & c \\
L^{1} & L^{1} T & T^{2}
\end{array}
$$

Answer: c

D Watch Video Solution

143. What are the dimensional formulae of ω and K in the relation $y=A \sin (\omega t-K x)$?
A. $\left[M^{0} L^{0} T^{2}\right]\left[M^{0} L^{-1} T^{0}\right]$
B. $\left[M^{0} L^{0} T^{-1}\right]\left[M^{0} L^{-1} T^{0}\right]$
C. $\left[M^{0} L^{0} T^{-1}\right]\left[M^{0} L^{1} T^{0}\right]$

$$
\text { D. }\left[M^{0} L^{0} T^{-1}\right]\left[M^{0} L^{1} T^{-1}\right]
$$

Answer: b

D Watch Video Solution

144. V is the volume of a liquid flowing per second through a capillary tube of length I and radius r, under a pressure difference (p). If the velocity (v), mass (M) and time (T) are taken as the fundamental quantities, then the
dimensional formula for η in the relation

$$
V=\frac{\pi p r^{4}}{8 \eta l}
$$

A. $\left[M V^{-1}\right]$
B. $\left[M^{1} V^{-1} T^{-2}\right]$
C. $\left[M^{1} V^{1} T^{-2}\right]$
D. $\left[M^{1} V^{-1} T^{-1}\right]$

Answer: c

D Watch Video Solution

145. The dimensions of $\frac{a}{b}$ in the equation $P=\frac{a-t^{2}}{b x}$ where P is pressure, x is distance and t is time are

$$
\begin{aligned}
& \text { A. }\left[M^{1} L^{1} T^{-2}\right] \\
& \text { B. }\left[M^{0} L^{2} T^{-2}\right] \\
& \text { C. }\left[M^{1} L^{1} T^{1}\right] \\
& \text { D. }\left[M^{1} L^{0} T^{-2}\right]
\end{aligned}
$$

Answer: d

146. If force, length and time are taken as
fundamental units, then the dimensions of mass will be
A. $\left[F^{1} L^{2} T^{-2}\right]$
B. $\left[F^{1} L^{-1} T^{2}\right]$
C. $\left[F^{0} L^{1} T^{-2}\right]$
D. $\left[F^{1} L^{1} T^{-1}\right]$

Answer: b

- Watch Video Solution

147. Planck's constant (h) and de Broglie wavelength (λ) are related through the equation $h=\lambda \sqrt{2 m E}$, where ' m ' and ' E ' denote the mass and kinetic energy respectively of the moving particle. The dimensional formula of h is given by
A. $\left[M^{2} L^{2} T^{-2}\right]$
B. $\left[M^{1} L^{2} T^{-1}\right]$
C. $\left[M^{1} L^{1} T^{-1}\right]$
D. $\left[M^{2} L^{-1} T^{-2}\right]$

Answer: b

D Watch Video Solution

148. A physical quantity Q is given by
$Q=Q_{0} e^{-\alpha t^{2}}$ where t is the time and α is a
constant. What is the dimensional formula for α ?

$$
\begin{aligned}
& \text { A. }[\alpha]=\left[L^{0} M^{0} T^{0}\right] \\
& \text { B. }[\alpha]=\left[L^{1} M^{0} T^{-1}\right] \\
& \text { C. }[\alpha]=\left[L^{0} M^{0} T^{-2}\right]
\end{aligned}
$$

$$
\text { D. }[\alpha]=\left[L^{1} M^{1} T^{-1}\right]
$$

Answer: c

D Watch Video Solution

149. An equation of a gas is given as $\left(P+\frac{a}{V^{2}}=\frac{b T}{V}\right.$, where $\mathrm{P}=$ pressure, $\mathrm{V}=$ volume and $\mathrm{T}=$ absolute temperature of the gas and a and b are constants. What is the dimensional formula for a ?

$$
\text { A. }\left[M^{-1} L^{5} T^{2}\right]
$$

B. $\left[M L^{5} T^{-2}\right]$
C. $\left[M L^{-5} T^{-1}\right]$
D. $\left[M L^{5} T\right]$

Answer: b

D Watch Video Solution

150. What is the dimensional formula of specific resistance in terms of charge Q ?

$$
\text { A. } M^{1} L^{2} T^{-2} Q^{-1}
$$

B. $M^{1} L^{2} T^{-2} Q^{-2}$
C. $M^{1} L^{3} T^{-1} Q^{-2}$
D. $M^{1} L T^{-2} Q^{-1}$

Answer: c

D Watch Video Solution

151. The angle of banking θ for a cyclist taking
a turn on a curved road of radius r, with a
velocity v is given by $\tan \theta=\frac{v^{n}}{r g}$. What is the
value of n ?
A. 1
B. 3
C. 2
D. 4

Answer: c

D Watch Video Solution
152. The velocity of a body falling freely under acceleration due to gravity g varies as $g^{p} h^{q}$
where h is decrease in height of the body.

What are the values of p and q ?

> A. $\frac{1}{2}, 1$
> B. $\frac{1}{2}, \frac{1}{2}$
> C. $1, \frac{1}{2}$
> D. 1,1

Answer: b
(Watch Video Solution
153. Which one of the following groups have quantities that do not have the same dimensions?
A. Velocity, Speed
B. Pressure, $\frac{\text { Work }}{\text { Volume }}$
C. Force, Impulse
D. Work, Energy

Answer: c

D Watch Video Solution
154. The physical quantity which has
dimensional formula as that of
energy
is
mass \times length
A. Force
B. Power
C. Pressure
D. acceleration

Answer: d
155. What is the dimensional formula of $\underline{1}$ $\mu_{0} \varepsilon_{0}$ where the symbols have their usual meanings?

$$
\begin{aligned}
& \text { A. }\left[M^{0} L^{2} T^{2}\right] \\
& \text { B. }\left[M^{0} L^{2} T^{-2}\right] \\
& \text { C. }\left[M^{0} L^{-1} T^{2}\right] \\
& \text { D. }\left[M^{0} L^{1} T^{-1}\right]
\end{aligned}
$$

Answer: b

- Watch Video Solution

156. A certain physical quantity is calculated from the formula $\frac{\pi}{2}\left[a^{2}-b^{2}\right] c$, where a, b and c are all lengths. The quantity being calculated is
A. Velocity
B. Length
C. Area
D. Volume

Answer: d
157. Which of the following operations of the
functions of A and B can be performed if A and
B posses different dimensions?
A. $A+B$
B. $A-B$
C. $\frac{A}{B}$
D. $\sqrt{\frac{A+B}{A-B}}$

Answer: c

D Watch Video Solution
158. Which of the following physical quantities have the same dimensions?
(1) Energy density (2) Refractive index
(3) Magnetic induction (4) Pressure
A. 1 and 2
B. 2 and 3
C. 1 and 4
D. 1 and 3
159. From the following physical quantities, which is the only quantity which has negative dimensions of mass?
A. Linear momentum
B. Gravitationsl constant
C. Force
D. Work
160. The dimensions of length in electric field, electric flux and electric dipole moment are respectively
A. 1,2,3
B. 1,3,1
C. 3,1,2
D. 2,1,3

- Watch Video Solution

Test Your Grasp

1. $2 \times 10^{-12} \mathrm{~m}$ can be expressed as
A. 2 peta metre
B. 2 pico metre
C. 2 namo metre
D. 2 tera metre

Answer: B

D Watch Video Solution

2. The distance between the sun and the earth
is $1,49,500,000,000 \mathrm{~m}$. How will you express it in powers of ten?
A. $1.495 \times 10^{10} \mathrm{~m}$
B. $1.495 \times 10^{12} \mathrm{~m}$
C. $1.495 \times 10^{11} \mathrm{~m}$
D. $1.495 \times 10^{-11} \mathrm{~m}$

Answer: C

D Watch Video Solution

3. The diameter of a circular ring is 6.28 cm .

What is its circumference, taking into account the significant figures?
A. 19.72 cm
B. 19.7 cm
C. 19.73 cm
D. 19.8 cm

Answer: B

D Watch Video Solution

4. A force F is applied on a square plate of side
L. If the percentage error in the determination
of L is 2% and that in F is 4%. What is the permissible error in pressure?
A. 2%
B. 6%
C. 4%

D. 8%

Answer: D

D Watch Video Solution

5. The potential difference across the ends of a
wire is found to be (100 ± 2) volt and the
current flowing in the wire is found to be
$(10 \pm 0.1) \mathrm{A}$. What is the maximum percentage error in the measurement of resistance?
A. 2%
B. 3%
C. 4%
D. 5%

Answer: B

D Watch Video Solution

6. If $X=\frac{a^{3} b^{2}}{\sqrt{c} d}$ and percentage errors in $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are $1 \%, 2 \%, 4 \%$ and 4% respectively, then the error in X will be
A. 10%
B. 11%
C. 13%
D. 5%

Answer: C

D Watch Video Solution

7. A force is given by

$F=a t+b t^{2}$
where, t is the time. The dimensione of a and
b are

> A. $\left[M^{1} L^{1} T^{3}\right],\left[M^{1} L^{1} T^{-4}\right]$
> B. $\left[M^{2} L^{1} T^{2}\right],\left[M^{1} L^{1} T^{-2}\right]$
> C. $\left[M^{1} L^{-1} T^{-2}\right],\left[M^{1} L^{2} T^{-3}\right]$
> D. $\left[M^{-1} L^{1} T^{-4}\right],\left[M^{1} L^{1} T^{-3}\right]$

Answer: A
(Watch Video Solution
8. Which one of the following gives the dimensional formula of coefficient of friction?

> A. $\left[M L T^{-2}\right]$
> B. $\left[M^{2} L T^{-2}\right]$
> C. $\left[M^{0} L^{0} T^{0}\right]$
> D. $\left[M^{2} L T\right]$

Answer: C
(Watch Video Solution
9. The refractive index of a medium is given by
$\mu=A+\frac{B}{\lambda^{2}}$ where A and B are constants and λ is the wavelength of light.

Then the dimensions of B are the same as that of
A. Wavelength
B. Area
C. Volume
D. Velocity

Answer: B
10. V is the volume of a liquid flowing per second through a capillary tube of length I and radius r, under a pressure difference (p). If the velocity (v), mass (M) and time (T) are taken as the fundamental quantities, then the dimensional formula for η in the relation $V=\frac{\pi p r^{4}}{8 \eta l}$
A. $\left[M v^{-1}\right]$
B. $\left[M^{1} v^{-1} T^{-2}\right]$
C. $\left[M^{1} v^{1} T^{-2}\right]$
D. $\left[M^{1} v^{-1} T^{-1}\right]$

Answer: C

D Watch Video Solution

