



# MATHS

# **BOOKS - MARVEL MATHS (HINGLISH)**

# PAIR OF STRAIGHT LINES

## Mcqs

1. Joint equation of co-ordinates axes, in a plane is

A. 
$$x^2 - y^2 = 0$$

$$\mathsf{B}.\,x^2+y^2=1$$

 $\mathsf{C}. xy = 0$ 

D. 
$$xy = x + y$$

## Answer: C



**2.** Joint equation of two lines both parallel to X-axis, and each at a distance of 2 units from it is

A. 
$$x^2-4=0$$

$$\mathsf{B}.\,y^2-4=0$$

$$\mathsf{C.}\,x^2-y^2=4$$

 $\mathsf{D}.\,y^2+4=0$ 



**3.** Joint equation of two lines both parallel to Y-axis and each at a distance of 3 units from it is

A. 
$$x^2-9=0$$

$$\mathsf{B}.\,y^2-9=0$$

$$\mathsf{C}.\,x^2-y^2=9$$

D. 
$$y^2+9=0$$

## Answer: A



4. Joint equation of two lines, through the origin, having slopes 2 and -2 is

A. 
$$x^2 - 4y^2 = 0$$

B. 
$$4x^2-y^2=0$$

$$\mathsf{C}.\,x^2-2y^2=0$$

D. 
$$2x^2 - y^2 = 0$$

#### Answer: B



5. Joint equation of two lines, through the origin, having slopes  $\sqrt{3}$  and  $\frac{-1}{\sqrt{3}}$  is A.  $\sqrt{3}(x^2 - y^2) + 2xy = 0$ B.  $\sqrt{3}(x^2 + y^2) - 2x = 0$ C.  $\sqrt{3}(x^2 - y^2) - 2xy = 0$ D.  $\sqrt{3}(x^2 + y^2) + 2xy = 0$ 

#### Answer: A



**6.** Joint equation of two lines, through the origin, such that one of them is parallel and the other perpendicular to line 2x + 3y + c = 0 is

A. 
$$6x^2 - 5xy - 6y^2 = 0$$
  
B.  $6x^2 - 5xy + 6y^2 = 0$   
C.  $6x^2 + 5xy - 6y^2 = 0$   
D.  $6x^2 + 5xy + 6y^2 = 0$ 

## Answer: C

## Watch Video Solution

7. Joint equation of two lines through the origin, such that one is parallel to line x + 2y = 5 and the other perpendicular to line 2x - y + 3 = 0 is

A. 
$$x^2 - 4x - 4y^2 = 0$$
  
B.  $x^2 - 4xy + 4y^2 = 0$   
C.  $x^2 + 4xy - 4y^2 = 0$   
D.  $x^2 + 4xy + 4y^2 = 0$ 

#### Answer: D



**8.** Joint equation of lines bisecting angles between cooridnates axes is

A. 
$$x^2 + y^2 = 0$$
  
B.  $x^2 - y^2 = 0$   
C.  $x^2 - 2y^2 = 0$   
D.  $x^2 + y^2 = 1$ 

## **Answer: B**



**9.** Joint equation of lines, trisecting angles in first and third quadant is

A. 
$$\sqrt{3} (x^2 - y^2) - 4x = 0$$
  
B.  $\sqrt{3} (x^2 - y^2) + 4xy = 0$   
C.  $\sqrt{3} (x^2 + y^2) + 4xy = 0$   
D.  $\sqrt{3} (x^2 + y^2) - 4xy = 0$ 

### Answer: D



**10.** Joint equation of lines, trisecting angles is second and fourth quadrant is

A. 
$$\sqrt{3}ig(x^2+y^2ig)-4xy=0$$
  
B.  $\sqrt{3}ig(x^2-y^2ig)-4xy=0$ 

C. 
$$\sqrt{3}ig(x^2+y^2ig)+4xy=0$$

D. 
$$4ig(x^2+y^2ig)+\sqrt{3}xy=0$$



11. Joint equation of two lines, through the origin, each making an angle of  $30^{\circ}$  with the X-axis is

A. 
$$x^2-3y^2=0$$

$$\mathsf{B}.\, 3x^2-y^2=0$$

$$\mathsf{C.}\, 2x^2 - 3y^2 = 0$$

D. 
$$3x^2 - y^2 = 1$$

### **Answer: A**



12. Joint equation of two lines, through the origin, each making an angle of  $30^{\circ}$  with the Y-axis is

A. 
$$x^2-3y^2=0$$

$$\mathsf{B}.\, 3x^2-y^2=0$$

$$\mathsf{C.}\, 2x^2 - 3y^2 = 0$$

D. 
$$x^2+3y^2=1$$

#### **Answer: B**



13. If two lines  $ax^2 + 2hxy + by^2 = 0$  make equal angles with a co-ordinate axis, then

A. 
$$h=0$$
 and  $ab>0$ 

B. h 
eq 0 and ab < 0

C. h 
eq -0 and ab > 0

D. 
$$h=0$$
 and  $ab<0$ 

#### **Answer: D**



14. If two lines  $ax^2 + 2hxy + by^2 = 0$  are equally inclined with co-ordinate axes, then A. h = 0 and ab < 0

 $\mathsf{B.}\,a=b$ 

$$\mathsf{C}.\,a=~\pm\,b$$

D. 
$$a^2 + b^2 = 0$$



15. If pairs of opposite sides of a quadrilateral are  $x^2 - 7x + 6 = 0$  and  $y^2 - 14y + 40 = 0$  then equations of its diagonals are

A. 
$$6x + 5y = 56, 5x + 6y = 14$$

B. 6x + 5y = 56, 5y - 6x = 14

C. 6x - 5y = 56, 6x + 5y = 14

D. 6x - 5y = 56, 6x - 5y = 14

#### **Answer: B**

Watch Video Solution

16. Separate equations of lines, whose combined equation is  $4x^2 - y^2 + 2x + y = 0$  are A. 2x + y + 1 = 0, 2x + y = 0B. 2x - y = 0, 2x + y + 1 = 0C. x - 2y + 1 = 0, x + 2y = 0D. 2x - y + 1 = 0, x - 2y = 0

**Answer: A** 



17. Lines jointly given by  $x^2 - 9y^2 - x + 3y = 0$ intersect each other in the point

A. 
$$\left(\frac{-1}{2}, \frac{1}{6}\right)$$
  
B.  $\left(\frac{1}{2}, \frac{-1}{6}\right)$   
C.  $\left(\frac{1}{2}, \frac{1}{6}\right)$   
D.  $\left(\frac{1}{3}, \frac{2}{3}\right)$ 



**18.** Lines jointly given by  $4x^2 - y^2 + 2x + y = 0$  meet each other in the point

$$A.\left(\frac{1}{4}, \frac{-1}{2}\right)$$
$$B.\left(\frac{-1}{4}, \frac{-1}{2}\right)$$
$$C.\left(\frac{-1}{4}, \frac{1}{2}\right)$$
$$D.\left(\frac{1}{4}, \frac{1}{2}\right)$$



**19.** Lines whose combined equation is xy + 3x - 2y - 6 = 0 pass through the point A. (2, 3) B. (-2, 3) C. (2, -3) D. (-2, -3)



**20.** Combined equation of pair of lines, through (1,2) and parallel to co-ordinate axes is

A. 
$$xy-2x-y+2=0$$

B. 
$$xy+2x-y+2=0$$

C. 
$$xy+2x+y+2=0$$

D. 
$$xy+2x+y-2=0$$

#### **Answer: A**



**21.** Equation  $(x+y-1)^2 - 4x^2 = 0$  jointly represents

two lines, drawn from the point

A. (1, 0) B. (0, 1) C. (0, 0)

D. (1, 1)

Answer: B



22. Separate equations of lines jointly given by the equation  $x^2 + 2xy\csclpha + y^2 = 0$  are

A. 
$$x \cos lpha + y(1 \pm \sin lpha) = 0$$

B. 
$$x \sec lpha + y(1 \pm \csc lpha) = 0$$

C. 
$$x an lpha + y(1 \pm \cot lpha) = 0$$

D. 
$$x \sin lpha + y(1 \pm \cos lpha) = 0$$

**Answer: D** 



23. Separate equations of lines jointly given by the

equation  $hxy+gx+rac{fh}{g}hy+f=0$  are

A. 
$$x = \frac{-fh}{g}, y = \frac{-g}{h}$$
  
B.  $x = \frac{f}{g}, y = \frac{-g}{h}$   
C.  $x = \frac{-f}{h}, h = \frac{-g}{h}$ 

D. 
$$fg = ch$$

#### **Answer: A**



24. Joint equation of lines, through the origin, making an equilateral triangle with line x = 1 is

A. 
$$3x^2 - y^2 = 0$$
  
B.  $x^2 - 3y^2 = 0$   
C.  $x^2 - \sqrt{3}y^2 = 0$   
D.  $3x^2 + y^2 = 1$ 

#### **Answer: B**



25. Joint equation of lines, through the origin, making an equalateral triangle with line y=2 is

A. 
$$3x^2 - y^2 = 0$$
  
B.  $x^2 - 3y^2 = 0$   
C.  $\sqrt{3}x^2 - y^2 = 0$ 

$$\mathsf{D}.\,x^2+3y^2=1$$

## Answer: A



**26.** Combined equation of pair of lines, both passing through (1,0), and each makingk an angle of  $30^{\circ}$  with X-axis, is

A. 
$$(x-1)^2 - 3y^2 = 0$$
  
B.  $x^2 - 3y^2 = 0$   
C.  $x^2 - 3(y-1)^2 = 0$   
D.  $3x(x-1)^2 - y^2 = 0$ 

#### Answer: A

# **Watch Video Solution**

**27.** Combined equation of pair of lines, both passing through (0,1), and each making an angle of  $60^{\circ}$  with X-axis is

A. 
$$x^2 - 3(y-1)^2 = 0$$
  
B.  $3x^2 - y^2 = 0$   
C.  $(y-1)^2 - 3x^2 = 0$   
D.  $x^2 + 3y^2 = 0$ 

## Answer: C

## **Watch Video Solution**

28. The equation of two straight lines through the point  $(x_1, y_1)$  and perpendicular to the lines given by  $ax^2 + 2hxy + by^2 = 0$ , is

#### Α.

$$a(y-y_1)^2+2h(x-x_1)(y-y_1)+b(x-x_1)^2=0$$

#### Β.

$$a(y-y_1)^2 - 2h(x-x_1)(y-y_1) + b(x-x_1)^2 = 0$$
C.

$$b(y-y_1)^2+2h(x-x_1)(y-y_1)+a(x-x_1)^2=0$$
D.

 $a(x-x_1)+2h(x-x_1)(y-y_1)+b(y-y_2)=0$ 

## Answer: C

**29.** The equation of two straight lines through the point  $(x_1, y_1)$  and perpendicular to the lines given by  $ax^2 + 2hxy + by^2 = 0$ , is

Α.

$$b(x-x_1)^2+2h(x-x_1)(y-y_1)+a(y-y_1)^2=0$$

Β.

$$b(x-x_1)^2-2h(x-x_1)(y-y_1)+a(y-y_1)^2=0$$

$$a{(x-x_1)}^2 - 2h(x-x_1)(y-y_1) + b(y-y_1)^2 = 0$$

D.

$$a(y_1-y_2)-2h(x-x_1)(y-y_1)+b(x-x_1)=0$$

#### **Answer: B**



## **30.** Joint equation of two lines through (2,-1) parallel to

two lines 
$$2x^2 - 3xy - 9y^2 = 0$$
 is

A. 
$$2x^2 - 3xy + 9y^2 - 5x - 24y - 7 = 0$$

B.  $2x^2 - 3xy - 9y^2 - 5x - 24y - 7 = 0$ 

C. 
$$2x^2 + 3xy - 9y^2 - 5x - 24y - 7 = 0$$

D. 
$$2x^2 + 3xy - 9y^2 - 5x - 24y - 7 = 0$$

#### Answer: C



**31.** Joint equation of two lines through (2,-3) perpendicular to two lines  $3x^2 + xy - 2y^2 = 0$  is

A. 
$$2x^2 + xy - 3y^2 - 5x - 20y - 25 = 0$$

$$\mathsf{B}.-2x^2 - xy + 3y^2 - 5x - 20y - 25 = 0$$

C. 
$$3x^2 + xy - 2y^2 - 5x - 20y - 25 = 0$$

D.  $2x^2 + xy - 3y^2 + 5x + 20y - 25 = 0$ 

## Answer: A



32. If line 4x - 3y = 0 coincides with one of the lines  $ax^2 + 2hxy + by^2 = 0$  then

A. 
$$4a+2h-3b=0$$

B. 
$$16a + 24h + 9b = 0$$

$$\mathsf{C}.\,9a+24h+16=0$$

$$\mathsf{D.}\,8a+h-6b=0$$

## Answer: C

## Watch Video Solution

**33.** If one of the lines  $2x^2 - xy + ky^2 = 0$  is x - 3y = 0 then k =

A. - 1

B. 5

C. 15

 $\mathsf{D.}-15$ 

**Answer: D** 



**34.** If line lx + my + n = 0 is perpendicular to one of the lies  $ax^2 + 2hxy + by^2 = 0$  then

A. 
$$am^2+2lhm+bl^2=0$$

$$\mathsf{B.}\,al^2+2lhm+bm^2=0$$

C. 
$$bm^2-2lhm+al^2=0$$

D. 
$$la^2+2hm+nb^2=0$$

#### **Answer: B**



**35.** If one of the lines  $2x^2 - xy - 15y^2 = 0$  is perpendicular to line kx + y = 0 then k =

A. 1

B. 2

C. 3

D. 4



**36.** If one of the lines  $6x^2 + exy + y^2 = 0$  siy + 2x = 0 then c =

A.-3

 $\mathsf{B.}-4$ 

C.-5

 $\mathsf{D.}\,5$ 

## Answer: D


**37.** If sum of slopes of lines  $x^2 + kxy - 3y^2 = 0$  is twice product of slopes then k =

A. -1

 $\mathsf{B.}-2$ 

- **C**. 1
- $\mathsf{D.}\ 2$



**38.** If sum of slopes of lines  $kx^2 - 10xy - 9y^2 = 0$  is

live tme their product, then  $k=% \sum_{i=1}^{n} \left( \sum_{j=1}^{n} \left( \sum_{i=1}^{n} \left( \sum_{j=1}^{n} \left( \sum$ 

A. 2

B. 1

C. -2

D. -1

# Answer: A



**39.** If slope of one of the lines  $3x^2 + 4xy + \lambda y^2 = 0$  is

thrice slope of the other line then  $\lambda=$ 

 $\mathsf{A.}\ 2$ 

- **B**. 1
- C. -1
- D.-2



**40.** If slope of one of the lines  $ax^2 + 2hxy + by^2 = 0$  is k times slope of the other, then  $ab(1+k)^2 =$ 

A.  $2kh^2$ 

 $\mathsf{B}.\,2k^2h$ 

 $\mathsf{C}.4k^2h$ 

D.  $4kh^2$ 

Answer: D



41. If slope of one of the lines  $ax^2 - 2hxy + by^2 = 0$  is square of slope of the other then A.  $ab(a + b) + 6abh + 8h^3 = 0$ B.  $-ab(a + b) - 6abh + 8h^3 = 0$ C.  $ab(a + b) + 3abh + 4h^3 = 0$ 

D. 
$$ab(a-b)+6abh-8h^3=0$$



**42.** If slopes of lines  $3x^2 + khy - y^2 = 0$  differ by 4 then k =

A. -2

 $\mathsf{B.}\,2$ 

 $\mathsf{C}.\pm 2$ 

D.  $\pm 2\sqrt{7}$ 

# Answer: C



43. The difference of the slopes of the lines  $3x^2 - 4xy + y^2 = 0$  is A. 1 **B**. 2 C. -2D. 3 **Answer: B** 

**44.** Slopes of lines  $6x^2 - xy - 2y^2 = 0$  differ by

A. 2

B. 7

C. 
$$\frac{-2}{7}$$
  
D.  $\frac{7}{2}$ 

#### Answer: D



**45.** Joint equation of two lines through the origin each making angle of  $30^{\circ}$  with line x+y=0, is

A. 
$$x^2-4xy+y^2=0$$

B. 
$$x^2+4xy+y^2=0$$

$$\mathsf{C.}\,x^2-4xy-y^2=0$$

D. 
$$x^2 + 4xy - y^2 = 0$$

#### **Answer: B**



**46.** Joint equation of two lines through the origin each making angle of  $60^{\circ}$  with line x-y=0, is

A. 
$$x^2 - 4xy - y^2 = 0$$
  
B.  $x^2 - 4xy + y^2 = 0$   
C.  $x^2 + 4xy - y^2 = 0$   
D.  $x^2 + 4xy + y^2 = 0$ 

# Answer: B



**47.** Joint equation of two lines through the origin, each making angle of  $45^{\circ}$  with line 3x - y = 0 is

A. 
$$2x^2 - 3xy - 2y^2 = 0$$
  
B.  $2x^2 + 3xy + 4y^2 = 0$   
C.  $2x^2 + 3xy - 2y^2 = 0$ 

D. 
$$3x^2+2xy-3y^2=0$$

# Answer: C

# Watch Video Solution

**48.** Measure of angle between the lines 3xy - 4y = 0

is

A.  $30^{\circ}$ 

B.  $60^{\circ}$ 

C.  $90^{\circ}$ 

D.  $120^{\,\circ}$ 

Answer: C

**Watch Video Solution** 

**49.** Measure of angle between the lines xy - 5x + 4y - 20 = 0 is A.  $\frac{\pi}{6}$ B.  $\frac{\pi}{4}$ C.  $\frac{\pi}{3}$ 

D.  $\frac{\pi}{2}$ 

# Answer: D



50. Measure of angle between lines  

$$x^2 - 4xh + y^2 = 0$$
 is  
A.  $\frac{\pi}{2}$   
B.  $\frac{\pi}{3}$   
C.  $\frac{\pi}{4}$   
D.  $\frac{\pi}{6}$ 



51. Measure of angle between lines  

$$3x^2 - 8xy - 3y^2 = 0$$
 is  
A.  $\frac{\pi}{2}$   
B.  $\frac{\pi}{3}$   
C.  $\frac{\pi}{4}$   
D.  $\frac{\pi}{6}$ 

# Answer: A



52. Measure of angle between lines  $x^{2} + 2x \sec \alpha + y^{2} = 0$  is A.  $\frac{\pi}{2} - \alpha$ B.  $\alpha$ C.  $\frac{\pi}{2} + \alpha$ 

D. 
$$\pi-lpha$$



53. Measurement of angle between lines  $x^2 + 2xy \csc \alpha + y^2 = 0$  is A.  $\frac{\pi}{2} - \alpha$ B.  $\alpha$ C.  $\frac{\pi}{2} + \alpha$ 

D. 
$$\pi - lpha$$

# Answer: A



54. Measure of angle bewtwen lines  

$$(3 + 2\sqrt{3})x^2 - 2xy - y^2 = 0$$
 is  
A.  $\frac{\pi}{2}$   
B.  $\frac{\pi}{3}$   
C.  $\frac{\pi}{4}$   
D.  $\frac{\pi}{6}$ 

# Answer: C



**55.** If equation  $8x^2 - 3xy + \lambda y^2 = 0$  represents two

mutually perpendicular lines, then  $\lambda=$ 

A. 3

**B.** 8

C. - 8

D.-3

# Answer: C



56. If acute angle between lines  $x^2 - 2hxy + y^2 = 0$  is  $60^\circ$  then h = A. -2

- $\mathsf{B}.\pm 2$
- $\mathsf{C.}\,2$
- D.  $\sqrt{3}$



57. If lines  $2x^2 + 8xy + ky^2 = 0$  are coincident then k =

A. 8

B. -8

C. 4

D. -4

Answer: A



58. The lines  $a^2x^2 + bcy^2 = a(b+c)xy$  will be coincident, if

A. a=bB. b=cC. c=a

D. 
$$b^2 = ac$$



59. If the acute angle between the lines  $ax^2 + 2hxy + by^2 = 0$  is  $60^\circ$ , then show that  $(a+3b)(3a+b) = 4h^2.$ 

A.  $h^2$ 

 $B. 2h^2$ 

 $\mathsf{C.}\,3h^2$ 

D.  $4h^2$ 

Answer: D



60. If acute angle between lines  $ax^2 + 2hxy + by^2 = 0$ 

is 
$$rac{\pi}{4}$$
, then  $4h^2 =$   
A.  $a^2 + 4ab + b^2$   
B.  $a^2 + 6ab + b^2$   
C.  $(a + 2b)(a + 3b)$   
D.  $(a - 2b)(2a + b)$ 



61. If acute angle between lines  $ax^2 + 2hxy + by^2 = 0$ is  $\frac{\pi}{6}$ , then  $a^2 + 14ab + b^2 =$ A.  $4h^2$ B.  $8h^2$ C.  $12h^2$ D.  $16h^2$ 

#### Answer: C



62. If acute angle between lines  $ax^2 + 2hxy + by^2 = 0$ is congruent to that between lines  $2x^2 - 5xy + 3y^2 = 0$  and  $k(h^2 - ab) = (a + b)^2$ then k =

A.  $-(10)^2$ 

B.  $(-10)^2$ 

C. - 10

D. 10



63. If acute angle between lines  $ax^2+2hxy+by^2=0$ is congruent to that between lines  $3x^2-7xy+4y^2=0$  and  $(a+b)^2+kig(h^2-abig)=0$ then k=

A.  $-(14)^2$ B.  $(-14)^2$ C. -14

D. 14

Answer: A



64. If acute angle between lines  $3x^2 - 4xy + by^2 = 0$ is  $\cot^{-1} 2$ , then b =A. 1, -55 B. -1, 55 C. 15, -5 D. 1, -54

#### Answer: A



65. If one of the lines denoted by the line pair  $ax^2 + 2hxy + by^2 = 0$  bisects the angle between the coordinate axes, then prove that  $(a + b)^2 = 4h^2$ 

A. 
$$\left(a-b
ight)^2=4h^2$$

B. 
$$(a+b)^2 = 4h^2$$

$$\mathsf{C.}\,4ab=h^2$$

D. 
$$b^2 = 4ah$$

#### **Answer: B**

# **Watch Video Solution**

**66.** If slope of one of the lines  $ax^2 + 2hxy + by^2 = 0$  is

twice that of the other, then  $h^2$  : ab =

A. 7:8

- B.8:7
- C. 8:9
- D. 9:8

# Answer: D



**67.** If ratio of slopes of lines  $ax^2 + by^2 = 0$  is 1:3 then

 $h^2$  : ab =

A. 
$$\frac{1}{3}$$
  
B.  $\frac{3}{4}$   
C.  $\frac{4}{3}$ 

# Answer: C



68. If the gradient of one of the lines given by  $x^2 + hxy + 2y^2 = 0$  is twice that of the other, then h = A.  $\pm 2$  $B.\pm 3$  $C.\pm 1$  $\mathsf{D.}\pmrac{3}{2}$ 

#### Answer: D



**69.** If slopes of lines  $ax^2 + 2hxy + by^2 = 0$  differ by k then  $\left(h^2-ab
ight)$  :  $b^2=$ A.  $4k^2$ B. 4:  $k^2$  $C. k^2: 4$ D.  $k^2 + 4$ Answer: C



70. If distance of a point  $(x_1, y_1)$  from each of two lines  $L_1$  and  $L_2$ , through the orign , is  $\delta$ , then joint equation of  $L_1$  and  $L_2$  is

A. 
$$(x_1y - xy_1)^2 = \delta^2 (x^2 + y^2)$$
  
B.  $(x_1y + xy_1)^2 = \delta^2 (x^2 + y^2)$   
C.  $(x_1x - yy_1)^2 = \delta^2 (x^2 + y^2)$   
D.  $(xx_1 + yy_1)^2 = \delta$ 

#### **Answer: A**

# Watch Video Solution

**71.** If the distance of a point  $(x_1, y_1)$  from each of the two straight lines, which pass through the origin of coordinates, is  $\delta$ , then the two lines are given by

A. 
$$(ax + by)^2 = d^2(x^2 + y^2)$$
B.  $(ay - bx)^2 = d^2(x^2 + y^2)$ 
C.  $(ax + by)^2 = d^2(x^2 + y^2)$ 
D.  $(ax + by)^2 = d^2(x^2 - y^2)$ 



72. If  $2x^2 + xy - 3y^2 + 4x + ky - 6 = 0$  represents a

pair of lines then k =

A. 11, -9B. 9, -11C. 1, -19

D. -9, -11

#### Answer: A



73. If  $\lambda x^2 - 10xy + 12y^2 + 5x - 16y - 3 = 0$ , represents a pair of straight lines, then the value of  $\lambda$ is A. 4 B. 3

Answer: C

C. 2

D. 1

\_\_\_\_\_

# Watch Video Solution
74. If  $12x^2 - 10xy + 2y^2 + 11x - 5y + c = 0$ 

represents a pair of lines then c =

A. 1

B. 2

C. -1

D. -2

### Answer: B



**75.** If  $2x^2 + 4xy - py^2 + 4x + qy + 1 = 0$  represents

a pair of mutually perpendicular lines then

A. 
$$p=2,\,q=1$$

B. p = -2, q = 0

C. 
$$p = -2, q = 8$$

D. 
$$p = 2, q = 0, 8$$

### **Answer: D**



76. if the equation  $12x^2 + 7xy - py^2 - 18x + qy + 6 = 0$  represents two perpendicular lines , then the value of p and q are

A. (12, 1)B. (1, 12)C. (-1, 12)D. (-12, 1)

**Answer: A** 



77. If the angle between the two lines represented by  $2x^2 + 5xy + 3y^2 + 6x + 7y + 4 = 0$  is  $\tan^{-1}(m)$ , then m is equal to

A. 
$$\frac{1}{5}$$
  
B. 1  
C.  $\frac{7}{5}$ 

D. 7

Answer: A



**78.** If  $\theta$  is the angle between the liens  $x^2-3xy+2y^2+\lambda x-5y+2=0$  then  $\csc^2 heta=$ A. 3 **B**. 9 **C**. 10 D. 100 Answer: C



79. The equation

$$x^2+2\sqrt{ab}xy+by^2+2gx+2fy+c=0$$

represents a pair of parallel straight lines, if

A. 
$$g^2 = ac$$
  
B.  $bg^2 = af^2$   
C.  $ag^2 = bf^2$   
D.  $af^2 = cg^2$ 

### Answer: B



**80.** Select and write the correct answer from the alternatives in each of the following :

If an equation hxy +gx+fy+c=0 represents a pair of lines, then .....

A. 
$$2fgh=c^2$$
  
B.  $2fg=ch$   
C.  $fgh=c^2$ 

D. 
$$fg = ch$$

### Answer: D



81. If the two lines  $ax^2 + 2hxy + by^2 = a$  make angles lpha and eta with X-axis,then : an(lpha + eta) =

A. 
$$\frac{h}{\alpha + b}$$
  
B.  $\frac{h}{a - b}$   
C.  $\frac{2h}{a + b}$   
D.  $\frac{2h}{a - b}$ 

### **Answer: D**



82. If  $3x^2 - 6xy - by^2 = 0$  represents a pair of lines

inclined at an angle  $\pi$  then b =

A. 3

B. 6

C. 9

D. any real number

### Answer: A



83. Find the angle between the lines whose joint equation is  $2x^2 - 3xy + y^2 = 0$ 

A. 
$$\tan^{-1}(\sqrt{3})$$

 $\mathsf{B.}\cot^{-1}\left(\sqrt{3}\right)$ 

C. 
$$\cot^{-1}(3)$$
  
D.  $\cos^{-1}(3)$ 

### Answer: C

Watch Video Solution

**84.** If the lines  $px^2 - qxy - y^2 = 0$  make the angles  $\alpha$ and  $\beta$  with X-axis, then find the value of  $tan(\alpha + \beta)$ .

A. 
$$\frac{-p}{1+q}$$
B. 
$$\frac{-q}{1+p}$$
C. 
$$\frac{q}{1+p}$$
D. 
$$\frac{p}{1+q}$$

### Answer: B



Answer: A



86. If the equation  $ax^2 + by^2 + cx + cy = 0$ represents a pair of straight lines , then

A. not real

B. coincident

C. mutually perpendiculat

D. strictly parallel

Answer: C

Watch Video Solution

87. For what value of k is  $4x^2 + 8xy + ky^2 = 0$  the equation of a pair of straight lines?

A. 0

B. 4

C. 9

D. -9

Answer: B



**88.** Two lines are given by  $(x-2y)^2 + k(x-2y) = 0$  . The value of k, so that the distance between them is 3, is :

A.  $\pm 3$ 

- B.  $\pm 5\sqrt{5}$
- C. 0
- D.  $\pm 3\sqrt{5}$

Answer: D



89. Find the measure of the acute angle between the

# lines represented by $(a^2-3b^2)x^2+8abxy+(b^2-3a^2)y^2=0.$ A. $\frac{\pi}{6}$ B. $\frac{\pi}{4}$ C. $\frac{\pi}{3}$

D. 
$$\frac{\pi}{2}$$

### Answer: C

## Watch Video Solution

90. If joint equation of two lines through the origin, each making an angle heta with the line x+y=0 is  $x^2+2hxy+y^2=0$  then h=

A.  $\sec 2\theta$ 

 $B. - \sec 2\theta$ 

 $\mathsf{C}.\tan 2\theta$ 

 $D. - \tan 2\theta$ 

**Answer: A** 



**91.** IF the equation  $x^2 + y^2 + 2gx + 2fy + 1 = 0$  represents a pair of lines, then

A. 
$$g^2 + f^2 = rac{1}{2}$$
  
B.  $f^2 - g^2 = 1$   
C.  $f^2 = g^2 = 1$   
D.  $g^2 - f^2 = 0$ 

### Answer: C



92. Equation of pair of lines, drawn through (1,1) parallel to the lines  $2x^2 - 5xy + 3y^2 = is$ A.  $3x^2 + 5xy + 2y^2 - 9x - 11y + 10 = 0$ B.  $3x^2 + 5xy + 2y^2 - 11x - 9y + 10 = 0$ C.  $2x^2 + 5xy + 3y^2 - 9x - 11y + 10 = 0$ D.  $2x^2 + 5xy = 3y^2 - 11x - 9x + 10 = 0$ 

### Answer: C



**93.** If slope of one of the lines  $ax^2 + 2hxy + by^2 = 0$  is

5 times the slope of the other then  $5h^2=$ 

A. *ab* 

 $B.\,2ab$ 

C. 7*ab* 

D. 9ab

Answer: D



94. If the slope of one of the lines represented by  $ax^2 + 2hxy + by^2 = 0$  is the square of the other , then  $\frac{a+b}{h} + \frac{8h^2}{ab} =$ 

A. 4

B. -6

C. 6

D. -4

Answer: C



**95.** If  $h^2 = ab$  then slopes of lines  $ax^2+2hxy+by^2=0$  are in the ratio A. 1:2 B. 2:1 C. 2:3 D.1:1 Answer: D



96. Joint equation of two lines through (-2,3) parallel to

bisectors of angles between co-ordinate axes is

A. 
$$x^2 + y^2 + 4x + 6y - 5 = 0$$

B. 
$$x^2 - y^2 + 4x + 6y - 5 = 0$$

C. 
$$x^2 - y^2 - 4x - 6y + 5 = 0$$

D. 
$$x^2 - y^2 - 4x - 6y - 5 = 0$$

### **Answer: B**



97. If angle between lines  $ax^2 + 2hxy + by^2 = 0$  is  $\frac{\pi}{4}$  then 2h =

A. 
$$\sqrt{a^2+b^2+3ab}$$
  
B.  $\sqrt{a^2+b^2-3ab}$   
C.  $\sqrt{(a+b)^2+4ab}$   
D.  $\sqrt{(a+b)^2+ab}$ 

### Answer: C



98. The lines represented by the equation  $ax^2 + 2bxy + hy^2 = 0$  are mutually perpendicular if A. a + b = 0B. b + h = 0C. h + a = 0D. ah = -1

### Answer: C



99. If the gradient of one of the lines given by  $x^2 + hxy + 2y^2 = 0$  is twice that of the other, then h = A.  $\pm 2$  $B.\pm 3$  $C.\pm 1$ D.  $\pm 3/2$ **Answer: B** 



**100.** if  $\frac{X^2}{a} + \frac{y^2}{b} + \frac{2xy}{h} = 0$  represent pair of straight lies and slope one line is twice the other line then  $ab: h^2$ .

A. 1:2

B. 2:1

C. 8:9

D. 9:8

Answer: D



101. The diagonals of a square are along the pair of lines whose equation is  $2x^2 - 3xy - 2y^2 = 0$  If (2,1) is a vertex of the square, then the vertex of the square adjacent to it may be

A. (1,4)

B. (1,-2)

C. (2,-1)

D. (1,2)

Answer: B

Watch Video Solution

102. Equation

$$x^2y^2 - 9y^2 + 6x^2y - 54y = 0$$

represents

A. a pair of lines and a circle

B. a pair of lines and a parabola

C. a set of four lines which form a square

D. a set of four lines along a rectangle

### Answer: C

Watch Video Solution

103. If the sum of the slopes of the lines given by  $x^2 - 2cxy - 7y^2 = 0$  is four times their product , then

### the value of c is

A. 2

B. -1

C. 1

D. -3

### Answer: A

# **O** Watch Video Solution

104. If one of the lines given by  $6x^2 - xy + 4cy^2 = 0$  is

3x+4y=0 , then c=

B. -1

C. 1

D. -3

### Answer: D

Watch Video Solution

105. If  $2\theta$  is an acute angle, then the acute angle between the two lines  $x^2(\cos \theta - \sin \theta) + 2xy \cdot \cos \theta + y^2(\cos \theta + \sin \theta) = 0$ is

B. 
$$\frac{\theta}{2}$$
  
C.  $\frac{\theta}{3}$ 

D.  $(\theta)$ 

### Answer: D



### 106. If the pair of straight lines xy - x - y + 1 = 0 &

the line ax+2y-3=0 are concurrent then a=

A. -1

B. 3

C. 1

D. 0

### Answer: A

107. Joint equation of the two lines x+y=1 and

x-y=4 is

A. 
$$x^2 - y^2 = -4$$

$$\mathsf{B}.\,x^2-y^2=4$$

C. 
$$(x+y-1)(x-y-4)=0$$

D. (x + y + 1)(x - y + 4) = 0

### Answer: C



108. Mesure of angle between the two lines  $x^2 (\cos^2 heta - 1) - xy \sin^2 heta + y^2 \sin^2 heta = 1$  is

A. 
$$\frac{\pi}{3}$$
  
B.  $\frac{\pi}{4}$   
C.  $\frac{2\pi}{3}$   
D.  $\frac{\pi}{2}$ 

### Answer: D

109. Two lines jointly given by the equation xy - 2y + y - 2 = 0 are

- A. || to coordinate axes separately and  $\perp$  to each other
- B.  $\perp$  to coordinate axes separately and  $\perp$  to each other
- C. || as well as  $\perp$  to coordinates
- D. || and  $\perp$  to coordinates axes, and  $\perp$  to each other

Answer: D





### A. 1

B. 1/2

 $\mathsf{C.}-1/2$ 

D. - 1

### Answer: C



### Walch Video Solution



- B. c = 0
- C.a = b
- $\mathsf{D}.\,h=0$

### **Answer: B**


112. The point of intersection of lines gives by the equation  $3x^2 + 10xy + 3y^2 - 15x - 21y + 18 = 0$  is

A. two sides of an equilateral triangle

B. diagonal of a rhombus

C. opposite sides of a parallelogram

D. opposite sides of a trapezium

#### Answer: B



113. If the equation 
$$k^2x^2+10xy+3y^2-15x-21y+18=0$$
 represents

a pair of mutually perpendicular lines then

A. 
$$k=5$$

B. 
$$k=\pm\sqrt{2}$$

C. k = 3

D. k is not real

#### Answer: D



114. The distance between the point of intersection of the two lines  $2009x^2 + 2010xy + 2011y^2 = 0$  and the point (1,1) is A. 1

 $\mathsf{B.}\,2$ 

C.  $\sqrt{2}$ 

D.  $2 + \sqrt{3}$ 

### Answer: C





A. 
$$4abc+4fgh=4.5af^2+4bg^2+h^2$$

B. 
$$4abc+6fgh-9af^2-4bg^2-ch^2$$

$$\mathsf{C.}\,4abc+2fgh-9af^2+2bg^2+h^2$$

 $\mathsf{D.}\,4abc+12fgh-9af^2+4bg^2+2h^2$ 

#### Answer: B



**116.** The joint equation of lines which bisect the angle

between the two lines  $x^2 + 3xy + 2y^2 = 0$  is

A. 
$$3x^2 + 2xy - 3y^2 = 0$$

 $\mathsf{B}.\, 2x^2 + 3xy - 3y^2 = 0$ 

 $\mathsf{C.}\, 2x^2 + 3xy - 2y^2 = 0$ 

D. 
$$2x^2 - 3xy + y^2 = 0$$

### Answer: A

**Watch Video Solution** 

117. The equation of the bisectors of angle between the

lines 
$$x^2 - 4xy + y^2 = 0$$
 is

A. 
$$x^2+y^2=0$$

$$\mathsf{B}.\,x^2-y^2=0$$

$$\mathsf{C}.\, 2x^2+y^2=0$$

D. 
$$x^2-2y^2=0$$

### Answer: B



118. If the lines  $x^2 + 2hxy - y^2 = 0$  bisect the angle between the lines  $2x^2 + 10xy - y^2 = 0$  then h =

A. 
$$\frac{15}{2}$$
  
B.  $\frac{2}{15}$   
C.  $-\frac{3}{10}$   
D.  $-\frac{2}{15}$ 

Answer: C



119. If the equation  $7x^2 - kxy - 7y^2 = 0$  represents the bisectors of angles between the lines  $2x^2 - 7xy + 4y^2 = 0$  then: k =

A. 2

B. 3

C. -3

D. 4

### Answer: D



**120.** If  $x^2 - 2pxy - y^2 = 0$  and  $x^2 - 2qxy - y^2 = 0$ bisect angles between each other, then find the condition.

A. 2p+q=0

B. pq + 1 = 0

C.2p + 3q = 0

D. pq = 1

### Answer: B



121. If tihe lines 2x - y = 0 is the bisector of an angle between the two lines  $x^2 + 2hxy - 3y^2 = 0$  then h =

A. 
$$-\frac{3}{8}$$
  
B.  $\frac{8}{3}$   
C.  $\frac{2}{3}$   
D.  $-\frac{8}{3}$ 

### Answer: D

# Watch Video Solution

122. Two lines given by equation  $x^2 + xy + y^2 = 0$  are

A. coincident

B. parallel

C. mutualy perpendicular

D. imaginary

### Answer: D



123. The value of h for which the equation  $3x^2 + 2hxy - 3y^2 - 40x + 30y - 75 = 0$  represents

a pair of straight lines , are

A. 4,4

B. 4,6

C. 4,-4

D. 0,4

Answer: A



124. Joint equation of lines passing through the origin, and parallel to the lines  $y-m_1x+c_1$  and  $y=m_1x+c_2$ , is

A. 
$$m_1m_2x^2 - (m_1\ _-\ m_2)xy + y^2 = 0$$

B. 
$$m_1m_2x^2 + (m_1+m_2)xy + y^2 = 0$$

C. 
$$m_1m_2y^2-(m_1+m_2)xy+x^2=0$$

D. 
$$m_1m_2y^2 + (m_1+m_2)xy + x^2 = 0$$

### Answer: A



### 125. Find the separate equation of two straight lines

whose joint equation is ab $ig(x^2-y^2ig)+ig(a^2-b^2ig)xy=0$ 

A. 
$$ax-by-0, bx+ay=0$$

B. 
$$ax-by=0, bx-ay=0$$

$$\mathsf{C}.\,ax+by=0,bx+ay=0$$

D. 
$$ax+by=0, bx-ay=0$$

#### **Answer: A**

**Watch Video Solution** 

126. The equations of the lines represented by the equation  $ax^2 + (a+b)xy + by^2 + x + y = 0$  are

A. 
$$ax + by + 1 = 0, x + y = 0$$

B. 
$$ax + by - 1 = 0, x + y = 0$$

C. 
$$ax + by + 1 = 0, x - y = 0$$

### D. None of these

### Answer: A

# Watch Video Solution

127. Separate equations of lines whose joint equation is

$$a(b-c)x^2-(ab-bc)xy+c(a-b)y^2=0$$
 are

A. 
$$a(b-c)x-c(a-b)y=0, x+y=0$$

B. x + y = 0, x - y = 0

C. 
$$a(b-c)x - c(a-b)y = 0, x - y = 0$$

D. None of these

### Answer: C





A. a circle

B. two lines through origin

C. two lines through

D. None of these

Answer: C



129. If  $4ab = 3h^2$ , then the ratio of the slopes of the represented by the equation lines  $ax^2+2hxy+by^2=0$  will be (A)  $\sqrt{2}:1$ (B)  $\sqrt{3}:1$ (C) 2:1 (D) 1:3 A.  $\sqrt{2}$  : 1 B.  $\sqrt{3}: 1$ C. 2:1

D. 3:1

#### Answer: D



130. The equation of the perpendiculars drawn from the origin to the lines represented by the equation  $2x^2 - 10xy + 12y^2 + 5x - 16y - 3 = 0$ , is

A. 
$$6x^2+5xy+y^2$$

B. 
$$6y^2+5xy+x^2=0$$

C. 
$$6x^2 - 5xy + y^2$$

D. None of these

### Answer: A



**131.**Theequation
$$4x^2 + 12xy + 9y^2 + 2gx + 2fy + c = 0$$
willrepresents two real partall straight lines. ifA.  $g = 4, f = 9, c = 0$ B.  $g = 2, f = 3, c = 1$ C.  $g = 2, f = 3, c$  is ay numberD.  $g = 4, f = 9, c > 1$ 

### Answer: C

Watch Video Solution

**132.** Equation of one of the two lines  $x^2 + 2xy + \cos \theta - y^2 = 0$  is A. x - y.  $\cot \theta = 0$ B. x + y.  $\tan \theta = 0$ C. x.  $\sin \theta + y(1 + \cos \theta) = 0$ D. x.  $\cos \theta + y(1 + \sin \theta) = 0$ 

### Answer: C

View Text Solution

133. The pair of straight lines passing through that point (1, 2) and perpendicular to the pair of straight lines  $3x^2 - 8xy + 5y^2 = 0$ , is

A. 
$$(5x+3y+11)(x+y+3)=0$$

B. 
$$(5x+3y-11)(x+y-3)=0$$

C. 
$$(5x + 3y - 11)(x + y + 3) = 0$$

D. 
$$(3x - 5y + 11)(x + y - 3) = 0$$

#### **Answer: B**

## Watch Video Solution

**134.** The area of triangle (in sq units) formed by the lines  $x^2 - 4y^2 = 0$  and x = a, is

A.  $2a^{2}$ B.  $\frac{a^{2}}{2}$ C.  $\frac{\sqrt{3}}{2}a^{2}$ D.  $\frac{2}{\sqrt{3}}a^{2}$ 

**Answer: B** 



135. If the equation  $x^2 - y^2 - x - \lambda y - 2 = 0$ represents a pair of lines then  $\lambda =$ A. 3,-3

B. -3, 1

C. 3,1

D. -1, 1

Answer: A



136. If  $\lambda x^2 - 5xy + 6y^2 + x - 3y = 0$  represents a

pair of staight lines, then their point of intersection is:

A. (1,3)

B. (-1,3)

C. (3,1)

D. (-3,-1)

Answer: D



137. If the acute alngles betwene the pairs of lines  $3x^2+7xy+4y^2=0$  and  $6x^2-5xy+y^2=0$  are  $heta_1$  and  $heta_2$  then

- A.  $heta_1 heta_2$
- $\mathsf{B}.\,\theta_1=2\theta_2$
- $\mathsf{C}.\,\theta_2-2\theta_1$
- D. None of these

#### **Answer: A**



138. If the angle between the lines  $ax^2+xy+by^2=0$  is  $45^\circ$  , then

A. 
$$a = 1, b = 6$$

B. 
$$a = 1, b = -6$$

C. 
$$a = 1, b = 1$$

D. None of these

### **Answer: B**



139. If the angle between the two lines  $y^2 + kxy - x^2 \tan^2 \theta = 0$  is  $2\theta$  then k =A. 0 B. 1 C. 2 D.  $\tan \theta$ 

### Answer: A



140. If the sum of slopes of the lines  

$$x^2 - 2xy \cdot \tan \theta - y^2 = 0$$
 is 4, then:  $0 =$   
A.  $0^{\circ}$   
B.  $45^{\circ}$   
C.  $60^{\circ}d$   
D.  $-\tan^{-1}2$   
Answer: D



141. If the lines represented by the equation  $2x^2 - 3xy + y^2 = 0$  make angles  $\alpha$  and  $\beta$  with X-axis, then  $\cot^2 \alpha + \cot^2 \beta$  is equal to

**A.** 0

B. 
$$\frac{3}{2}$$
  
C.  $\frac{7}{4}$   
D.  $\frac{5}{4}$ 

Answer: D



**142.** Angle between the lines  $ig(x^2+y^2ig)\sin heta-2xy=0$ 

is



### Answer: C



143. If the angle between the two lines  $x^3-3xy+\lambda y^2+3x-5y+2=0, \lambda\geq 0$  is  $an^{-1}(1/3)$  then:  $\lambda=$ 

A. 2

B. 0

C. 3

D. 1

Answer: A



144. Equation  $x^2+m_1y^2+m_2xy=0$  jointly represents a pair of perpendicular lines if

A. 
$$m_1=\ -1$$

B.  $m_1 = 2m_2$ 

C. 
$$m_2=2m_1$$

D. 
$$m_1 m_2 = -1$$

### **Answer: A**



145. If  $2\theta$  is an acute angle, then the acute angle between the two lines  $x^2(\cos \theta - \sin \theta) + 2xy \cdot \cos \theta + y^2(\cos \theta + \sin \theta) = 0$ is

A.  $2\theta$ B.  $\frac{\theta}{3}$ C.  $\theta$ D.  $\frac{\theta}{2}$ 

### Answer: C

Watch Video Solution

146. If one of the lines of  $my^2+(1-m^2)xy-mx^2=0$  is a bisector of the angle between the lines xy=0 , then m is 1 (b) 2 (c)  $-rac{1}{2}$  (d) -1

- A. -1/2
- $\mathsf{B.}-2$
- **C**. 1
- D. 2

Answer: C



147. If the bisectors of the angles between the pairs of

lines 
$$ax^2+2hxy+by_2=0$$
 and

 $ax^2+2hxy+by^2+\lambdaig(x^2+y^2ig)=0$  are coincident,

then:  $\lambda =$ 

A. a

B.b

C.h

D. any real number

### Answer: D



148. Joint equation of bisectors of angles between the two lines  $x^2+2xy.\,\cot heta+y^2=0$  is

A. 
$$x^2-y^2=0$$
  
B.  $x^2-y^2=xy$   
C.

D. 
$$ig(x^2-y^2ig){
m cot}\, heta=2xy$$

### Answer: A



149. If the bisectors of the angles between the lines

given by 
$$3x^2-4xy+5y^2=0$$
 and

 $5x^2 + 4xy + 3y^2 = 0$  asre same, then, the angle made

by the lines in the first pair with the second is

A.  $30^{\circ}$ 

 $\mathsf{B.}\, 60^{\,\circ}$ 

C.  $45^{\circ}$ 

D.  $90^{\circ}$ 

Answer: D

View Text Solution

150. One bisector of the angle between the lines given

by 
$$a(x-1)^2+2h(x-1)y+by^2=0$$
 is
2x + y - 2 = 0. The equation of the other bisector is

A. 
$$x - 2y + 1 = 0$$

B. 
$$2x + y - 1 = 0$$

C. 
$$x + 2y - 1 = 0$$

D. 
$$x-2y-1=0$$

#### **Answer: D**

### **Watch Video Solution**

151. The lines y = mx bisects the angle between the

lines  $ax^2 + 2hxy + by^2 = 0$  if

A. 
$$hig(1+m^2ig)+m(a-b)=0$$

B. 
$$hig(1-m^2ig)+m(a+b)=0$$
  
C.  $hig(1-m^2ig)+m(a-b)=0$   
D.  $hig(1+m^2ig)+m(a+b)=0$ 

### Answer: C

**O** Watch Video Solution

152. If one of the lines of 
$$my^2 + (1 - m^2)xy - mx^2 = 0$$
 is a bisector of the angle between the lines  $xy = 0$  , then  $m$  is 1 (b) 2 (c)  $-\frac{1}{2}$  (d)  $-1$ 

A. 
$$-\frac{1}{2}$$

 $\mathsf{B.}-2$ 

 $C.\pm 1$ 

 $\mathsf{D.}\ 2$ 

### Answer: C



153. The equation of the lines parallel to the line common to the pair of lines given by  $6x^2 - xy - 12y^2 = 0$  and  $15x^2 + 14xy - 8y^2 = 0$  and the sum of whose intercepts on the axes is 7, is

A. 
$$2x - 3y = 42$$

B. 3x + 4y = 12

C. 5x - 2y = 10

D. None of these

### **Answer: B**



154. If the slope of one of the lines given by  $ax^2-6xy+y^2=0$  is square of the other, then a =

A. 1

B. 2

C. 4

D. 8

### Answer: D



155. Orthocentre of the triangle formed by the pair of

lines xy = 0 and the lines 2x + 3y + 4 = 0 is

A. (2, 3)

- B.(3,2)
- C.(0,0)

D. (4, -4)

### Answer: C



**156.** Sum and product of slopes of two lines through the origin are respectively the A.M. And G.M. of 9 and 16. Joint equation of bisectors of these lines is

A. 
$$24x^2 - 25xy + 2y^2 = 0$$

B. 
$$25x^2 + 44xy - 25y^2 = 0$$

C. 
$$11x^2 - 25xy - 11y^2 = 0$$

D. None of these

Answer: B



157. If the pair of lines  $ax^2 - 2xy + by^2 = 0$  and bx^2-2xy+ay^2=0`

be such that each pair bisects the angle between the other pair , then |a-b| equals to

A. 0

B. 1

C. 2

D. 4

**158.** If pairs of lines  $3x^2 - 2pxy - 3y^2 = 0$  and  $5x^2 - 2qxy - 5y^2 = 0$  are such that each pair bisects then angle between the other pair then pq =

A. -1

B. -3

C. -5

D. -15

### **Answer: D**



159. If one of the two lines  $6x^2 + xy - y^2 = 0$ coincides with one of the two lines  $3x^2 - axy + y^2 = 0$  ten

A. 
$$a^2 - 3a + 28 = 0$$

B. 
$$2a^2-a-28=0$$

$$\mathsf{C.}\, 2a^2 - 15a + 28 = 0$$

### D. None of these

### **Answer: B**



160. If the area of the triangle formed by the pair of lines  $8x^2 - 6xy + y^2 = 0$  and the line 2x + 3y = a is 7 then a =

A. 14

B.  $14\sqrt{2}$ 

C. 28

D. None of these



**161.** If the centroid of the triangle formed by the lines

$$2y^2 + 5xy - 3x^2 = 0 \, ext{ and } \, x + y = k \, ext{ is } \, \left( rac{1}{18}, rac{11}{18} 
ight)$$
 ,

then the value of k is

 $\mathsf{A.}-1$ 

**B**. 0

**C**. 1

D. None of these



162. If the pairs of straight lines  $ax^2 + 2hxy - ay^2 = 0$  and  $bx^2 + 2gxy - by^2 = 0$  be such that each bisects the angles between the other, then

A. 
$$hg + ab = 0$$

B. 
$$ah+bg=0$$

$$\mathsf{C}.\,h^2=ab$$

$$\mathsf{D}.\,ag+bh=0$$

### Answer: A

Watch Video Solution

**163.** If the

$$x^2+(a+b)xy+aby^2+x+ab=0$$
 represents two

parallel lines, then

A. 
$$a+b=0$$

 $\mathsf{B.}\,a=4b$ 

$$\mathsf{C}.\,a=b$$

D. None of these

### Answer: B



164. One bisector of the angle between the lines given

by 
$$a(x-1)^2+2h(x-1)y+by^2=0$$
 is

2x+y-2=0. The equation of the other bisector is

A. 
$$x-2y+1=0$$

B. 
$$x - 2y - 2 = 0$$

C. 
$$x - 2y - 1 = 0$$

D. None of these



**165.** Three lines whose joint equation is  $4x^2y - y^3 = 0$ 

form a triangle which is

A. isosceles

B. equilateral

C. right angled

D. None of these

Answer: D



166. If a line y - mx bisects the anglebetween the lines  $(\tan^2 heta + \cos^2 heta)x^2 + 2xy\tan heta - y^2\sin^2 heta = 0$  when heta is  $60^\circ$  then :  $\sqrt{3}m^2 + 4m =$ 

### A. 1

$$\mathsf{B.}\,\frac{1}{\sqrt{3}}$$

C. 
$$\sqrt{3}$$

D. 
$$7\sqrt{3}$$

### Answer: C

# **Watch Video Solution**

167. The lines y=mx bisects the angle between the lines  $ax^2+2hxy+by^2=0$  if A.  $hig(m^2-1ig)+m(b-a)=0$ B.  $hig(m^2-1ig)+m(a-b)=0$ 

$$\mathsf{C}.\,h\bigl(m^2+1\bigr)+m(a-b)=0$$

D. None of these

**Answer: B** 



168. If two pairs of straight lines having equations  $y^2 + xy - 12x^2 = 0$  and  $ax^2 + 2hxy + by^2 = 0$  have one line common, then a =

A. 
$$-3(2h+3b)$$

B. 8(h + 2b)

 $\mathsf{C.}\,2(b+h)$ 

$$\mathsf{D}.-3(b+h)$$

### **Answer: A**



169. The point of intersection of the pair of straight lines given by  $6x^2 + 5xy - 4y^2 + 7x + 13y - 2 = 0$ , is

A. (1, 1)B. (1, -1)C. (-1, 1)D. (-1, -1)



170. The centroid of the triangle whose three sides are

given by the combined equation
$$ig(x^2+7xt+2y^2ig)(y-1)=0$$
, is

A. 
$$\left(\frac{2}{3}, 0\right)$$
  
B.  $\left(\frac{7}{3}, \frac{2}{3}\right)$   
C.  $\left(-\frac{7}{3}, \frac{2}{3}\right)$ 

D. None of these



171. If the equation  $2x^2 + 2hxy + 6y^2 - 4x + 5y - 6 = 0$  represents a pair of straight lines, then the length of intercept on the x-axis cut by the lines is equal to

A. 2

B.  $\sqrt{7}$ 

C. 4

D. 0

Answer: C

Watch Video Solution

172. If the angle between the lines represented by the equation  $y^2 + kxy - x^2 \tan^2 A = 0 is 2A$ , then K is equal to

A. 0

B. 2

C. 4

D. -2

### Answer: A



173. Separate equations of the two lines jointly given by  $ab(x^2 - y^2) + (a^2 - b^2)xh = 0$  are A. ax - by = 0, bx + ay = 0B. ax - by = 0, bx - ay = 0C. ax + by = 0, bx + ay = 0D. ax + by = 0, bax - ay = 0

**Answer: A** 





D. None of these



175. The equations of the lines represented by the equation  $ax^2 + (a+b)xy + by^2 + x + y = 0$  are

A. 
$$ax+by+1=0, x+y=0$$

B. 
$$ax + by - 1 = 0, x + y = 0$$

$$\mathsf{C.}\,ax+by+1=0, x-y=0$$

D. None of these

### **Answer: A**



176. If the area of the triangle formed by the lines  $x^2-4y^2=0$  and x=a is 8, then a=A.  $\pm 1$  $\mathsf{B}.\pm 2$  $\mathsf{C}.\pm3$  $D.\pm4$ Answer: D



177. If the two lines  $2x^2 - 3xy + y^2 = 0$  makes anlges lpha and eta with X-axis then  $:\csc^2lpha + \csc^2eta =$ 

A. 2

B. 7/2

C. 15/4

D. 13/4

**Answer: D** 



178. If sum of slopes of the lines  

$$x^2 - 2xy \tan A - y^2 = 0$$
 si 4, then:  $\angle a =$   
A. 0°  
B. 45°  
C. 60°  
D.  $\tan^{-1}(-2)$ 

### Answer: D



179. Measure of angle between the two lines  $(x^2 + y^2)\sin\theta + 2xy = 0$  is A. $\theta$ B. $\frac{\theta}{2}$ C. $\frac{\pi}{2} - \theta$ 

$$\mathsf{D}.\,\frac{\pi}{2}-\frac{\theta}{2}$$



**180.** Find the angle between the lines repersented by the equation  $x^2 - 2pxy + y^2 = 0$ 

A.  $\sec^{-1} p$ B.  $\cos^{-1} p$ 

 $C. \tan^{-1} p$ 

D. None of these

Answer: A



181. If  $(a, a^2)$  falls inside the angle made by the lines  $y = \frac{x}{2}, x > 0$  and y = 3x, x > 0, then a belongs to the interval

A. 
$$\left(0, \frac{1}{2}\right)$$
  
B.  $(3, \infty)$   
C.  $\left(\frac{1}{2}, 3\right)$   
D.  $\left(-3, -\frac{1}{2}\right)$ 

### Answer: C

# **Watch Video Solution**

182. If the bisectors of angles represented by  $ax^2+2hxy+by^2=0$  and  $a\,'x^2+2h\,'xy+b\,'y^2=0$  is same , then

A. 
$$(a - b)h' = (a' - b')h$$
  
B.  $(a - b)h' = (a' - b')h$   
C.  $(a + b)h' = (a' - b')h$   
D.  $(a - b)h' = (a' + b')h$ 

### Answer: A

## Watch Video Solution

183. If  $r(1-m^2) + m(p-q) = 0$ , then a bisector of the angle between the lines represented by the equation  $px^2 - 2rxy + qy^2 = 0$ , is.

A. y = x

 $\mathsf{B}.\, y = \, - \, x$ 

 $\mathsf{C}.\,y=mx$ 

 $\mathsf{D}.\,x=my$ 



**184.** If the bisector of the angles between the lines in the two pairs  $3x^2 - 4xy + 5y^2 = 0$  and  $5x^2 + 4xy + 3y^2 - 0$  are same then the angle made by the first pair with the second is

A.  $30^{\circ}$ 

B.  $45^{\circ}$ 

C.  $60^{\circ}$ 

D.  $90^{\circ}$ 

### Answer: D



185. The straight lines represented by $(y-mx)^2=a^2ig(1+m^2ig)$  and  $(y-nx)^2=a^2ig(1+n^2ig)$  from a rectangle (b) rhombus

trapezium (d) none of these

A. rectangle

B. trapezium

C. rhombus

D. None of these



**186.** The equation x - y = 4 and  $x^2 + 4xy + y^2 = 0$ 

represent the sides of

A. equilateral

B. right angled

C. isosceles

D. None of these

**Answer: A** 


187. The combined equation of the lines  $L_1$  and  $L_2$  is  $2x^2 + 6xy + y^2 = 0$  and that lines  $L_3$  and  $L_4$  is  $4x^2 + 18xy + y^2 = 0$ . If the angle between  $L_1$  and  $L_4$ be  $\alpha$ , then the angle between  $L_2$  and  $L_3$  will be

A. 
$$rac{\pi}{2}-lpha$$
  
B.  $rac{\pi}{4}+lpha$ 

C. 
$$2\alpha$$

D.  $\alpha$ 

## Answer: D



**188.** Joint equation of the straight line passing through the origin, one of which is parallel and other perpendicular to the line 6x - 4y + 3 = 0 is

A. 
$$6x^2 - 5xy - 6y^2 = 0$$

B. 
$$6x^2 - 5xy - 5y^2 = 0$$

C. 
$$6x^2 + 5xy - 6y^2 = 0$$

D. 
$$5x^2 + 5xy - 6y^2 = 0$$

## Answer: C



189. Combined equation of the lines passing through the origin and perpendicular to the lines  $2x^2 - 3xy + y^2 = 0$  is A.  $x^2 - 3xy - y^2 = 0$ B.  $x^2 - 3xy + 2y^2 = 0$ C.  $x^2 - 3xy - 2y^2 = 0$ D.  $x^2 + 3xy + 2y^2 = 0$ 

## Answer: D

# Watch Video Solution

190. Joint equation of pair of lines through (3, -2)and parallel to  $x^2 - 4xy + 3y^2 = 0$  is

A. 
$$x^2 - 4y + 3y^2 + 14x + 24y + 45 = 0$$

B. 
$$x^2 - 4xy + 3y^2 - 14x - 24y + 45 = 0$$

C. 
$$x^2 - 4xy + 3y^2 - 14x - 24y + 45 = 0$$

D. 
$$x^2 - 4xy + 3y^2 - 14x + 24y + 45 = 0$$

#### **Answer: D**



191. Find the angle between the lines represented by

$$x^2+2xy\sec heta+y^2=0$$

A.  $2\theta$ 

 $\mathsf{B}.\,\theta$ 

C. 
$$\frac{ heta}{2}$$
  
D.  $\frac{ heta}{4}$ 

## **Answer: B**



**192.** If kxy + 10x + 6y + 4 = 0 represents a pair of lines, then k =

A. 30

B. 15 or 0

C. 15

D. 30 or 0

Answer: B



**193.** The angle between the lines in  $x^{2} - xy - 6y^{2} - 7x + 31y - 18 = 0$  is A.  $\frac{\pi}{4}$ B.  $\frac{\pi}{6}$ C.  $\frac{\pi}{2}$ D.  $\frac{\pi}{3}$ 

## Answer: A



**194.** The pair equation of the lines passing through the origin and having slopes 3 and  $-\frac{1}{3}$ , is

A. 
$$3y^2 + 8xy - 3x^2 = 0$$

B. 
$$3x^2+8xy+3y^2=0$$

C. 
$$3y^2 - 8xy - 3x^2 = 0$$

D. 
$$3x^2 + 8xy - 3y^2 = 0$$

## **Answer: A**



195. If one of the lines given by  $ax^2 + 2hxy + by^2 = 0$ is 4x - 5y = 0 then A. 25a + 40h + 16b = 0B. 25a - 40h - 16b = 0

 $\mathsf{C.}\,25a-40h+16b=0$ 

D. 25a + 40h - 16b = 0

## **Answer: A**



**Test Your Grasp** 

1. Joint equation of the X-axis and the bisector of the

angle in the first quadrant is

A. 
$$xy+y^2=0$$
  
B.  $xy-x^2=0$   
C.  $xy-y^2=0$ 

$$\mathsf{D}.\, xy + x^2 = 0$$

## **Answer:**



2. If m is the slope of one fo the two lines jointly given by the equation  $2x^2 + 4xy + y^2 = 0$  then

A. 
$$m^2 + 2m + 4 = 0$$
  
B.  $m^2 + 4m + 2 = 0$   
C.  $2m^2 + 4m + 1 = 0$ 

D. 
$$2m^2+4m=0$$

## **Answer:**



**3.** If the two lines  $\left(3x-y
ight)^2=kig(x^2+y^2ig)$  are mutualy

perpendiculart then: k =

## A. 5

**B**. 6

C.-5

D.-6

## Answer:

**Watch Video Solution** 

4. If 
$$kx + 3y = 0$$
 is one of the two lines  $5x^2 + 3xy - y^2 = 0$  then  $k^2 - 9k =$ 

A. 40

B. 46

C. -45

D. -40

## Answer:



5. If one of the two lines  $3x^2 - kxy - y^2 = 0$  bisects an angle between the co-ordinates axes, then : k =

- A.  $\pm 1$ B.  $\pm 3$
- $\mathsf{C}.-2$
- D.  $2^{-1}$



6. If the two lines  $kx^2 + 5xy + 9y^2 = 0$  are equally inclined with the cordinates axes, then: k =

A. 5

 $\mathsf{B.}-5$ 

 $\mathsf{C}.\pm9$ 

D.  $\pm 3$ 



7. Combined equation of the two lines passing through the origin, forming an equilateral triangle with the line  $x + y + \sqrt{3} = 0$  is

A. 
$$x^2 + 4y - y^2 = 0$$

B. 
$$x^2-4xy+y^2=0$$

C. 
$$x^2-4xy+2y^2=0$$

D. 
$$x^2+4xy+2y^2=0$$

## Answer:

# Watch Video Solution

8. If the lines  $3x^2 - kxy - 3y^2 = 0$  and x + 2y = 8

form and isosceles triangle then: k =

A. 4

B. -4

C. -8

D. 8



9. Length of each leg of an isosceles right angled triangle, formed by the lines  $3x^2 - 8xy - 3y^2 = 0$  and y - 2x - 3 is

A. 
$$\frac{2\sqrt{3}}{5}$$
  
B. 
$$\frac{3\sqrt{2}}{5}$$
  
C. 
$$\frac{\sqrt{3}}{5}$$
  
D. 
$$\frac{\sqrt{2}}{5}$$

## **Answer:**

# **Vatch Video Solution**

10. If the equation kxy + 10x + 6y + 4 = 0 represents

a pair of lines then :k =

A. 12

B. 13

C. 15

D. 16



11. If the angle between the lines  $ax^2+xy+by^2=0$  is  $45^{\,\circ}$  , then

A. 
$$a=2, b=3$$

B. 
$$a = 1, b = -6$$

C. 
$$a=4, b=5$$

D. 
$$a = 3, b = 2$$



12. If the equation  $ax^2 + ay^2 + 2gx + 2fy + c = 0$ represents a pair of lines then A.  $f^2 + g^2 = ac$ 

B. 
$$f^2=g^2+acd$$

$$\mathsf{C}.\,g^2=f^2+ac$$

$$\mathsf{D}.\,c^2=a^2+fg$$



13. If  $3h^2 = 4ab$ , then the ratio of the slopes of the lines  $ax^2 + 2hxy + by^2 = 0$  is

A. -1:2

- $\mathsf{B.}-3\!:\!2$
- C. 1:3
- D. 2:3



14. Lines represented by the equation  $5x^2-2xy+2y^2=0$  are

A. Imaginary

B. Coincident

C. Real

D. Perpendicular



15. If one of the lines  $kx^2 + xy - y^2 = 0$  bisects an angle between the co-ordinate then: k =

A. 0,2

B. 1,2

C. -1, 2

D. 2,3



16. Measure of angle between the lines  

$$\sqrt{2}(x^2 + y^2) = 4xy$$
 is  
A.  $\frac{\pi}{3}$   
B.  $\frac{\pi}{2}$   
C.  $\frac{\pi}{6}$   
D.  $\frac{\pi}{4}$ 



17. If the angle between the lines  $3x^2 - 4y^2 = 0$  is  $\tan^{-1}k$ , then k =

A. 
$$\frac{7}{4}$$
  
B.  $\frac{7}{3}$   
C.  $\frac{4}{7}$   
D.  $\frac{1}{7}$ 



18. Joint equation of two lines through the origin and

parallel to the pair of lines  

$$2x^2 - xy - y^2 + 5x + y + 2 = 0$$
 is  
A.  $2x^2 + xy + y^2 = 0$   
B.  $5x^2 + xy + 2y^2 = 0$   
C.  $2x^2 - xy - y^2 = 0$   
D.  $2x^2 + xy - y^2 = 0$ 

## **Answer:**

# Watch Video Solution

19. If the equation  $x^2 + 2hxy + 2fy + c = 0$ represents a pair of lines, then

A. 
$$f^2+ch=0$$

$$\mathsf{B}.\,f^2+ch^2=0$$

$$\mathsf{C}.\,f^2-ch^2=0$$

D. 
$$f^2 - c^2 h^2 = 0$$

