

MATHS

BOOKS - MARVEL MATHS (HINGLISH)

APPLICATIONS OF DEFINITE INTEGRALS

Multiple Choice Questions Part A Building Up The Base

1.
$$y = x^2 + 1, \dots x = 0, x = 3$$

A. 12

B. 21

C. 18

D. 9

Answer: A

Watch Video Solution

2.
$$y=rac{3}{x^2},\ldots x=1,x=2$$

A. 32

C. $\frac{3}{2}$ D. $\frac{2}{3}$

B. 23

Answer: C

3.
$$y=4-x^2,\ldots x=0,x=1$$

B.
$$\frac{11}{3}$$

C. 3.3

D.
$$\frac{3}{11}$$

Answer: B

4.
$$y = 3 - 2x - x^2, \ldots x = -1, x = 2$$

A. 9

B. 3

D. 36

Answer: B

5.
$$y = (x - 1)(2 - x), \dots, x = 1, x = 2$$

A.
$$\frac{1}{3}$$

B. $\frac{1}{4}$
C. $\frac{1}{5}$
D. $\frac{1}{6}$

Answer: D

6.
$$y = \sin x, \dots, x = 0, x = \frac{2\pi}{3}$$

A.
$$\frac{1}{3}$$

B. $\frac{3}{2}$

Answer: B

Watch Video Solution
7.
$$y = x + \sin x, \dots x = 0, x = \frac{\pi}{2}$$

A. $\frac{\pi}{4} + 1$
B. $\frac{\pi}{4} - 1$

Answer: D

 $\mathsf{C}.\,\frac{\pi^2}{4}+1$

D. $rac{\pi^2}{8}+1$

8.
$$y=\sin^2 x,\ldots x=0, x=rac{\pi}{4}$$

A.
$$\frac{\pi}{8} - \frac{1}{4}$$

B. $\frac{\pi}{4} - \frac{1}{8}$
C. $\frac{\pi}{32}$
D. $\frac{1}{2} + \frac{\pi}{4}$

Answer: A

9. $xy=c^2,\ldots x=c, x=2c$ where c>0

A. $2c^2$

 $\mathsf{B.}\,c^2.\log 2$

C. $2c. \log 32$

 $\mathsf{D.}\,c^2.\log 4$

Answer: B

10. If $egin{array}{ll} f(x) &= 3x^2, & ext{if} \ \ 0 \leq x \leq 2 \ &= 16-2x, & ext{if} \ \ x \geq 2, \end{array}$

then area bounded by the graph of y = f(x),

the X-axis and the line x = 3 is (in sq. u.)

A. 12

B. 19

C. 17

D. 24

Answer: B

11. Area under the curve $x = at^2, y = 2at$

from x = 0 to x = a is

A.
$$\frac{4a^2}{3}$$
B.
$$\frac{4a}{3}$$
C.
$$\frac{3a}{4}$$
D.
$$\frac{3a^2}{4}$$

Answer: A

12. Area in the first quadrant bounded by the hyperbola $9x^2 - y^2 = 36$, the X-axis and the lines x = 2, x = 4 is A. $6\sqrt{3}$ B. $\log(3 + \sqrt{2})$

$$\mathsf{C.}\,6\sqrt{3}-3\log\bigl(2+\sqrt{3}\bigr)$$

D. None of these

Answer: D

13. Area bounded by the curve $y = x^2 - 2x$

and the line y = 2x is

A.
$$\frac{125}{6}$$

B. $\frac{32}{3}$

Answer: B

14. Area of the region between the curve $y = x^2 - 3x$ and the line y = 2x is

A.
$$\frac{125}{6}$$

B. $\frac{49}{3}$
C. $\frac{64}{3}$
D. $\frac{67}{3}$

Answer: A

15. Area of the region bounded by the parabola $ay = x^2$, the X-axis and the ordinates at x = a, x = 2a is

A.
$$\frac{3a^2}{7}$$
B.
$$\frac{3a}{7}$$
C.
$$\frac{7a}{3}$$
D.
$$\frac{7a^2}{3}$$

Answer: D

16. Area bounded by the parabola $ay^2 = x$, the X-axis and the ordinate at x = a is

A.
$$\frac{2a^2}{3}$$

B.
$$\frac{2a}{3}$$

C.
$$\frac{a^2}{2}$$

D.
$$\frac{3a^2}{2}$$

Answer: B

17. Area enclosed between the curve
$$ay = 3(a^2 - x^2)$$
 and the X-axis is
A. $4a^2$
B. 8a
C. $\frac{3a^2}{2}$
D. $\frac{2a^2}{3}$

18. Area enclosed between the curve $y = x^2$

and the line y = x is

A.
$$\frac{1}{8}$$

B. $\frac{1}{6}$
C. $\frac{3}{2}$
D. $\frac{1}{7}$

Answer: B

19. Area bounded between the curve $x^2 = y$

and the line y = 4x is

A.
$$\frac{32}{3}$$

B. $\frac{2}{3}$
C. $\frac{3}{2}$
D. $\frac{1}{7}$

Answer: A

20. Area enclosed between the curve $y^2 = x$

and the line y = x is

A. 1 B. $\frac{1}{3}$ C. $\frac{1}{6}$ D. $\frac{1}{5}$

21. The area bounded by the parabola $y^2=8x,$ the x-axis and the latusrectum, is

A.
$$\frac{1}{2}$$

B. $\frac{32}{3}$
C. $\frac{23}{3}$
D. $\frac{22}{3}$

Answer: B

22. Area enclosed between the curve $y^2=16x$ and the chord BC, where $B\equiv(1,4)$ and $C\equiv(9,12)$ is

A.
$$\frac{8}{3}$$

B. $\frac{32}{3}$
C. $\frac{16}{3}$

D. None of these

Answer: C

23. Area of the region enclosed between the curve $x = 1 - y^2$ and the Y-axis is A. $\frac{5}{3}$ $\mathsf{B.}\,\frac{4}{3}$ C. $\frac{2}{3}$ D. $\frac{1}{3}$

Answer: B

24. Area enclosed between the curve
$$x = 2y - y^2$$
 and the Y-axis is
A. $\frac{4}{3}$
B. $\frac{5}{3}$
C. $\frac{2}{3}$
D. $\frac{7}{3}$

Answer: A

25. Area enclosed between the curve

 $x^2 + 4y = 4$ and the X-axis is

A.
$$\frac{32}{3}$$

B. $\frac{16}{3}$
C. $\frac{8}{3}$
D. $\frac{4}{3}$

Answer: A

26. Area enclosed between the curve $y = x^2 - 5x + 15$ and the line y = 3x + 3 is A. $\frac{32}{3}$ B. $\frac{16}{3}$ C. $\frac{8}{3}$ D. $\frac{4}{3}$

Answer: A

27. Area of the portion of the parabola $y^2 = 4ax$ included between the X-axis, the ordinate at x = 2a and its latus rectum is

D. None of these

Answer: D

28. If the area of the region enclosed between the curve $y = 3x^2 - 4x + c$, the X-axis and the ordinates at x = 1, x = 3 is 20, then : c =

A. 0

B. 3

C. 5

D. None of these

Answer: C

29. Area above the X-axis, bounded by the circle $x^2 + y^2 - 2ax = 0$ and the parabola $y^2 = ax$ is

D. None of these

Answer: A

30. The area bounded by the curves $y = \sin x$, y= cos x and y-axis in 1st quadrant is -

A.
$$3\sqrt{2}-1$$

B. 2

C.
$$2 - \sqrt{2}$$

D.
$$\sqrt{2}-1$$

Answer: C

31. Find the area of the region included between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$, where a > 0.

Answer: A

32. If the area bounded by the parabola $x^2 = y$ and the line y = 4 is divided into equal parts by the line y = c, then : c =

A. 1

B. $\sqrt[3]{4}$

C. $\sqrt[3]{8}$

D. $\sqrt[3]{16}$

Answer: D

33. Find the area of the smaller part of the circle $x^2 + y^2 = a^2$ cut off by the line $x = \frac{a}{\sqrt{2}}$ A. $\frac{a^2}{2} \left(\frac{\pi}{2} + 1 \right)$ $\mathsf{B}.\,\frac{a^2}{2}\Big(\frac{\pi}{2}-1\Big)$ C. $a^2 \left(\frac{\pi}{2} - 1 \right)$ D. $a^2(\pi - 1)$

Answer: B

34. Smaller area enclosed by the circle $x^2 + y^2 = a^2$ and the line x + y = a is

A.
$$rac{a^2}{4}(\pi-2)$$

B. $rac{a^2}{4}(\pi+2)$
C. $rac{a^2}{4}(2-\pi)$
D. $rac{a^2}{4}(\pi-2)$

Answer: A

35. Find the area of one of the curvilinear triangles formed by the curves $y = \sin x, x = \cos^{-1} y$ and the x-axis. A. $2 + \sqrt{2}$ B. $2 - \sqrt{2}$ C. $2 + 2\sqrt{2}$ D. $2\sqrt{2}$

Answer: B

36. Area of smaller part in the first quadrant bounded by the semi-circle $y = \sqrt{4 - x^2}$, the line $y = x\sqrt{3}$ and X -axis, is

A.
$$\frac{\pi}{3}$$

B. $\frac{2\pi}{3}$
C. $\frac{4\pi}{3}$

D.
$$4\pi$$

Answer: B

37. If
$$egin{array}{cccc} f(x) = x^2, & ext{if} \ \ 0 \leq x \leq 1 \ = \sqrt{x}, & ext{if} \ \ x \geq 1, \end{array}$$

then area above X-axis, bounded by the line x =

4 and the curve y = f(x) is

A. 1

B. 2

C. 5

D. None of these

Answer: C

38. Area bounded by the parabolas $y = 4x^2$,

 $9y = x^2$ and the line y = 2 is

D. None of these

Answer: A

39. Indicate the region bounded by the curves

 $y=x^2, y=x+2$ and x-axis and obtain the

area enclosed by them

A.
$$\frac{5}{2}$$

B. $\frac{5}{4}$
C. $\frac{5}{6}$
D. $\frac{5}{8}$

O Watch Video Solution

40. The area bounded by the curve
$$y = 2x - x^2$$
 and the line y = - x is

A.
$$\frac{9}{2}$$

B. $\frac{43}{6}$
C. $\frac{35}{6}$

D.
$$\pi^2$$

Answer: A

Watch Video Solution

41. The area of bounded by the curve $y = \log x$, the x-axis and the line x = e is

A. 4 B. $\frac{1}{2}$ C. 1 D. $\frac{1}{e}$

Answer: C

42. x=0 एवं $x=2\pi$ के मध्य वक्र $y=\cos x$ से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए |

A. 2

B.4

C. 6

D. 8

Answer: D

43. Area bounded by the semi-sircle
$$y = \sqrt{4 - x^2}$$
, and its diameter y = 0, is
A. 2π
B. π
C. $\frac{\pi}{2}$
D. $2\pi^2$

Answer: A

Watch Video Solution

44. The area of the figure bounded by right of

the line $y=x+1, y=\cos x$ and x-axis is :

B. $\frac{1}{2}$ C. $\frac{3}{2}$ D. $\frac{5}{2}$

A. 1

Answer: C

45.	Find	the	area	bound	ed	by	the	curve
$y=\sin^{-1}x$ and the line $x=0,$ $ y =rac{\pi}{2}.$								
J	4. 2							
I	8.4							
(C. 8							
[D. 16							

Answer: A

O Watch Video Solution

46. Area of the region bounded by the curves y

= tan x, y = cot x and X-axis in $0 \leq x \leq rac{\pi}{2}$ is

A. 3 log 2

- B. log 2
- C. 2 log 2

D.
$$\frac{\pi}{8}$$
 log 2

Answer: B

Watch Video Solution

47. What is the area bounded by the curves $y = e^x, y = e^{-x}$ and the straight line x = 1 ? A. $e + \frac{1}{e} + 2$ B. $e + \frac{1}{e} - 2$ $\mathsf{C.}\,e-\frac{1}{\rho}+2$ D. $e - \frac{1}{e} - 2$

Answer: B

Watch Video Solution

48. The area bounded by the curve $x = 2 - y - y^2$ and Y-axis is A. $\frac{9}{2}$ B. $\frac{7}{2}$ C. $\frac{5}{2}$

Answer: A

D. $\frac{3}{2}$

49. The area bounded by the curves $y = \sin x$,

 $y = \cos x$ and y-axis in 1 quadrant is -

- A. 1
- B. 2
- C. 3
- D. 4

Answer: C

Watch Video Solution

50. Find the area of the region enclosed by the

curves $y = x \log x$ and $y = 2x - 2x^2$.

A.
$$\frac{7}{12}$$

B. $\frac{1}{2}$
C. $\frac{5}{12}$
D. $\frac{5}{2}$

Answer: A

Watch Video Solution

51. The slope of the tangent to a curve y = f(x) at (x, f(x)) is 2x + 1. If the curve passes through the point (1, 2) then the area of the region bounded by the curve, the x-axis and the line x = 1 is (A) $\frac{5}{6}$ (B) $\frac{6}{5}$ (C) $\frac{1}{6}$ (D) 1

A.
$$\frac{5}{6}$$

B. $\frac{6}{5}$
C. $\frac{1}{6}$

D. 6

Answer: A

52. The area (in square units) bounded by the

curve
$$y^2 = 8x$$
 and $x^2 = 8y$, is

A.
$$\frac{32}{7}$$

B. $\frac{24}{7}$
C. $\frac{72}{7}$
D. $\frac{64}{3}$

Answer: D

53. Area bounded by the curves $y = x - x^2$ and X-axis, between Y-axis and the line x = 1,

is

Answer: D

54. The area bounded by the x-axis and the curve $y = 4x - x^2 - 3$ is

A.
$$\frac{3}{2}$$

B. $\frac{3}{4}$
C. $\frac{4}{3}$

റ

Answer: C

D. 7

Watch Video Solution

55. Area bounded by the $xy^2 = 1$, X-axis and the lines x = 1, x = 2 is

A.
$$4(\sqrt{2}-1)$$

B. $4(\sqrt{2}+1)$
C. $2(\sqrt{2}-1)$
D. $2(\sqrt{2}+1)$

Answer: A

56. Find the area bounded by the x-axis, part of

the curve $y=\left(1-rac{8}{x^2}
ight)$, and the ordinates

at x = 2andx = 4. If the ordinate at x = a

divides the area into two equal parts, then find

 $a \cdot$

A. $\sqrt{2}$ B. $2\sqrt{2}$

C. $3\sqrt{2}$

D. $4\sqrt{2}$

Answer: B

57. If a curve $y = a\sqrt{x} + bx$ passes through the point (1,2) and the area bounded by the curve, line x = 4 and X-axis is 8 sq units, then

A.
$$a=3, b=1$$

- B. a = 3, b = -1
- C. a = -3, b = 1

D. a = -3, b = -1

Answer: B

58. If the area bounded by the curve $y = x^2$, the X-axis and the line $x = 2^{1/3}$ is divided into two equal parts by the line x = a, then : a=

A.
$$\frac{1}{6}$$

B. 1
C. $\frac{2}{3}$
D. $3^{1/3}$

1

Answer: B

59. Find the area of the smaller region
bounded by the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 and the
line $\frac{x}{a} + \frac{y}{b} = 1$
A. $\frac{1}{2}\pi ab$
B. $\frac{1}{2}ab$
C. $\frac{1}{4}\pi ab - \frac{1}{2}ab$

D.
$$rac{1}{4}ab-rac{\pi}{4}$$

Answer: C

Watch Video Solution

60. Area enclosed by the curve $x^2y = 36$, the X-axis and the lines x = 6 and x = 9, is

A. 2

B. 1

C. 4

D. None of these

Answer: A

Watch Video Solution

61. If a < b, then area under the curve $xy = c^2$, the X-axis and the ordinates at a and b is

A.
$$c^2$$
. $\log\left(\frac{a}{b}\right)$
B. c^2 . $\log\left(\frac{b}{a}\right)$
C. c^2 . $\log(ab)$

D. None of these

Answer: B

Watch Video Solution

62. The ratio of the areas between the curves $y = \cos x$ and $y = \cos 2x$ and x-axis from x = 0 to $x = \frac{\pi}{3}$ is A. 1:2

B. 2:1

D. 1: $\sqrt{3}$

Answer: B

Watch Video Solution

63. If the area above the x-axis, bounded by the

curves $y=2^{kx}$ and x = 0, and x = 2 is $\displaystyle rac{3}{\log_e(2)}$,

then the value of k is

A.
$$\frac{1}{2}$$

B. 1

C. -1

D. 2

Answer: B

Watch Video Solution

A. 3

B.4

C. 8

D. None of these

Answer: B

Watch Video Solution

65. Area under the line 4x - y + 2 = 0, above the X-axis, bounded by the lines x = 0 and x = 3 is (in sq. units) A. 12

B. 24

C. 25

D. None of these

Answer: B

Watch Video Solution

66. Area bounded by the line 2x + y = 4, the

X-axis and the ordinate at $x=\ -2$ is

A. 12

B. 15

C. 16

D. None of these

Answer: C

Watch Video Solution

67. Area above the X-axis, bounded by the parabola $y^2 = 9x$ from x = 0 to x = 3 is

A. $3\sqrt{6}$

- B. $6\sqrt{3}$
- C. $10\sqrt{3}$
- D. None of these

Answer: B

68. Area bounded by the parabola $x^2 = -4y$,

the X-axis and the lines x = 0, x = 4 is

A. $\frac{16}{3}$ B. $\frac{8}{3}$ C. 8 D. 6

Answer: A

Watch Video Solution

69. Area bounded by parabola $x^2 = y$, the Y-

axis and the lines y = 0, y = 4 is

D. 8

Answer: B

Watch Video Solution

70. Area bounded by the parabola $x^2=16y$

and the line x - 2y = 0 is

A.
$$\frac{16}{3}$$

B. 6

C. 10

D. None of these

Answer: A

71. Area bounded by the curve $y=x^2+x-6$

and the X-axis is

A.
$$\frac{127}{6}$$

B. $\frac{225}{6}$
C. $\frac{125}{6}$

D. None of these

Answer: C

Watch Video Solution

72. Area bounded by the lines x=2y, y=2x

and x = 4 is
A. 14

B. 13

C. 10

D. 12

Answer: D

Watch Video Solution

73. Area bounded by the lines y=2x, y=4x

and x = 2 is

A. 8

B. 4

C. 5

D. None of these

Answer: B

74. Area bounded by the parabola $3y=x^2$,

the X-axis and the lines x = 2, x = 3 is

A.
$$\frac{29}{9}$$

B. $\frac{17}{9}$
C. $\frac{7}{9}$
D. $\frac{19}{9}$

Answer: D

Watch Video Solution

75. Area between the parabolas $y^2 = px$ and

$$x^2 = qy$$
 is

A.
$$\frac{16pq}{3}$$
B.
$$\frac{pq}{3}$$

- $\mathsf{C.}\,15pq$
- $\mathsf{D.}\, 2pq$

Answer: B

Watch Video Solution

76. Find the area bounded by the curves $y^2 = 9x$ and $x^2 = 9y$.

A. 36

B. 18

C. 27

D. 6

Answer: C

Watch Video Solution

77. Area between the parabola $y^2=x$ and the

line x = 3 is

A. $4\sqrt{3}$

- B. $2\sqrt{3}$
- C. $6\sqrt{3}$
- D. $5\sqrt{3}$

Answer: A

78. x=0 एवं
$$x=2\pi$$
 के मध्य वक्र $y=\cos x$ से घिरे
क्षेत्र का क्षेत्रफल ज्ञात कीजिए |

A. 2

B.4

C. 3

D. 5

Answer: B

Watch Video Solution

79. Area bounded by the curve xy = x + 4,

the X-axis and the lines x = 1, x = 4 is

A. 3 + 5 log 4

B. 4 + 4 log 4

C. 3 + 4 log 4

D. 3 + 3 log 4

Answer: C

80. Area bounded by the curve xy = 16, the X-

axis and the lines x = 2, x = 4 is

A. 2 + 4 log 3

- B. 8 log 2
- C. 16 log 2
- D. 4 log 2

Answer: C

Watch Video Solution

81. Area enclosed by the curve $y = \sin^2 x$, the

X-axis and the lines $x=0, x=\pi/2$ is

A. $\frac{\pi}{2}$

B. 1

$$\mathsf{C}.\,\frac{\pi}{4}$$

D. None of these

Answer: C

Watch Video Solution

82. Area under the curve $y = x \sin x^2$, bounded by the lines x = 0 and $x = \sqrt{\pi/2}$ is

A. 0.3

B.0.4

 $\mathsf{C}.\,0.5$

D. 1

Answer: C

Watch Video Solution

83. Area bounded by the parabola $x^2 = 4y$

and its latusrectum is

A.
$$\frac{4}{3}$$

B. $\frac{8}{3}$
C. $\frac{16}{3}$
D. $\frac{5}{3}$

Answer: B

Watch Video Solution

84. If the area enclosed between the parabola $y^2 = 4x$ and the line y = mx is (1/3) sq. unit, then : m =

A. 1

B. 2

C. 3

D. 4

Answer: B

Watch Video Solution

85. If the area bounded by the parabola $y^2 = 4ax$ and the line y=mx is $\frac{a^2}{12}$ sq. units, by

using integration find the value of m.

A. 1

B. 2

C. 3

D. 4

Answer: D

86. Area bounded by the curve

$$y = (x - 1)(x - 5)$$
 and the X-axis is
A. $\frac{32}{3}$
B. $\frac{31}{3}$
C. $\frac{29}{3}$
D. $\frac{28}{3}$

Answer: A

87. Area of the region bounded by the curve

 $y=x^2-5x+4$ and the X-axis is

A.
$$\frac{3}{2}$$

B. $\frac{5}{2}$
C. $\frac{7}{2}$
D. $\frac{9}{2}$

Answer: D

88. If the area enclosed between the curves $y = ax^2 andx = ay^2(a > 0)$ is 1 square unit, then find the value of a_2

Answer: B

89. If the area bounded by the curves $y = x - x^2$ and line y = mx is equal to $rac{9}{2}$ sq.units , then m may be

 $\mathsf{A}_{\boldsymbol{\cdot}}-4$

 $\mathsf{B.}-2$

C. 2

D. 4

Answer: D

90. The area of bounded by the curve $y = \log x$, the x-axis and the line x = e is A. e

B. 1

$$\mathsf{C.}\,1 - \frac{1}{e}$$
$$\mathsf{D.}\,1 + \frac{1}{e}$$

Answer: B

91. Area under the curve $y=\sqrt{16-x^2}$ between x = 0 and x = 4 in the first quadrant is A. 8π B. 16π C. 4π D. $\frac{8\pi}{3}$ Answer: C Watch Video Solution

92. Area bounded by the curve y = log x, the X-

axis and the line x = 1, x = 3 is

A. 2 + log 27

 $\mathsf{B.}-2+\log 9$

 $\mathsf{C}.-2+\log \mathsf{27}$

D. log 18

Answer: C

93. Area bounded by the curve y = log x, the X-

axis and the lines x = e, x = 2e is

A. e

B. log 2

C. e . log 2

D. 2e . log 2

Answer: D

94. Area bounded by the curve $y = \sin^{-1} x$, the X-axis and the line 2x = 1 is

A.
$$\frac{\pi}{12} + \frac{\sqrt{3}}{2}$$

B. $\frac{\pi}{12} - \frac{\sqrt{3}}{2}$
C. $\frac{\pi}{12} - 1$
D. $\frac{\pi}{12} + \frac{\sqrt{3}}{2} - 1$

Answer: D

95. Area bounded by the curve $y = \tan^{-1} x$,

the X-axis and the line x = 1 is

A.
$$\frac{\pi}{4} + \log\sqrt{2}$$

B. $\frac{\pi}{4} - \sqrt{2}$
C. $\frac{\pi}{4} - \log\sqrt{2}$
D. $\frac{\pi}{2} - \log\sqrt{2}$

Watch Video Solution

Answer: C

96. Area bounded by the curve $y = e^x$, the X-

axis and the lines x = 0, x = 2 is

A.
$$e^2+1$$

B.e - 1

C. 2e

D.
$$e^2 - 1$$

Answer: D

97. Area bounded by the curve $y = e^{-x}$, the X-

axis and the lines x = 0, x = 1 is

A.
$$1 + \frac{1}{e}$$

B. $1 - \frac{1}{e}$
C. $e + 1$

$$D. e - 1$$

Answer: B

98. Area bounded by the curve

$$y=x^2, \quad ext{if} \;\; x < 0 \ = 2x, \; ext{if} \;\; x \ge 0,$$
and the line y = 9 is

A.
$$\frac{155}{4}$$

B. $\frac{153}{4}$
C. $\frac{151}{4}$

D. None of these

Answer: B

1. The area bounded by the curve $y = 2x - x^2$

and the line y = - x is

A.
$$\frac{9}{2}$$
 sq. units
B. $\frac{43}{6}$ sq. units
C. $\frac{35}{6}$ sq. units

D. none of these

Answer: A

2. The parabolas $y^2 = 4x$ and $x^2 = 4y$ divide the square region bounded by the lines x = 4, y = 4 and the coordinate axes. If S_1, S_2, S_3 are the areas of these parts numbered from top to bottom, respectively, then

A. $S_1\!:\!S_2\equiv 1\!:\!1$

B. S_2 : $S_3 \equiv 1$: 2

C. $S_1 : S_3 \equiv 1 : 1$

D.
$$S_1\!:\!(S_1+S_2)=1\!:\!2$$

Answer: A

Watch Video Solution

3. The area (in sqaure units) of the region enclosed by the curves $y = x, x = 2, y = \frac{1}{x}$

and the positive x-axis is

A.1 sq. unit

B.
$$\frac{3}{2}$$
 sq. unit

C.
$$\frac{5}{2}$$
 sq. unit
D. $\frac{1}{2}$ sq. unit

Answer: B

4. Find the area bounded by the curve $x^2 = 4y$ and the straight line x = 4y - 2. A. $\frac{2}{9}$ B. $\frac{4}{9}$

C.
$$\frac{8}{9}$$

D. $\frac{9}{8}$

Answer: D

5. Find the area bounded by the x-axis, part of

the curve $y = \left(1 - \frac{8}{x^2}\right)$, and the ordinates at x = 2 and x = 4. If the ordinate at x = adivides the area into two equal parts, then find

A. $\sqrt{2}$

B. 2

C. $2\sqrt{2}$

D. none of these

Answer: C

Watch Video Solution

6. The area bounded by the curves y = f(x), the x-axis, and the ordinates x = 1 and x = bis $(b-1) \sin(3b+4)$. Then f(x) is. $(x-1) \cos(3x+4) \qquad \qquad \sin(3x+4) \ \sin(3x+4) + 3(x-1) \cos(3x+4)$ None of these

A.
$$(x-1)$$
. $\cos(3x+4)$
B. $\sin(3x+4)$
C. $\sin(3x+4) + 3(x-1)$. $\cos(3x+4)$

D. none of these

Answer: C

7. The area bounded by the x-axis, the curve y = f(x), and the lines x = 1, x = b is equal to $\sqrt{b^2 + 1} - \sqrt{2}$ for all b > 1, then f(x) is $\sqrt{x - 1}$ (b) $\sqrt{x + 1} \sqrt{x^2 + 1}$ (d) $\frac{x}{\sqrt{1 + x^2}}$

A. $\sqrt{x-1}$

$$\mathsf{B}.\sqrt{x+1}$$

C.
$$\sqrt{x^2+1}$$

D.
$$rac{x}{\sqrt{1+x^2}}$$

Answer: D

8. If y = f(x) makes positive intercepts of 2 and 1 unit on x and y-coordinates axes and encloses an area of $\frac{3}{4}$ sq unit with the axes, then $\int_0^2 x f'(x) dx$, is

A.
$$\frac{3}{2}$$

B. 1

C.
$$\frac{5}{4}$$

D. $-\frac{3}{4}$

Answer: D

Multiple Choice Questions Previous Years Mht Cet Exam Questions

1. the area formed by the lines $x^2 - y^2 = 0$

and x + 8 = 0 is

A. 16

B. 32

C. 64

D. 128

Answer: C

Watch Video Solution

2. Find the area included between the line y = x and the parabola $x^2 = 4y$.

A.
$$\frac{32}{3}$$
 sq. units
B. $\frac{23}{3}$ sq. units
C. $\frac{29}{3}$ sq. units

D.
$$\frac{31}{3}$$
 sq. units

Answer: A

Watch Video Solution

Test Your Grasp

1.
$$y=rac{3}{x^2},\ldots x=1,x=2$$

B. 23

C.
$$\frac{3}{2}$$

D. $\frac{2}{3}$

Answer: C

2.
$$y = (x - 1)(2 - x), \ldots x = 1, x = 2$$

A.
$$\frac{1}{3}$$

B. $\frac{1}{4}$
C. $\frac{1}{5}$

 $\mathsf{D.}\,\frac{1}{6}$

Answer: D

3.
$$y=x+\sin x,\ldots x=0, x=rac{\pi}{2}$$

A.
$$\frac{\pi}{4} + 1$$

B. $\frac{\pi}{4} - 1$
C. $\frac{\pi^2}{4} + 1$
D. $\frac{\pi^2}{8} + 1$

Answer: D

4.
$$y=\sin^2 x,\ldots x=0, x=rac{\pi}{4}$$

A.
$$\frac{\pi}{8} - \frac{1}{4}$$

B.
$$\frac{\pi}{4} - \frac{1}{8}$$

C.
$$\frac{\pi}{32}$$

D.
$$\frac{1}{2} + \frac{\pi}{4}$$

Answer: A

5.
$$xy = c^2, \ldots x = c, x = 2c$$

A.
$$2c^2$$

- $\mathsf{B.}\,c^2.\log 2$
- $\mathsf{C.}\,2x.\log 2$
- D. c^2 . log 4

Answer: B

6. If $f(x) = 3x^2$, if $0 \le x \le 2$ = 16 - 2x, if $x \ge 2$, then area bounded by the graph of y = f(x), the X-axis and the line x = 3 is (in sq. u.)

A. 12

B. 19

C. 17

D. 24

Answer: B

7. Area enclosed between the curve $y^2 = x$ and the line y = x is

A. 1
B.
$$\frac{1}{3}$$

C. $\frac{1}{6}$
D. $\frac{1}{5}$

Answer: C

8. The area bounded by the parabola $y^2=8x,$ the x-axis and the latusrectum, is

A.
$$\frac{1}{2}$$

B. $\frac{32}{3}$
C. $\frac{23}{3}$
D. $\frac{22}{3}$

Answer: B

9. If the area of the region enclosed between the curve $y = 3x^2 - 4x + c$, the X-axis and the ordinates at x = 1, x = 3 is 20, then : c = A.0

- B. 3
- C. 7

D. 5

Answer: D

10. The area bounded by the curve
$$x = 2 - y - y^2$$
 and Y-axis is
A. $\frac{9}{2}$
B. $\frac{7}{2}$
C. $\frac{5}{2}$
D. $\frac{3}{2}$

Answer: A

11. Area bounded by the curves $y = x - x^2$

and X-axis, between Y-axis and the line x = 1, is