©゙" doubtnut

MATHS

BOOKS - MARVEL MATHS (HINGLISH)

PAIR OF STRAIGHT LINES

Mcqs

1. Joint equation of co-ordinates axes, in a plane is
A. $x^{2}-y^{2}=0$
B. $x^{2}+y^{2}=1$
C. $x y=0$
D. $x y=x+y$

Answer: C

(D) Watch Video Solution

2. Joint equation of two lines both parallel to X -axis, and each at a distance of 2 units from it is
A. $x^{2}-4=0$
B. $y^{2}-4=0$
C. $x^{2}-y^{2}=4$
D. $y^{2}+4=0$

- Watch Video Solution

3. Joint equation of two lines both parallel to Y-axis and each at a distance of 3 units from it is
A. $x^{2}-9=0$
B. $y^{2}-9=0$
C. $x^{2}-y^{2}=9$
D. $y^{2}+9=0$

Answer: A
4. Joint equation of two lines, through the origin, having slopes 2 and -2 is
A. $x^{2}-4 y^{2}=0$
B. $4 x^{2}-y^{2}=0$
C. $x^{2}-2 y^{2}=0$
D. $2 x^{2}-y^{2}=0$

Answer: B
5. Joint equation of two lines, through the origin, having slopes $\sqrt{3}$ and $\frac{-1}{\sqrt{3}}$ is

$$
\text { A. } \sqrt{3}\left(x^{2}-y^{2}\right)+2 x y=0
$$

B. $\sqrt{3}\left(x^{2}+y^{2}\right)-2 x=0$
C. $\sqrt{3}\left(x^{2}-y^{2}\right)-2 x y=0$
D. $\sqrt{3}\left(x^{2}+y^{2}\right)+2 x y=0$

Answer: A
6. Joint equation of two lines, through the origin, such that one of them is parallel and the other perpendicular to line $2 x+3 y+c=0$ is
A. $6 x^{2}-5 x y-6 y^{2}=0$
B. $6 x^{2}-5 x y+6 y^{2}=0$
C. $6 x^{2}+5 x y-6 y^{2}=0$
D. $6 x^{2}+5 x y+6 y^{2}=0$

Answer: C

D Watch Video Solution
7. Joint equation of two lines through the origin, such that one is parallel to line $x+2 y=5$ and the other perpendicular to line $2 x-y+3=0$ is

$$
\text { A. } x^{2}-4 x-4 y^{2}=0
$$

$$
\text { B. } x^{2}-4 x y+4 y^{2}=0
$$

$$
\text { C. } x^{2}+4 x y-4 y^{2}=0
$$

D. $x^{2}+4 x y+4 y^{2}=0$

Answer: D
8. Joint equation of lines bisecting angles between cooridnates axes is
A. $x^{2}+y^{2}=0$
B. $x^{2}-y^{2}=0$
C. $x^{2}-2 y^{2}=0$
D. $x^{2}+y^{2}=1$

Answer: B

- Watch Video Solution

9. Joint equation of lines, trisecting angles in first and third quadant is
A. $\sqrt{3}\left(x^{2}-y^{2}\right)-4 x=0$
B. $\sqrt{3}\left(x^{2}-y^{2}\right)+4 x y=0$
C. $\sqrt{3}\left(x^{2}+y^{2}\right)+4 x y=0$
D. $\sqrt{3}\left(x^{2}+y^{2}\right)-4 x y=0$

Answer: D

- Watch Video Solution

10. Joint equation of lines, trisecting angles is second and fourth quadrant is
A. $\sqrt{3}\left(x^{2}+y^{2}\right)-4 x y=0$
B. $\sqrt{3}\left(x^{2}-y^{2}\right)-4 x y=0$
C. $\sqrt{3}\left(x^{2}+y^{2}\right)+4 x y=0$
D. $4\left(x^{2}+y^{2}\right)+\sqrt{3} x y=0$

Answer: C

- Watch Video Solution

11. Joint equation of two lines, through the origin, each making an angle of 30° with the X -axis is
A. $x^{2}-3 y^{2}=0$
B. $3 x^{2}-y^{2}=0$
C. $2 x^{2}-3 y^{2}=0$
D. $3 x^{2}-y^{2}=1$

Answer: A
12. Joint equation of two lines, through the origin, each making an angle of 30° with the Y-axis is
A. $x^{2}-3 y^{2}=0$
B. $3 x^{2}-y^{2}=0$
C. $2 x^{2}-3 y^{2}=0$
D. $x^{2}+3 y^{2}=1$

Answer: B

- Watch Video Solution

13. If two lines $a x^{2}+2 h x y+b y^{2}=0$ make equal angles with a co-ordinate axis, then
A. $h=0$ and $a b>0$
B. $h \neq 0$ and $a b<0$
C. $h \neq-0$ and $a b>0$
D. $h=0$ and $a b<0$

Answer: D

- Watch Video Solution

14. If two lines $a x^{2}+2 h x y+b y^{2}=0$ are equally inclined with co-ordinate axes, then
A. $h=0$ and $a b<0$
B. $a=b$
C. $a= \pm b$
D. $a^{2}+b^{2}=0$

Answer: C

- Watch Video Solution

15. If pairs of opposite sides of a quadrilateral are $x^{2}-7 x+6=0 \quad$ and $\quad y^{2}-14 y+40=0 \quad$ then equations of its diagonals are
A. $6 x+5 y=56,5 x+6 y=14$
B. $6 x+5 y=56,5 y-6 x=14$
C. $6 x-5 y=56,6 x+5 y=14$
D. $6 x-5 y=56,6 x-5 y=14$

Answer: B

- Watch Video Solution

16. Separate equations of lines, whose combined equation is $4 x^{2}-y^{2}+2 x+y=0$ are
A. $2 x+y+1=0,2 x+y=0$
B. $2 x-y=0,2 x+y+1=0$
C. $x-2 y+1=0, x+2 y=0$
D. $2 x-y+1=0, x-2 y=0$

Answer: A

- Watch Video Solution

17. Lines jointly given by $x^{2}-9 y^{2}-x+3 y=0$ intersect each other in the point
A. $\left(\frac{-1}{2}, \frac{1}{6}\right)$
B. $\left(\frac{1}{2}, \frac{-1}{6}\right)$
C. $\left(\frac{1}{2}, \frac{1}{6}\right)$
D. $\left(\frac{1}{3}, \frac{2}{3}\right)$

Answer: C

- Watch Video Solution

18. Lines jointly given by $4 x^{2}-y^{2}+2 x+y=0$ meet each other in the point
A. $\left(\frac{1}{4}, \frac{-1}{2}\right)$
B. $\left(\frac{-1}{4}, \frac{-1}{2}\right)$
C. $\left(\frac{-1}{4}, \frac{1}{2}\right)$
D. $\left(\frac{1}{4}, \frac{1}{2}\right)$

Answer: C

- Watch Video Solution

19. Lines whose combined equation is $x y+3 x-2 y-6=0$ pass through the point
A. $(2,3)$
B. $(-2,3)$
C. $(2,-3)$
D. $(-2,-3)$

Answer: C

- Watch Video Solution

20. Combined equation of pair of lines, through (1,2)
and parallel to co-ordinate axes is
A. $x y-2 x-y+2=0$
B. $x y+2 x-y+2=0$
C. $x y+2 x+y+2=0$
D. $x y+2 x+y-2=0$

Answer: A

- Watch Video Solution

21. Equation $(x+y-1)^{2}-4 x^{2}=0$ jointly represents two lines, drawn from the point
A. $(1,0)$
B. $(0,1)$
C. $(0,0)$
D. $(1,1)$

Answer: B

- Watch Video Solution

22. Separate equations of lines jointly given by the equation $x^{2}+2 x y \csc \alpha+y^{2}=0$ are
A. $x \cos \alpha+y(1 \pm \sin \alpha)=0$
B. $x \sec \alpha+y(1 \pm \csc \alpha)=0$
C. $x \tan \alpha+y(1 \pm \cot \alpha)=0$
D. $x \sin \alpha+y(1 \pm \cos \alpha)=0$

Answer: D

- Watch Video Solution

23. Separate equations of lines jointly given by the equation $h x y+g x+\frac{f h}{g} h y+f=0$ are
A. $x=\frac{-f h}{g}, y=\frac{-g}{h}$
B. $x=\frac{f}{g}, y=\frac{-g}{h}$
C. $x=\frac{-f}{h}, h=\frac{-g}{h}$
D. $f g=c h$

Answer: A
24. Joint equation of lines, through the origin, making an equilateral triangle with line $x=1$ is
A. $3 x^{2}-y^{2}=0$
B. $x^{2}-3 y^{2}=0$
C. $x^{2}-\sqrt{3} y^{2}=0$
D. $3 x^{2}+y^{2}=1$

Answer: B

- Watch Video Solution

25. Joint equation of lines, through the origin, making an equalateral triangle with line $y=2$ is
A. $3 x^{2}-y^{2}=0$
B. $x^{2}-3 y^{2}=0$
C. $\sqrt{3} x^{2}-y^{2}=0$
D. $x^{2}+3 y^{2}=1$

Answer: A

- Watch Video Solution

26. Combined equation of pair of lines, both passing through (1,0), and each makingk an angle of 30° with X axis, is
A. $(x-1)^{2}-3 y^{2}=0$
B. $x^{2}-3 y^{2}=0$
C. $x^{2}-3(y-1)^{2}=0$
D. $3 x(x-1)^{2}-y^{2}=0$

Answer: A

- Watch Video Solution

27. Combined equation of pair of lines, both passing through (0,1), and each making an angle of 60° with X axis is
A. $x^{2}-3(y-1)^{2}=0$
B. $3 x^{2}-y^{2}=0$
C. $(y-1)^{2}-3 x^{2}=0$
D. $x^{2}+3 y^{2}=0$

Answer: C

- Watch Video Solution

28. The equation of two straight lines through the point (x_{1}, y_{1}) and perpendicular to the lines given by $a x^{2}+2 h x y+b y^{2}=0$, is
A.

$$
a\left(y-y_{1}\right)^{2}+2 h\left(x-x_{1}\right)\left(y-y_{1}\right)+b\left(x-x_{1}\right)^{2}=0
$$

B.

$$
a\left(y-y_{1}\right)^{2}-2 h\left(x-x_{1}\right)\left(y-y_{1}\right)+b\left(x-x_{1}\right)^{2}=0
$$

C.

$$
b\left(y-y_{1}\right)^{2}+2 h\left(x-x_{1}\right)\left(y-y_{1}\right)+a\left(x-x_{1}\right)^{2}=0
$$

D.

$$
a\left(x-x_{1}\right)+2 h\left(x-x_{1}\right)\left(y-y_{1}\right)+b\left(y-y_{2}\right)=0
$$

- Watch Video Solution

29. The equation of two straight lines through the point (x_{1}, y_{1}) and perpendicular to the lines given by $a x^{2}+2 h x y+b y^{2}=0$, is
A.

$$
b\left(x-x_{1}\right)^{2}+2 h\left(x-x_{1}\right)\left(y-y_{1}\right)+a\left(y-y_{1}\right)^{2}=0
$$

B.

$$
b\left(x-x_{1}\right)^{2}-2 h\left(x-x_{1}\right)\left(y-y_{1}\right)+a\left(y-y_{1}\right)^{2}=0
$$

C.

$$
a\left(x-x_{1}\right)^{2}-2 h\left(x-x_{1}\right)\left(y-y_{1}\right)+b\left(y-y_{1}\right)^{2}=0
$$

D.

$$
a\left(y_{1}-y_{2}\right)-2 h\left(x-x_{1}\right)\left(y-y_{1}\right)+b\left(x-x_{1}\right)=0
$$

Answer: B

- Watch Video Solution

30. Joint equation of two lines through (2,-1) parallel to two lines $2 x^{2}-3 x y-9 y^{2}=0$ is
A. $2 x^{2}-3 x y+9 y^{2}-5 x-24 y-7=0$
B. $2 x^{2}-3 x y-9 y^{2}-5 x-24 y-7=0$
C. $2 x^{2}+3 x y-9 y^{2}-5 x-24 y-7=0$
D. $2 x^{2}+3 x y-9 y^{2}-5 x-24 y-7=0$

Answer: C

- Watch Video Solution

31. Joint equation of two lines through $(2,-3)$ perpendicular to two lines $3 x^{2}+x y-2 y^{2}=0$ is
A. $2 x^{2}+x y-3 y^{2}-5 x-20 y-25=0$
B. $-2 x^{2}-x y+3 y^{2}-5 x-20 y-25=0$
C. $3 x^{2}+x y-2 y^{2}-5 x-20 y-25=0$
D. $2 x^{2}+x y-3 y^{2}+5 x+20 y-25=0$

- Watch Video Solution

32. If line $4 x-3 y=0$ coincides with one of the lines
$a x^{2}+2 h x y+b y^{2}=0$ then
A. $4 a+2 h-3 b=0$
B. $16 a+24 h+9 b=0$
C. $9 a+24 h+16=0$
D. $8 a+h-6 b=0$

Answer: C
33. If one of the lines $2 x^{2}-x y+k y^{2}=0$ is $x-3 y=0$ then $k=$
A. -1
B. 5
C. 15
D. -15

Answer: D

- Watch Video Solution

34. If line $l x+m y+n=0$ is perpendicular to one of the lies $a x^{2}+2 h x y+b y^{2}=0$ then
A. $a m^{2}+2 l h m+b l^{2}=0$
B. $a l^{2}+2 l h m+b m^{2}=0$
C. $b m^{2}-2 l h m+a l^{2}=0$
D. $l a^{2}+2 h m+n b^{2}=0$

Answer: B

- Watch Video Solution

35. If one of the lines $2 x^{2}-x y-15 y^{2}=0$ is perpendicular to line $k x+y=0$ then $k=$
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

36. If one of the lines $6 x^{2}+e x y+y^{2}=0$ si
$y+2 x=0$ then $c=$
A. -3
B. -4
C. -5
D. 5

Answer: D

- Watch Video Solution

37. If sum of slopes of lines $x^{2}+k x y-3 y^{2}=0$ is twice product of slopes then $k=$
A. -1
B. -2
C. 1
D. 2

Answer: B

- Watch Video Solution

38. If sum of slopes of lines $k x^{2}-10 x y-9 y^{2}=0$ is
live tme their product, then $k=$
A. 2
B. 1
C. -2
D. -1

Answer: A

- Watch Video Solution

39. If slope of one of the lines $3 x^{2}+4 x y+\lambda y^{2}=0$ is thrice slope of the other line then $\lambda=$
A. 2
B. 1
C. -1
D. -2

Answer: B

- Watch Video Solution

40. If slope of one of the lines $a x^{2}+2 h x y+b y^{2}=0$ is k times slope of the other, then $a b(1+k)^{2}=$
A. $2 k h^{2}$
B. $2 k^{2} h$
C. $4 k^{2} h$
D. $4 k h^{2}$

Answer: D

- Watch Video Solution

41. If slope of one of the lines $a x^{2}-2 h x y+b y^{2}=0$ is square of slope of the other then
A. $a b(a+b)+6 a b h+8 h^{3}=0$
B. $-a b(a+b)-6 a b h+8 h^{3}=0$
C. $a b(a+b)+3 a b h+4 h^{3}=0$
D. $a b(a-b)+6 a b h-8 h^{3}=0$

Answer: B

- Watch Video Solution

42. If slopes of lines $3 x^{2}+k h y-y^{2}=0$ differ by 4
then $k=$
A. -2
B. 2
C. ± 2
D. $\pm 2 \sqrt{7}$

Answer: C

- Watch Video Solution

43. The difference of the slopes of the lines

$$
3 x^{2}-4 x y+y^{2}=0 \text { is }
$$

A. 1
B. 2
C. -2
D. 3

Answer: B

- Watch Video Solution

44. Slopes of lines $6 x^{2}-x y-2 y^{2}=0$ differ by
A. 2
B. 7
C. $\frac{-2}{7}$
D. $\frac{7}{2}$

Answer: D

- Watch Video Solution

45. Joint equation of two lines through the origin each making angle of 30° with line $x+y=0$, is
A. $x^{2}-4 x y+y^{2}=0$
B. $x^{2}+4 x y+y^{2}=0$
C. $x^{2}-4 x y-y^{2}=0$
D. $x^{2}+4 x y-y^{2}=0$

Answer: B

- Watch Video Solution

46. Joint equation of two lines through the origin each making angle of 60° with line $x-y=0$, is
A. $x^{2}-4 x y-y^{2}=0$
B. $x^{2}-4 x y+y^{2}=0$
C. $x^{2}+4 x y-y^{2}=0$
D. $x^{2}+4 x y+y^{2}=0$

- Watch Video Solution

47. Joint equation of two lines through the origin, each making angle of 45° with line $3 x-y=0$ is
A. $2 x^{2}-3 x y-2 y^{2}=0$
B. $2 x^{2}+3 x y+4 y^{2}=0$
C. $2 x^{2}+3 x y-2 y^{2}=0$
D. $3 x^{2}+2 x y-3 y^{2}=0$

Answer: C
48. Measure of angle between the lines $3 x y-4 y=0$
is
A. 30°
B. 60°
C. 90°
D. 120°

Answer: C

49. Measure of angle between the lines $x y-5 x+4 y-20=0$ is
А. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

- Watch Video Solution

50. Measure of angle between lines
$x^{2}-4 x h+y^{2}=0$ is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{6}$

Answer: B

- Watch Video Solution

51. Measure of angle between lines $3 x^{2}-8 x y-3 y^{2}=0$ is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{6}$

Answer: A

- Watch Video Solution

52. Measure of angle between lines
$x^{2}+2 x \sec \alpha+y^{2}=0$ is
A. $\frac{\pi}{2}-\alpha$
B. α
C. $\frac{\pi}{2}+\alpha$
D. $\pi-\alpha$

Answer: B

- Watch Video Solution

53. Measurement of angle between lines
$x^{2}+2 x y \csc \alpha+y^{2}=0$ is
A. $\frac{\pi}{2}-\alpha$
B. α
C. $\frac{\pi}{2}+\alpha$
D. $\pi-\alpha$

Answer: A

- Watch Video Solution

54. Measure of angle bewtwen lines $(3+2 \sqrt{3}) x^{2}-2 x y-y^{2}=0$ is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{6}$

Answer: C

- View Text Solution

55. If equation $8 x^{2}-3 x y+\lambda y^{2}=0$ represents two mutually perpendicular lines, then $\lambda=$
A. 3
B. 8
C. -8
D. -3

Answer: C

- Watch Video Solution

56. If acute angle between lines $x^{2}-2 h x y+y^{2}=0$ is
60° then $h=$
A. -2
B. ± 2
C. 2
D. $\sqrt{3}$

Answer: B

- Watch Video Solution

57. If lines $2 x^{2}+8 x y+k y^{2}=0$ are coincident then
$k=$
A. 8
B. -8
C. 4
D. -4

Answer: A

- Watch Video Solution

58. The lines $a^{2} x^{2}+b c y^{2}=a(b+c) x y$ will be coincident, if
A. $a=b$
B. $b=c$
C. $c=a$
D. $b^{2}=a c$

Answer: B

- Watch Video Solution

59. If the acute angle between the lines $a x^{2}+2 h x y+b y^{2}=0$ is 60°, then show that $(a+3 b)(3 a+b)=4 h^{2}$.
A. h^{2}
B. $2 h^{2}$
C. $3 h^{2}$
D. $4 h^{2}$

Answer: D
60. If acute angle between lines $a x^{2}+2 h x y+b y^{2}=0$
is $\frac{\pi}{4}$, then $4 h^{2}=$
A. $a^{2}+4 a b+b^{2}$
B. $a^{2}+6 a b+b^{2}$
C. $(a+2 b)(a+3 b)$
D. $(a-2 b)(2 a+b)$

Answer: B

- Watch Video Solution

61. If acute angle between lines $a x^{2}+2 h x y+b y^{2}=0$
is $\frac{\pi}{6}$, then $a^{2}+14 a b+b^{2}=$
A. $4 h^{2}$
B. $8 h^{2}$
C. $12 h^{2}$
D. $16 h^{2}$

Answer: C

- Watch Video Solution

62. If acute angle between lines $a x^{2}+2 h x y+b y^{2}=0$

> is congruent to that between lines
> $2 x^{2}-5 x y+3 y^{2}=0 \quad$ and $\quad k\left(h^{2}-a b\right)=(a+b)^{2}$
then $k=$
A. $-(10)^{2}$
B. $(-10)^{2}$
C. -10
D. 10

Answer: B

- Watch Video Solution

63. If acute angle between lines $a x^{2}+2 h x y+b y^{2}=0$ is congruent to that between lines
$3 x^{2}-7 x y+4 y^{2}=0$ and $(a+b)^{2}+k\left(h^{2}-a b\right)=0$
then $k=$
A. $-(14)^{2}$
B. $(-14)^{2}$
C. -14
D. 14

Answer: A

64. If acute angle between lines $3 x^{2}-4 x y+b y^{2}=0$
is $\cot ^{-1} 2$, then $b=$
A. $1,-55$
B. $-1,55$
C. $15,-5$
D. $1,-54$

Answer: A

- Watch Video Solution

65. If one of the lines denoted by the line pair $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the coordinate axes, then prove that $(a+b)^{2}=4 h^{2}$
A. $(a-b)^{2}=4 h^{2}$
B. $(a+b)^{2}=4 h^{2}$
C. $4 a b=h^{2}$
D. $b^{2}=4 a h$

Answer: B

- Watch Video Solution

66. If slope of one of the lines $a x^{2}+2 h x y+b y^{2}=0$ is twice that of the other, then $h^{2}: a b=$
A. $7: 8$
B. $8: 7$
C. $8: 9$
D. $9: 8$

Answer: D

- Watch Video Solution

67. If ratio of slopes of lines $a x^{2}+b y^{2}=0$ is $1: 3$ then
$h^{2}: a b=$
A. $\frac{1}{3}$
B. $\frac{3}{4}$
C. $\frac{4}{3}$
D. 1

Answer: C

- Watch Video Solution

68. If the gradient of one of the lines given by $x^{2}+h x y+2 y^{2}=0$ is twice that of the other, then $\mathrm{h}=$
A. ± 2
B. ± 3
C. ± 1
D. $\pm \frac{3}{2}$

Answer: D

- Watch Video Solution

69. If slopes of lines $a x^{2}+2 h x y+b y^{2}=0$ differ by k
then $\left(h^{2}-a b\right): b^{2}=$
A. $4 k^{2}$
B. $4: k^{2}$
C. $k^{2}: 4$
D. $k^{2}+4$

Answer: C

- Watch Video Solution

70. If distance of a point $\left(x_{1}, y_{1}\right)$ from each of two lines L_{1} and L_{2}, through the orign, is δ, then joint equation of L_{1} and L_{2} is

$$
\begin{aligned}
& \text { A. }\left(x_{1} y-x y_{1}\right)^{2}=\delta^{2}\left(x^{2}+y^{2}\right) \\
& \text { B. }\left(x_{1} y+x y_{1}\right)^{2}=\delta^{2}\left(x^{2}+y^{2}\right) \\
& \text { C. }\left(x_{1} x-y y_{1}\right)^{2}=\delta^{2}\left(x^{2}+y^{2}\right) \\
& \text { D. }\left(\mathrm{xx}_{1}+\mathrm{yy}_{1}\right)^{2}=\delta
\end{aligned}
$$

Answer: A
71. If the distance of a point $\left(x_{1}, y_{1}\right)$ from each of the two straight lines, which pass through the origin of coordinates, is δ, then the two lines are given by

$$
\begin{aligned}
& \text { A. }(a x+b y)^{2}=d^{2}\left(x^{2}+y^{2}\right) \\
& \text { B. }(a y-b x)^{2}=d^{2}\left(x^{2}+y^{2}\right) \\
& \text { C. }(a x+b y)^{2}=d^{2}\left(x^{2}+y^{2}\right) \\
& \text { D. }(a x+b y)^{2}=d^{2}\left(x^{2}-y^{2}\right)
\end{aligned}
$$

Answer: B

D Watch Video Solution

72. If $2 x^{2}+x y-3 y^{2}+4 x+k y-6=0$ represents a pair of lines then $k=$
A. $11,-9$
B. $9,-11$
C. $1,-19$
D. $-9,-11$

Answer: A

- Watch Video Solution

73. If $\lambda x^{2}-10 x y+12 y^{2}+5 x-16 y-3=0$, represents a pair of straight lines, then the value of λ is
A. 4
B. 3
C. 2
D. 1

Answer: C

D Watch Video Solution
74. If $12 x^{2}-10 x y+2 y^{2}+11 x-5 y+c=0$
represents a pair of lines then $c=$
A. 1
B. 2
C. -1
D. -2

Answer: B

- Watch Video Solution

75. If $2 x^{2}+4 x y-p y^{2}+4 x+q y+1=0$ represents a pair of mutually perpendicular lines then
A. $p=2, q=1$
B. $p=-2, q=0$
C. $p=-2, q=8$
D. $p=2, q=0,8$

Answer: D

- Watch Video Solution

76.

$12 x^{2}+7 x y-p y^{2}-18 x+q y+6=0 \quad$ represents
two perpendicular lines, then the value of p and q are
A. $(12,1)$
B. $(1,12)$
C. ($-1,12$)
D. $(-12,1)$

Answer: A

- Watch Video Solution

77. If the angle between the two lines represented by
$2 x^{2}+5 x y+3 y^{2}+6 x+7 y+4=0 \quad$ is $\quad \tan ^{-1}(m)$,
then m is equal to
A. $\frac{1}{5}$
B. 1
C. $\frac{7}{5}$
D. 7

Answer: A
78. If θ is the angle between the liens $x^{2}-3 x y+2 y^{2}+\lambda x-5 y+2=0$ then $\csc ^{2} \theta=$
A. 3
B. 9
C. 10
D. 100

Answer: C

- Watch Video Solution

79. The equation
$x^{2}+2 \sqrt{a b} x y+b y^{2}+2 g x+2 f y+c=0$
represents a pair of parallel straight lines, if
A. $g^{2}=a c$
B. $b g^{2}=a f^{2}$
C. $a g^{2}=b f^{2}$
D. $a f^{2}=c g^{2}$

Answer: B
80. Select and write the correct answer from the alternatives in each of the following :

If an equation $h x y+g x+f y+c=0$ represents a pair of lines, then
A. $2 f g h=c^{2}$
B. $2 f g=c h$
C. $f g h=c^{2}$
D. $f g=c h$

Answer: D

81. If the two lines $a x^{2}+2 h x y+b y^{2}=a$ make angles α and β with X -axis,then $: \tan (\alpha+\beta)=$
A. $\frac{h}{\alpha+b}$
B. $\frac{h}{a-b}$
C. $\frac{2 h}{a+b}$
D. $\frac{2 h}{a-b}$

Answer: D

D Watch Video Solution

82. If $3 x^{2}-6 x y-b y^{2}=0$ represents a pair of lines inclined at an angle π then $b=$
A. 3
B. 6
C. 9
D. any real number

Answer: A

- Watch Video Solution

83. Find the angle between the lines whose joint equation is $2 x^{2}-3 x y+y^{2}=0$
A. $\tan ^{-1}(\sqrt{3})$
B. $\cot ^{-1}(\sqrt{3})$
C. $\cot ^{-1}(3)$
D. $\cos ^{-1}(3)$

Answer: C

- Watch Video Solution

84. If the lines $p x^{2}-q x y-y^{2}=0$ make the angles α and β with X -axis, then find the value of $\tan (\alpha+\beta)$.
A. $\frac{-p}{1+q}$
B. $\frac{-q}{1+p}$
C. $\frac{q}{1+p}$
D. $\frac{p}{1+q}$

- Watch Video Solution

85. If the equation $a x^{2}+b y^{2}+c x+c y=0$
represents a pair of straight lines, then
A. $a+b=0$
B. $b+c=0$
C. $c+a=0$
D. $a+b=c$

Answer: A
86. If the equation $a x^{2}+b y^{2}+c x+c y=0$ represents a pair of straight lines, then
A. not real
B. coincident
C. mutually perpendiculat
D. strictly parallel

Answer: C

87. For what value of k is $4 x^{2}+8 x y+k y^{2}=0$ the equation of a pair of straight lines?
A. 0
B. 4
C. 9
D. -9

Answer: B

- Watch Video Solution

88. Two lines are given by $(x-2 y)^{2}+k(x-2 y)=0$.

The value of k, so that the distance between them is 3 , is :
A. ± 3
B. $\pm 5 \sqrt{5}$
C. 0
D. $\pm 3 \sqrt{5}$

Answer: D

D Watch Video Solution
89. Find the measure of the acute angle between the
lines represented by
$\left(a^{2}-3 b^{2}\right) x^{2}+8 a b x y+\left(b^{2}-3 a^{2}\right) y^{2}=0$.
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: C

- Watch Video Solution

90. If joint equation of two lines through the origin, each making an angle θ with the line $x+y=0$ is $x^{2}+2 h x y+y^{2}=0$ then $h=$
A. $\sec 2 \theta$
B. $-\sec 2 \theta$
C. $\tan 2 \theta$
D. $-\tan 2 \theta$

Answer: A
91. IF the equation $x^{2}+y^{2}+2 g x+2 f y+1=0$ represents a pair of lines, then

$$
\begin{aligned}
& \text { A. } g^{2}+f^{2}=\frac{1}{2} \\
& \text { B. } f^{2}-g^{2}=1 \\
& \text { C. } f^{2}=g^{2}=1 \\
& \text { D. } g^{2}-f^{2}=0
\end{aligned}
$$

Answer: C

- Watch Video Solution

92. Equation of pair of lines, drawn through (1,1) parallel to the lines $2 x^{2}-5 x y+3 y^{2}=$ is
A. $3 x^{2}+5 x y+2 y^{2}-9 x-11 y+10=0$
B. $3 x^{2}+5 x y+2 y^{2}-11 x-9 y+10=0$
C. $2 x^{2}+5 x y+3 y^{2}-9 x-11 y+10=0$
D. $2 x^{2}+5 x y=3 y^{2}-11 x-9 x+10=0$

Answer: C

- Watch Video Solution

93. If slope of one of the lines $a x^{2}+2 h x y+b y^{2}=0$ is

5 times the slope of the other then $5 h^{2}=$
A. $a b$
B. $2 a b$
C. $7 a b$
D. $9 a b$

Answer: D

- Watch Video Solution

94. If the slope of one of the lines represented by $a x^{2}+2 h x y+b y^{2}=0$ is the square of the other,
then $\frac{a+b}{h}+\frac{8 h^{2}}{a b}=$
A. 4
B. -6
C. 6
D. -4

Answer: C

- Watch Video Solution

95. If $h^{2}=a b$ then slopes of lines $a x^{2}+2 h x y+b y^{2}=0$ are in the ratio
A. 1:2
B. 2:1
C. 2:3
D. 1:1

Answer: D

- Watch Video Solution

96. Joint equation of two lines through ($-2,3$) parallel to bisectors of angles between co-ordinate axes is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}+4 x+6 y-5=0 \\
& \text { B. } x^{2}-y^{2}+4 x+6 y-5=0 \\
& \text { C. } x^{2}-y^{2}-4 x-6 y+5=0 \\
& \text { D. } x^{2}-y^{2}-4 x-6 y-5=0
\end{aligned}
$$

Answer: B

- Watch Video Solution

97. If angle between lines $a x^{2}+2 h x y+b y^{2}=0$ is $\frac{\pi}{4}$ then $2 h=$
A. $\sqrt{a^{2}+b^{2}+3 a b}$
B. $\sqrt{a^{2}+b^{2}-3 a b}$
C. $\sqrt{(a+b)^{2}+4 a b}$
D. $\sqrt{(a+b)^{2}+a b}$

Answer: C

- Watch Video Solution

98. The lines represented by the equation $a x^{2}+2 b x y+h y^{2}=0$ are mutually perpendicular if
A. $a+b=0$
B. $b+h=0$
C. $h+a=0$
D. $a h=-1$

Answer: C

- Watch Video Solution

99. If the gradient of one of the lines given by $x^{2}+h x y+2 y^{2}=0$ is twice that of the other, then $\mathrm{h}=$
A. ± 2
B. ± 3
C. ± 1
D. $\pm 3 / 2$

Answer: B

- Watch Video Solution

100. if $\frac{X^{2}}{a}+\frac{y^{2}}{b}+\frac{2 x y}{h}=0$ represent pair of straight lies and slope one line is twice the other line then $a b: h^{2}$.
A. 1:2
B. 2: 1
C. 8: 9
D. 9:8

Answer: D

- Watch Video Solution

101. The diagonals of a square are along the pair of
lines whose equation is $2 x^{2}-3 x y-2 y^{2}=0$ If $(2,1)$ is a vertex of the square, then the vertex of the square adjacent to it may be
A. $(1,4)$
B. $(1,-2)$
C. $(2,-1)$
D. $(1,2)$

Answer: B

- Watch Video Solution

102.

Equation $x^{2} y^{2}-9 y^{2}+6 x^{2} y-54 y=0$ represents
A. a pair of lines and a circle
B. a pair of lines and a parabola
C. a set of four lines which form a square
D. a set of four lines along a rectangle

Answer: C

D Watch Video Solution

103. If the sum of the slopes of the lines given by
$x^{2}-2 c x y-7 y^{2}=0$ is four times their product, then
the value of c is
A. 2
B. -1
C. 1
D. -3

Answer: A

- Watch Video Solution

104. If one of the lines given by $6 x^{2}-x y+4 c y^{2}=0$ is
$3 x+4 y=0$, then $c=$
A. 3
B. -1
C. 1
D. -3

Answer: D

D Watch Video Solution

105. If 2θ is an acute angle, then the acute angle between the two lines
$x^{2}(\cos \theta-\sin \theta)+2 x y \cdot \cos \theta+y^{2}(\cos \theta+\sin \theta)=0$
is
A. 2θ
B. $\frac{\theta}{2}$
C. $\frac{\theta}{3}$
D. (θ)

Answer: D

D Watch Video Solution

106. If the pair of straight lines $x y-x-y+1=0 \&$
the line $a x+2 y-3=0$ are concurrent then $a=$
A. -1
B. 3
C. 1
D. 0

Answer: A

D Watch Video Solution

107. Joint equation of the two lines $x+y=1$ and

$$
x-y=4 \text { is }
$$

A. $x^{2}-y^{2}=-4$
B. $x^{2}-y^{2}=4$
C. $(x+y-1)(x-y-4)=0$
D. $(x+y+1)(x-y+4)=0$

Answer: C

- View Text Solution

108. Mesure of angle between the two lines $x^{2}\left(\cos ^{2} \theta-1\right)-x y \sin ^{2} \theta+y^{2} \sin ^{2} \theta=1$ is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{2 \pi}{3}$
D. $\frac{\pi}{2}$

Answer: D
109. Two lines jointly given by the equation $x y-2 y+y-2=0$ are
A. || to coordinate axes separately and \perp to each other
B. \perp to coordinate axes separately and \perp to each other
C. || as well as \perp to coordinates
D. $\|$ and \perp to coordinates axes, and \perp to each other

D Watch Video Solution

110.

$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
represents two lines whose separation equations are
$x+y=0$ and $2 x-3 y=1$ then $: g=$
A. 1
B. $1 / 2$
C. $-1 / 2$
D. -1

Answer: C

111.

If
one
of
the
lines
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
passes
through the origin then
A. $a=-b$
B. $c=0$
C. $a=b$
D. $h=0$

Answer: B

- Watch Video Solution

112. The point of intersection of lines gives by the equation $3 x^{2}+10 x y+3 y^{2}-15 x-21 y+18=0$ is
A. two sides of an equilateral triangle
B. diagonal of a rhombus
C. opposite sides of a parallelogram
D. opposite sides of a trapezium

Answer: B

- Watch Video Solution

113.

the
equation
$k^{2} x^{2}+10 x y+3 y^{2}-15 x-21 y+18=0$ represents
a pair of mutually perpendicular lines then
A. $k=5$
B. $k= \pm \sqrt{2}$
C. $k=3$
D. k is not real

Answer: D

D Watch Video Solution

114. The distance between the point of intersection of the two lines $2009 x^{2}+2010 x y+2011 y^{2}=0$ and the point $(1,1)$ is
A. 1
B. 2
C. $\sqrt{2}$
D. $2+\sqrt{3}$

Answer: C

- Watch Video Solution

115.

$a x^{2}+h x y+b y^{2}+4 g x+6 f y+4 c=0$ represents a pair of lines then
A. $4 a b c+4 f g h=4.5 a f^{2}+4 b g^{2}+h^{2}$
B. $4 a b c+6 f g h-9 a f^{2}-4 b g^{2}-c h^{2}$
C. $4 a b c+2 f g h-9 a f^{2}+2 b g^{2}+h^{2}$
D. $4 a b c+12 f g h-9 a f^{2}+4 b g^{2}+2 h^{2}$

Answer: B

D Watch Video Solution

116. The joint equation of lines which bisect the angle between the two lines $x^{2}+3 x y+2 y^{2}=0$ is
A. $3 x^{2}+2 x y-3 y^{2}=0$
B. $2 x^{2}+3 x y-3 y^{2}=0$
C. $2 x^{2}+3 x y-2 y^{2}=0$
D. $2 x^{2}-3 x y+y^{2}=0$

Answer: A

- Watch Video Solution

117. The equation of the bisectors of angle between the
lines $x^{2}-4 x y+y^{2}=0$ is
A. $x^{2}+y^{2}=0$
B. $x^{2}-y^{2}=0$
C. $2 x^{2}+y^{2}=0$
D. $x^{2}-2 y^{2}=0$

- Watch Video Solution

118. If the lines $x^{2}+2 h x y-y^{2}=0$ bisect the angle between the lines $2 x^{2}+10 x y-y^{2}=0$ then $h=$

> A. $\frac{15}{2}$
> B. $\frac{2}{15}$
C. $-\frac{3}{10}$
D. $-\frac{2}{15}$

Answer: C
119. If the equation $7 x^{2}-k x y-7 y^{2}=0$ represents
the bisectors of angles between the lines
$2 x^{2}-7 x y+4 y^{2}=0$ then: $k=$
A. 2
B. 3
C. -3
D. 4

Answer: D

- Watch Video Solution

120. If $x^{2}-2 p x y-y^{2}=0$ and $x^{2}-2 q x y-y^{2}=0$ bisect angles between each other, then find the condition.
A. $2 p+q=0$
B. $p q+1=0$
C. $2 p+3 q=0$
D. $p q=1$

Answer: B

- Watch Video Solution

121. If tihe lines $2 x-y=0$ is the bisector of an angle between the two lines $x^{2}+2 h x y-3 y^{2}=0$ then
$h=$
A. $-\frac{3}{8}$
B. $\frac{8}{3}$
C. $\frac{2}{3}$
D. $-\frac{8}{3}$

Answer: D
122. Two lines given by equation $x^{2}+x y+y^{2}=0$ are
A. coincident
B. parallel
C. mutualy perpendicular
D. imaginary

Answer: D

D Watch Video Solution

123. The value of h for which the equation $3 x^{2}+2 h x y-3 y^{2}-40 x+30 y-75=0$ represents
a pair of straight lines, are
A. 4,4
B. 4,6
C. $4,-4$
D. 0,4

Answer: A

- Watch Video Solution

124. Joint equation of lines passing through the origin, and parallel to the lines $y-m_{1} x+c_{1}$ and

$$
y=m_{1} x+c_{2}, \text { is }
$$

A. $m_{1} m_{2} x^{2}-\left(m_{1}-m_{2}\right) x y+y^{2}=0$
B. $m_{1} m_{2} x^{2}+\left(m_{1}+m_{2}\right) x y+y^{2}=0$
C. $m_{1} m_{2} y^{2}-\left(m_{1}+m_{2}\right) x y+x^{2}=0$
D. $m_{1} m_{2} y^{2}+\left(m_{1}+m_{2}\right) x y+x^{2}=0$

Answer: A

- Watch Video Solution

125. Find the separate equation of two straight lines

$$
\begin{aligned}
& \text { whose joint equation is ab } \\
& \left(x^{2}-y^{2}\right)+\left(a^{2}-b^{2}\right) x y=0
\end{aligned}
$$

A. $a x-b y-0, b x+a y=0$
B. $a x-b y=0, b x-a y=0$
C. $a x+b y=0, b x+a y=0$
D. $a x+b y=0, b x-a y=0$

Answer: A

D Watch Video Solution

126. The equations of the lines represented by the equation $a x^{2}+(a+b) x y+b y^{2}+x+y=0$ are
A. $a x+b y+1=0, x+y=0$
B. $a x+b y-1=0, x+y=0$
C. $a x+b y+1=0, x-y=0$

D. None of these

Answer: A

- Watch Video Solution

127. Separate equations of lines whose joint equation is

$$
a(b-c) x^{2}-(a b-b c) x y+c(a-b) y^{2}=0 \text { are }
$$

A. $a(b-c) x-c(a-b) y=0, x+y=0$
B. $x+y=0, x-y=0$
C. $a(b-c) x-c(a-b) y=0, x-y=0$
D. None of these

Answer: C

- Watch Video Solution

128.

The
equation
$(x-5)^{2}+(x-5)(y-6)-2(y-6)^{2}=0$
represents
A. a circle
B. two lines through origin
C. two lines through
D. None of these

D Watch Video Solution

129. If $4 a b=3 h^{2}$, then the ratio of the slopes of the lines represented by the equation
$a x^{2}+2 h x y+b y^{2}=0$ will be
(A) $\sqrt{2}: 1$
(B) $\sqrt{3}: 1$
(C) $2: 1$
(D) $1: 3$
A. $\sqrt{2}: 1$
B. $\sqrt{3}: 1$
C. 2:1
D. 3: 1

Answer: D

- Watch Video Solution

130. The equation of the perpendiculars drawn from
the origin to the lines represented by the equation
$2 x^{2}-10 x y+12 y^{2}+5 x-16 y-3=0$, is
A. $6 x^{2}+5 x y+y^{2}$
B. $6 y^{2}+5 x y+x^{2}=0$
C. $6 x^{2}-5 x y+y^{2}$
D. None of these

- Watch Video Solution

131.

The
equation
$4 x^{2}+12 x y+9 y^{2}+2 g x+2 f y+c=0$
represents two real partall straight lines. if
A. $g=4, f=9, c=0$
B. $g=2, f=3, c=1$
C. $g=2, f=3, c$ is ay number
D. $g=4, f=9, c>1$
132. Equation of one of the two lines $x^{2}+2 x y+\cos \theta-y^{2}=0$ is
A. $x-y \cdot \cot \theta=0$
B. $x+y \cdot \tan \theta=0$
C. $x \cdot \sin \theta+y(1+\cos \theta)=0$
D. $x \cdot \cos \theta+y(1+\sin \theta)=0$

Answer: C

D View Text Solution
133. The pair of straight lines passing through that point $(1,2)$ and perpendicular to the pair of straight lines $3 x^{2}-8 x y+5 y^{2}=0$, is
A. $(5 x+3 y+11)(x+y+3)=0$
B. $(5 x+3 y-11)(x+y-3)=0$
C. $(5 x+3 y-11)(x+y+3)=0$
D. $(3 x-5 y+11)(x+y-3)=0$

Answer: B

- Watch Video Solution

134. The area of triangle (in sq units) formed by the
lines $x^{2}-4 y^{2}=0$ and $x=a$, is
A. $2 a^{2}$
B. $\frac{a^{2}}{2}$
C. $\frac{\sqrt{3}}{2} a^{2}$
D. $\frac{2}{\sqrt{3}} a^{2}$

Answer: B

- Watch Video Solution

135. If the equation $x^{2}-y^{2}-x-\lambda y-2=0$ represents a pair of lines then $\lambda=$
A. $3,-3$
B. $-3,1$
C. 3,1
D. $-1,1$

Answer: A

- Watch Video Solution

136. If $\lambda x^{2}-5 x y+6 y^{2}+x-3 y=0$ represents a pair of staight lines, then their point of intersection is:
A. $(1,3)$
B. $(-1,3)$
C. $(3,1)$
D. $(-3,-1)$

Answer: D

- Watch Video Solution

137. If the acute alngles betwene the pairs of lines $3 x^{2}+7 x y+4 y^{2}=0$ and $6 x^{2}-5 x y+y^{2}=0$ are θ_{1} and θ_{2} then
A. $\theta_{1}-\theta_{2}$
B. $\theta_{1}=2 \theta_{2}$
C. $\theta_{2}-2 \theta_{1}$
D. None of these

Answer: A
138. If the angle between the lines $a x^{2}+x y+b y^{2}=0$ is 45°, then
A. $a=1, b=6$
B. $a=1, b=-6$
C. $a=1, b=1$
D. None of these

Answer: B

- Watch Video Solution

139. If the angle between the two lines $y^{2}+k x y-x^{2} \tan ^{2} \theta=0$ is 2θ then $k=$
A. 0
B. 1
C. 2
D. $\tan \theta$

Answer: A

- Watch Video Solution

140. If the sum of slopes of the lines $x^{2}-2 x y \cdot \tan \theta-y^{2}=0$ is 4 , then: $0=$
A. 0°
B. 45°
C. $60^{\circ} d$
D. $-\tan ^{-1} 2$

Answer: D

- Watch Video Solution

141. If the lines represented by the equation
$2 x^{2}-3 x y+y^{2}=0$ make angles α and β with X -axis,
then $\cot ^{2} \alpha+\cot ^{2} \beta$ is equal to
A. 0
B. $\frac{3}{2}$
C. $\frac{7}{4}$
D. $\frac{5}{4}$

Answer: D

- Watch Video Solution

142. Angle between the lines $\left(x^{2}+y^{2}\right) \sin \theta-2 x y=0$ is
A. θ
B. $\frac{\theta}{2}$
C. $\frac{\pi}{2}-\theta$
D. $\frac{\pi}{2}-\frac{\theta}{2}$

Answer: C

- Watch Video Solution

143. If the angle between the two lines $x^{3}-3 x y+\lambda y^{2}+3 x-5 y+2=0, \lambda \geq 0 \quad$ is $\tan ^{-1}(1 / 3)$ then: $\lambda=$
A. 2
B. 0
C. 3
D. 1

Answer: A

- Watch Video Solution

144. Equation $x^{2}+m_{1} y^{2}+m_{2} x y=0 \quad$ jointly represents a pair of perpendicular lines if
A. $m_{1}=-1$
B. $m_{1}=2 m_{2}$
C. $m_{2}=2 m_{1}$
D. $m_{1} m_{2}=-1$

Answer: A

- Watch Video Solution

145. If 2θ is an acute angle, then the acute angle between the two lines
$x^{2}(\cos \theta-\sin \theta)+2 x y \cdot \cos \theta+y^{2}(\cos \theta+\sin \theta)=0$
is
A. 2θ
B. $\frac{\theta}{3}$
C. θ
D. $\frac{\theta}{2}$

Answer: C

- Watch Video Solution

146.

$m y^{2}+\left(1-m^{2}\right) x y-m x^{2}=0$ is a bisector of the angle between the lines $x y=0$, then m is 1 (b) 2 (c)
$-\frac{1}{2}$ (d) -1
A. $-1 / 2$
B. -2
C. 1
D. 2

Answer: C

147. If the bisectors of the angles between the pairs of
lines

$$
a x^{2}+2 h x y+b y_{2}=0
$$

$a x^{2}+2 h x y+b y^{2}+\lambda\left(x^{2}+y^{2}\right)=0$ are coincident,
then: $\lambda=$
A. a
B. b
C. h
D. any real number

Answer: D

148. Joint equation of bisectors of angles between the two lines $x^{2}+2 x y \cdot \cot \theta+y^{2}=0$ is
A. $x^{2}-y^{2}=0$
B. $x^{2}-y^{2}=x y$
C.
D. $\left(x^{2}-y^{2}\right) \cot \theta=2 x y$

Answer: A

D Watch Video Solution

149. If the bisectors of the angles between the lines
$5 x^{2}+4 x y+3 y^{2}=0$ asre same, then, the angle made by the lines in the first pair with the second is
A. 30°
B. 60°
C. 45°
D. 90°

Answer: D

- View Text Solution

150. One bisector of the angle between the lines given

$$
a(x-1)^{2}+2 h(x-1) y+b y^{2}=0
$$

$2 x+y-2=0$. The equation of the other bisector is
A. $x-2 y+1=0$
B. $2 x+y-1=0$
C. $x+2 y-1=0$
D. $x-2 y-1=0$

Answer: D

- Watch Video Solution

151. The lines $y=m x$ bisects the angle between the
lines $a x^{2}+2 h x y+b y^{2}=0$ if

$$
\text { A. } h\left(1+m^{2}\right)+m(a-b)=0
$$

B. $h\left(1-m^{2}\right)+m(a+b)=0$
C. $h\left(1-m^{2}\right)+m(a-b)=0$
D. $h\left(1+m^{2}\right)+m(a+b)=0$

Answer: C

D Watch Video Solution

152.

If one of
the
lines
of
$m y^{2}+\left(1-m^{2}\right) x y-m x^{2}=0$ is a bisector of the angle between the lines $x y=0$, then m is 1 (b) 2 (c)
$-\frac{1}{2}$ (d) -1
A. $-\frac{1}{2}$
B. -2
C. ± 1
D. 2

Answer: C

D Watch Video Solution

153. The equation of the lines parallel to the line common to the pair of lines given by $6 x^{2}-x y-12 y^{2}=0$ and $15 x^{2}+14 x y-8 y^{2}=0$ and the sum of whose intercepts on the axes is 7 , is

$$
\text { A. } 2 x-3 y=42
$$

B. $3 x+4 y=12$
C. $5 x-2 y=10$
D. None of these

Answer: B

D Watch Video Solution

154. If the slope of one of the lines given by $a x^{2}-6 x y+y^{2}=0$ is square of the other, then $\mathrm{a}=$
A. 1
B. 2
C. 4
D. 8

Answer: D

- Watch Video Solution

155. Orthocentre of the triangle formed by the pair of
lines $x y=0$ and the lines $2 x+3 y+4=0$ is
A. $(2,3)$
B. $(3,2)$
C. $(0,0)$
D. $(4,-4)$

- Watch Video Solution

156. Sum and product of slopes of two lines through the origin are respectively the A.M. And G.M. of 9 and 16. Joint equation of bisectors of these lines is
A. $24 x^{2}-25 x y+2 y^{2}=0$
B. $25 x^{2}+44 x y-25 y^{2}=0$
C. $11 x^{2}-25 x y-11 y^{2}=0$
D. None of these

D Watch Video Solution

157. If the pair of lines $a x^{2}-2 x y+b y^{2}=0$ and $b x^{\wedge} 2-$
$2 x y+a y^{\wedge} 2=0^{`}$
be such that each pair bisects the angle between the other pair , then $|a-b|$ equals to
A. 0
B. 1
C. 2
D. 4

Answer: C
158. If pairs of lines $3 x^{2}-2 p x y-3 y^{2}=0$ and $5 x^{2}-2 q x y-5 y^{2}=0$ are such that each pair bisects then angle between the other pair then $p q=$
A. -1
B. -3
C. -5
D. -15

Answer: D
159. If one of the two lines $6 x^{2}+x y-y^{2}=0$ coincides with one of the two lines $3 x^{2}-a x y+y^{2}=0$ ten
A. $a^{2}-3 a+28=0$
B. $2 a^{2}-a-28=0$
C. $2 a^{2}-15 a+28=0$
D. None of these

Answer: B

- Watch Video Solution

160. If the area of the triangle formed by the pair of
lines $8 x^{2}-6 x y+y^{2}=0$ and the line $2 x+3 y=a$ is
7 then $a=$
A. 14
B. $14 \sqrt{2}$
C. 28
D. None of these

Answer: C

- Watch Video Solution

161. If the centroid of the triangle formed by the lines
$2 y^{2}+5 x y-3 x^{2}=0$ and $x+y=k$ is $\left(\frac{1}{18}, \frac{11}{18}\right)$,
then the value of k is
A. -1
B. 0
C. 1
D. None of these

Answer: C

162. If the pairs of straight lines
$a x^{2}+2 h x y-a y^{2}=0$ and $b x^{2}+2 g x y-b y^{2}=0$ be
such that each bisects the angles between the other, then
A. $h g+a b=0$
B. $a h+b g=0$
C. $h^{2}=a b$
D. $a g+b h=0$

Answer: A
163.
$x^{2}+(a+b) x y+a b y^{2}+x+a b=0$ represents two parallel lines, then
A. $a+b=0$
B. $a=4 b$
C. $a=b$
D. None of these

Answer: B

- Watch Video Solution

164. One bisector of the angle between the lines given by

$$
a(x-1)^{2}+2 h(x-1) y+b y^{2}=0
$$

$2 x+y-2=0$. The equation of the other bisector is
A. $x-2 y+1=0$
B. $x-2 y-2=0$
C. $x-2 y-1=0$
D. None of these

Answer: C
(D) Watch Video Solution
165. Three lines whose joint equation is $4 x^{2} y-y^{3}=0$ form a triangle which is
A. isosceles
B. equilateral
C. right angled
D. None of these

Answer: D

- Watch Video Solution

166. If a line $y-m x$ bisects the anglebetween the lines
$\left(\tan ^{2} \theta+\cos ^{2} \theta\right) x^{2}+2 x y \tan \theta-y^{2} \sin ^{2} \theta=0$ when
θ is 60° then : $\sqrt{3} m^{2}+4 m=$
A. 1
B. $\frac{1}{\sqrt{3}}$
C. $\sqrt{3}$
D. $7 \sqrt{3}$

Answer: C

D Watch Video Solution

167. The lines $y=m x$ bisects the angle between the
lines $a x^{2}+2 h x y+b y^{2}=0$ if
A. $h\left(m^{2}-1\right)+m(b-a)=0$
B. $h\left(m^{2}-1\right)+m(a-b)=0$
C. $h\left(m^{2}+1\right)+m(a-b)=0$
D. None of these

Answer: B

- Watch Video Solution

168. If two pairs of straight lines having equations $y^{2}+x y-12 x^{2}=0$ and $a x^{2}+2 h x y+b y^{2}=0$ have one line common, then $\mathrm{a}=$
A. $-3(2 h+3 b)$
B. $8(h+2 b)$
C. $2(b+h)$
D. $-3(b+h)$

Answer: A

- Watch Video Solution

169. The point of intersection of the pair of straight lines given by $6 x^{2}+5 x y-4 y^{2}+7 x+13 y-2=0$, is
A. $(1,1)$
B. $(1,-1)$
C. $(-1,1)$
D. $(-1,-1)$

Answer: C

- Watch Video Solution

170. The centroid of the triangle whose three sides are given by the combined equation
$\left(x^{2}+7 x t+2 y^{2}\right)(y-1)=0$, is
A. $\left(\frac{2}{3}, 0\right)$
B. $\left(\frac{7}{3}, \frac{2}{3}\right)$
C. $\left(-\frac{7}{3}, \frac{2}{3}\right)$
D. None of these

Answer: C

- Watch Video Solution

171.

$2 x^{2}+2 h x y+6 y^{2}-4 x+5 y-6=0$ represents a pair of straight lines, then the length of intercept on the x-axis cut by the lines is equal to
A. 2
B. $\sqrt{7}$
C. 4
D. 0

Answer: C

- Watch Video Solution

172. If the angle between the lines represented by the equation $y^{2}+k x y-x^{2} \tan ^{2} A=0 i s 2 A$, then K is equal to
A. 0
B. 2
C. 4
D. -2

Answer: A
173. Separate equations of the two lines jointly given by $a b\left(x^{2}-y^{2}\right)+\left(a^{2}-b^{2}\right) x h=0$ are
A. $a x-b y=0, b x+a y=0$
B. $a x-b y=0, b x-a y=0$
C. $a x+b y=0, b x+a y=0$
D. $a x+b y=0, b a x-a y=0$

Answer: A

- Watch Video Solution

174. Two lines given by the joint equation $a x^{2}(b-c)-x y(a b-b c)+c y^{2}(a-b)=0$ are
A. $a(b-c) x-c(a-b) y=0, x+y=0$
B. $x+y=0, x-y=0$
C. $a(b-c) x-c(a-b) y=0, x-y=0$
D. None of these

Answer: C

- View Text Solution

175. The equations of the lines represented by the equation $a x^{2}+(a+b) x y+b y^{2}+x+y=0$ are
A. $a x+b y+1=0, x+y=0$
B. $a x+b y-1=0, x+y=0$
C. $a x+b y+1=0, x-y=0$
D. None of these

Answer: A

- Watch Video Solution

176. If the area of the triangle formed by the lines $x^{2}-4 y^{2}=0$ and $x=a$ is 8, then $a=$
A. ± 1
B. ± 2
C. ± 3
D. ± 4

Answer: D

- Watch Video Solution

177. If the two lines $2 x^{2}-3 x y+y^{2}=0$ makes anlges α and β with X-axis then $: \csc ^{2} \alpha+\csc ^{2} \beta=$
A. 2
B. $7 / 2$
C. $15 / 4$
D. $13 / 4$

Answer: D

- Watch Video Solution

178. If sum of slopes of the lines $x^{2}-2 x y \tan A-y^{2}=0$ si 4 , then: $\angle a=$
A. 0°
B. 45°
C. 60°
D. $\tan ^{-1}(-2)$

Answer: D

- Watch Video Solution

179. Measure of angle between the two lines $\left(x^{2}+y^{2}\right) \sin \theta+2 x y=0$ is
A. θ
B. $\frac{\theta}{2}$
C. $\frac{\pi}{2}-\theta$
D. $\frac{\pi}{2}-\frac{\theta}{2}$

Answer: C

- Watch Video Solution

180. Find the angle between the lines repersented by
the equation $x^{2}-2 p x y+y^{2}=0$
A. $\sec ^{-1} p$
B. $\cos ^{-1} p$
C. $\tan ^{-1} p$
D. None of these

Answer: A

- Watch Video Solution

181. If $\left(a, a^{2}\right)$ falls inside the angle made by the lines
$y=\frac{x}{2}, x>0$ and $y=3 x, x>0$, then a belongs to
the interval
A. $\left(0, \frac{1}{2}\right)$
B. $(3, \infty)$
C. $\left(\frac{1}{2}, 3\right)$
D. $\left(-3,-\frac{1}{2}\right)$

Answer: C

182. If the bisectors of angles represented by $a x^{2}+2 h x y+b y^{2}=0$ and $a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}=0$ is same, then
A. $(a-b) h^{\prime}=\left(a^{\prime}-b^{\prime}\right) h$
B. $(a-b) h^{\prime}=\left(a^{\prime}-b^{\prime}\right) h$
C. $(a+b) h^{\prime}=\left(a^{\prime}-b^{\prime}\right) h$
D. $(a-b) h^{\prime}=\left(a^{\prime}+b^{\prime}\right) h$

Answer: A
183. If $r\left(1-m^{2}\right)+m(p-q)=0$, then a bisector of
the angle between the lines represented by the equation $p x^{2}-2 r x y+q y^{2}=0$, is.
A. $y=x$
B. $y=-x$
C. $y=m x$
D. $x=m y$

Answer: C

D Watch Video Solution
184. If the bisector of the angles between the lines in
the two pairs $3 x^{2}-4 x y+5 y^{2}=0 \quad$ and
$5 x^{2}+4 x y+3 y^{2}-0$ are same then the angle made by the first pair with the second is
A. 30°
B. 45°
C. 60°
D. 90°

Answer: D

185.

$$
(y-m x)^{2}=a^{2}\left(1+m^{2}\right)
$$

A. rectangle
B. trapezium
C. rhombus
D. None of these

Answer: C

186. The equation $x-y=4$ and $x^{2}+4 x y+y^{2}=0$ represent the sides of
A. equilateral
B. right angled
C. isosceles
D. None of these

Answer: A

- Watch Video Solution

187. The combined equation of the lines L_{1} and L_{2} is
$2 x^{2}+6 x y+y^{2}=0$ and that lines L_{3} and L_{4} is
$4 x^{2}+18 x y+y^{2}=0$. If the angle between L_{1} and L_{4} be α, then the angle between L_{2} and L_{3} will be
A. $\frac{\pi}{2}-\alpha$
B. $\frac{\pi}{4}+\alpha$
C. 2α
D. α

Answer: D

188. Joint equation of the straight line passing through the origin, one of which is parallel and other perpendicular to the line $6 x-4 y+3=0$ is
A. $6 x^{2}-5 x y-6 y^{2}=0$
B. $6 x^{2}-5 x y-5 y^{2}=0$
C. $6 x^{2}+5 x y-6 y^{2}=0$
D. $5 x^{2}+5 x y-6 y^{2}=0$

Answer: C

- Watch Video Solution

189. Combined equation of the lines passing through the origin and perpendicular to the lines $2 x^{2}-3 x y+y^{2}=0$ is
A. $x^{2}-3 x y-y^{2}=0$
B. $x^{2}-3 x y+2 y^{2}=0$
C. $x^{2}-3 x y-2 y^{2}=0$
D. $x^{2}+3 x y+2 y^{2}=0$

Answer: D

190. Joint equation of pair of lines through $(3,-2)$ and parallel to $x^{2}-4 x y+3 y^{2}=0$ is

$$
\begin{aligned}
& \text { A. } x^{2}-4 y+3 y^{2}+14 x+24 y+45=0 \\
& \text { B. } x^{2}-4 x y+3 y^{2}-14 x-24 y+45=0 \\
& \text { C. } x^{2}-4 x y+3 y^{2}-14 x-24 y+45=0 \\
& \text { D. } x^{2}-4 x y+3 y^{2}-14 x+24 y+45=0
\end{aligned}
$$

Answer: D
191. Find the angle between the lines represented by $x^{2}+2 x y \sec \theta+y^{2}=0$
A. 2θ
B. θ
C. $\frac{\theta}{2}$
D. $\frac{\theta}{4}$

Answer: B

- Watch Video Solution

192. If $k x y+10 x+6 y+4=0$ represents a pair of
lines, then $k=$
A. 30
B. 15 or 0
C. 15
D. 30 or 0

Answer: B

- Watch Video Solution

193. The angle between the lines in $x^{2}-x y-6 y^{2}-7 x+31 y-18=0$ is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{3}$

Answer: A

- Watch Video Solution

194. The pair equation of the lines passing through the origin and having slopes 3 and $-\frac{1}{3}$, is
A. $3 y^{2}+8 x y-3 x^{2}=0$
B. $3 x^{2}+8 x y+3 y^{2}=0$
C. $3 y^{2}-8 x y-3 x^{2}=0$
D. $3 x^{2}+8 x y-3 y^{2}=0$

Answer: A

- Watch Video Solution

195. If one of the lines given by $a x^{2}+2 h x y+b y^{2}=0$ is $4 x-5 y=0$ then
A. $25 a+40 h+16 b=0$
B. $25 a-40 h-16 b=0$
C. $25 a-40 h+16 b=0$
D. $25 a+40 h-16 b=0$

Answer: A

- Watch Video Solution

1. Joint equation of the X-axis and the bisector of the angle in the first quadrant is

$$
\begin{aligned}
& \text { A. } x y+y^{2}=0 \\
& \text { B. } x y-x^{2}=0 \\
& \text { C. } x y-y^{2}=0 \\
& \text { D. } x y+x^{2}=0
\end{aligned}
$$

Answer:

- Watch Video Solution

2. If m is the slope of one fo the two lines jointly given by the equation $2 x^{2}+4 x y+y^{2}=0$ then
A. $m^{2}+2 m+4=0$
B. $m^{2}+4 m+2=0$
C. $2 m^{2}+4 m+1=0$
D. $2 m^{2}+4 m=0$

Answer:

- Watch Video Solution

3. If the two lines $(3 x-y)^{2}=k\left(x^{2}+y^{2}\right)$ are mutualy
perpendiculart then: $k=$
A. 5
B. 6
C. -5
D. -6

Answer:

- Watch Video Solution

4. If $k x+3 y=0$ is one of the two lines $5 x^{2}+3 x y-y^{2}=0$ then $k^{2}-9 k=$
A. 40
B. 46
C. -45
D. -40

Answer:

- Watch Video Solution

5. If one of the two lines $3 x^{2}-k x y-y^{2}=0$ bisects an angle between the co-ordinates axes, then : $k=$
A. ± 1
B. ± 3
C. -2
D. 2^{-1}

Answer:
6. If the two lines $k x^{2}+5 x y+9 y^{2}=0$ are equally inclined with the cordinates axes, then: $k=$
A. 5
B. -5
C. ± 9
D. ± 3

Answer:

7. Combined equation of the two lines passing through the origin, forming an equilateral triangle with the line $x+y+\sqrt{3}=0$ is

$$
\text { A. } x^{2}+4 y-y^{2}=0
$$

B. $x^{2}-4 x y+y^{2}=0$
C. $x^{2}-4 x y+2 y^{2}=0$
D. $x^{2}+4 x y+2 y^{2}=0$

Answer:
8. If the lines $3 x^{2}-k x y-3 y^{2}=0$ and $x+2 y=8$ form and isosceles triangle then: $k=$
A. 4
B. -4
C. -8
D. 8

Answer:

- Watch Video Solution

9. Length of each leg of an isosceles right angled triangle, formed by the lines $3 x^{2}-8 x y-3 y^{2}=0$ and
$y-2 x-3$ is
A. $\frac{2 \sqrt{3}}{5}$
B. $\frac{3 \sqrt{2}}{5}$
C. $\frac{\sqrt{3}}{5}$
D. $\frac{\sqrt{2}}{5}$

Answer:

10. If the equation $k x y+10 x+6 y+4=0$ represents
a pair of lines then $: k=$
A. 12
B. 13
C. 15
D. 16

Answer:

- Watch Video Solution

11. If the angle between the lines $a x^{2}+x y+b y^{2}=0$ is 45°, then
A. $a=2, b=3$
B. $a=1, b=-6$
C. $a=4, b=5$
D. $a=3, b=2$

Answer:

- Watch Video Solution

12. If the equation $a x^{2}+a y^{2}+2 g x+2 f y+c=0$ represents a pair of lines then
A. $f^{2}+g^{2}=a c$
B. $f^{2}=g^{2}+a c d$
C. $g^{2}=f^{2}+a c$
D. $c^{2}=a^{2}+f g$

Answer:

- Watch Video Solution

13. If $3 h^{2}=4 a b$, then the ratio of the slopes of the
lines $a x^{2}+2 h x y+b y^{2}=0$ is
A. $-1: 2$
B. $-3: 2$
C. 1:3
D. 2:3

Answer:

- Watch Video Solution

14. Lines represented by the equation
$5 x^{2}-2 x y+2 y^{2}=0$ are
A. Imaginary
B. Coincident
C. Real
D. Perpendicular

Answer:

- Watch Video Solution

15. If one of the lines $k x^{2}+x y-y^{2}=0$ bisects an angle between the co-ordinate then: $k=$
A. 0,2
B. 1,2
C. $-1,2$
D. 2,3

Answer:

- Watch Video Solution

16. Measure of angle between the lines
$\sqrt{2}\left(x^{2}+y^{2}\right)=4 x y$ is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{4}$

Answer:

- Watch Video Solution

17. If the angle between the lines $3 x^{2}-4 y^{2}=0$ is $\tan ^{-1} k$, then $k=$
A. $\frac{7}{4}$
B. $\frac{7}{3}$
C. $\frac{4}{7}$
D. $\frac{1}{7}$

Answer:

- Watch Video Solution

18. Joint equation of two lines through the origin and parallel to the pair
$2 x^{2}-x y-y^{2}+5 x+y+2=0$ is
A. $2 x^{2}+x y+y^{2}=0$
B. $5 x^{2}+x y+2 y^{2}=0$
C. $2 x^{2}-x y-y^{2}=0$
D. $2 x^{2}+x y-y^{2}=0$

Answer:
(D) Watch Video Solution
19. If the equation $x^{2}+2 h x y+2 f y+c=0$ represents a pair of lines, then
A. $f^{2}+c h=0$
B. $f^{2}+c h^{2}=0$
C. $f^{2}-c h^{2}=0$
D. $f^{2}-c^{2} h^{2}=0$

Answer:

- Watch Video Solution

