© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - MARVEL MATHS (HINGLISH)

APPLICATIONS OF DEFINITE INTEGRALS

Multiple Choice Questions Part A Building Up The Base

1. $y=x^{2}+1, \ldots x=0, x=3$
A. 12
B. 21
C. 18
D. 9

Answer: A

D Watch Video Solution

2. $y=\frac{3}{x^{2}}, \ldots . x=1, x=2$
A. 32
B. 23
C. $\frac{3}{2}$
D. $\frac{2}{3}$

Answer: C

- Watch Video Solution

$$
\text { 3. } y=4-x^{2}, \ldots . . x=0, x=1
$$

A. 33
B. $\frac{11}{3}$
C. 3.3
D. $\frac{3}{11}$

Answer: B

- Watch Video Solution

$$
\text { 4. } y=3-2 x-x^{2}, \ldots x=-1, x=2
$$

A. 9
B. 3
C. 25
D. 36

Answer: B

D Watch Video Solution

5. $y=(x-1)(2-x), \ldots . x=1, x=2$
A. $\frac{1}{3}$
B. $\frac{1}{4}$
C. $\frac{1}{5}$
D. $\frac{1}{6}$

Answer: D

D Watch Video Solution

$$
\text { 6. } y=\sin x, \ldots . x=0, x=\frac{2 \pi}{3}
$$

A. $\frac{1}{3}$
B. $\frac{3}{2}$
C. 1
D. 2

- Watch Video Solution

7. $y=x+\sin x, \ldots x=0, x=\frac{\pi}{2}$
A. $\frac{\pi}{4}+1$
B. $\frac{\pi}{4}-1$
C. $\frac{\pi^{2}}{4}+1$
D. $\frac{\pi^{2}}{8}+1$

Answer: D

$$
\text { 8. } y=\sin ^{2} x, \ldots . x=0, x=\frac{\pi}{4}
$$

$$
\begin{aligned}
& \text { A. } \frac{\pi}{8}-\frac{1}{4} \\
& \text { B. } \frac{\pi}{4}-\frac{1}{8} \\
& \text { C. } \frac{\pi}{32} \\
& \text { D. } \frac{1}{2}+\frac{\pi}{4}
\end{aligned}
$$

Answer: A

D Watch Video Solution

9. $x y=c^{2}, \ldots x=c, x=2 c$ where $\mathrm{c}>0$
A. $2 c^{2}$
B. $c^{2} \cdot \log 2$
C. 2 c. $\log 32$
D. $c^{2} \cdot \log 4$

Answer: B

10. If $f(x)=3 x^{2}, \quad$ if $0 \leq x \leq 2$
 $$
=16-2 x, \quad \text { if } \quad x \geq 2
$$

then area bounded by the graph of $y=f(x)$,
the X-axis and the line $x=3$ is (in sq. u.)
A. 12
B. 19
C. 17
D. 24

Answer: B
11. Area under the curve $x=a t^{2}, y=2 a t$
from $x=0$ to $x=a$ is
A. $\frac{4 a^{2}}{3}$
B. $\frac{4 a}{3}$
C. $\frac{3 a}{4}$
D. $\frac{3 a^{2}}{4}$

Answer: A
(Watch Video Solution
12. Area in the first quadrant bounded by the hyperbola $9 x^{2}-y^{2}=36$, the X -axis and the lines $x=2, x=4$ is
A. $6 \sqrt{3}$
B. $\log (3+\sqrt{2})$
C. $6 \sqrt{3}-3 \log (2+\sqrt{3})$
D. None of these

Answer: D

13. Area bounded by the curve $y=x^{2}-2 x$ and the line $\mathrm{y}=2 \mathrm{x}$ is
A. $\frac{125}{6}$
B. $\frac{32}{3}$
C. 36
D. 28

Answer: B

- Watch Video Solution

14. Area of the region between the curve $y=x^{2}-3 x$ and the line $\mathrm{y}=2 \mathrm{x}$ is

$$
\begin{aligned}
& \text { A. } \frac{125}{6} \\
& \text { B. } \frac{49}{3} \\
& \text { C. } \frac{64}{3} \\
& \text { D. } \frac{67}{3}
\end{aligned}
$$

Answer: A

- Watch Video Solution

15. Area of the region bounded by the parabola $a y=x^{2}$, the X -axis and the ordinates at $\mathrm{x}=\mathrm{a}, \mathrm{x}=2 \mathrm{a}$ is

$$
\begin{aligned}
& \text { A. } \frac{3 a^{2}}{7} \\
& \text { B. } \frac{3 a}{7} \\
& \text { C. } \frac{7 a}{3} \\
& \text { D. } \frac{7 a^{2}}{3}
\end{aligned}
$$

Answer: D

16. Area bounded by the parabola $a y^{2}=x$, the X -axis and the ordinate at $\mathrm{x}=\mathrm{a}$ is
A. $\frac{2 a^{2}}{3}$
B. $\frac{2 a}{3}$
C. $\frac{a^{2}}{2}$
D. $\frac{3 a^{2}}{2}$

Answer: B

17. Area enclosed between the curve

$$
a y=3\left(a^{2}-x^{2}\right) \text { and the X-axis is }
$$

A. $4 a^{2}$
B. 8 a
C. $\frac{3 a^{2}}{2}$
D. $\frac{2 a^{2}}{3}$

Answer: A
(Watch Video Solution
18. Area enclosed between the curve $y=x^{2}$
and the line $y=x$ is
A. $\frac{1}{8}$
B. $\frac{1}{6}$
C. $\frac{3}{2}$
D. $\frac{1}{7}$

Answer: B

D Watch Video Solution
19. Area bounded between the curve $x^{2}=y$ and the line $y=4 x$ is

> A. $\frac{32}{3}$
> B. $\frac{2}{3}$
> C. $\frac{3}{2}$
> D. $\frac{1}{7}$

Answer: A
(Watch Video Solution
20. Area enclosed between the curve $y^{2}=x$ and the line $y=x$ is
A. 1
B. $\frac{1}{3}$
C. $\frac{1}{6}$
D. $\frac{1}{5}$

Answer: C

D Watch Video Solution
21. The area bounded by the parabola $y^{2}=8 x$, the x-axis and the latusrectum, is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \\
& \text { B. } \frac{32}{3} \\
& \text { C. } \frac{23}{3} \\
& \text { D. } \frac{22}{3}
\end{aligned}
$$

Answer: B

- Watch Video Solution

22. Area enclosed between the curve $y^{2}=16 x$ and the chord BC , where $B \equiv(1,4)$ and $C \equiv(9,12)$ is

> A. $\frac{8}{3}$
> B. $\frac{32}{3}$
> C. $\frac{16}{3}$
D. None of these

Answer: C

23. Area of the region enclosed between the
curve $x=1-y^{2}$ and the Y -axis is

> A. $\frac{5}{3}$
> B. $\frac{4}{3}$
> C. $\frac{2}{3}$
> D. $\frac{1}{3}$

Answer: B

- Watch Video Solution

24. Area enclosed between the curve $x=2 y-y^{2}$ and the Y -axis is
A. $\frac{4}{3}$
B. $\frac{5}{3}$
C. $\frac{2}{3}$
D. $\frac{7}{3}$

Answer: A

D Watch Video Solution

25. Area enclosed between the curve $x^{2}+4 y=4$ and the X-axis is

> A. $\frac{32}{3}$
> B. $\frac{16}{3}$
> C. $\frac{8}{3}$
> D. $\frac{4}{3}$

Answer: A

D Watch Video Solution
26. Area enclosed between the curve $y=x^{2}-5 x+15$ and the line $y=3 x+3$ is

$$
\begin{aligned}
& \text { A. } \frac{32}{3} \\
& \text { B. } \frac{16}{3} \\
& \text { C. } \frac{8}{3} \\
& \text { D. } \frac{4}{3}
\end{aligned}
$$

Answer: A

D Watch Video Solution

27. Area of the portion of the parabola $y^{2}=4 a x$ included between the X -axis, the ordinate at $x=2 a$ and its latus rectum is

$$
a^{2}(2 \sqrt{2}-1)
$$

A.

$$
\frac{4 a^{2}(2 \sqrt{2}-1)}{3}
$$

C. $\frac{8 a^{2}(2 \sqrt{2}-1)}{3}$
D. None of these

Answer: D

28. If the area of the region enclosed between
the curve $y=3 x^{2}-4 x+c$, the X-axis and
the ordinates at $\mathrm{x}=1, \mathrm{x}=3$ is 20 , then : $\mathrm{c}=$
A. 0
B. 3
C. 5
D. None of these

Answer: C
29. Area above the X-axis, bounded by the circle $x^{2}+y^{2}-2 a x=0$ and the parabola $y^{2}=a x$ is

$$
\begin{aligned}
& \text { A. } a^{2}\left(\frac{\pi}{4}-\frac{2}{3}\right) \\
& \text { B. } a^{2}\left(\frac{\pi}{4}+\frac{2}{3}\right) \\
& \text { C. } 2 a^{2}\left(\frac{\pi}{4}+\frac{2}{3}\right)
\end{aligned}
$$

D. None of these

Answer: A
30. The area bounded by the curves $y=\sin \mathrm{x}$,

$y=\cos x$ and y-axis in 1st quadrant is -

A. $3 \sqrt{2}-1$
B. 2
C. $2-\sqrt{2}$
D. $\sqrt{2}-1$

Answer: C
31. Find the area of the region included
between the parabolas $y^{2}=4 a x$ and
$x^{2}=4 a y$, where $a>0$.

> A. $\frac{16 a^{2}}{3}$
> B. $\frac{8 a^{2}}{3}$
> C. $\frac{4 a^{2}}{3}$
> D. $\frac{a^{2}}{3}$

Answer: A
32. If the area bounded by the parabola
$x^{2}=y$ and the line $y=4$ is divided into equal
parts by the line $y=c$, then : $c=$
A. 1
B. $\sqrt[3]{4}$
C. $\sqrt[3]{8}$
D. $\sqrt[3]{16}$

Answer: D
33. Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line

$$
x=\frac{a}{\sqrt{2}}
$$

$$
\text { A. } \frac{a^{2}}{2}\left(\frac{\pi}{2}+1\right)
$$

$$
\text { B. } \frac{a^{2}}{2}\left(\frac{\pi}{2}-1\right)
$$

$$
\text { C. } a^{2}\left(\frac{\pi}{2}-1\right)
$$

$$
\text { D. } a^{2}(\pi-1)
$$

Answer: B
34. Smaller area enclosed by the circle $x^{2}+y^{2}=a^{2}$ and the line $x+y=a$ is

$$
\begin{aligned}
& \text { A. } \frac{a^{2}}{4}(\pi-2) \\
& \text { B. } \frac{a^{2}}{4}(\pi+2) \\
& \text { C. } \frac{a^{2}}{4}(2-\pi) \\
& \text { D. } \frac{a^{2}}{4}(\pi-2)
\end{aligned}
$$

Answer: A
35. Find the area of one of the curvilinear triangles formed by the
$y=\sin x, x=\cos ^{-1} y$ and the x-axis.
A. $2+\sqrt{2}$
B. $2-\sqrt{2}$
C. $2+2 \sqrt{2}$
D. $2 \sqrt{2}$

Answer: B
36. Area of smaller part in the first quadrant bounded by the semi-circle $y=\sqrt{4-x^{2}}$, the line $y=x \sqrt{3}$ and X -axis, is
A. $\frac{\pi}{3}$
B. $\frac{2 \pi}{3}$
C. $\frac{4 \pi}{3}$
D. 4π

Answer: B
37. If $\begin{aligned} f(x) & =x^{2}, \quad \text { if } 0 \leq x \leq 1 \\ & =\sqrt{x}, \quad \text { if } x \geq 1,\end{aligned}$
then area above X-axis, bounded by the line $x=$ 4 and the curve $y=f(x)$ is
A. 1
B. 2
C. 5
D. None of these
38. Area bounded by the parabolas $y=4 x^{2}$, $9 y=x^{2}$ and the line $y=2$ is
A. $\frac{20 \sqrt{2}}{3}$
B. $\frac{10 \sqrt{2}}{3}$
C. $\frac{40 \sqrt{2}}{3}$
D. None of these

Answer: A
39. Indicate the region bounded by the curves
$y=x^{2}, y=x+2$ and x-axis and obtain the area enclosed by them
A. $\frac{5}{2}$
B. $\frac{5}{4}$
C. $\frac{5}{6}$
D. $\frac{5}{8}$
40. The area bounded by the curve

$$
y=2 x-x^{2} \text { and the line } \mathrm{y}=-\mathrm{x} \text { is }
$$

$$
\begin{aligned}
& \text { A. } \frac{9}{2} \\
& \text { B. } \frac{43}{6} \\
& \text { C. } \frac{35}{6} \\
& \text { D. } \pi^{2}
\end{aligned}
$$

Answer: A
41. The area of bounded by the curve $y=\log x$, the x-axis and the line $x=e$ is
A. 4
B. $\frac{1}{2}$
C. 1
D. $\frac{1}{e}$

Answer: C
42. $\mathrm{x}=0$ एवं $x=2 \pi$ के मध्य वक्र $y=\cos x$ से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
A. 2
B. 4
C. 6
D. 8

Answer: D

- Watch Video Solution

43. Area bounded by the semi-sircle
$y=\sqrt{4-x^{2}}$, and its diameter $\mathrm{y}=0$, is
A. 2π
B. π
C. $\frac{\pi}{2}$
D. $2 \pi^{2}$

Answer: A
44. The area of the figure bounded by right of
the line $y=x+1, y=\cos x$ and x -axis is :
A. 1
B. $\frac{1}{2}$
C. $\frac{3}{2}$
D. $\frac{5}{2}$

Answer: C

D Watch Video Solution
45. Find the area bounded by the curve $y=\sin ^{-1} x$ and the line $x=0,|y|=\frac{\pi}{2}$.
A. 2
B. 4
C. 8
D. 16

Answer: A
(Watch Video Solution
46. Area of the region bounded by the curves y
$=\tan \mathrm{x}, \mathrm{y}=\cot \mathrm{x}$ and x -axis in $0 \leq x \leq \frac{\pi}{2}$ is
A. $3 \log 2$
B. $\log 2$
C. $2 \log 2$
D. $\frac{\pi}{8} \log 2$

Answer: B

- Watch Video Solution

47. What is the area bounded by the curves
$y=e^{x}, y=e^{-x}$ and the straight line $x=1$?

$$
\begin{aligned}
& \text { A. } e+\frac{1}{e}+2 \\
& \text { B. } e+\frac{1}{e}-2 \\
& \text { C. } e-\frac{1}{e}+2 \\
& \text { D. } e-\frac{1}{e}-2
\end{aligned}
$$

Answer: B
48. The area bounded by the curve

$$
x=2-y-y^{2} \text { and } Y \text {-axis is }
$$

A. $\frac{9}{2}$
B. $\frac{7}{2}$
C. $\frac{5}{2}$
D. $\frac{3}{2}$

Answer: A

D Watch Video Solution
49. The area bounded by the curves $y=\sin x$, $y=\cos x$ and y-axis in 1 quadrant is -
A. 1
B. 2
C. 3
D. 4

Answer: C

D Watch Video Solution
50. Find the area of the region enclosed by the curves $y=x \log x a n d y=2 x-2 x^{2}$.

> A. $\frac{7}{12}$
> B. $\frac{1}{2}$
> C. $\frac{5}{12}$
> D. $\frac{5}{2}$

Answer: A

D Watch Video Solution
51. The slope of the tangent to a curve $y=f(x)$ at $(x, f(x))$ is $2 x+1$. If the curve passes through the point $(1,2)$ then the area of the region bounded by the curve, the x-axis and the line $x=1$ is (A) $\frac{5}{6}$ (B) $\frac{6}{5}$ (C) $\frac{1}{6}$ (D) 1
A. $\frac{5}{6}$
B. $\frac{6}{5}$
C. $\frac{1}{6}$
D. 6
52. The area (in square units) bounded by the
curve $y^{2}=8 x$ and $x^{2}=8 y$, is
A. $\frac{32}{7}$
B. $\frac{24}{7}$
C. $\frac{72}{7}$
D. $\frac{64}{3}$

Answer: D
53. Area bounded by the curves $y=x-x^{2}$ and X -axis, between Y -axis and the line $x=1$,
is

> A. $\frac{5}{6}$
> B. $\frac{1}{2}$
> C. $\frac{1}{3}$
> D. $\frac{1}{6}$
54. The area bounded by the x-axis and the
curve $y=4 x-x^{2}-3$ is
A. $\frac{3}{2}$
B. $\frac{3}{4}$
C. $\frac{4}{3}$
D. 7

Answer: C
55. Area bounded by the $x y^{2}=1, \mathrm{X}$-axis and the lines $x=1, x=2$ is
A. $4(\sqrt{2}-1)$
B. $4(\sqrt{2}+1)$
C. $2(\sqrt{2}-1)$
D. $2(\sqrt{2}+1)$

Answer: A
56. Find the area bounded by the x-axis, part of
the curve $y=\left(1-\frac{8}{x^{2}}\right)$, and the ordinates
at $x=2 a n d x=4$. If the ordinate at $x=a$
divides the area into two equal parts, then find a.
A. $\sqrt{2}$
B. $2 \sqrt{2}$
C. $3 \sqrt{2}$
D. $4 \sqrt{2}$

Answer: B

- Watch Video Solution

57. If a curve $y=a \sqrt{x}+b x$ passes through
the point $(1,2)$ and the area bounded by the
curve, line $x=4$ and X-axis is 8 sq units, then

$$
\begin{aligned}
& \text { A. } a=3, b=1 \\
& \text { B. } a=3, b=-1 \\
& \text { C. } a=-3, b=1 \\
& \text { D. } a=-3, b=-1
\end{aligned}
$$

Answer: B

D Watch Video Solution

58. If the area bounded by the curve $y=x^{2}$, the X -axis and the line $x=2^{1 / 3}$ is divided into
two equal parts by the line $x=a$, then : $a=$
A. $\frac{1}{6}$
B. 1
C. $\frac{2}{3}$
D. $3^{1 / 3}$

Answer: B

- Watch Video Solution

59. Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the
line $\frac{x}{a}+\frac{y}{b}=1$

> A. $\frac{1}{2} \pi a b$
> B. $\frac{1}{2} a b$
> C. $\frac{1}{4} \pi a b-\frac{1}{2} a b$
D. $\frac{1}{4} a b-\frac{\pi}{4}$

Answer: C

D Watch Video Solution

60. Area enclosed by the curve $x^{2} y=36$, the
X-axis and the lines $x=6$ and $x=9$, is
A. 2
B. 1
C. 4

D. None of these

Answer: A

D Watch Video Solution

61. If $a<b$, then area under the curve $x y=c^{2}$
, the X-axis and the ordinates $a t a$ and b is
A. $c^{2} \cdot \log \left(\frac{a}{b}\right)$
B. $c^{2} \cdot \log \left(\frac{b}{a}\right)$
C. $c^{2} \cdot \log (a b)$

D. None of these

Answer: B

D Watch Video Solution

62. The ratio of the areas between the curves
$y=\cos x$ and $y=\cos 2 x$ and x-axis from
$x=0$ to $x=\frac{\pi}{3}$ is
A. $1: 2$
B. 2:1
C. $\sqrt{3}: 1$

$$
\text { D. } 1: \sqrt{3}
$$

Answer: B

- Watch Video Solution

63. If the area above the x-axis, bounded by the
curves $y=2^{k x}$ and $\mathrm{x}=0$, and $\mathrm{x}=2$ is $\frac{3}{\log _{e}(2)}$,
then the value of k is
A. $\frac{1}{2}$
B. 1
C. -1
D. 2

Answer: B

- Watch Video Solution

64. Area bounded by the curve

$$
y=2+x, y=2-x \text { and } x=2 \text { is }
$$

A. 3
B. 4
C. 8
D. None of these

Answer: B

D Watch Video Solution

65. Area under the line $4 x-y+2=0$, above
the X-axis, bounded by the lines $x=0$ and $x=3$
is (in sq. units)
A. 12
B. 24
C. 25
D. None of these

Answer: B

D Watch Video Solution
66. Area bounded by the line $2 x+y=4$, the

X -axis and the ordinate at $x=-2$ is
A. 12
B. 15
C. 16
D. None of these

Answer: C

D Watch Video Solution

67. Area above the X-axis, bounded by the
parabola $y^{2}=9 x$ from $x=0$ to $x=3$ is
A. $3 \sqrt{6}$
B. $6 \sqrt{3}$
C. $10 \sqrt{3}$
D. None of these

Answer: B

D Watch Video Solution

68. Area bounded by the parabola $x^{2}=-4 y$,
the X-axis and the lines $x=0, x=4$ is
A. $\frac{16}{3}$
B. $\frac{8}{3}$
C. 8
D. 6

Answer: A

D Watch Video Solution

69. Area bounded by parabola $x^{2}=y$, the Y axis and the lines $y=0, y=4$ is
A. $\frac{8}{3}$
B. $\frac{16}{3}$
C. 6
D. 8

Answer: B

D Watch Video Solution

70. Area bounded by the parabola $x^{2}=16 y$
and the line $x-2 y=0$ is
A. $\frac{16}{3}$
B. 6
C. 10
D. None of these

Answer: A

D Watch Video Solution

71. Area bounded by the curve $y=x^{2}+x-6$ and the X -axis is
A. $\frac{127}{6}$
B. $\frac{225}{6}$
C. $\frac{125}{6}$
D. None of these

Answer: C

D Watch Video Solution

72. Area bounded by the lines $x=2 y, y=2 x$
and $x=4$ is
A. 14
B. 13
C. 10
D. 12

Answer: D

D Watch Video Solution

73. Area bounded by the lines $y=2 x, y=4 x$ and $x=2$ is
A. 8
B. 4
C. 5
D. None of these

Answer: B

D Watch Video Solution

74. Area bounded by the parabola $3 y=x^{2}$,
the X-axis and the lines $x=2, x=3$ is
A. $\frac{29}{9}$
B. $\frac{17}{9}$
C. $\frac{7}{9}$
D. $\frac{19}{9}$

Answer: D

D Watch Video Solution

75. Area between the parabolas $y^{2}=p x$ and $x^{2}=q y$ is
A. $\frac{16 p q}{3}$
B. $\frac{p q}{3}$
C. $15 p q$
D. $2 p q$

Answer: B

D Watch Video Solution

76. FInd the area bounded by the curves
$y^{2}=9 x$ and $x^{2}=9 y$.
A. 36
B. 18
C. 27
D. 6

Answer: C

D Watch Video Solution

77. Area between the parabola $y^{2}=x$ and the
line $x=3$ is
A. $4 \sqrt{3}$
B. $2 \sqrt{3}$
C. $6 \sqrt{3}$
D. $5 \sqrt{3}$

Answer: A

D Watch Video Solution

78. $\mathrm{x}=0$ एवं $x=2 \pi$ के मध्य वक्र $y=\cos x$ से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
A. 2
B. 4
C. 3
D. 5

Answer: B

- Watch Video Solution

79. Area bounded by the curve $x y=x+4$,
the X-axis and the lines $x=1, x=4$ is
A. $3+5 \log 4$
B. $4+4 \log 4$
C. $3+4 \log 4$
D. $3+3 \log 4$

Answer: C

D Watch Video Solution
80. Area bounded by the curve $x y=16$, the X -
axis and the lines $x=2, x=4$ is
A. $2+4 \log 3$
B. $8 \log 2$
C. $16 \log 2$
D. $4 \log 2$

Answer: C

D Watch Video Solution

81. Area enclosed by the curve $y=\sin ^{2} x$, the X -axis and the lines $x=0, x=\pi / 2$ is
A. $\frac{\pi}{2}$
B. 1
C. $\frac{\pi}{4}$
D. None of these

Answer: C

D Watch Video Solution

82. Area under the curve $y=x \sin x^{2}$,
bounded by the lines $\mathrm{x}=0$ and $x=\sqrt{\pi / 2}$ is
A. 0.3
B. 0.4
C. 0.5
D. 1

Answer: C

D Watch Video Solution

83. Area bounded by the parabola $x^{2}=4 y$ and its latusrectum is
A. $\frac{4}{3}$
B. $\frac{8}{3}$
C. $\frac{16}{3}$
D. $\frac{5}{3}$

Answer: B

D Watch Video Solution

84. If the area enclosed between the parabola
$y^{2}=4 x$ and the line $y=m x$ is $(1 / 3)$ sq. unit,
then : $\mathrm{m}=$
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

85. If the area bounded by the parabola $y^{2}=4 a x$ and the line $\mathrm{y}=\mathrm{mx}$ is $\frac{a^{2}}{12}$ sq. units, by
using integration find the value of m.
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

86. Area bounded by the curve $y=(x-1)(x-5)$ and the X-axis is
A. $\frac{32}{3}$
B. $\frac{31}{3}$
C. $\frac{29}{3}$
D. $\frac{28}{3}$

Answer: A
(Watch Video Solution
87. Area of the region bounded by the curve $y=x^{2}-5 x+4$ and the X -axis is

> A. $\frac{3}{2}$
> B. $\frac{5}{2}$
> C. $\frac{7}{2}$
> D. $\frac{9}{2}$

Answer: D

- Watch Video Solution

88. If the area enclosed between the curves
$y=a x^{2} a n d x=a y^{2}(a>0)$ is 1 square unit,
then find the value of a.
A. 3
B. $\frac{1}{\sqrt{3}}$
C. $\frac{1}{3}$
D. $\frac{2}{\sqrt{3}}$

Answer: B

D Watch Video Solution
89. If the area bounded by the curves
$y=x-x^{2}$ and line $y=m x$ is equal to $\frac{9}{2}$
sq.units, then may be
A. -4
B. -2
C. 2
D. 4

Answer: D

D Watch Video Solution
90. The area of bounded by the curve $y=\log x$, the x-axis and the line $x=e$ is
A. e
B. 1
C. $1-\frac{1}{e}$
D. $1+\frac{1}{e}$

Answer: B

D Watch Video Solution
91. Area under the curve $y=\sqrt{16-x^{2}}$ between $x=0$ and $x=4$ in the first quadrant is
A. 8π
B. 16π
C. 4π
D. $\frac{8 \pi}{3}$

Answer: C

D Watch Video Solution

92. Area bounded by the curve $y=\log x$, the X -

axis and the line $x=1, x=3$ is
A. $2+\log 27$
B. $-2+\log 9$
C. $-2+\log 27$
D. $\log 18$

Answer: C
(Watch Video Solution
93. Area bounded by the curve $y=\log x$, the x axis and the lines $x=e, x=2 e$ is
A. e
B. $\log 2$
C.e. $\log 2$
D. 2e. $\log 2$

Answer: D

D Watch Video Solution
94. Area bounded by the curve $y=\sin ^{-1} x$,
the X-axis and the line $2 x=1$ is
A. $\frac{\pi}{12}+\frac{\sqrt{3}}{2}$
B. $\frac{\pi}{12}-\frac{\sqrt{3}}{2}$
C. $\frac{\pi}{12}-1$
D. $\frac{\pi}{12}+\frac{\sqrt{3}}{2}-1$

Answer: D

- Watch Video Solution

95. Area bounded by the curve $y=\tan ^{-1} x$, the X-axis and the line $x=1$ is

$$
\begin{aligned}
& \text { A. } \frac{\pi}{4}+\log \sqrt{2} \\
& \text { B. } \frac{\pi}{4}-\sqrt{2} \\
& \text { C. } \frac{\pi}{4}-\log \sqrt{2} \\
& \text { D. } \frac{\pi}{2}-\log \sqrt{2}
\end{aligned}
$$

Answer: C

D Watch Video Solution
96. Area bounded by the curve $y=e^{x}$, the Xaxis and the lines $x=0, x=2$ is
A. $e^{2}+1$
B. $e-1$
C. 2 e
D. $e^{2}-1$

Answer: D
(Watch Video Solution
97. Area bounded by the curve $y=e^{-x}$, the X axis and the lines $x=0, x=1$ is

> A. $1+\frac{1}{e}$
> B. $1-\frac{1}{e}$
> C. $e+1$
> D. $e-1$

Answer: B

- Watch Video Solution

98. Area bounded by the curve

$$
\begin{array}{r}
y=x^{2}, \quad \text { if } x<0 \\
=2 x, \text { if } x \geq 0
\end{array}
$$

and the line $\mathrm{y}=9$ is
A. $\frac{155}{4}$
B. $\frac{153}{4}$
C. $\frac{151}{4}$
D. None of these

Answer: B

Multiple Choice Questions Part B Mastering The Best

1. The area bounded by the curve $y=2 x-x^{2}$
and the line $\mathrm{y}=-\mathrm{x}$ is
A. $\frac{9}{2}$ sq. units
B. $\frac{43}{6}$ sq. units
C. $\frac{35}{6}$ sq. units
D. none of these

Answer: A
2. The parabolas $y^{2}=4 x$ and $x^{2}=4 y$ divide the square region bounded by the lines $x=4, y=4$ and the coordinate axes. If S_{1}, S_{2}, S_{3} are the areas of these parts numbered from top to bottom, respectively, then
A. $S_{1}: S_{2} \equiv 1: 1$
B. $S_{2}: S_{3} \equiv 1: 2$
C. $S_{1}: S_{3} \equiv 1: 1$

$$
\text { D. } S_{1}:\left(S_{1}+S_{2}\right)=1: 2
$$

Answer: A

D Watch Video Solution

3. The area (in sqaure units) of the region enclosed by the curves $y=x, x=2, y=\frac{1}{x}$ and the positive x-axis is
A. 1 sq. unit
B. $\frac{3}{2}$ sq. unit

> C. $\frac{5}{2}$ sq. unit
> D. $\frac{1}{2}$ sq. unit

Answer: B

- Watch Video Solution

4. Find the area bounded by the curve $x^{2}=4 y$ and the straight line $x=4 y-2$.
A. $\frac{2}{9}$
B. $\frac{4}{9}$
C. $\frac{8}{9}$
D. $\frac{9}{8}$

Answer: D

D Watch Video Solution

5. Find the area bounded by the x-axis, part of
the curve $y=\left(1-\frac{8}{x^{2}}\right)$, and the ordinates
at $x=2$ and $x=4$. If the ordinate at $x=a$
divides the area into two equal parts, then find
a
A. $\sqrt{2}$
B. 2
C. $2 \sqrt{2}$
D. none of these

Answer: C

D Watch Video Solution
6. The area bounded by the curves $y=f(x)$,
the x-axis, and the ordinates $x=1 a n d x=b$ is $\quad(b-1) \sin (3 b+4)$. Then $\quad f(x)$ is.
$(x-1) \cos (3 x+4)$
$\sin (3 x+4)$
$\sin (3 x+4)+3(x-1) \cos (3 x+4)$ None of these
A. $(x-1) \cdot \cos (3 x+4)$
B. $\sin (3 x+4)$
C. $\sin (3 x+4)+3(x-1) \cdot \cos (3 x+4)$
D. none of these

Answer: C

D Watch Video Solution
7. The area bounded by the x-axis, the curve
$y=f(x)$, and the lines $x=1, x=b$ is equal
to $\sqrt{b^{2}+1}-\sqrt{2}$ for all $b>1$, then $f(x)$ is
$\sqrt{x-1}$ (b) $\sqrt{x+1} \sqrt{x^{2}+1}$ (d) $\frac{x}{\sqrt{1+x^{2}}}$
A. $\sqrt{x-1}$
B. $\sqrt{x+1}$
C. $\sqrt{x^{2}+1}$
D. $\frac{x}{\sqrt{1+x^{2}}}$

Answer: D
8. If $y=f(x)$ makes positive intercepts of 2 and 1 unit on x and y-coordinates axes and encloses an area of $\frac{3}{4}$ sq unit with the axes,
then $\int_{0}^{2} x f^{\prime}(x) d x$, is
A. $\frac{3}{2}$
B. 1
C. $\frac{5}{4}$
D. $-\frac{3}{4}$

- Watch Video Solution

Multiple Choice Questions Previous Years Mht Cet Exam Questions

1. the area formed by the lines $x^{2}-y^{2}=0$
and $x+8=0$ is
A. 16
B. 32
C. 64

Answer: C

D Watch Video Solution

2. Find the area included between the line
$y=x$ and the parabola $x^{2}=4 y$.
A. $\frac{32}{3}$ sq. units
B. $\frac{23}{3}$ sq. units
C. $\frac{29}{3}$ sq. units
D. $\frac{31}{3}$ sq. units

Answer: A

D Watch Video Solution

Test Your Grasp

1. $y=\frac{3}{x^{2}}, \ldots . x=1, x=2$
A. 32
B. 23
C. $\frac{3}{2}$
D. $\frac{2}{3}$

Answer: C

- Watch Video Solution

$$
\text { 2. } y=(x-1)(2-x), \ldots . x=1, x=2
$$

A. $\frac{1}{3}$
B. $\frac{1}{4}$
C. $\frac{1}{5}$
D. $\frac{1}{6}$

Answer: D

D Watch Video Solution

3. $y=x+\sin x, \ldots x=0, x=\frac{\pi}{2}$
A. $\frac{\pi}{4}+1$
B. $\frac{\pi}{4}-1$
C. $\frac{\pi^{2}}{4}+1$
D. $\frac{\pi^{2}}{8}+1$

Answer: D

- Watch Video Solution

$$
\text { 4. } y=\sin ^{2} x, \ldots . x=0, x=\frac{\pi}{4}
$$

$$
\begin{aligned}
& \text { A. } \frac{\pi}{8}-\frac{1}{4} \\
& \text { B. } \frac{\pi}{4}-\frac{1}{8}
\end{aligned}
$$

$$
\text { C. } \frac{\pi}{32}
$$

$$
\text { D. } \frac{1}{2}+\frac{\pi}{4}
$$

- Watch Video Solution

5. $x y=c^{2}, \ldots x=c, x=2 c$
A. $2 c^{2}$
B. $c^{2} \cdot \log 2$
C. $2 x . \log 2$
D. $c^{2} \cdot \log 4$

Answer: B

$$
\text { 6. If } \begin{aligned}
f(x) & =3 x^{2}, \\
& =16-2 x, \\
& \text { if } 0 \leq x \leq 2 \\
& \text { if } x \geq 2,
\end{aligned}
$$

then area bounded by the graph of $y=f(x)$,
the X-axis and the line $x=3$ is (in sq. u.)
A. 12
B. 19
C. 17
D. 24

Answer: B
7. Area enclosed between the curve $y^{2}=x$ and the line $y=x$ is
A. 1
B. $\frac{1}{3}$
C. $\frac{1}{6}$
D. $\frac{1}{5}$

Answer: C
8. The area bounded by the parabola $y^{2}=8 x$, the x-axis and the latusrectum, is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \\
& \text { B. } \frac{32}{3} \\
& \text { C. } \frac{23}{3} \\
& \text { D. } \frac{22}{3}
\end{aligned}
$$

Answer: B

9. If the area of the region enclosed between
the curve $y=3 x^{2}-4 x+c$, the X -axis and
the ordinates at $x=1, x=3$ is 20 , then : $c=$
A. 0
B. 3
C. 7
D. 5

Answer: D

10. The area bounded by the curve
$x=2-y-y^{2}$ and Y -axis is
A. $\frac{9}{2}$
B. $\frac{7}{2}$
C. $\frac{5}{2}$
D. $\frac{3}{2}$

Answer: A
(Watch Video Solution
11. Area bounded by the curves $y=x-x^{2}$ and X-axis, between Y-axis and the line $x=1$, is

- Watch Video Solution

