PHYSICS

BOOKS - MARVEL PHYSICS (HINGLISH)

CURRENT ELECTRICITY

Mcq

In the given circuit, the current in the 8Ω
resistance is 1.5 A . What is the total current (I)
flowing in the circuit ?
A. 3 A
B. 4 A
C. 5A
D. 5.5 A

Answer: D

- Watch Video Solution

2. The value of the current I in the given circuit
is

A. 10 A
B. 12A
C. 18A
D. 15A

Answer: C

- Watch Video Solution

3. What is the value of the current I in the following part of an electrical network ?

A. 1.3A
B. 2.7 A
C. 3.3 A
D. 4.7 A

Answer: C

D Watch Video Solution
4. In an open circuit and in a short circuit we have
A. zero resistance and infinite resistance respectively
B. infinite resistance and zero resistance respectively
C. maximum current and zero resistance respectively
D. zero current and maximum resistance

Answer: B

- Watch Video Solution

5. The Kirchhoff's first law $\left(\sum i=0\right)$ and second law $\left(\sum I R=\sum E\right) \quad$ are respectively based upon the conservations of
A. Charge, Momentum
B. Energy, Charge
C. Momentum, Charge
D. Charge, Energy

Answer: D

- Watch Video Solution

6. Two batteries, one of emf 18 volts and
internal resistance 2Ω and the other fo emf 12
volts and internal resistance 1Ω, are
connected as shown. The voltmeter V will
record a reading of

A. 18 V
B. 16 V
C. 14 V
D. 12 V
7. What is the value of the resistance R_{1} in the following circuit?

A. 30Ω
B. 45Ω
C. 60Ω
D. 80Ω

Answer: C

- Watch Video Solution

8. What is the magnitude and direction of the
current in the following circuit ?

A. 1 A from b to a through c
B. 1 A from a to b through e
C. $\frac{2}{3}$ A from a to b through e

5
D. $\frac{5}{7} A$ from b to a through e

Answer: B

- Watch Video Solution

9. Five current carrying conductor meet at a point P. What is the magnitude and direction
of the current in the fifth conductor?

A. 1A from Q to P
B. 1 A from P to Q
C. 3 A from P to Q
D. 2 A from Q to P

Answer: B

- Watch Video Solution

10. A current of $6 A$ enters one corner P of an equilateral triangle PQR having 3 wires of resistances 2 Q each and leaves by the corner
R. Then the currents I_{1} and I_{2} are

A. $2 \mathrm{~A}, 4 \mathrm{~A}$
B. $4 \mathrm{~A}, 2 \mathrm{~A}$
C. 1A , 2A
D. $2 \mathrm{~A}, 3 \mathrm{~A}$

Answer: A

- Watch Video Solution

11. What is the current in the given circuit?

A. 0.1 A
B. 0.2 A
C. 0.3 A

D. 0.4 A

Answer: A

D Watch Video Solution

12. In the circuit shown the cells A and B have $\begin{array}{ll}\text { negligible resistance. For } \\ V_{A}=12 V, R_{1}=500 \Omega & \text { and } R=100 \Omega,\end{array}$ galvanometer (G) shows no deflection. The
value of V_{B} is

A. 4 V
B. 2 V
C. 12 V
D. 6 V

Answer: B
13. A bridge circuit is shown in the diagram. A
student wrote the following expressions for
currents at the points A, B, C and D by using
Kirchhoff's first law. Point out the wrong
equation.

A. at $A, I=I_{1}+I_{3}$
B. at $B, I_{1}=I_{2}+I_{g}$
C. at $C, I_{2}=I_{4}+I$
D. at $D, I_{3}+I_{g}=I_{4}$

Answer: D

D Watch Video Solution

14. Twelve identical wires each of resistance R
are joined to form a cube as shown in the
figure. A current of 6 ampere enters the cube at A and leaves at G. The current I in the

branch FG is

A. 1A
B. 2A
C. 3A
D. 4 A

Answer: B

D View Text Solution

15. 12 identical wires, each of resistance R are
joined to form a cube as shown in the figure. A
current of 6 Amperes enters the cube at A. If
the wire HG is removed, then the current I
leaving the network at G is

A. 3A
B. 4 A
C. 6A
D. 0.6 A

Answer: C
16. A 220 volt, 1000 watt bulb is connected across a 110 volt mains supply. What is the power consumed in the circuit ?
A. 1000 watt
B. 250 watt
C. 750 watt
D. 500 watt
17. What is the potential difference across the 3Ω resistor ?
A. Zero
B. 1V
C. 3.5 V
D. 7 V
18. Two batteries of e.m.f. $4 V$ and $8 V$ with internal resistances 1Ω and 2Ω are connected in a circuit with a resistance of 9Ω as shown in figure. The current and potential difference between the points P and Q

A. $\frac{1}{3} A$ and $4 V$
B. $\frac{1}{3} A$ and $3 V$
C. $\frac{1}{2} A$ and $5 V$
D. $\frac{1}{6} A$ and $3 V$

Answer: B

D Watch Video Solution

19. What are the values of E in the following circuit, if a current of 2 A flows in the clockwise
as well as in anticlockwise direction?

A. $3 \mathrm{~V}, 28 \mathrm{~V}$
B. $38 \mathrm{~V}, 2 \mathrm{~V}$
C. $3 \mathrm{~V}, 30 \mathrm{~V}$
D. 3V, 2.8 V

Answer: B
20. Which one of the following equations is the correct equation for the electrical circuit shown in the figure?

A. $E_{1}-\left(i_{1}+i_{2}\right) R+i_{1} r_{1}=0$
B. $E_{1}-\left(i_{1}+i_{2}\right) R-i_{1} r_{1}=0$
C. $E_{2}-i_{2} r_{2}-E_{1}-i_{1} r_{1}=0$

$$
\text { D. } E_{2}-\left(i_{1}+i_{2}\right) R+i_{2} R_{2}=0
$$

Answer: B

D Watch Video Solution

21. If the galvanometer in the circuit of figure reads zero, calculate the value of the resistor R
(ion $K \omega$) assuming that the 12 V source has
negligble internal resistance.

A. 1000Ω
B. 2000Ω
C. 1500Ω
D. 3500Ω

Answer: B

- Watch Video Solution

22. Consider the circuit shown in the figure.

What is the value of the current I_{3} ?

A. 5 amp
B. 3 amp
C. -3 amp
D. $-5 / 6 \mathrm{amp}$

Answer: D

D Watch Video Solution

23. What is the value of the current I_{1} in the given circuit ?

A. 0.4 A
B. $-0.4 A$
C. 0.8 A

$$
\text { D. }-0.8 A
$$

Answer: B
24. In the circuit given here, the points A, B and

C are 70 V , zero, 10 V respectively . Then,

A. The point D will be at a potential of 60 V
B. The point D will be at a potential of 20 V
C. Currents in the path $A D, D B$ and $D C$ are in the ratio of 1:2:3
D. Currents in the paths AD,DB and DC are in the ratio of $3: 2: 1$

Answer: D

D Watch Video Solution

25. In the circuit shown in the figure, if potentail at point A is taken to be zero, the
potential at point B is

A. $-2 V$
B. $+1 V$
C. $-1 V$
D. +2 V

Answer: B

- Watch Video Solution

26. If in the circuit shown below, the internal resistance of the battery is 1.5Ω and V_{P} and V_{Q} are the potential at P and Q respectively, what is the potential difference between the point P and Q ?

A. Zero
B. $4 V\left(V_{P}>V_{Q}\right)$
C. $4 V\left(V_{Q}>V_{P}\right)$
D. $2.5 V\left(V_{Q}>V_{P}\right)$

Answer: D

- Watch Video Solution

27. A 5 V battery with internal resistance 2Ω
and a 2 V battery with internal resistance 1Ω
are connected to a 10Ω resistor as shown in
the figure.

The current in the 10Ω resistor is
A. 0.03 A from P_{1} to P_{2}
B. 0.03 A from P_{2} to P_{1}
C. 0.28 A from P_{1} to P_{2}
D. 0.28 A from P_{2} to P_{1}

Answer: D

- Watch Video Solution

28. In the following circuit, each cell has an e.m.f. of 5 V and an internal resistance of 0.2Ω.

What is the reading of the ideal voltmeter V in volts?

A. 5 V
B. 40 V
C. 0 V
D. 35 V

Answer: C

D View Text Solution

29. The figure shows a part of the circuit in the steady state. The currents, the valuces of resistances and emfs of the cells are shown in
the figure. The circuit also contains a capacitor of capacitance $C=\mu F$. The value of i_{1} is-

A. 1A, 2A, BA
B. $3 \mathrm{~A}, 2 \mathrm{~A}, 1 \mathrm{~A}$
C. $2 \mathrm{~A}, 1 \mathrm{~A}, 3 \mathrm{~A}$
D. $3 \mathrm{~A}, 1 \mathrm{~A}, 2 \mathrm{~A}$

Answer: D

- Watch Video Solution

30. The three resistance of equal value are arranged in the different combination shown
below. Arrange them in increasing order of power dissipation.

A. $I<I I I<I I<I V$
B. $I I<I I I<I V<I$
C. $I I I<I I<I V<I$
D. $I<I V<I I I<I I$

Answer: D

D Watch Video Solution

31. In the given circuit, with steady current, the potential drop across the capacitor must be

A. V
B. $V / 2$
C. $V / 3$
D. $2 V / 3$

Answer: C
32. Incandescent bulbs are designed by keeping in mind that the resistance of their
filament increases with the increase in temperature. If at room temperature, $100 \mathrm{~W}, 60 \mathrm{~W}$ and 40 W bulbs have filament resistances R_{100}, R_{60} and R_{40}, respectively, the relation between these resistances is

$$
\begin{aligned}
& \text { A. } \frac{1}{R_{100}}=\frac{1}{R_{40}}+\frac{1}{R_{60}} \\
& \text { B. } R_{100}=R_{40}+R_{60} \\
& \text { C. } R_{100}>R_{60}>R_{40}
\end{aligned}
$$

$$
\text { D. } \frac{1}{R_{100}}>\frac{1}{R_{60}}>\frac{1}{R_{40}}
$$

Answer: D

D Watch Video Solution

33. Consider a thin square sheet of side L and
thickness t , made of a material of resistivity ρ.

The resistance between two opposite faces,
shown by the shaded areas in the figure is

A. directly proportional to L
B. directly proportional to t
C. independent of L
D. independent of t

Answer: C

- Watch Video Solution

34. In the following network of 5 branches, the respective current are l_{1}, l_{2}, l_{3} etc. given that $l_{1}=-0.5 A, l_{4}=1 A$ and $l_{5}=0.5 A$, the remaining currents are

$$
\begin{aligned}
& \text { A. } I_{2}=-1.5 \mathrm{~A}, I_{3}=0.5 \mathrm{~A}, I_{6}=0.5 \mathrm{~A} \\
& \text { B. } I_{2}=1.5 \mathrm{~A}, I_{3}=-0.5 \mathrm{~A}, I_{6}=0.5 \mathrm{~A}
\end{aligned}
$$

$$
\text { C. } I_{2}=1.5 A, I_{3}=0.5 A, I_{6}=-0.5 A
$$

$$
\text { D. } I_{2}=1.5 A, I_{3}=0.5 A, I_{6}=0.5 A
$$

Answer: B

D Watch Video Solution

35. Time taken by a 836 W heater to heat one
litre of water from $10^{\circ} C \rightarrow 40^{\circ} C$ is
A. 100 s
B. 150 s
C. 200 s
D. 50 s

Answer: B

- Watch Video Solution

36. Two batteries of different emfs and different internal resistances are connected as
shown. The voltage across $A B$ in volts is.

A. 3 V
B. 4 V
C. 5 V
D. 6 V

Answer: C

- Watch Video Solution

37. For resistances $10 \Omega, 10 \Omega, 10 \Omega$ and 15Ω form a Wheatstone's network. What shunt is required across 15Ω resistor to balance the bridge?
A. 10Ω
B. 15Ω
C. 20Ω
D. 30Ω

Answer: D

- Watch Video Solution

38. In the given circuit, the current in the arm
$B D$ is

A. $I / 2$
B. zero
C. 21
D. $I / 3$

Answer: B

- Watch Video Solution

39. In the given circuit, the potential difference between the points A and B is

A. 10 V
B. 15 V
C. 20 V
D. 5 V

Answer: C

D Watch Video Solution

40. The Wheatstone's network is shown in the
figure. If the key K is closed, then the
galvanometer will

A. deflect on the left side
B. deflect on the right side
C. deflect on either side
D. not show any delfection

Answer: D

D Watch Video Solution

41. Five resistances are joined as shown in the
figure.

The equivalent resistance between the points
X and Y is
A. 10Ω
B. 15Ω
C. 20Ω
D. 30Ω

Answer: B

D Watch Video Solution
42. In the given circuit, the potential difference between the points B and D is zero

The unknown resistance (X) is
A. 4Ω
B. 20Ω
C. 10Ω
D. 5Ω

Answer: D
43. The resistances in the left and right gaps
of a metre bridge are 10Ω and 30Ω respectively. If the bridge is balanced, then the distance of the null point from the centre of the wire is
A. 20 cm
B. 30 cm
C. 40 cm
D. 25 cm

Answer: D

D Watch Video Solution

44. A circular coil has a resistance of 40Ω. Two
points P and Q of the coil, which are one quarter of the circumference apart are connected to a 16 V battery, having an internal resistance of 0.5Ω ? What is the main current flowing in the circuit?
A. 0.5 A
B. 1A
C. 2A
D. 3A

Answer: C

D Watch Video Solution

45. In a metre bridge experiment, the balancing length from the left end is found to be 20 cm . If a standard resistance of 20 ohm is
kept in the right gap, then the value of the unknown resistance in the left gap is
A. 5Ω
B. 10Ω
C. 15Ω
D. 7.5Ω

Answer: A
(Watch Video Solution
46. To find the resistance of a gold bangle, two
diametrically opposite points of the bangle are connected to the two terminals of the left gap of a metre bridge. A resistance of 4Ω is introduced in the right gap. What is the resistance of the bangle if the null point is at 20 cm from the left end ?
A. 2Ω
B. 4Ω
C. 8Ω

D. 16Ω

Answer: B

D Watch Video Solution

47. 5 resistances $R_{1}, R_{2}, R_{3}, R_{4}, R_{5}$ are
joined as shown in the figure.

The values of R_{1}, R_{2}, R_{3} and R_{4} are so
adjusted that the current in the circuit does not change for any value of the resistance R_{5}.

This is possible for the following relation

$$
\begin{aligned}
& \text { A. } R_{1}+R_{2}=R_{3}+R_{4} \\
& \text { B. } \frac{R_{1}}{R_{4}}=\frac{R_{2}}{R_{3}} \\
& \text { C. } R_{1} R_{4}=R_{3} R_{2} \\
& \text { D. } \frac{1}{R_{1}}+\frac{1}{R_{3}}=\frac{1}{R_{2}}+\frac{1}{R_{4}}
\end{aligned}
$$

Answer: C

D Watch Video Solution

48. Figure 6.52 shows a balanced wheatstone network. Now, it is disturbed by changing P to
11Ω. Which of the following steps will not bring the bridge to balance again?

$$
P=10 \Omega \quad Q=100 \Omega
$$

A. increasing R by 2Ω
B. increasing Q by 10Ω
C. increasing S by 20Ω

D. making the product $Q R=2200 \Omega$

Answer: C

D Watch Video Solution

49. If $P=Q=R=10 \Omega$ and $S=20 \Omega$, then
what resistance should be joined with S to balance the wheatstone's network?
A. Join a resistance of 10Ω in series with S
B. Join a resistance of 10Ω in parallel with S

C. Join a resistance of 20Ω in parallel with S

D. Join a resistance of 20Ω in series with S

Answer: C

D Watch Video Solution

50. The wheatstone's network is most sensitive
when the ratio of its arms is
A. $1: 1$
B. zero

C. 10:1

D. 1:100

Answer: A

- Watch Video Solution

51. In the given circuit, the galvanometer G gives zero deflection. What is the value of
resistance X ?

A. 10Ω
B. 12Ω
C. 15Ω
D. 20Ω
52. Two resistances are connected in the two gaps of a meter bridge. The balance point is 20 cm from the zero end. When a resistance 15Ω is connected in series with the smaller of two resistance, the null point+ shifts to 40 cm .

The smaller of the two resistance has the value.
A. 5Ω
B. 7Ω
C. 9Ω
D. 12Ω

Answer: C

- Watch Video Solution

53. For resistances arranged to form a wheatstone's network are
$10 \Omega, 15 \Omega, 6 \Omega$ and 36Ω. What resistance
should be connected across the 36Ω resistance to balance the bridge ?
А. 9Ω
B. 12Ω
C. 15Ω
D. 18Ω

Answer: B

D Watch Video Solution

54. In the given network, if the points B and D are connected by a copper wire, then the
current in the wire will

A. be zero
B. will flow from B to D
C. will flow from D to B
D. flow in that direction which will be decided by the total resistance and voltage V

Answer: C

D Watch Video Solution

55. An unknown resistance R_{1} is connected is series with a resistance of 10Ω. This combination is connected to one gap of a meter bridge, while other gap is connected to
another resistance R_{2}. The balance point is at

50 cm Now, when the 10Ω resistance is removed, the balanced point shifts to 40 cm Then the value of R_{1} is.
A. 40Ω
B. 30Ω
C. 20Ω
D. 10Ω

Answer: C

56. The resistance of each arm of the wheat stone bridge is 10Ω. A resistance of 10Ω is connected in series with galvanometer then the equivalent resistance across the battery will be:-
A. 40Ω
B. 30Ω
C. 20Ω
D. 10Ω

Answer: D

D Watch Video Solution

57. R_{1}, R_{2}, R_{3} are different values R. A, B and C are the null points obtained corresponding to R_{1}, R_{2} and R_{3} respectively.

For which resistor, the value of R will be the
most accurate and why?

A. Resistance R_{1}
B. Resistance R_{2}
C. Resistance R_{3}
D. All the three $\left(R_{1}, R_{2}, R_{3}\right)$ will give the
same accuracy

Answer: B

- Watch Video Solution

58. Two resistances of values 20Ω and 20Ω are introduced in the left and right gaps of a metre bridge. What is the shift in the null point if a resistance of 40Ω is connected in series with the resistance in the left gap ?
A. 25 cm towards left of the centre
B. 25 cm towards right of the centre

C. 15 cm towards right of the centre

D. 15 cm towards left of the centre

Answer: B

D Watch Video Solution

59. What is the current in 10Ω resistance in
the following network?

A. 1A
B. 1.2A
C. 0.8 A
D. 2 A

Answer: A
60. In the given circuit, when the galvanometer

G shows no deflection, the current in the 5Ω
resistance is ,

A. 0.4 A
B. 0.6 A
C. 0.8 A

D. 1.0A

Answer: A

D Watch Video Solution

61. In a typical Wheatstone's network, the
resistances in the cyclic order are
$P=10 \Omega, Q=5 \Omega, S=4 \Omega$ and $R=4 \Omega$.

For balancing the bridge, a resistance of
A. 10Ω should be connected in series with

P

B. 10Ω should be connected in parallel with

P
C. 10Ω should be connected in series with

Q

D. 10Ω should be connected in parallel with

Q

Answer: B

62. In the following circuit, the current drawn
from the battery is 2 A . If the 5Ω resistance is
replaced by a 20Ω resistor, then the current drawn from the battery will be

A. 0.5 A
B. 1A
C. 8 A
D. 2 A

Answer: D

D Watch Video Solution

63. In the given circuit, the galvanometer will not show any deflection if the value of the
resistance X is

A. 3Ω
B. 4Ω
C. 5Ω
D. 6Ω

Answer: C

D Watch Video Solution

64. A balanced Wheatstone's network is shown
in the figure. If the balance is disturbed by
changing P to 15Ω, then which one of the
following steps will not bring the bridge to
balance again ?

A. increase R by 10Ω
B. increase S by 20Ω
C. increase Q by 50Ω
D. make $R Q=3000 \Omega$

Answer: B

D Watch Video Solution

65. Resistance in the two gaps of a meter bridge are 10 ohm and 30 ohm respectively. If
the resistances are interchanged he balance point shifts by
A. 33.3 cm
B. 66.67 cm
C. 25 cm
D. 50 cm

Answer: D
(Watch Video Solution
66. A wire of length 3 m connected in the left gap of a metre bridge balances a 8Ω resistance in the right gap at a point, which divides the bridge wire in the ratio of $3: 2$.

What is the length of the wire corresponding to a resistance of the length of the wire corresponding to a resistance of 1Ω ?
A. 1 m
B. 0.75 m
C. 0.5 m

D. 0.25 m

Answer: D

D Watch Video Solution

67. 6 resistances, each of 4Ω are joined as
shown in the figure. What is the equivalent
resistance between A and B ?
A. 4Ω
B. 8Ω
C. 6Ω
D. 2Ω

Answer: D

D View Text Solution

68. In the given figure, when the galvanometer
shows no deflection, the current (in amperes)
flowing through the 5Ω resistance will be
A. 0.2 A
B. 0.6 A
C. 0.9 A
D. 1.5 A

Answer: B

D View Text Solution

69. Shown in the figure below is a meterbridge set up will null deflection in the galvanometer.

The value of the unknown resistor R is
A. 55Ω
B. 110Ω
C. 220Ω
D. 13.75Ω

Answer: C

- Watch Video Solution

70. If in the experiment of Wheatstone's bridge, the positions of cells and galvanometer are interchanged, then balance point will
A. remains unaltered
B. alters
C. may or may not altered depending on
the resistance of the galvanometer and
the battery

D. none of these

Answer: A

D Watch Video Solution

71. In a Wheatstone's bridge, three resistances
P, Q and R connected in the three arms and the
fourth arm is formed by two resistances
S_{1} and S_{2} connected in parallel. The condition for the bridge to be balanced will be

$$
\begin{aligned}
& \text { A. } \frac{P}{Q}=\frac{R\left(S_{1}+S_{2}\right)}{S_{1}+S_{2}} \\
& \text { B. } \frac{P}{Q}=\frac{R}{S_{1}+S_{2}} \\
& \text { C. } \frac{P}{Q}=\frac{R\left(S_{1}+S_{2}\right)}{S_{1} S_{2}} \\
& \text { D. } \frac{P}{Q}=\frac{R\left(S_{1}+S_{2}\right)}{2 S_{1} S_{2}}
\end{aligned}
$$

Answer: C

D Watch Video Solution

72. In the given arrangement of the metre bridge, the null point is obtained at a distance x from the end A. What will be the distance of
the null point from A , if the radius of the wire
$A B$ is doubled?
A. $2 x$
B. $\frac{x}{2}$
C. x
D. $3 x$

Answer: C

D View Text Solution
73. In a meter bridge experiment, the null point is obtained at 20 cm from one end of the wire when resistance X is balanced against another resistance Y. If $X<Y$, then where will be the new position of the null point from
the same end, if one decides to balanced a resistance of $4 X$ against Y ?
A. 30 cm
B. 40 cm
C. 50 cm
D. 60 cm

Answer: C

D Watch Video Solution

74. In the circuit $P \neq R$, the reading of the galvanometer is same with switch S open or closed. Then

A. $I_{R}=I_{G}$
B. $I_{P}=I_{G}$
C. $I_{Q}=I_{G}$
D. $I_{Q}=I_{R}$

Answer: A

D Watch Video Solution

75. A post office box is shown in figure. In order to calculate the value of an external
resistance, it should be connected between
A. B and C
B. C and D
C. A and D
D. B_{1} and C_{1}

Answer: C

D View Text Solution
76. In the circuit shown, a metre bridge is in its
balanced state. The metre bridge wire has a resistance $0.1 \mathrm{ohm} / \mathrm{cm}$. What are the values of the unknown resistance X and the current drawn from the battery of negligible resistance ?
A. $6 \Omega, 5 a m p$
B. $10 \Omega, 0.1 a m p$
C. $4 \Omega 1.0 \mathrm{amp}$

D. $12 \Omega, 0.5 \mathrm{amp}$

Answer: C

D View Text Solution

77. Each of the resistance in the network shown in the figure is equal to R. The resistance between the terminals A and B is
A. 3R
B. R
C. 5 R
D. 6R

Answer: B

D View Text Solution

78. In the following circuit, a conducing wire is
connected between the terminals B and D, the
current in the wire will

A. flow from B to D
B. flow from D to B
C. the zero
D. flow in the direction which will be

decided by the voltage V

Answer: B

D Watch Video Solution

79. In the Wheatstone bridge shown below, in order to balance the bridge, we must have
A. $R_{1}=3 \Omega, R_{2}=3 \Omega$

$$
\text { B. } R_{1}=6 \Omega, R_{2}=15 \Omega
$$

C. $R_{1}=1.5 \Omega, R_{2}=$ any finite value
D. $R_{1}=3 \Omega, R_{2}=$ any finite value

Answer: D

D View Text Solution

80. A metre bridge is set-up as shown in the
figure to determine an unknown resistance ' X ' using a standard 10 ohm resistor. The galvanometer shows null point when the
tapping-key is at 52 cm mark. The endcorrection are 1 cm and 2 cm respectively for the ends A and B. What is the value of ' X ' ?
A. 10.2Ω
B. 10.6Ω
C. 10.8Ω
D. 11.1Ω

Answer: B
81. In the adjoining circuit, the current I drawn
from the 5 volt source will be

A. 0.67 A
B. 0.17 A
C. 0.33 A
D. 0.5 A

Answer: D

- Watch Video Solution

82. A battery of internal resistance 4Ω is
connected to the network of resistance as
shown. In order that the maximum power can be delivered to the network, the value of R in
Ω should be

A. 2Ω
B. $\frac{8}{3} \Omega$
C. 18Ω
D. $\frac{4}{9} \Omega$

Answer: A

- Watch Video Solution

83. A uniform wire $A B$ of length 1 m , an unknown resistance X and a resistance of 12Ω are connected to a battery and a galvanometer G as shown in the figure. The galvanometer shows no deflection when $\mathrm{AJ}=60$ cm . What is the value of X (in ohm) ?

A. 6Ω
B. 8Ω
C. 10Ω
D. 4Ω

Answer: B

D Watch Video Solution
84. The resistances in left and right gap of a meter brigdge are 20ω and 30ω respecitively
when the resistance in the left gap is reduced
to half its value then balance point shifts by
A. 15 cm to the right
B. 15 cm to the left
C. 20 cm to the right
D. 20 cm to the left

Answer: B
(Watch Video Solution
85. The resistance in the two arms of the metre bridge are 5Ω and $R \Omega$, respectively.

When the resistance R is shunted with an equal resistance, the new balance point is at $1.6 l_{1}$. The resistance R is
A. 20Ω
B. 25Ω
C. 10Ω
D. 15Ω

Answer: D

D View Text Solution

86. In a typical wheatstone network, the
resistances in cyclic order are
$A=10 \Omega, B=5 \Omega, D=4 \Omega$ and $C=4 \Omega$.

For the bridge to be balanced
A. 10Ω should be connected in series with
B. 5Ω should be connected in series with B
C. 5Ω should be connected in parallel with

B

D. 10Ω should be connected in parallel with

A

Answer: D

D View Text Solution
87. What is the equivalent resistance between
the points P and Q in the network shown in
the figure?
A. 7.5Ω
B. 12.5Ω
C. 2.5Ω
D. 10Ω

Answer: A
88. A cell of e.m.f. of 1.08 V is balanced by a 216
cm length of a potentiometer. What is the
length of the wire that would balance a cell of e.m.f. 1.5 V ?
A. 250 cm
B. 290 cm
C. 300 cm
D. 310 cm

Answer: C

- Watch Video Solution

89. In a potentiometer experiment, the null point is obtained at 140 cm for a cell of e.m.f.
1.2 V. With another cell of unknown e.m.f., the null point is obtained at 210 cm . The unknown e.m.f. is
A. 1.5 V
B. 1.6 V
C. 1.8 V
D. 2 V

Answer: C

D Watch Video Solution

90. In a potentiometer experiment, the balancing length is found to be 1.8 m for a cell of e.m.f. 1.5 V. What is the balancing length for a cell of e.m.f. 1 V ?
A. 1 m
B. 1.5 m
C. 1.2 m
D. 2 m

Answer: C

D Watch Video Solution
91. Two cells of e.m.f.'s E_{1} and E_{2} where
$E_{1}>E_{2}$, are connected in series so as to
assist each other, the balancing length is 2.7 m
. When the cells are connected in series so as
to oppose each other, the balancing length is
found to be 0.3 m . What is the ratio of their e.m.f.'s ?
A. 1.1
B. 1.25
C. 1.5
D. 1.6

Answer: B

92. A cell of e.m.f. 1.2 V is balanced by 150 cm of

 potentiometer wire. When the cell is shunted by a resistance of 4Ω, the balancing length is reduced by 30 cm . What is the internal resistance of the cell ?A. 1Ω
B. 2Ω
C. 0.5Ω
D. 0.75Ω

Answer: A

D Watch Video Solution

93. A potentiometer wire of length 400 cm has
a resistance of 8Ω. If a potential gradient of
$0.5 \mathrm{~V} / \mathrm{m}$ is maintained throughout the length
of the wire, then the current flowing through
the wire is
A. 0.5 A
B. 0.25 A
C. $1 A$
D. 0.75 A

Answer: B

D Watch Video Solution

94. A potentiometer wire is 10 m long and a
P.D. of 6 V is maintained between its ends. The e.m.f. of the cell which balances against a length of 200 cm of the potentiometer wire is
A. 1 V
B. 1.2 V
C. 2.4 V
D. 1.5 V

Answer: B

D Watch Video Solution

95. A potentiometer wire has a length 2 m and resistance of 10Ω. It is coonnected in series
with a resistance of 990Ω and a cell of e.m.f. 2
V. The potential gradient along the wire is
A. $0.01 \mathrm{~V} / \mathrm{m}$
B. $0.02 \mathrm{~V} / \mathrm{m}$
C. $0.03 \mathrm{~V} / \mathrm{m}$
D. $0.025 \mathrm{~V} / \mathrm{m}$

Answer: A
(Watch Video Solution
96. A cell of e.m.f. 2 V and negligible internal
resistance is connected to a potentiometer
wire of resistance 10Ω and length 4 m . The
potential difference per unit length (potential gradient) of the wire is
A. 5 volt / metre
B. 10 volt / metre
C. 0.5 volt / metre
D. 1.5 volt / metre

Answer: C

- Watch Video Solution

97. As is the cross sectional area and ρ is the
specific resistance of a potentiometer wire. If I
is the current passing through the
potentiometer wire, then the potential gradient along the length of the wire is given by
A. $\frac{I A}{\rho}$
B. $I A \rho$
C. $\frac{I \rho}{A}$
D. $\frac{I}{\rho A}$

Answer: C

D Watch Video Solution

98. A potentiometer experiment is set up to compare the e.m.f.'s E_{1} and E_{2} of two cells.

When the null point is obtained, the current is drawn from
A. only the driver cell
B. only the cell of e.m.f. E_{1}
C. only the cell of e.m.f. E_{2}
D. both the driver cell and the cells of e.m.f.s E_{1} and E_{2}

Answer: A

D Watch Video Solution
99. A cell of e.m.f. 4 V and of negligible internal resistance is connected in series with a potentiometer wire of length 400 cm . The
e.m.f. of a Leelanche cell is found to be balacned at 150 cm from the positive end of the potentiometer wire. What is the e.m.f. of the Leclanche cell ?
A. 1 V
B. 1.5 V
C. 2 V
D. 2.5 V

Answer: B
100. A 10 m long wire ofresistance 20Ω is connected in series with battery of EMF $3 V$ and negligible internal resistance and a resistance of 10Ω. The potential gradient along the wire is :
A. $1 V / m$
B. $0.5 \mathrm{~V} / \mathrm{m}$
C. $0.2 \mathrm{~V} / \mathrm{m}$
D. $0.1 \mathrm{~V} / \mathrm{m}$

Answer: C

D Watch Video Solution

101. In a potentiometer experiment of measuring the e.m.f. of a cell, the null point is at 300 cm , when we have a resistance of 200Ω in series with the cell and the galvanometer. If
the resistance is increased to 300Ω, the null point will be shifted through
B. 50 cm
C. 25 cm
D. zero cm

Answer: D

D Watch Video Solution

102. In a potentiometer experiment, to measure the e.m.f. of a cell, the potentiometer consists of six wires each of length 100 cm .

The null point is obtained on the third wire. If
we want to shift the null point to the 5th wire, then we should
A. increase the resistance in the main
circuit
B. decrease the resistance in the main
circuit
C. increase the resistance in series with the
cell, whose e.m.f. is to be measured
D. decrease the resistacne in series with
the cell, whose e.m.f. is to be measured

Answer: A

D Watch Video Solution

103. The specific resistance of a potentiometer
wire is $10^{-7} \Omega \mathrm{~m}$ and the cross sectional area
of the wire is $10^{-6} \mathrm{~m}^{2}$. If a current of 0.1 A
flows through the wire, then the potential gradient will be
A. $10^{-4} V / m$
B. $10^{-3} \mathrm{~V} / \mathrm{m}$
C. $10^{-2} V / m$
D. $10^{-5} \mathrm{~V} / \mathrm{m}$

Answer: C

D Watch Video Solution

104. In an experiment to find the internal resistance of a cell by a potentiometer, a balance was obtained for 50 cm length of the potentiometer wire, with a cell of e.m.f. 2 V . When the cell was shunted by a resistance of
2Ω, the balancing length of the potentiometer wire was 40 cm . What was the internal resistance of the cell ?
A. 0.25Ω
B. 0.75Ω
C. 0.5Ω
D. 1Ω

Answer: C

- Watch Video Solution

105. In a potentiometer experiment two cells of e.m.f. E and E are used in series and in conjunction and the balancing length is found to be 58 cm of the wire. If the olarity of E is reversed, then the balancing length becomes 29 cm . The ratio $\frac{E_{1}}{E_{2}}$ of the e.m.f. of the two cells is
A. $1: 2$
B. $3: 1$
C. 2:1
D. $4: 1$

Answer: B

D Watch Video Solution

106. What is the potential difference between
the ends A and B of the given potentiometer wire, in the following circuit ? The
galvanometer G shows no deflection.

A. 1.5 V
B. 2 V
C. 2.5 V
D. 3 V

Answer: C

D Watch Video Solution

107. A cell can be balanced against 110 cm and

100 cm of potentiometer wire, respectively with and without being short circuited through a resistance of 10Ω. Its internal resistance is
A. zero
B. $6.50 m g a$
C. 0.7Ω
D. 1Ω

Answer: D

D Watch Video Solution

108. The potential gradient along the length of
a uniform wire is 10 volt / metre. B and C are
the two points at 30 cm and 70 cm point on a metre scale fitted along the wire. What is the potential difference between B and C ?
A. 3 V
B. 4 V
C. 5 V
D. 6 V

Answer: B

D Watch Video Solution

109. In an experiment to measure the internal resistance of a cell by a potentiometer, it is
found that the balance point is at a length of
$2 m$ when the cell is shunted by a 5Ω resistance and is at a length of $3 m$ when the cell is shunted by a 10Ω resistance, the internal resistance of the cell is then
A. 5Ω
B. 10Ω
C. 15Ω
D. 7.5Ω

Answer: B
110. The resistivity of a potentiometer wire is
40×10^{-8} ohm-m and its area of crosssection is $8 \times 10^{-6} m^{2}$. If a current of 0.4 A is
flowing through the wire, then the potential gradient will be
A. $10^{-2} V / m$
B. $10^{-1} V / m$
C. $2 \times 10^{-2} V / m$
D. $1 V / m$

Answer: C

D Watch Video Solution

111. A potentiometer having the potential gradient of $2 m V / \mathrm{cm}$ is used to measure the difference of potential across a resistance of 10 ohm . If a length of 50 cm of the potentiometer wire is required to get null point, the current passing through the 10 ohm resistor is (in $m A$)
A. 1 mA
B. 2 mA
C. 5 mA
D. 10 mA

Answer: D

D Watch Video Solution

112. If the length of a potentiometer wire is increased by keeping constant potential difference across the wire, then
A. the null point is obtained at larger distance
B. there is no change in the null point
C. the potential gradient is increased
D. the null point is obtained at shorter
distance

Answer: A
(Watch Video Solution
113. Two cells of emfs approximately 5 V and 10 V are to be accurately compared using a poteniometer of length 400 cm .
A. The battery that runs the potentiometer
should have voltage of 8 V
B. The battery of potentiometer can have a
voltage of 15 V and R adjusted so that
the potential drop across the wire slightly exceeds 10 V
C. The first portion of 50 cm of wire itself should have a potential drop of 10 V

D. Potentiometer is usually used for

comparing resistances and not voltages

Answer: B

D Watch Video Solution

114. A potentiometer circuit has been setup for finding. The internal resistance of a given cell.

The main battery used a negligible internal
resistance. The potentiometer wire itsefl is $4 m$
long. When the resistance, R, connected
across the given cell, has value of
(i) Infinity 9.5Ω,
(ii) the 'balancing length' , on the potentiometer wire are found to be $3 m$ and
2.85 m , respectively.

The value of internal resistance of the cell is
A. 0.5Ω
B. 0.75Ω
C. 0.25Ω

D. 0.95Ω

Answer: A

D Watch Video Solution

115. Sensitivity of potentiometer can be increased by
A. increasing the length
B. increasing the P.D.
C. decreasing the series resistance

D. increasing the current in the

potentiometer wire

Answer: A

D Watch Video Solution

116. What is the potential gradient along a wire having an area of cross-section
$4 \times 10^{-4} m^{2}$, if the current flowing through
the wire is 0.2 A and its specific resistance is
$80 \times 10^{-6} \mathrm{ohm} / \mathrm{m} ?$
A. $0.1 \mathrm{~V} / \mathrm{m}$
B. $0.5 \mathrm{~V} / \mathrm{m}$
C. $0.04 \mathrm{~V} / \mathrm{m}$
D. $0.2 \mathrm{~V} / \mathrm{m}$

Answer: C

D Watch Video Solution

117. A potentiometer wire has a length of 4 and a resistance of 8 ohm. It is connected in series with a cell of e.m.f. 2 V and internal
resistance 2 ohm. The potential drop per unit length of the wire is
A. $0.5 \mathrm{~V} / \mathrm{m}$
B. $0.4 \mathrm{~V} / \mathrm{m}$
C. $0.1 \mathrm{~V} / \mathrm{m}$
D. $0.2 \mathrm{~V} / \mathrm{m}$

Answer: B
(Watch Video Solution
118. A cell in the secondary circuit gives null deflection for 2.5 m length of a potentiometer
having 10 m length of wire. If the length of the potentiometer wire is increased by 1 m without changing the cell in the primary, the position of the null point wil be
A. 3.5 m
B. 3 m
C. 2.75 m
D. 2.0 m

Answer: C

D Watch Video Solution

119. A potentiometer wire 10 long has a resistance of 40Ω. It is connected in series with a resistances box and a 2 v storage cell. If
the potential gradient along the wire is
$0.01 \frac{\mathrm{~V}}{\mathrm{~m}}$ the resistance unplugged in the box is
A. 560Ω
B. 760Ω
C. 960Ω
D. 660Ω

Answer: B

D Watch Video Solution

120. An electron (charge $q=1.6 \times 10^{-19} C$)
in the potentiometer wire experiences a force
of $2.4 \times 10^{-19} \mathrm{~N}$. The length of the
potentiometer wire is 6 m . The e.m.f. of the battery connected across the wire is
A. 12 V
B. 9 V
C. 6 V
D. 3 V

Answer: B

D Watch Video Solution

121. $A B$ is a potentiometer wire (see the figure).

If the value of R is increased, in which direction
will be the balance point J shift ?
A. the balance point will shift towards A
B. the balance point will shift towards B
C. the balance point will remain at J
D. the balance may shift towards A or B

Answer: B

D View Text Solution
122.

While doing an experiment with
potentiometer (figure) it was found that the deflection is one sided and (i) the deflection decreased while moving from one and A of the wire, to the end R , (ii) the deflection increased, while the jockey was moved towards the end D.
(i). Which terminal positive or negative of the cell E_{1} is connected at X in case (i) and how is
E_{1}, related to E?
(ii). Which terminal of the cell E_{1} is connected at X in case (1 in 1)?
A. $E>E_{1}$ and $+v e$ terminal of E_{1} is
connected to X
B. $E<E_{1}$ and $-v e$ terminal of E_{1} is
connected to X
C. $E>E_{1} \quad$ and $\quad-v e \quad$ terminal of $\quad E_{1}$
connected to X

D. $E<E_{1}$ and $+v e$ terminal of E_{1} is

connected to X

Answer: B

D Watch Video Solution

123. A cll balances against a length of 150 cm
on a potentiometer wire when it is shunted by
a resistance of 5Ω. But when it is shunted by a resistance of 10Ω, the balancing length
increases by 25 cm . What is the balancing
length when the cell is in an open circuit ?
A. 200 cm
B. 210 cm
C. 225 cm
D. 250 cm

Answer: B

D Watch Video Solution
124. A potentiometer wire has length $4 m$ and resistance 8Ω. The resistance that must be connected in series with the wire and an accumulator of e.m.f. $2 V$, so as the get a potential gradient $1 m V$ per cm ' on the wire is
A. 40Ω
B. 44Ω
C. 48Ω
D. 32Ω

- Watch Video Solution

125. The voltage current variation of two
metallic wires X and Y at constant temperature are as shown in figure. Assume that the wires have the same length and same diameter. If R_{X} and R_{Y} are the resistances of wires X and Y, then
A. $R_{X}=R_{Y}$
B. $R_{X}>R_{Y}$
C. $R_{X}<R_{Y}$

$$
\text { D. } R_{X} \geq R_{Y}
$$

Answer: C

D View Text Solution

126. The voltage V and current I graph for a conductor at two different temperature
T_{1} and T_{2} is shown in the figure. The relation between T_{1} and T_{2} is
A. $T_{1}=T_{2}$
B. $T_{1} \approx T_{2}$
C. $T_{1}<T_{2}$
D. $T_{1}>T_{2}$

Answer: D

D View Text Solution

127. Kirchhoffs voltage law and current law are respectively in accordance with the conservation of
A. Charge and momentum
B. Charge and energy
C. Energy and charge
D. Energy and momentum

Answer: C

D Watch Video Solution

128. The accuracy of a potentiometer can be easily increased by
A. increasing the resistance of the wire
B. decreasing the resistance of the wire
C. increasing the length of the wire
D. decreasing the length of the wire

Answer: C

D Watch Video Solution

129. Instrument which can measure terminal potential difference as well as electromotive force (e.m.f.) is
A. Wheatstone's metre bridge
B. Voltmeter
C. Potentiometer
D. Galvanometer

Answer: C

D Watch Video Solution
130. Kirchhoffs junction law is equivalent to
A. Conservation of energy
B. Conservation of charge
C. Conservation of electric potential
D. Conservation of electric flux

Answer: B

D Watch Video Solution

131. Two resistances X and Y in the left and
right gaps of a metre bridge give a null point dividing the wire I the ratio of $2: 3$. When each resistance is increased by 30Ω, the new null
point divides the wire in the ratio of $5: 6$. What are the values of X and Y ?
A. $X=20 \Omega, Y=30 \Omega$
B. $X=30 \Omega, Y=20 \Omega$
C. $X=10 \Omega, Y=30 \Omega$
D. $X=30 \Omega, Y=10 \Omega$

Answer: A

D Watch Video Solution

132. In potentiometer experiment, if l_{1} is the balancing length for e.m.f. of the cell of internal resistance r and l_{2} is the balancing length for its terminal potential difference when shunted with resistance R then :

$$
\begin{aligned}
& \text { A. } l_{1}=l_{2}\left(\frac{R+r}{R}\right) \\
& \text { B. } l_{1}=l_{2}\left(\frac{R}{R+r}\right) \\
& \text { C. } l_{1}=l_{2}\left(\frac{R}{R-r}\right) \\
& \text { D. } l_{1}=l_{2}\left(\frac{R-r}{R}\right)
\end{aligned}
$$

- Watch Video Solution

133. In potentiometer experiment, null point isobtained at a particular point for a cell on potentiometer wire xcm long. If the lengthof the potentiometer wire is increasedwithout changing the cell, the balancing length will
(Driving source is not changed)
A. increase
B. decrease
C. not change

D. becomes zero

Answer: A

D Watch Video Solution

134. In balanced meter bridge, the resistance of bridge wire is $0.1 \Omega \mathrm{~cm}$. Unknown resistance

X is connected in left gap and 6Ω in right gap, null point divides the wire in the ratio 2:3.

Find the current drawn the battery of 5 V having negligible resistance
A. $1 A$
B. 1.5 A
C. $2 A$
D. $5 A$

Answer: A

D Watch Video Solution

135. Two unknown resistances are connected in two gaps of a meter-bridge. The null point is obtained at 40 cm from left end. A 30Ω
resistance is connected in series with the smaller of the two resistances, the null point shifts by 20 cm to the right end. The value of smaller resistance in Ω is
A. 12
B. 24
C. 36
D. 48

Answer: B
136. The resistivity of potentiometer wire is
40×10^{-8} ohm-metre and its area of crosssection is $8 \times 10^{-6} m^{2}$. If 0.2 ampere current is flowing through the wire, the potential gradient of the wire is
A. $10^{-1} V / m$
B. $10^{-2} V / m$
C. $10^{-3} \mathrm{~V} / \mathrm{m}$
D. $10^{-4} \mathrm{~V} / \mathrm{m}$

Answer: B

- Watch Video Solution

137. The currents in various parts of an electrical network are as shown in the figure.

The current I in the branch PQ is
A. $3 A$
B. $4 A$
C. $5 A$
D. $6 A$

Answer: D

D Watch Video Solution

138. The current in the arm CD of the circuit will be
A. $I_{1}+I_{2}$
B. $I_{1}+I_{3}$
C. $I_{2}+I_{3}$
D. $I_{1}-I_{2}-I_{3}$

Answer: C

D View Text Solution
139. In the section $X Y$ of the circuit, a power of

100 Watt is absorbed. What is the resistance

of the device D?

A. 10Ω
B. 15Ω
C. 20Ω
D. 25Ω

Answer: C

D View Text Solution

140. When the switch S is closed in the following circuit, the current passing through
the branch $B D$ is
A. 4.5 A
B. 6.0 A
C. 3.0 A
D. Zero

Answer: A
141. Calculate the steady state current in the 2ohm resistor shown in the circuit in the figure.

The intermal resistance of the battery is negligible and the capacitance of the condenser C is 0.2 microfarad.

A. 0.6 A
B. 0.7 A
C. 0.8 A
D. 0.9 A

Answer: D

D Watch Video Solution

142. With resistances P and Q in the left and right gaps of a metre bridge respectively, the null point divides the wire in the ratio $1: 2$. If P
and Q are increased by 20Ω each, the null point divides the wire in the ratio $3: 4$, then the resistances P and Q are given as :

$$
\begin{aligned}
& \text { A. } P=10 \Omega, Q=10 \Omega \\
& \text { В. } P=10 \Omega, Q=20 \Omega \\
& \text { С. } P=40 \Omega, Q=10 \Omega \\
& \text { D. } P=20 \Omega, Q=40 \Omega
\end{aligned}
$$

Answer: B

D Watch Video Solution

143. In the given circuit, no current flows in the 2Ω resistance.

The equivalent resistance of the given circuit is
A. $\frac{30}{15} \Omega$
B. 10Ω
C. $\frac{20}{5} \Omega$
D. 1Ω

View Text Solution

144. What is the effective resistance between the points A and C in the following network?

A. $\frac{R}{3}$
B. $\frac{2 R}{3}$
C. $\frac{3 R}{2}$
D. $\frac{R}{2}$

Answer: B

D Watch Video Solution

145. In the given circuit it is observed that the current I is independent of the value of the resistance R_{6}. Then the resistance values must
satisfy
A. $R_{1} R_{4}=R_{2} R_{3}$
B. $R_{1} R_{3}=R_{2} R_{4}=R_{5} R_{6}$
C. $R_{1} R_{2} R_{5}=R_{3} R_{4} R_{6}$
D. $\frac{1}{R_{5}}+\frac{1}{R_{6}}=\frac{1}{R_{1}+R_{2}}+\frac{1}{R_{3}+R_{4}}$

Answer: A

D View Text Solution
146. A resistance R is to be measured using a meter bridge. Student chooses the standared resistance S to be 100Ω. He finds the null point at $l_{1}=2.9 \mathrm{~cm}$. He is told to attempt to improve the accuracy. Which of the folllowing is a useful way?
A. He should measure L_{1} more accurately
B. He should change S to 1000Ω and repeat
the experiment
C. He should change S to 3Ω and repeat the experiment
D. He should give up hope of a more accurate measurement with a metre bridge

Answer: C

D Watch Video Solution

147. For a cell of e.m.f. 2 V , a balance is obtained for 50 cm of the potentiometer wire.

If the cell is shunted by a 2Ω resistor and the balance is obtained across 40 cm of the wire, then the internal resistance of the cell is
A. 0.25Ω
B. 0.5Ω
C. 0.75Ω
D. 1.00Ω

Answer: B
148. A current of 0.01 A flows through a potentiometer wire of cross section area $10^{-6} m^{2}$. If the specific resistance of the potentiometer wire is 10^{-7} ohm-m, then the potential gradient will be
A. $10^{-1} V / m$
B. $10^{-3} \mathrm{~V} / \mathrm{m}$
C. $10^{-2} V / m$

$$
\text { D. } 0.5 \times 10^{-2} V / m
$$

Answer: B

D Watch Video Solution

149. With a certain cell, the balance point is obtained at 65 cm from the zero end of a potentiometer wire. With another cell, whose e.m.f. is less than that of the first by 0.1 V , the balance point is obtained at 60 cm . What is the e.m.f. of the first cell ?
A. 1.0 V
B. 1.2 V
C. 1.3 V
D. 1.5 V

Answer: C

D Watch Video Solution

150. A P.D. of 2 volts exists across a potentiometer wire of length 4 m . When the P.D. across a 2Ω resistance of a second circuit
is measured by this potentiometer, the balancing length is found to be 4 cm , the current in the second circuit is
A. 1 mA
B. 10 mA
C. 100 mA
D. 50 mA

Answer: B

D Watch Video Solution
151. The length of a potentiometer wire is 200 cm and the e.m.f. of the battery connected to
it is E. It is used to measure the e.m.f. of a cell
whose internal resistance is 0.5Ω. If the balance point is obtained at $\mathrm{I}=40 \mathrm{~cm}$ from the positive end, then the e.m.f. of the cell is
A. $\frac{40 E}{200}$
B. $\frac{40 E}{200+0.5}$
C. $\frac{40(E-0.5)}{200}$
D. $\frac{40 E}{200-0.5}$

Answer: A
(D) Watch Video Solution

