©゙doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MARVEL PHYSICS (HINGLISH)

ELECTRONS AND PHOTONS

Multiple Choice Questions

1. The photocurrent is I_{P} when a certain number of photons is incident on a
photosensitive plate. If the number of photons
is doubled, the photocurrent will be
A. $\sqrt{3} I_{P}$
B. $\sqrt{2} I_{P}$
C. $2 I_{P}$
D. $\frac{I_{P}}{\sqrt{2}}$

Answer: C

- Watch Video Solution

2. The phenomenon which is just opposite (reverse) to the photoelectric effect is
A. pair production
B. production of X-rays
C. radioactivity
D. thermionic emission

Answer: B
(Watch Video Solution
3. When ultraviolet rays are incident on a photosensitive metal plate, photoemission is not possible. But it is possible by the incidence of
A. violet rays
B. infrared rays
C. X-rays
D. α-rays

Answer: C
4. A radiostation broadcasts at frequency of 100 MHz . If the radiating power of the transmitter is 66.6 KW , then the number of photons radiated per second is [Take $h=6.66 \times 10^{-34} \mathrm{Js}$]
A. 66.6×10^{20}
B. 10^{30}
C. 2×10^{30}
D. 10^{28}

Answer: B

D Watch Video Solution

5. A beam of light of certain intensity and wavelength ejects photoelectrons from a metal surface. This beam is then replaced by another beam of less intensity and smaller wavelength . As a result
A. emission of photoelectrons is stopped
B. no change in intensity and wavelength is
produced
C. K.E. of the photoelectrons increases but
the photoelectric current decreases
D. K.E. of the photoelectrons decreases but
the photoelectric current increases

Answer: C

D Watch Video Solution

6. In the experimental arrangement of photoelectric effect, the metal surface is first
illuminated with violet light and then with ultraviolet light and the stopping potential is determined in each case. The stopping potential will
A. be more with violet light
B. be more with ultraviolet light
C. be equal in both cases
D. depend upon the current

Answer: B

D Watch Video Solution

7. Which of the following pairs have linear relationships between themselves when photoelectrons are emitted from a surface ?
A. Intensity of incident radiation and
stopping potential
B. Photoelectric current and frequency of

C. Photoelectric current and the potential

difference between the emitter (cathode
) and collector (anode)
D. Frequency of incident radiation and the
stopping potential

Answer: D

D Watch Video Solution

8. A photo sensitive surface is receiving light of wavelength $6000 \AA$ at the rate of $10^{-7} \mathrm{~J} / \mathrm{s}$.

The number of photons striking the surface per second is approximately equal to
A. 1.5×10^{11}
B. 3×10^{11}
C. 4×10^{11}
D. 6×10^{11}

Answer: B
9. 10 photons each of energy 1.5 eV are made incident on a photosensitive plate whose work
function is 3 eV . The number of electrons emitted from the plate will be
A. 10
B. 2
C. Zero
D. 100

Answer: C

- Watch Video Solution

10. When beam of green light is incident on a
surface, photo electrons are emitted. If a
second beam of different frequency produces
photoemission from the same surface, then it may consists of
A. Red light
B. Infrared radiations

C. Ultraviolet radiations

D. Radiowaves

Answer: C

D Watch Video Solution

11. A source S_{1} is producing 10^{15} photons/s of wavelength $5000 \AA$ Another source S_{2} is producing 1.02×10^{15} photons per second of wavelength $5100 \AA$. Then (power of $\left.S_{-}(2)\right) /($ "power of" S_(1))’ is equal to
A. 1
B. 1.1
C. 1.04
D. 0.98

Answer: A

D Watch Video Solution
12. The number of photoelectrons emitted for
light of a frequency v (higher than the
threshold frequency V_{0}) is proportional to
A. threshold frequency $\left(v_{0}\right)$
B. frequency of incident light (v)
C. $v-v_{0}$
D. intensity of the incident light

Answer: D

D Watch Video Solution

13. A wavelength of a 1 KeV photon is
$1.2 \times 10^{-9} \mathrm{~m}$. What is the frequency of 1 MeV photon?
A. $1.25 \times 10^{20} \mathrm{~Hz}$
B. $1.75 \times 10^{20} \mathrm{~Hz}$
C. $2.5 \times 10^{20} \mathrm{~Hz}$
D. $3.5 \times 10^{19} \mathrm{~Hz}$

Answer: C

D Watch Video Solution

14. The time taken by a photoelectron to come out after the photon strikes is approximately
A. $10^{-16} \mathrm{~s}$
B. $10^{-1} \mathrm{~s}$
C. $10^{-4} \mathrm{~S}$
D. $10^{-10} \mathrm{~s}$

Answer: D

D Watch Video Solution

15. If g_{E} and g_{M} are the acceleration due to gravity on the surfaces of the earth and the moon respectively and if Millikan's oil drop
experiment could be performed on the two
surfaces, one will find the ratio
electronic charge on the moon/electronic charge on the earth to be
A. 0
B. 1
C. $\frac{g_{E}}{g_{M}}$
D. $\frac{g_{M}}{g_{E}}$

Answer: B
16. What is the energy of a photon (in eV),
whose frequency is $10^{12} \mathrm{MHz}$? [
$h=6.63 \times 10^{-34}$]
A. $4.14 \times 10^{3} \mathrm{MeV}$
B. $4.14 \times 10^{3} \mathrm{eV}$
C. $4.14 \times 10^{2} \mathrm{eV}$
D. $4.14 \times 10^{3} \mathrm{KeV}$

Answer: B

D Watch Video Solution
17. When the intensity of incident light increases, in a photo electric experiment, the
A. kinetic energy of emitted photoelectrons
increases
B. photocurrent uncreases
C. kinetic energy of emitted photoelectrons
decreases
D. photocurrent decreases

Answer: B

D Watch Video Solution

18. The threshold wavelength for a
photosensitive metal plate is 5000 A.

Photoelectrons will be emitted from it if it is irradiated by light from a
A. 50 watt infrared lamp
B. red lamp emitting light wavelength of

7000 Å
C. 25 watt ultraviolet lamp
D. 25 watt infrared lamp

Answer: C

D Watch Video Solution

19. The 22 cm radiowave emitted by hydrogen
in interstellar space is due to the interaction
called the hyperfine interaction in atomic hydrogen. What is the energy of the emitted wave?
A. $10^{-25} \mathrm{~J}$
B. $9 \times 10^{-23} J$
C. $9 \times 10^{-25} \mathrm{~J}$
D. $10^{-18} J$

Answer: B

D Watch Video Solution
20. A radio transmitter operates at a frequency of 880 kHz and a power of 10 kW .

The number of photons emitted per second are
A. 1.5×10^{25}
B. 1.6×10^{30}
C. 1.72×10^{31}
D. 2.8×10^{30}

Answer: C
(Watch Video Solution
21. There are two sources of light, each emitting with a power of 100 W . One emits Xrays of wavelength 1 nm and the other visible light at 500 nm . Find the ratio of number of photons of X-rays to the photons of visible light of the given wavelength?
A. $\frac{1}{200}$
B. $\frac{1}{300}$
C. $\frac{1}{400}$
D. $\frac{1}{500}$

Answer: D

- Watch Video Solution

22. A red bulb and violet bulb of equal power emits n_{R} and n_{v} number of photons in a given time, then
A. $n_{R}<n_{V}$
B. $n_{R} \geq n_{V}$
C. $n_{R}>n_{V}$
D. $n_{R}=n_{V}$

Answer: C

- Watch Video Solution

23. Find the wavelength of light that may excite an electron in the valence band of diamond to the conduction band. The energy gap is 5.50 eV
A. 412 nm
B. 352 nm
C. 225 nm

D. 315 nm

Answer: C

D Watch Video Solution

24. A photon of frequency v is incident on a metal surface whose threshold frequency is v_{0}.

The kinetic energy of the emitted photoelectrons will be
A. hv
B. $h v_{0}$
C. $h\left(v+v_{0}\right)$
D. $h\left(v-v_{0}\right)$

Answer: D

D Watch Video Solution

25. The energy required to remove an electron
from an aluminium surface is 4.2 eV . If two
photons, each of energy 3.0 eV , strike an
electron of aluminium, the emission of photoelectrons will
A. be possible
B. not be possible
C. be doubled

D. will decrease

Answer: B
(Watch Video Solution
26. Light of wavelength $4000 \AA ̊$ is incident on a
metal surface. The maximum kinetic energy of emitted photoelectron is 2 eV . What is the work function of the metal surface?
A. 6 eV
B. 4 eV
C. 2 eV
D. 1 eV

Answer: D
27. Light of wavelengths 400 nanometer and 800 nanometer produces photoemission in two photoemitters. The ratio of the work function of two emitters is
A. $1: 4$
B. 1:2
C. 2:1
D. 1:3

Answer: C

D Watch Video Solution

28. Ultraviolet radiation of 6.2 eV falls on a metallic surface. If the work function of the metal is 4.2 eV , then the kinetic energy of the fasted electron ejected from the surface is
A. $1.6 \times 10^{-19} \mathrm{~J}$
B. $3.2 \times 10^{-19} J$
C. $3.2 \times 10^{-25} \mathrm{~J}$

$$
\text { D. } 1.6 \times 10^{-18} \mathrm{~J}
$$

Answer: B

D Watch Video Solution

29. The work function of a metal is
$3.3 \times 10^{-19} \mathrm{~J}$. The maximum wavelength of th e photons required to eject photoelectrons from the metal is (Take $h=6.6 \times 10^{-34} \mathrm{Js}$)
A. $4000 \AA$
B. $6000 \AA$
C. $8000 \AA$
D. $200 \AA$

Answer: B

D Watch Video Solution

30. The work function of a photoelectric metal is 3.31 eV . If $h=6.62 \times 10^{-34} \mathrm{Js}$, then its threshold frequency will be
A. $8 \times 10^{14} \mathrm{~Hz}$
B. $8 \times 10^{10} \mathrm{~Hz}$
C. $5 \times 10^{15} \mathrm{~Hz}$
D. $3 \times 10^{14} \mathrm{~Hz}$

Answer: A

D Watch Video Solution

31. The maximum kinetic energy of photoelectrons emitted from a surface when
photons of energy 6 eV fall on it is 4 eV . The stopping potential is:
A. 2 V
B. 4 V
C. 6 V
D. 8 V

Answer: B
(Watch Video Solution
32. The threshold frequency for a photosensitive metal is $3 \times 10^{14} \mathrm{~Hz}$. The work
function of the metal is approximately equal

$$
\text { to }\left[h=6.66 \times 10^{-34} \mathrm{Js}\right]
$$

A. $0.5 \times 10^{-19} \mathrm{~J}$
B. $1.0 \times 10^{-19} \mathrm{~J}$
C. $1.5 \times 10^{-19} J$
D. $2.0 \times 10^{-19} \mathrm{~J}$

Answer: D

33. The threshold frequency for a certain metal for photoelectric effect is $1.7 x 10^{15} \mathrm{~Hz}$. When light of frequency $2.2 \times 10^{15} \mathrm{~Hz}$ is incident on the metal surface, the kinetic energy of the emitted photoelectrons is $3.3 \times 10^{-19} \mathrm{~J}$. What is the value of the Planck's constant ?
A. $3.3 \times 10^{-34} \mathrm{~J}$-s
B. $6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
C. $8.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}$

$$
\text { D. } 4 \times 10^{-35} \mathrm{~J}-\mathrm{s}
$$

Answer: B

D Watch Video Solution

34.6% of the energy supplied to a 100 watt lamp is radiated as visible light of wavelength 6620 Å. How many quanta are emiited per second?
A. 10^{19}
B. 2×10^{19}
C. 5×10^{-19}
D. 2×10^{5}

Answer: B

D Watch Video Solution

35. When light of wavelength 3600 nm falls on a photosensitive plate, photoelectrons are emitted. However, for another photoelectric emitter, light of 6000 nm is sufficient to
produce photoemission. What is the ratio of the work functions of the two emitters ?
A. $5: 2$
B. $5: 4$
C. $5: 3$
D. $3: 6$

Answer: C
(Watch Video Solution
36. Photons of energy 6 eV are incident on a metal surface whose work function is $4 e V$. The minimum kinetic energy of the emitted photo electrons will be
A. 1 eV
B. 2 eV
C. zero eV
D. 5 eV

Answer: C
37. In photoelectric effect experiment, the stopping potential for incident light of wavelength $4000 \AA$, is 3 V . If the wavelength is changed to $2500 \AA$, the stopping potential will be
A. 3 V
B. more than 3 V
C. less than 3 V
D. Zero volt

Answer: B

D Watch Video Solution

38. What is the stopping potential, when a metal surface with work function 1.2 eV is illuminated with light of energy 3 eV ?
A. 1.8 V
B. 4.2 V
C. 2.1 V
D. 0.8 V

Answer: A

D Watch Video Solution

39. A photon of energy 8 eV is incident on a metal surface of threshold frequency $1.6 \times 10^{15} \mathrm{~Hz}$. What is the K.E. of the ejected photoelectrons in eV ?
$\left[h=6 \times 10^{-34} J s\right]$
A. 6 eV
B. 4 eV

C. 2 eV

D. 1 eV

Answer: C

- Watch Video Solution

40. The threshold wavelength of a metal
having work function 2 eV is $6000 \AA$. What will
be the threshold wavelength for the metal having a work function of 6 eV ?
A. $3000 \AA$
B. $2000 \AA$
C. $8000 \AA$
D. $18000 \AA$

Answer: B

D Watch Video Solution
41. Photoelectrons of different kinetic energies
were emitted from a photosensitive plate,
when radiations from a source of variable
frequency were incident on the plate. It was
found that for a frequeny of $8 \times 10^{14} \mathrm{~Hz}$, the kinetic energy of the photoelectrons became zero. What was the work function of the plate in $\mathrm{eV} ?\left[h=6.6 \times 10^{-34} \mathrm{Js}\right]$
A. 4.3 eV
B. 2.5 eV
C. 3.3 eV
D. 0.5 eV

Answer: C
42. If light of wavelength $6200 \AA$ falls on a photosensitive surface of work function 2 eV , the kinetic energy of the most energetic photoelectron will be
A. 0.5 eV
B. 1 eV
C. zero
D. 0.75 eV

Answer: C

D Watch Video Solution

43. When photons of energy hv fall on a metal
plate, having a work function W , the maximum
kinetic energy of the ejected photo electrons
is K . What will be the maximum K.E. of the
ejected photo electrons, from the same plate
if the frequency of incident radiation is doubled?
A. 2 K
B. $\frac{K}{2}$
C. $h v+K$
D. $K=W_{0}$

Answer: C

- Watch Video Solution

44. Planck's constant has the dimensions of
A. Power
B. P.E.
C. Linear momentum
D. Angular momentum

Answer: D

D Watch Video Solution

45. When zinc is irradiated by radiation of wavelength $3000 \AA$, photo electrons are emitted. If we want to increase the velocity of the emitted photo electrons, then
A. the wavelength of incident radiation should be increased
B. the wavelength of incident radiation
should be decreased
C. the intensity of radiation should be increased
D. both the wavelength and the intensity of
radiation should be increased

Answer: B

46. Radiation of energy 6.5 eV is incident on a
metal surface whose work function is 4.2 eV .

What is the potential difference that should be applied to stop the fastest photoelectrons emitted by the metal surface ?
A. 1.3 V
B. 2.3 V
C. 3.5 V
D. 5.5 V

Answer: B

- Watch Video Solution

47. The threshold frequency for a photosensitive surface corresponds to an energy of 6.5 eV . If the stopping potential for radiations incident on this surface is 3 V , then
the energy of the incident radiation will be

$$
\text { A. } 3.5 \mathrm{eV}
$$

B. 7 eV
C. 9.5 eV
D. 13 eV

Answer: C

D Watch Video Solution

48. A photon of energy 7 eV is incident on a metal surface having the work function of 3.75 eV . What is the stopping potential ?
A. 2 V
B. 3 V
C. 3.25 V
D. 4.5 V

Answer: C

D Watch Video Solution

49. Light of frequency 1.5 times the threshold frequency is incident on a photo-sensitive material. If the frequency is halved and the
intensity is doubled, the photoelectric current becomes
A. be doubled
B. be halved
C. be zero
D. increase

Answer: C
(Watch Video Solution
50. Photons of energy 1.5 eV and 2.5 eV are incident on a metal surface of work function
0.5 eV . What is the ratio of the maximum kinetic energy of the photoelectrons?
A. $1: 2$
B. 2
C. 3
D. 1: 4

Answer: A
51. In photoelectric effect, the work function of
a metal is 3.7 eV . The emitted electron can be stopped by applying a potential of 1.8 V . Then
A. the energy of the incident photon is 1.9
eV
B. the energy of the incident photon is 5.5
eV
C. if the energy of the incident photon is 3
eV , then the electron will be emitted

with maximum energy

D. the energy of the incident photon is 11

 eV
Answer: B

D Watch Video Solution

52. Einstein's work on photoelectric effect gives support to
A. Mass energy relation
B. Bohr's theory
C. Planck's equation $E=h v$
D. de Broglie's hypothesis

Answer: C

D Watch Video Solution

53. The work function of a metal is 4 eV . What
should be the wavelength of the incident radiation for the emission of photoelectrons of zero velocity?
A. $2500 \AA$
B. $3100 \AA$
C. $3500 \AA$
D. $3800 \AA$

Answer: B

D Watch Video Solution

54. If Planck's constant is denoted by h and the
charge by e, experiments on photoelectric effect allow the determination of
A. only h
B. only e
C. only $\frac{h}{e}$
D. both h and e

Answer: C

D Watch Video Solution

55. In a photoelectric experiment, the wavelength of incident radiation is reduced from $6000 \AA$ A to $5000 \AA$ then
A. stopping potential will decrease
B. stopping potential will increase
C. K.E. of emitted electrons will decrease
D. the value of the work function will decrease

Answer: B

D Watch Video Solution

56. A photosensitive surface has work function
$W_{0}=h v_{0}$. If photons of energy $2 h v_{0}$ fall on
this surface, the electrons are ejected with a maximum velocity of $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$. When the energy of the incident photon is increased to $5 h v_{0}$, then maximum velocity of the photoelectrons will be
A. $2 \times 10^{7} \mathrm{~m} / \mathrm{s}$
B. $8 \times 10^{6} \mathrm{~m} / \mathrm{s}$
C. $8 \times 10^{5} \mathrm{~m} / \mathrm{s}$

D. $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$

Answer: B

- Watch Video Solution

57. Radiation of frequency $v=9 v_{0}$ is incident on a metal surface, having threshold
frequency v_{0}. The maximum velocity of the ejected photoelectrons is $6 \times 10^{6} \mathrm{~m} / \mathrm{s}$. What will be the maximum velocity of the ejected photoelectrons, if v is reduced to $3 v_{0}$?
A. $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$
B. $3 \times 10^{6} \mathrm{~m} / \mathrm{s}$
C. $1.5 \times 10^{6} \mathrm{~m} / \mathrm{s}$
D. $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

58. When a photosensitive surface is
illuminated with light of wavelength λ, the stopping potential is V_{0}. But when light of
wavelength 2λ is incident on the same surface,
the stopping potential is $\frac{V_{0}}{4}$. What is the threshold wavelength for the surface?
A. 2λ
B. 3λ
C. 4λ
D. 5λ

Answer: B

D Watch Video Solution
59. Dimension's of planck's constant are the same as the dimensions of the product of
A. force, displacement and time
B. force and velocity
C. force and displacement
D. force and time

Answer: A

D Watch Video Solution
60. When light of wavelength 3000 Å falls on a photosensitive surface (A) photoelectrons are emitted. However, for another photoemitter
(B), light of wavelength $6000 \AA$ is required for
the emission of photoelectrons. What is the ratio of the work functions of A and B ?
A. 1:1
B. 1:2
C. 2:1
D. $4: 1$

Answer: C

D Watch Video Solution

61. Monochromatic light incident on a metal surface emits electrons with kinetic energies ranging from 0 to 2.5 eV . What is the least energy of the incident photon, if for removing
the tightly bound electron from the metal
surface an energy of 4.3 eV is required ?
A. 1.8 eV
B. 6.8 eV
C. from 1.8 eV to 6.8 eV
D. 3.4 eV

Answer: B

D Watch Video Solution

62. The work function of a substance is 4.0 eV .

The longest wavelength of light that can cause photoelectron emission from this substance is approximately equal to
A. 540 nm
B. 400 nm
C. 310 nm
D. 220 nm

Answer: C

D Watch Video Solution
63. Radiations of frequencies $8 \times 10^{15} \mathrm{~Hz}$ and
$5 \times 10^{15} \mathrm{~Hz}$ are incident one after the another
on the same photosensitive surface. If is found
that the kinetic energies of the photo electrons emitted from the surface are in the ratio of $2: 1$. What is the threshold frequency for the surface?
A. $1.5 \times 10^{15} \mathrm{~Hz}$
B. $2 \times 10^{15} \mathrm{~Hz}$
C. $2.5 \times 10^{15} \mathrm{~Hz}$
D. $3 \times 10^{15} \mathrm{~Hz}$

Answer: B
64. When photons of energy 5 eV fall on a
photosensitive surface, the maximum K.E. of
the photoelectrons emitted from the surface
is 2.5 eV . What is the stopping potential ?
A. 5 V
B. 2.5 V
C. 7.5 V
D. 1 V

- Watch Video Solution

65. Radiation is incident on a photosensitive surface and the stopping potential is found to be 9 V . What is the maximum velocity of the ejected photo electrons if the specific charge of the electron is $1.8 \times 10^{11} \mathrm{C} / \mathrm{kg}$?
A. $6.6 \times 10^{5} \mathrm{~m} / \mathrm{s}$
B. $1.8 \times 10^{6} \mathrm{~m} / \mathrm{s}$
C. $8 \times 10^{6} \mathrm{~m} / \mathrm{s}$
D. $12 \times 10^{5} \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

66. When the energy of the incident radiation
is increased by 20%, kinetic energy of the photoelectrons emitted from a metal surface increased from $0.5 \mathrm{eV} \rightarrow 0.8 \mathrm{eV}$. The work function of the metal is
A. 0.5 eV
B. 0.75 eV

C. 1 eV

$$
\text { D. } 1.25 \mathrm{eV}
$$

Answer: C

D Watch Video Solution

67. According to Einstein's photoelectric equation, the plot of the maximum kinetic energy of the emitted photoelectrons from a metal versus frequency of the incident radiation gives a straight line whose slope
A. is the same for all metals and independent of the intensity of the radiation
B. depends both on the intensity of the radiation and the metal used
C. depends on the intensity of the radiation
D. depends on the nature of the metal
used

- Watch Video Solution

68. Two identical photocathode receive light of
frequencies f_{1} and f_{2}. If the maximum
velocities of the photoelectrons (of mass m)
coming out are respectively v_{1} and v_{2} then:

$$
\begin{aligned}
& \text { A. } v_{1}^{2}-v_{2}^{2}=\frac{2 h}{m}\left(f_{1}-f_{2}\right) \\
& \text { B. } v_{1}+v_{2}=\left[\frac{2 h}{m}\left(f_{1}+f_{2}\right)\right]^{1 / 2} \\
& \text { C. } v_{1}^{2}+v_{2}^{2}=\frac{2 h}{m}\left(f_{1}+f_{2}\right) \\
& \text { D. } v_{1}-v_{2}=\left[\frac{2 h}{m}\left(f_{1}-f_{2}\right)\right]^{1 / 2}
\end{aligned}
$$

Answer: A

- Watch Video Solution

69. The work functions for metals A, B and C are respectively $1.92 \mathrm{eV}, 2.0 \mathrm{eV}$ and 5 eV .

According to Einstein's equation the metals
which will emit photoelectrons for a radiation
of wavelength $4100 \AA$ is/are
A. A only
B. A and B only
C. All the three metals

D. C only

Answer: B

D Watch Video Solution

70. In a photoelectric experiment, a student plotted the graph of stopping potential (Vs) against the frequency of incident radiation (v). But he could not write the unit of the slope of the graph. What is the corrent unit ?
A. J.A.
B. C/J-s
C. J/s/C
D. J/A

Answer: D

D Watch Video Solution

71. X-rays are used to irradiate sodium and copper surfaces in two separate experiments
and stopping potential are determined. The stopping potential is
A. $V_{\mathrm{Na}}>V_{\mathrm{Cu}}$
B. $V_{\mathrm{Na}}=V_{\mathrm{Cu}}$
C. $V_{\mathrm{Na}}<V_{\mathrm{Cu}}$
D. V_{Na} and V_{Cu} are inversely proportional
to v

Answer: A
72. The maximum kinetic energies of photoelectrons emitted from a metal are k_{1} and k_{2} when it is irradiated with light of wavelenght λ_{1} and λ_{2} respectively. Find work function of the metal.

$$
\begin{aligned}
& \text { A. } \frac{\lambda_{1} K_{1}+\lambda_{2} K_{2}}{\lambda_{1}+\lambda_{2}} \\
& \text { B. } \frac{\lambda_{1} K_{2}+\lambda_{2} K_{1}}{\lambda_{1}+\lambda_{2}} \\
& \text { c. } \frac{\lambda_{1} K_{1}-\lambda_{2} K_{2}}{\lambda_{2}-\lambda_{1}} \\
& \text { D. } \frac{\lambda_{1} K_{2}-\lambda_{2} K_{1}}{\lambda_{1}-\lambda_{2}}
\end{aligned}
$$

- Watch Video Solution

73. Maximum velocity of photoelectrons emitted by a metal surface is $1.2 \times 10^{6} \mathrm{~m} / \mathrm{s}$.

Assuming the specific charge of the electrons to be $1.8 \times 10^{11} \mathrm{C} / \mathrm{kg}$ the value of stopping potential in volt will be:
A. 2
B. 3
C. 4
D. 6

Answer: C

- Watch Video Solution

74. By how much would the stopping potential
for a given photosensitive surface go up if the
frequency of the incident radiations were to be increased from $4 \times 10^{15} \mathrm{~Hz}$ to $8 \times 10^{15} \mathrm{~Hz}$?

Given,

$$
h=6.6 \times 10^{-34} J s
$$

$$
e=1.6 \times 10^{-19} C \text { and } c=3 \times 10^{8} m s^{-1}
$$

A. 6 V
B. 8 V
C. 12 V
D. 16 V

Answer: D

D Watch Video Solution

75. The maximum velocity of an electron emitted by light of wavelength λ incident on
the surface of a metal of work function ϕ, is

Where $\mathrm{h}=$ Planck's constant , $\mathrm{m}=$ mass of electron and $c=$ speed of light.

$$
\begin{aligned}
& \text { A. }\left[\frac{2(h \lambda-\phi)}{m}\right]^{1 / 2} \\
& \text { B. }\left[\frac{2(h C-\lambda \phi)}{m \lambda}\right]^{1 / 2} \\
& \text { C. }\left[\frac{2(h C+\lambda \phi)}{m \lambda}\right]^{1 / 2} \\
& \text { D. } \frac{2(h C-\lambda \phi)}{m}
\end{aligned}
$$

Answer: B

76. Photoelectric emission is observed from a metallic surface for frequencies v_{1} and v_{2} of the incident light rays $\left(v_{1}>v_{2}\right)$. If the maximum values of kinetic energy of the photoelectrons emitted in the two cases are in the ratio of $1: k$, then the threshold frequency of the metallic surface is

$$
\begin{aligned}
& \text { A. } \frac{K v_{1}-v_{2}}{K-1} \\
& \text { B. } \frac{K v_{2}-v_{1}}{K-1} \\
& \text { C. } \frac{v_{2}-v_{1}}{K}
\end{aligned}
$$

D. $\frac{v_{1}-v_{2}}{K-1}$

Answer: A

D Watch Video Solution

77. The threshold frequency for a metallic surface corresponds to an energy of 6.2 eV and the stopping potential for a radiation incident on this surface is 5 V . The incident radiation lies in
A. Visible region
B. X - ray region
C. Ultra-violet region
D. Infra-red region

Answer: C

D Watch Video Solution

78. The maximum velocity of electrons emitted from a metal surface is v. What would be the maximum velocity if the frequency of incident lightis increased by a factor of 4?
A. 2 v
B. more than $2 v$
C. less than $2 v$
D. between v and 1.5 v

Answer: B

- Watch Video Solution

79. When radiation of wavelength $3000 \AA$ is incident on a photosensitive surface, the maximum K.E. of the photoelectrons is 2.5 eV .

What is the stopping potential if radiation of
wavelength $1500 \AA$ is incident on the same surface?
A. 4.5 V
B. 5.5 V
C. more than 5.5 V but less than 7 V
D. less than 5.5 V but more than 4.5 V

Answer: C

D Watch Video Solution
80. Ultraviolet light of wavelength λ_{1} and λ_{2}
(with $\lambda_{2}>\lambda_{1}$) when allowed to fall on hydrogen atoms in their ground state is found to liberate electrons with kinetic energies E_{1} and E_{2} respectively. The value of the planck's constant can be found from the relation

$$
\begin{aligned}
& \text { A. } h=\frac{1}{c}\left(\lambda_{2}-\lambda_{1}\right)\left(E_{1}-E_{2}\right) \\
& \text { B. } h=\frac{1}{c}\left(\lambda_{2}+\lambda_{1}\right)\left(E_{1}+E_{2}\right) \\
& \text { C. } h=\frac{\left(E_{1}-E_{2}\right) \lambda_{1} \lambda_{2}}{c\left(\lambda_{2}-\lambda_{1}\right)} \\
& \text { D. } h=\frac{\left(E_{1}+E_{2}\right) \lambda_{1} \lambda_{2}}{c\left(\lambda_{2}+\lambda_{1}\right)}
\end{aligned}
$$

Answer: C

- Watch Video Solution

81. Consider a metal exposed to light of wavelength 600 nm . The maximum energy of the electrons doubles when light of wavelength 400 nm is used. Find the work function in eV .
A. 1.1 ev
B. 1.03 eV
C. 1.5 eV
D. 1.8 eV

Answer: B

D Watch Video Solution

82. When the energy of the incident radiation
is increased by 20%, kinetic energy of the photoelectrons emitted from a metal surface increased from $0.5 \mathrm{eV} \rightarrow 0.8 \mathrm{eV}$. The work function of the metal is
A. 1.3 eV
B. 1.5 eV
C. 0.65 eVs
D. 1.0 eV

Answer: D

D Watch Video Solution

83. When a certain metallic surface is
illuminated with mono chromatic light of wavelength λ, the stopping potential for
photoelectric current is $3 V_{0}$. When the same surface is illuminated with light of wavelength
2λ the stopping potential is V_{0}. The threshold wavelength for this surface for photoelectric effect is.
A. 4λ
B. $\frac{\lambda}{4}$
C. $\frac{\lambda}{6}$
D. 6λ

Answer: A
84. A photosensitive metallic surface has a work function ϕ. If a photon of energy 3ϕ fall on this surface, the electron is ejected with a maximum velocity of $6 \times 10^{6} \mathrm{~m} / \mathrm{s}$. When the photon energy is increased to 9ϕ, then the maximum velocity of the ejected photoelectrons will be

> A. $12 \times 10^{6} \mathrm{~m} / \mathrm{s}$
> B. $24 \times 10^{6} \mathrm{~m} / \mathrm{s}$
C. $3 \times 10^{6} \mathrm{~m} / \mathrm{s}$
D. $6 \times 10^{6} \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

85. Silver has a work function of 4.7 eV . When
ultraviolet light of wavelength 100 nm is incident upon it, a potential of 7.7 V is required to stop the photo electrons from reaching the collector plate. How much
potential will be required to stop the photoelectrons when light of wavelength 200nm is incident upon silver?
A. 2.35 V
B. 1.5 V
C. 15.4 V
D. 3.85 V

Answer: B

D Watch Video Solution
86. The photoelectric threshold wavelength for silver is λ_{0}. The energy of the electron ejected from the surface of silver by an incident wavelength $\lambda\left(\lambda<\lambda_{0}\right)$ will be

$$
\begin{aligned}
& \text { A. } h c\left(\frac{\lambda_{0}-\lambda}{\lambda \lambda_{0}}\right) \\
& \text { B. } h c\left(\lambda_{0}-\lambda\right) \\
& \text { C. } \frac{h c}{\lambda_{0}-\lambda} \\
& \text { D. } \frac{h}{c}\left(\frac{\lambda_{0}-\lambda}{\lambda \lambda_{0}}\right)
\end{aligned}
$$

Answer: A
87. In photoelectric effect, stopping potential
for a light of frequency n_{1} is V_{1}. If light is
replaced by another having a frequency n_{2}
then its stopping potential will be

$$
\begin{aligned}
& \text { A. } V_{1}-\frac{h}{e}\left(n_{2}-n_{1}\right) \\
& \text { B. } V_{1}+\frac{h}{e}\left(n_{2}+n_{1}\right) \\
& \text { C. } V_{1}+\frac{h}{e}\left(n_{2}-2 n_{1}\right) \\
& \text { D. } V_{1}+\frac{h}{e}\left(n_{2}-n_{1}\right)
\end{aligned}
$$

- Watch Video Solution

88. Light of wavelength λ_{A} and λ_{B} falls on two identical metal plates A and B respectively .

The maximum kinetic energy of photoelectrons in K_{A} and K_{B} respectively, then which one of the following relations is true ? $\left(\lambda_{A}=2 \lambda_{B}\right)$
A. $K_{A}<\frac{K_{B}}{2}$
B. $2 K_{A}=K_{B}$
C. $K_{A}=2 K_{B}$

D. $K_{A}>2 K_{B}$

Answer: A

D Watch Video Solution

89. A source of light is placed at a distance of 1
m from a photo cell and the cut off potential
is found to be 5 V . If the source is kept at 1.5 m
from the cell, then the cut off potential will be
A. 7.5 V

B. 10 V

C. 5 V
D. 3 V

Answer: C

D Watch Video Solution

90. The work function of two photosensitive surfaces A and B are 5 eV and 3 eV . Which surface should be selected to prepare a photo cell which is to be used for visible light?
A. surface A
B. surface B
C. neither A nor B
D. Both A and B

Answer: B

D Watch Video Solution

91. A radio transmitter operates at a frequency
of 300 KHz and a power of 10 KW . The number
of photons emitted per second is approximately equal to
A. 7.5×10^{31}
B. 5×10^{31}
C. 2.5×10^{31}
D. 4×10^{31}

Answer: B
(Watch Video Solution
92. For a photocell, the work function is ϕ and
the stopping potential is V_{s}. The wavelength of the incident radiation is

$$
\begin{aligned}
& \text { A. } \frac{h c}{\phi} \\
& \text { B. } \frac{h c}{\phi-e V_{s}} \\
& \text { C. } \frac{h c}{\phi+e V_{s}} \\
& \text { D. } \frac{h c}{e \phi+V_{s}}
\end{aligned}
$$

Answer: C

- Watch Video Solution

93. The stopping potential for a certain photocell is 1.2 V when light of wavelength
$\lambda_{1}=400 \mathrm{~nm}$ is used. It is 0.6 V , when light of
wavelength $\lambda_{2}=500 \mathrm{~nm}$ is used. What would be the stopping potential, when both λ_{1} and
λ_{2} are incident simultaneously?
A. 0.9 V
B. 1.8 V
C. 0.6 V
D. 1.2 V

Answer: D

D Watch Video Solution

94. If 15% of the energy supplied to a bulb is
radiated as visible light, how many quanta are emitted per second by a 100 watt lamp ?

Assume that the wavelength of visible light is 5600 Å.
A. 2×10^{4}
B. 1.4×10^{19}
C. 1.4×10^{28}
D. 2.8×10^{19}

Answer: B

D Watch Video Solution

95. A photocell is illuminated by a point source of light kept at a distance of 50 cm . If the source is shifted by 50 cm away from the photocell, then
A. energy of each emitted photoelectron
will be half of the initial energy
B. energy of each photoelectron will be two
times the initial energy
C. number of emitted photoelectrons will
be one quarter on the initial number
D. number of emitted photoelectrons will
be double the initial number

Answer: C

96. When an inert gas is filled in the place vacuum in a photo cell, then
A. photoelectric current remains the same B. decrease or increase in photoelectric
current does not depend upon the gas
filled
C. photoelectric current is increased
D. photoelectric current is decreased

Answer: C

- Watch Video Solution

97. An image of the sun is formed by a lens, of
the focal length of 30 cm , on the metal surface of a photoelectric cell and a photoelectric current I is produced. The lens forming the image is then replaced by another of the same diameter but of focal length 15 cm . The photoelectric current in this case is
A. $4 I$
B. $2 I$
C. $\frac{I}{2}$
D. I

Answer: A

D Watch Video Solution

98. When a monochromatic point source of
light is at a distance
of 0.2 m from a photoelectric cell, the cut off
voltage and the saturation current
are respectively 0.6 V and 18.0 mA . If the same
source is placed 0.6 m away
from the photoelectric cell, then
(a) the stopping potential will be 0.2 V
(b) the stopping potential will be 0.6 V
(c) the saturation current will be 6.0 mA
(d) the saturation current will be 2.0 mA
A. the saturation current will be 18 mA
B. the saturation current will be 6 mA
C. the stopping potential will be 0.6 V

D. the stopping potential will be 0.2 V

Answer: C

- Watch Video Solution

99. Light from a hydrogen tube is incident on
the cathode of a photoelectric cell the work
function of the cathode surface is 4.2 eV . In order to reduce the photo - current to zero
the voltage of the anode relative to the cathode must be made
A. +9.4 V
B. -17.8 V
C. -4.2 V
D. $-9.4 \vee$

Answer: D

D Watch Video Solution

100. Work function of lithium and copper are respectively 2.3 eV and 4.0 eV . Which one of
the metal will be useful for the photoelectric
cell working with visible light ?

$$
\left(h=6.6 \times 10^{-34} J-s, c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)
$$

A. Copper
B. Lithium
C. Both
D. None of these

Answer: B

D Watch Video Solution
101. If a photon has velocity c and frequency n,
then which of following represents its
wavelength ?

> A. $\frac{h C}{E}$
> B. $h v$
> C. $\frac{h v}{C^{2}}$
> D. $\frac{E}{h C}$

Answer: B

- Watch Video Solution

102. A particle which has zero rest mass and
non-zero energy and momentum must travel
with a speed
A. which is infinite
B. equal to C, the speed of light in vacuum
C. less than C
D. greater than C

Answer: B

D Watch Video Solution
103. The wavelength of the electromagnetic radiations whose photon has energy of 5 eV is
A. 5000 A
B. 2486 A
C. 4268 A
D. 3386 A

Answer: B
(Watch Video Solution
104. The energy of a photon corresponding to the visible light of maximum wavelenth is approximately
A. 1 eV
B. 1.6 eV
C. 7 eV
D. 3 eV

Answer: B
105. For light of a wavelength $4000 \AA$, the
photon energy is 2 eV . For X rays of wavelength
$1 \AA$, the photon energy will be
A. 2000 eV
B. 4000 eV
C. 6000 eV
D. 8000 eV

Answer: D

D Watch Video Solution
106. What is the momentum of a photon having frequency of $1.5 \times 10^{13} \mathrm{~Hz}$?
A. $6.62 \times 10^{-29} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
B. $3.31 \times 10^{-29} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
C. $3.31 \times 10^{-34} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
D. $6.62 \times 10^{-34} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution
107. There are N_{1} photons of frequency v_{1}, in a beam of light, In another light beam of equal energy there are N_{2} photons of frequency v_{2}.

Then N_{1} and N_{2} are related as

$$
\begin{aligned}
& \text { A. } \frac{N_{1}}{N_{2}}=1 \\
& \text { B. } \frac{N_{1}}{N_{2}}=\frac{v_{1}}{v_{2}} \\
& \text { C. } \frac{N_{1}}{N_{2}}=\frac{v_{2}}{v_{1}} \\
& \text { D. } \frac{N_{1}}{N_{2}}=\sqrt{\frac{v_{2}}{v_{1}}}
\end{aligned}
$$

Answer: C

108. n_{R} and n_{g} give the number of photons in
red and green beams of light. If the two beams
have the same energy, then

$$
\begin{aligned}
& \text { A. } n_{R}<n_{g} \\
& \text { B. } n_{R}>n_{g} \\
& \text { C. } n_{R}=n_{g} \\
& \text { D. } n_{R}=0.75 n_{g}
\end{aligned}
$$

Answer: B
109. The momentum of a photon of electromagnetic radiation is $3.3 \times 10^{-29} \mathrm{~kg}$ m / s. The frequency of radiation is

$$
\left[h=6.6 \times 10^{-34} \mathrm{Js}\right]
$$

A. $2.5 \times 10^{15} \mathrm{~Hz}$
B. $1.5 \times 10^{13} \mathrm{~Hz}$
C. $6 \times 10^{13} \mathrm{~Hz}$
D. $5 \times 10^{15} \mathrm{~Hz}$
110. The wavelength of electromagnetic radiation is doubled. What will happen to the energy of the photons of the new radiation ?
A. E is doubled
B. E becomes four times
C. E is halved
D. The energy will be $1 / 4^{\text {th }}$ of the original
energy

- Watch Video Solution

111. The energy of a photon is $E=h v$ and the momentum of photon $p=\frac{h}{\lambda}$, then the velocity of photon will be
A. EP
B. $\frac{E}{P}$
C. $\left(\frac{E}{P}\right)^{2}$
D. $\left(\frac{P}{E}\right)^{2}$

Answer: B

D Watch Video Solution

112. What is the momentum of a photon of energy 1 MeV in $\mathrm{kg} \mathrm{m} / \mathrm{s}$?
A. 5×10^{-24}
B. 5.1×10^{-22}
C. 7.5×10^{-19}
D. 12×10^{8}

Answer: B

- Watch Video Solution

113. Energy from the sun is received on the earth at the rate of $9 \mathrm{~J} / \mathrm{cm}^{2} /$ minute. The average wavelength of solar light is taken as 5500 Å. How many photons are received on the earth per cm^{2} per minute?

$$
\left[h=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right]
$$

A. 2.2×10^{17}
B. 1.8×10^{19}
C. 2.5×10^{19}
D. 1.5×10^{18}

Answer: C

D Watch Video Solution

114. Photon of frequency v has a momentum associated with it. If c is the velocity of light, the momentum is:
A. hvC
B. v/C
C. $h v / C^{2}$
D. $h v / C$

Answer: D

- Watch Video Solution

115. Which one of the following is correct?
A. $E^{2}=p^{2} c$

$$
\begin{aligned}
& \text { B. } E^{2}=p c^{2} \\
& \text { C. } E^{2}=p^{2} c^{2} \\
& \text { D. } E^{2}=\frac{p^{2}}{c^{2}}
\end{aligned}
$$

Answer: C

D Watch Video Solution

116. The curve drawn between velocity and frequency of a photon in vacuum will be
A. Straight line passing through the origin and making an angle of 45° with the frequency axis
B. Straight line parallel to the frequency axis
C. Hyperbola
D. Straight line parallel to the velocity axis

Answer: B

117. A photon of $\lambda=4400 \AA$ is passing through vacuum. What is the mass and momentum of the photon?

> A. $5 \times 10^{-30} \mathrm{~kg}$ and $1.5 \times 10^{-25} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
> B. $5 \times 10^{-36} \mathrm{~kg}$ and $1.5 \times 10^{-27} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
> C. Zero, $1.5 \times 10^{-26} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
> D. $5 \times 10^{-36} \mathrm{~kg}$ and $1.6 \times 10^{-40} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$

Answer: B
118. If a source of power $4 k W$ produces 10^{20}
photons / second, the radiation belongs to a part of the spectrum called:
A. γ-rays
B. X-rays
C. Ultraviolet rays
D. Microwaves

Answer: B

D Watch Video Solution
119. What is the force exerted by a photon beam of intensity $1.4 k W / m^{2}$, if it falls on a perfectly absorbing disc of radius 4 metre ?
A. $8.35 \times 10^{4} N$
B. $10^{8} N$
C. $8.8 \times 10^{-8} N$
D. $2.35 \times 10^{-4} \mathrm{~N}$

Answer: D

D Watch Video Solution
120. The stopping potential $\left(V_{S}\right)$ against
frequency graph of a substance is shown in
the figure. The threshold wavelength is
A. $4000 \AA$
B. $5000 \AA$
C. $6000 \AA$
D. $7500 \AA$

Answer: B
121. The figure shows the variation of photoelectric current (I) with potential (V) for
a photo-sensitive surface for two radiations of
frequencies v_{a} and v_{b} for the curves a and b respectively. From the graph we find that
A. $v_{a}=v_{b}$
B. $v_{a}>v_{b}$
C. $v_{a}<v_{b}$

$$
\text { D. } v_{a}=\sqrt{2} v_{b}
$$

Answer: A

D View Text Solution

122. From the graph of stopping potential against frequency for Na and Al , we infer that

A.Al is a better photosensitive material
than Na
B. The stopping potentials are different for

Na and Al for the same change in frequency
C. Maximum kinetic energy for both the

metals vary linearly with the frequency

D. Na and Al both have the same threshold
frequency

Answer: C

D View Text Solution

123. The anode vollage of a photocell is kept
fixed. The wavelength λ of the light falling on the cathode varies as follows

B.

D.

Answer: D

- Watch Video Solution

124. The stopping potential V for photoelectric emission from a metal surface is plotted along Y - axis and frequency v of incident light along X - axis. A straight line is obtained as shown. Planck's constant is given by

A. Slope of the straight line
B. Product of the intercept along the X-axis
and the mass of the electron
C. Product of the slope of the line and the
charge on the electron
D. Intercept on the Y-axis divided by the charge on the electron

Answer: C

D Watch Video Solution

125. A graph of the kinetic energy (K) of the photoelectrons (in eV) against the frequency
(v) for a metal used as a cathode in a photoelectric experiment is as shown in the figure.

What is the work function of the metal ?
A. 2 eV
B. 2.5 eV
C. 3 eV

D. 4 eV

Answer: C

D View Text Solution

126. In an experiment on photoelectric effect
the frequency f of the incident light is plotted against the stopping potential V_{0}. The work function of the photoelectric surface si given
by (e is the electronic charge)

A. $O B \times e$ in $e V$
B. $O B$ in volt
C. OA in eV
D. the slope of the line $A B$

Answer: A

- Watch Video Solution

127. The figure shows the variation of photoelectric current with anode potential for a photo-sensitive surface for three different radiations. Let I_{a}, I_{b} and I_{c} be the intensities and f_{a}, f_{b} and f_{c} be the frequencies for the curves a, b and c respectively then
A. $f_{a}=f_{b}$ and $I_{a} \neq I_{b}$

$$
\text { B. } f_{a}=f_{c} \text { and } I_{a}=I_{c}
$$

C. $f_{a}=f_{b}$ and $I_{a}=I_{b}$

$$
\text { D. } f_{a}=f_{b} \text { and } I_{a}=I_{b}
$$

Answer: A

D View Text Solution

128. The following figure represents the graph of photoelectric current I versus applied voltage (V). What is the maximum energy of the emitted photoelectrons?
A. 4 eV
B. O eV
C. 4 J
D. 2 eV

Answer: A

D View Text Solution

129. According to Einstein's photoelectric equation, the graph between kinetic energy of
photoelectrons ejected and the frequency of the incident radiation is :
A.
B.
C.
D.

Answer: D
(Watch Video Solution
130. The graph of photoelectric current
verses the applied voltage is (V) is as shown in
the figure. What is the maximum energy of the emitted photoelectrons?
A. 0 eV
B. 2 eV
C. 3 eV
D. 5 eV

- View Text Solution

131. When radiations of wavelength λ_{1} and λ_{2}
are incident on certain photosensitive material, the energies of electron ejected ar
E_{1} and E_{2} respectively, such that $E_{1}>E_{2}$,
Then Planck's constant ' h ' is ($C=$ velocity of light)

$$
\begin{aligned}
& \text { A. } \frac{\left(E_{1}-E_{2}\right)\left(\lambda_{1}-\lambda_{2}\right)}{c\left(\lambda_{1} \cdot \lambda_{2}\right)} \\
& \text { B. } \frac{\left(E_{1}-E_{2}\right) \lambda_{1} c}{\left(\lambda_{1}-\lambda_{2}\right) \lambda_{2}} \\
& \text { c. } \frac{\left(E_{1}-E_{2}\right) \lambda_{1} \lambda_{2}}{c\left(\lambda_{2}-\lambda_{1}\right)}
\end{aligned}
$$

$$
\text { D. } \frac{\left(\lambda_{2}-\lambda_{1}\right) c}{\left(E_{1}-E_{2}\right) \lambda_{1} \cdot \lambda_{2}}
$$

Answer: C

D Watch Video Solution

132. Let P and E denote the linear momentum
and energy of emitted photon respectively. If
the wavelength of incident radiation is increased, then
A. both p and E increase
B. p increases and E decreases
C. p decreases and E increases
D. both p and E decrease

Answer: D

D Watch Video Solution

133. The frequency of incident light falling on a photosensitive metal plate is doubled, the K.E of the emitted photo-electrons is
A. same as its initial value
B. two times its initial value
C. more than two times its initial value
D. less than two times its initial value

Answer: C

D Watch Video Solution

134. The number of photoelectrons emitted from a photosensitive surface
A. varies inversely witht the frequency of radiation
B. varies directly with the frequency of radiation
C. varies inversely with the intensity of radiation
D. varies directly with the intensity of
radiation

Answer: D
135. The energy of a photon of wavelength λ is
[h = Planck's constant, $\mathrm{c}=$ speed of light in
vacuum]
A. $h c \lambda$
B. $\frac{h \lambda}{c}$
C. $\frac{\lambda}{h c}$
D. $\frac{h c}{\lambda}$
136. Light of wavelength A which is less than
threshold wavelength is incident on a photosensitive material. If incident wavelength
is decreased so that emitted photoelectrons
are moving with same velocity, then stopping
potential will
A. increase
B. decrease
C. be zero

D. become exactly half

Answer: A

D Watch Video Solution

137. When light of wavelength λ is incident on
photosensitive surface, the stopping potential
is V . When light of wavelength 3λ is incident on same surface, the stopping potential is $\frac{V}{6}$

Thereshould wave length for the surface is
A. 2λ
B. 3λ
C. 4λ
D. 5λ

Answer: D

D Watch Video Solution

138. On a photosensitive material, when frequency of incident radiation is increased by
30% kinetic energy of emitted photoelectrons
increases from 0.4 eV to 0.9 eV . The work
function of the surface is
A. 1 eV
B. 1.267 eV
C. 1.4 eV
D. 1.8 eV

Answer: B

D Watch Video Solution

1. The energy of a photon of wavelength 4000

Å is
(use $h=6.66 \times 10^{-34} \mathrm{~J}$-s)
A. 2×10^{-19} J
B. $3 \times 10^{-19} \mathrm{~J}$
C. $4 \times 10^{-19} \mathrm{~J}$
D. $5 \times 10^{-19} \mathrm{~J}$

Answer: D

2. In a photoelectric experiment, the reciprocal

 of the slope of the straight line graph givingthe relation between the stopping potential and the frequency of incident radiation gives
A. h
B. e
C. $\frac{h}{e}$
D. $\frac{e}{h}$
3. The momentum of a photon of an electromagnetic radiation is $3.3 \times 10^{-29} \mathrm{~kg}$ $\mathrm{m} / \mathrm{sec}$. What is the frequency of the associated waves ? [$\left.h=6.6 \times 10^{-34} \mathrm{~J} \mathrm{-s}\right]$
A. $3 \times 10^{10} \mathrm{~Hz}$
B. $1.5 \times 10^{13} \mathrm{~Hz}$
C. $4.5 \times 10^{13} \mathrm{~Hz}$
D. $6 \times 10^{10} \mathrm{~Hz}$

Answer: B

D Watch Video Solution

4. If the threshold frequency for photoemission on a metal corresponds to a wavelength $5000 \AA$, then its work function is
A. 10 J
B. $16 \times 10^{-14} \mathrm{~J}$
C. $4 \times 10^{-10} \mathrm{~J}$
D. $4 \times 10^{-19} \mathrm{~J}$

Answer: D

- Watch Video Solution

5. Photons of energy 5.5 eV are incident on a metal surface. If the stopping potential is 3 V , then the work function of the metal will be
A. 2.5 eV
B. 2 eV
C. 8.5 eV
D. 1.5 eV

Answer: A

D Watch Video Solution

6. When light of energy 2.5 eV falls on a metal
surface, the maximum K.E. of the emitted electrons is T. If the radiation of energy 4 eV is made incident on the same metal surface, the
K.E. of the electrons is doubled. What is the work function of the metal ?
A. 0.5 eV
B. 1 eV
C. 1.5 eV
D. 2 eV

Answer: B

D Watch Video Solution

7. The threshold energy of a surface is 2 eV .

When irradiated with some radiations, the stopping potential is found to be 3.6 V . The energy of the incident photon is
A. 4.48×10^{-19} J
B. 8.96×10^{-19} J
C. $15 \times 10^{-18} \mathrm{~J}$
D. $17.92 \times 10^{-19} \mathrm{~J}$

Answer: B

D Watch Video Solution
8. Sodium and copper have work functions of
2.3 eV and 4.5 eV . The ratio of their
A. 2:1
B. $1: 2$
C. $\sqrt{2}: 1$
D. 1: 4

Answer: A

D Watch Video Solution
9. The surface of a metal is illuminated with
light of wavelength 400 nm . The kinetic energy of the ejected photoelectrons was found to be 1.68 eV . What is the work function of the metal
$?[h C=1240 \mathrm{eV} \cdot n m]$
A. 3.09 eV
B. 1.41 eV
C. 1.51 eV
D. 1.68 eV
10. The current in a photocell can be just
reduced to zero by a potential of 2.5 V . The maximum kinetic energy of the emitted electrons is
A. 2 J
B. 2.5 eV
C. 4 eV
D. $4 \times 10^{-19} \mathrm{~J}$

Answer: B

- Watch Video Solution

11. A lamp is placed at a distance of 8 cm from
a photocell and the microammeter records a
current of $100 \mu A$. If the lamp is kept at a distance of 4 cm from the photocell, the photoelectric current recorded by the microammeter will be
A. $200 \mu A$
B. $400 \mu A$
C. $100 \mu A$
D. $300 \mu A$

Answer: B

D Watch Video Solution

12. The cathode of a photoelectric cell is changed such that the work function changes
from $\left(W_{1} \rightarrow W_{2}\left(W_{2}>W_{1}\right)\right.$. If the current before and after change are I_{1} and I_{2}, all
other conditions remaining unchanged, then

(assuming $h v>W_{2}$)

A. $I_{1}<I_{2}<2 I_{1}$
B. $I_{1}>I_{2}$
C. $I_{1}<I_{2}$
D. $I_{1}=I_{2}$

Answer: D
(Watch Video Solution
13. The wavelength of the photons are $4500 \AA$ and $6000 \AA$. The ratio of their energies is
A. 1:2
B. 3:4
C. $4: 3$
D. 2:5

Answer: C
14. An AIR station is broadcasting the waves of wavelength 300 metres. If the radiating power of the transmitter is $10 k W$, then the number of photons radiated per second is
A. 1.5×10^{25}
B. 1.5×10^{31}
C. 1.5×10^{33}
D. 1.5×10^{35}

Answer: B
15. For a photosensitive metal surface the graph of the stopping potential V_{0} against frequency v of the incident radiation is as shown in the figure. What is the work function of the metal ? $\left[h=6.6 \times 10^{-34} J \cdot s\right]$
A. 15.5 eV
B. 17.8 eV
C. 20.6 eV
D. 24.5 eV

Answer: C

D View Text Solution

