©゙doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MARVEL PHYSICS (HINGLISH)

ELECTROSTATICS

Mcqs

1. A plane surface of area $200 \mathrm{~cm}^{2}$ is kept in a uniform electric field of intensity $200 \mathrm{~N} / \mathrm{C}$. if the
angle between the normal to the surface and field is 60°, the electric flux through the surface is
A. $0.5 \mathrm{Nm}^{2} / C$
B. $4.5 \mathrm{Nm}^{2} / \mathrm{C}$
C. $2 N m^{2} / C$
D. $3 N m^{2} / C$

Answer: C

- Watch Video Solution

2. An electron experiences a force equal to its weight, when placed in an electric field. The intensity of the field will be
A. $10 \times 10^{-31} N / C$
B. $5.5 \times 10^{-11} \mathrm{~N} / \mathrm{C}$
C. $15 \times 10^{11} \mathrm{~N} / \mathrm{C}$
D. $2 \times 10^{-11} N / C$

Answer: B

D Watch Video Solution

3. The electric potential due to the nucleus of the hydrogen atom at a distance of $5.3 \times 10^{-11} \mathrm{~m}$ is
27.2 V . what is the potential due to the helium nucleus at the same distance?
A. 27.2 V
B. 54.4 V
C. 13.6 V
D. 27.2 V

Answer: B

- Watch Video Solution

4. Two charged particles each having a charge +q and mass m are kept at a distance d. if they are in equilibrium under the gravitational force and the
electric force between them, then the ratio $\frac{q}{m}$ or specific charge of each particle is
A. $\sqrt{\frac{4 \pi \varepsilon_{0}}{G}}$
B. $\sqrt{4 \pi \varepsilon_{0} G}$
C. $4 \pi \varepsilon_{0} G$
D. $\frac{G}{4 \pi \varepsilon_{0}}$

Answer: B
5. The force between two points charges $+q$ and $-q$, separated by a distance r is F. if one charge remains stationary while the other moves around it in a circle of radius r, then the work done is given by
A. $F \times r$
B. $F \times 2 \pi r$
C. zero
D. $F / 2 \pi r$

Answer: C
6. The electric intensity on the surface of a charged conductor of area $0.5 \mathrm{~m}^{2}$ is $200 \mathrm{~V} / \mathrm{m}$. if the electric flux is $86.6 \mathrm{Nm}^{2} / C$, then the angle between the normal drawn to the surface and the electric intensity is
A. 0°
B. 30°
C. 45°
D. 60°

- Watch Video Solution

7. A point P is at a distance r from a point charge q.
if at point P , the electric potential is 300 V , and the electric field intensity is $75 \mathrm{~V} / \mathrm{m}$, then the distance of P from the point charge is
A. 2 m
B. 4 m
C. 8 m
D. 10 m

D Watch Video Solution

8. In a region, where electric field intensity is $5 \mathrm{~N} / \mathrm{C}$, 50 electric lines of force are crossing per sq. metre.

The number of electric lines of force crossing perr sq. metre where electric field intensity is $20 \mathrm{~N} / \mathrm{C}$, will be
A. 50
B. 100
C. 200
D. 150

Answer: C

- Watch Video Solution

9. 8 equally charged drops are combined to form a big drop. If the potential on each drop is 10 V , then the potential of the big drop will be
A. 40 V
B. 30 V
C. 25 V
D. 20 V

Answer: A

- Watch Video Solution

10. A hollow insulated conducting sphere of radius

2 m , is given a charge of $5 \mu C$. What will be the electric field at the centre of the sphere?
A. $5 \mu C / m^{2}$
B. zero
C. $10 \mu C / m^{2}$

D. $20 \mu C / m^{2}$

Answer: B

- Watch Video Solution

11. A charged spherical conductor of radius R
carries a charge Q . a point charge q is placed at an outside point at a distance x from the surface of
the sphere. The force experienced by the point charge will be proportional to

$$
\text { A. } \frac{1}{x^{2}}
$$

B. $(R+x)^{2}$
C. $\frac{1}{(R+x)^{2}}$
D. $\frac{1}{(R-x)^{2}}$

Answer: C

- Watch Video Solution

12. If n drops of equal size and same potential \vee merge into a big drop, the new potential of the big
drop will be
A. $V^{n / 3}$
B. $n^{1 / 3} V$
C. $n V$
D. $n^{2 / 3} V$

Answer: D

D Watch Video Solution

13. 64 small drops of mercury each of radius r and charge q coalesce to form a big drop. The ratio of
the surface density of charge of each small drop withh that of big drop is
A. 1: 4
B. $4: 1$
C. 1: 64
D. $64: 1$

Answer: A

- Watch Video Solution

14. A hollow charged metal sphere has radius r. If
the potential difference between its surface and a
point at a distance $3 r$ from the centre is V , then electric field intensity at a distance $3 r$ is
A. $\frac{V}{2 r}$
B. $\frac{V}{4 r}$
C. $\frac{V}{6 r}$
D. $\frac{V}{8 r}$

Answer: C

D Watch Video Solution

15. The surface charge density of an irregular shaped conductor is
A. zero
B. infinity
C. constant
D. different at different points

Answer: D

- Watch Video Solution

16. If σ is the surface charge density off a charge
for a charged sphere of radius R . kept in a medium of dielectric constant K, then the electric intensity
at a distance r from its centre where $r g t R$, is $\left(\varepsilon_{0}\right.$
=permittivity of free space)
A. $\frac{\sigma r}{\varepsilon_{0} K R}$
B. $\frac{\sigma R^{2}}{\varepsilon_{0} K r^{2}}$
C. $\frac{\sigma R}{\varepsilon_{0} K r}$
D. $\frac{\sigma r^{2}}{\varepsilon_{0} K R^{2}}$

Answer: B

D Watch Video Solution

17. The potential of a sphere conductor of radius 5
cm is 10 V . what is the potential at the centre of
the sphere?
A. 2 V
B. 10 V
C. zero
D. 50 V

Answer: B

- Watch Video Solution

18. A charge $q \mu C$ is placed at the centre of a cube of a side $0.1 m$, then the electric flux diverging from each face of the cube is
A. $\frac{q \times 10^{-6}}{24 \varepsilon_{0}}$
B. $\frac{q \times 10^{-4}}{\varepsilon_{0}}$
C. $\frac{q \times 10^{-6}}{6 \varepsilon_{0}}$
D. $\frac{q \times 10^{-4}}{12 \varepsilon_{0}}$

Answer: C

- Watch Video Solution

19. Unit of electric flux is
A. $N-m / c$
B. Vm
C. $\mathrm{C} / \mathrm{N}-\mathrm{m}$
D. V / m

Answer: B

- Watch Video Solution

20. A cylinder of radius R and length I is placed in a
uniform electric field E parallel to the axis of the
cylinder. The total flux over the curved surface of the cylinder is

$$
\text { A. } \frac{\pi R^{2}}{E}
$$

B. $\frac{\pi R^{2}+\pi R^{2}}{E}$
C. zero
D. $2 \pi R^{2} E$

Answer: C

- Watch Video Solution

21. Consider the charge configuration and a spherical Gaussian surface as shown in the figure.

When calculating the flux of the electric field over
the spherical surface, the electric field will be due

A. q_{2}
B. only the positive charges
C. all the charges
D. $+q_{1}$ and $-q_{1}$

Answer: C

- Watch Video Solution

22. A square surface of side $L m$ is in the plane of the paper. A uniform electric field $\vec{E}(V / m)$, also in the plane of the paper, is limited only to the lower half of the square surface (see figure). The electric flux in $S I$ units associated with the surface
is:

A. zero
B. $E L^{2}$
C. $\frac{E L^{2}}{\left(2 \varepsilon_{0}\right)}$
D. $\frac{E L^{2}}{2}$

Answer: A
23. An electric field given by $E=2 E_{0} \vec{i}+3 E_{0} \vec{j}-5 E_{0} \vec{k}$ exists in a cerrtain region, where $E_{0}=100 N / C$. How much flux will pass through a rectangular surface of area $0.2 \mathrm{~m}^{2}$, placed in this region, in such away that it is parallel to Y -axis?
A. $20 N m^{2} / C$
B. $40 \mathrm{Nm}^{2} / \mathrm{C}$
C. $60 N m^{2} / C$
D. $80 N m^{2} / C$

Answer: C

- Watch Video Solution

24. An infinite line charge produce a field of $7.182 \times 10^{8} \mathrm{NC}^{-1}$ at a distance of 2 cm . The linear charge density is

$$
\begin{aligned}
& \text { A. } 7.98 \times 10^{-4} \mathrm{C} / \mathrm{m} \\
& \text { B. } 9.11 x 10^{-4} \mathrm{C} / \mathrm{m} \\
& \text { C. } 5.04 \times 10^{-4} \mathrm{C} / \mathrm{m} \\
& \text { D. } 6.27 \times 10^{-4} \mathrm{C} / \mathrm{m}
\end{aligned}
$$

- Watch Video Solution

25. A charge Q is situated at the corner of a cube the electric flux passed through all the six faces of the cube is :
A. $\frac{Q}{\varepsilon_{0}}$
B. $\frac{Q}{3 \varepsilon_{0}}$
C. $\frac{Q}{6 \varepsilon_{0}}$
D. $\frac{Q}{8 \varepsilon_{0}}$

D Watch Video Solution

26. The flux of the electric field due to charges
distributed in a sphere of radius 5 cm is 10 Vm .

What will be the electric flux, through a concentric
sphere of radius 10 cm ?
A. 20 Vm
B. 30 Vm
C. 5 Vm
D. 10 Vm

Answer: D

- Watch Video Solution

27. A charge of $12 \mu C$ is kept inside a closed surface. What is the flux flowing through a portion of the surface, which subtends a solid angle of π at the point where are charge is situated?

$$
\begin{aligned}
& \text { A. } \frac{6 \times 10^{-6}}{\varepsilon_{0}} \text { volt-m } \\
& \text { B. } \frac{2 \times 10^{-6}}{\varepsilon_{0}} \text { volt-m } \\
& \text { C. } \frac{3 \times 10^{-6}}{\varepsilon_{0}} \text { volt-m } \\
& \text { D. } \frac{4 \times 10^{-6}}{\varepsilon_{0}} \text { volt-m }
\end{aligned}
$$

Answer: C

- Watch Video Solution

28. Five electric dipoles having charges $+q$ and $-q$ are placed inside a cube having each side of length
l. The total electric flux coming out of the cube is given by

$$
\begin{aligned}
& \text { A. } \phi=\frac{q}{\varepsilon_{0} K} \\
& \text { B. } \phi=\frac{8 q}{\varepsilon_{0} K} \\
& \text { C. } \phi=\frac{16 q}{\varepsilon_{0} K}
\end{aligned}
$$

D. $\phi=0$

- Watch Video Solution

29. What is the SI unit of surface intergal of electric
field?
A. V
B. N/C
C. Vm
D. C / m^{2}

Answer: C

- Watch Video Solution

30. Find the electric field at the centre of a uniformly charged semicircular ring of radius R.

Linear charge density is λ
A. $\frac{\lambda}{2 \pi \varepsilon_{0} a}$
B. $\frac{\lambda}{4 \varepsilon_{0} a}$
C. $\frac{\lambda}{2 \pi \varepsilon_{0} a^{2}}$
D. $\frac{\lambda^{2}}{4 \pi \varepsilon_{0} a}$

Answer: B
31. A point charge produces an electric flux of $-1 \times 10^{3} \mathrm{Nm}^{2} / C$ to pass through a spherical gaussian surface of radius 10 cm cenred on the charge. What is the value of the point charge?

$$
\begin{aligned}
& \text { A. } 7.85 \times 10^{-6} \mathrm{C} \\
& \text { B. } 8.85 \times 10^{9} \mathrm{C} \\
& \text { C. }-8.85 \times 10^{-9} \mathrm{C} \\
& \text { D. } 4.425 \times 10^{-9} \mathrm{C}
\end{aligned}
$$

32. A point charge of $1.77 \mu C$ is at the centre of a cubical gaussian surface having each side 50 cm . what is the net electric flux through the surface?
A. $10^{5} \mathrm{Nm}^{2} \mathrm{C}^{-1}$
B. $1.5 \times 10^{5} \mathrm{Nm}^{2} \mathrm{C}^{-1}$
C. $2 \times 10^{5} \mathrm{Nm}^{2} \mathrm{C}^{-1}$
D. $2.5 \times 10^{5} \mathrm{Nm}^{2} \mathrm{C}^{-1}$

Answer: C
33. The inward annd outward electric flux from a closed surface are respectively
8×10^{3} and 4×10^{3} units. Then the net charge inside the closed surface is
A. $-\frac{4 \times 10^{3}}{\varepsilon_{0}}$ coulomb
B. $-4 \times 10^{3} \varepsilon_{0}$ coulomb
C. 4×10^{3} coulomb
D. $\frac{4 \times 10^{3}}{\varepsilon_{0}}$ coulomb

Answer: B
34. A positively charged infinitely long cylinder has
a radius of 0.1 m and surface charge density of
$8.85 \times 10^{-12} C / m^{2}$. What is the intensity of the
electric field at a point on the surface of the
cylinder, if the cylinder is kept in vacuum?
A. $0.5 \mathrm{~V} / \mathrm{m}$
B. $1 \mathrm{~V} / \mathrm{m}$
C. $1.5 \mathrm{~V} / \mathrm{m}$
D. $2 \mathrm{~V} / \mathrm{m}$

D Watch Video Solution

35. An infinitely long uniform linear charge distribution has a charge density $4 \mu C / \mathrm{m}$. what is the electric field at a point at a perpendicular distance of 3.6 cm from the line? Given:

$$
\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} N m^{2} / C^{2}
$$

A. $10^{5} \mathrm{~V} / \mathrm{m}$
B. $2 \times 10^{6} \mathrm{~V} / \mathrm{m}$
C. $10^{6} \mathrm{~V} / \mathrm{m}$
D. $2 \times 10^{5} \mathrm{~V} / \mathrm{m}$

Answer: B

- Watch Video Solution

36. A charge of $\mathrm{q} \mu C$ is placed at the centre of a cube of side 0.1 m . the electric flux diverging from each face of the cube will be

$$
\begin{aligned}
& \text { A. } \frac{q \times 10^{-6}}{\varepsilon_{0}} \mathrm{Vm} \\
& \text { B. } \frac{q \times 10^{-6}}{6 \varepsilon_{0}} \mathrm{Vm} \\
& \text { C. } \frac{6 q \times 10^{-6}}{\varepsilon_{0}} \mathrm{Vm}
\end{aligned}
$$

D. $\frac{q \times 10^{-4}}{\left(\varepsilon_{0}\right)} \mathrm{Vm}$

Answer: B

(Watch Video Solution

37. A dipole is kept in a hollow sphere of radius r.
the total electric flux leaving the spherical surface is given by

$$
\begin{aligned}
& \text { A. } \phi=\frac{q}{K \varepsilon_{0}} \\
& \text { B. } \phi=\frac{2 q}{K \varepsilon_{0}} \\
& \text { C. } \phi=\frac{8 \pi r^{2} q}{\varepsilon_{0}}
\end{aligned}
$$

D. zero

Answer: D

- Watch Video Solution

38. The electric flux for Gaussian surface A that enclose the charge particles in free space is (given

$$
\left.q_{1}=-14 n C, q_{2}=78.85 n C, q_{3}=-56 n C\right)
$$

A. $10^{3} \mathrm{Nm}^{2} / \mathrm{C}$
B. $10^{3} \mathrm{C} / \mathrm{Nm}^{2}$
C. $632 \times 10^{3} \mathrm{Nm}^{2} / C$
D. $632 \times 10^{3} \mathrm{C} / \mathrm{Nm}^{2}$

Answer: A

- Watch Video Solution

39. The magnitude of the average electric field normally present in the earth's atmosphere just above the surface of the earth is about $150 \mathrm{~N} / \mathrm{C}$, directed downward. What is surface charge density
of the earth? [Assume that the earth is a conductor having uniform surface charge density.]
A. $0.53 \times 10^{-9} C / m^{2}$
B. $1.33 \times 10^{-9} \mathrm{C} / \mathrm{m}^{2}$
C. $2.5 \times 10^{-9} C / m^{2}$
D. $8.85 \times 10^{-9} \mathrm{C} / \mathrm{m}^{2}$

Answer: B
40. An electric dipole is put in north-south direction in sphere filled with water. Which statement is correct
A. Electric flux is comingg towards the sphere
B. Electric flux is coming out of the sphere
C. Electric flux entering into the sphere and
leaving the sphere have the same magnitude
D. Water does not permit the electric flux to enter into the sphere
41. For an infinitely long metal cylinder, the radius is $3 \mathrm{~mm}, \mathrm{~K}=6.28$ annd charge density $=4 \mu \mathrm{C} / \mathrm{m}^{2}$.

What is the electric intensity (E) at a distance of 1.5
m from the axis? $\left[\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9}\right]$
A. $144 \mathrm{~N} / \mathrm{C}$
B. $160 \mathrm{~N} / \mathrm{C}$
C. 288 N/C
D. $72 \mathrm{~N} / \mathrm{C}$

- Watch Video Solution

42. The electric field intensity at point near and outside the surface of a charged conductor of any shape is E_{1} the electric field intensity due to uniformly charged infinite thin plane sheet is E_{2}
the relation between E_{1} and E_{2} is
A. $2 E_{1}=E_{2}$
B. $E_{1}=E_{2}$
C. $E_{1}=2 E_{2}$
D. $E_{1}=4 E_{2}$

Answer: C

D Watch Video Solution

43. Three charges $+5 \mathrm{C},+7 \mathrm{C}$ and -4 C are situated within a closed surface and charges $-5 \mathrm{C},-7 \mathrm{C}$ and +4 C are situated outside the surface. What is the
T.N.E.I. over the closed surface?
A. $-8 C$
B. 0
C. $+8 C$
D. $10 C$

Answer: C

- Watch Video Solution

44. The electric intensity at a pont near a charged conductor having a charge density σ is
A. $\frac{\sigma}{4 k \varepsilon_{0}}$
B. $\frac{\sigma}{2 k \varepsilon_{0}}$
C. $\frac{2 \sigma}{k \varepsilon_{0}}$
D. $\frac{\sigma}{k \varepsilon_{0}}$

- Watch Video Solution

45. Surface density of charge on a sphere of radius
R in terms of electric intensity E at a distance in
free space is
($\varepsilon_{0}=$ permittivity of free space)
A. $\varepsilon_{0} E\left(\frac{R}{r}\right)^{2}$
B. $\frac{\varepsilon_{0} E R}{r^{2}}$
C. $\varepsilon_{0}\left(\frac{r}{R}\right)^{2}$
D. $\frac{\varepsilon_{0} E r}{R^{2}}$

- Watch Video Solution

46. If the electric flux entering and leaving an enclosed surface respectively are ϕ_{1} and ϕ_{2}, the electric charge inside the surface will be
A. $\left(\phi_{2}-\phi_{1}\right) \varepsilon_{0}$
B. $\left(\phi_{2}-\phi_{1}\right) \varepsilon_{0}$
C. $\left(\phi_{2}-\phi_{1}\right) / \varepsilon_{0}$
D. $\left(\phi_{1}-\phi_{2}\right) / \varepsilon_{0}$

Answer: A
47. A charged particle q is placed at the centre O of a cube of lenngth L (ABCDEFGH). Another charge q is placed at a distance L from O. then the electric flux emerging from q at O is

A. $\frac{q}{3 \pi \varepsilon_{0} L}$

B. $\frac{q}{2 \pi \varepsilon_{0} L}$
 C. $\frac{q}{\varepsilon_{0}}$
 D. zero

Answer: C

D Watch Video Solution

48. If the earth's surface is treated as a conducting
surface with some charge , then the order of magnitude of the charge per unit area $\sigma \operatorname{in} C / m^{2}$,
so that a proton remains suspended in space near the earh's surface will be

$$
\begin{aligned}
& \text { A. } \sigma=\frac{e}{\varepsilon_{0} m g} C / m^{2} \\
& \text { В. } \sigma=\frac{\varepsilon_{0} m g}{e} C / m^{2} \\
& \text { C. } \sigma=\frac{m g}{\varepsilon_{0} e} C / m^{2} \\
& \text { D. } \sigma=\frac{\varepsilon_{0} e}{m g} C / m^{2}
\end{aligned}
$$

Answer: B

D Watch Video Solution

49. What is the flux through a cube of side ' a ' if a point charge of q is at one of its corner :
A. $\frac{2 q}{\varepsilon_{0}}$
B. $\frac{q}{8 \varepsilon_{0}}$
C. $\frac{q}{\varepsilon_{0}}$
D. $\frac{q}{2 \varepsilon_{0}} 6 a^{2}$

Answer: B

- Watch Video Solution

50. A Gaussian surface contains two charged spherical conductors -A and B , having radii of 3 mm and 2 mm respectivley. If their respective surface charge densities are $10 \mu C / m^{2}$ and $-5 \mu C / m^{2}$,
then the total normal electric induction over the

Gaussian surface will be

A. $5.8 \times 10^{-10} C$
B. $7.8 \times 10^{-10} C$
C. $8.8 \times 10^{-10} C$
D. $3.8 \times 10^{-10} C$

Answer: C
51. Electric charge is uniformly distributed along a along straight wire of radius 1 mm . The charge per centimeter length of the wire is Q coulomb.

Another cyclindrical surface of radius 50 cm and
length $1 m$ symmetrically enclose the wire ask
shown in figure. The total electric flux passing
through the cyclindrical surface is

A. $\frac{Q}{\varepsilon_{0}}$
B. $\frac{100 Q}{\varepsilon_{0}}$
C. $\frac{10 Q}{\left(\pi \varepsilon_{0}\right)}$
D. $\frac{100 Q}{\left(\pi \varepsilon_{0}\right)}$

Answer: B

- Watch Video Solution

52. The electrostatic potential inside a charged spherical ball is given by $\phi=a r^{2}+b$ where r is
the distance from the centre and a, b are constants. Then the charge density inside the ball is:
A. $-24 \pi a \varepsilon_{0} r$
B. $-6 \pi \varepsilon_{0} r$
C. $-24 \pi a \varepsilon_{0}$
D. $-6 a \varepsilon_{0}$

Answer: D

- Watch Video Solution

53. Three infinite long plane sheets carrying uniform charge densities
$\sigma_{1}=-\sigma, \sigma_{2}=+2 \sigma$ and $\sigma_{3}=3 \sigma$ are placed
parallel
to
the
X-Z
plane
at
$y=a, y=3 a$ and $y=4 a$ as shown in the figure.
What is the electric field at point ' P ' ?

A. zero
B. $-\frac{2 \sigma}{\varepsilon_{0}} \hat{j}$
C. $-\frac{3 \sigma}{\varepsilon_{0}} \hat{j}$
D. $\frac{3 \sigma}{\varepsilon_{0}} \hat{j}$

- Watch Video Solution

54. A metal plate of area $2 m^{2}$ is charged with $12 \times 10^{-6} C$. The surface surface density of charge is
A. $3 \mu C / m^{2}$
B. $4 \mu C / m^{2}$
C. $6 \mu C / m^{2}$
D. $8 \mu C / m^{2}$

Answer: C

D Watch Video Solution

55. What is the energy stored per unit volume in vacuum, where the intensity of electric field is

$$
10^{3} V / m ?\left(\varepsilon_{0}=8.85 \times 10^{-12} c^{2} / N-m^{2}\right)
$$

A. $8.85 \times 10^{-6} \mathrm{~J} / \mathrm{m}^{3}$
B. $4.425 \times 10^{-6} \mathrm{~J} / \mathrm{m}^{2}$
C. $4.425 \times 10^{-8} \mathrm{~J} / \mathrm{m}^{3}$
D. $8.85 \times 10^{-5} \mathrm{~J} / \mathrm{m}^{3}$

- Watch Video Solution

56. A metal plate of area $0.5 \mathrm{~m}^{2}$ is given a charge of $50 \mu C$, what is the charge density?
A. $10^{-3} C / m^{2}$
B. $2 \times 10^{-3} \mathrm{C} / \mathrm{m}^{2}$
C. $10^{-4} \mathrm{C} / \mathrm{m}^{2}$
D. $2 \times 10^{-4} C / m^{2}$

- Watch Video Solution

57. A metal plate of surface area $2 m^{2}$ is charged with $\sqrt{8.85 \mu C}$. What is the mechanical force acting on the plate if it is kept in air ? [

$$
\left.\varepsilon_{0}=8.85 \times 10^{-12} C^{2}\right]
$$

A. 0.5 N
B. 2 N
C. 1 N
D. 1.5 N

- Watch Video Solution

58. A uniformly charged thin spherical shell of radius R carries uniform surface charge denisty of isgma per unit area. It is made of two hemispherical shells, held together by presisng them with force F (see figure). F is proportional to

A. $\frac{1}{\varepsilon_{0}} \sigma^{2} R^{2}$
B. $\frac{1}{\varepsilon_{0}} \sigma^{2} R$
C. $\frac{1}{\varepsilon_{0}} \frac{\sigma^{2}}{R}$
D. $\frac{1}{\varepsilon_{0}} \frac{\sigma^{2}}{R^{2}}$

Answer: A

D Watch Video Solution

59. In a parallel plate capacitor, the distance between the plates is d and potential difference across the plate is V. Energy stored per unit volume between the plates of capacitor is
A. $\frac{\varepsilon_{0} V^{2}}{d^{2}}$
B. $\frac{1}{2} \frac{V^{2}}{\varepsilon_{0} d^{2}}$
C. $\frac{1}{2} \varepsilon_{0} \frac{V^{2}}{d^{2}}$
D. $\frac{Q^{2}}{2 V^{2}}$

Answer: C

D Watch Video Solution

60. When a condenser of capacitor C is givenn a charge Q, the P.D. across its plates is V. the diemnsional formula for QV is
A. $M^{1} L^{1} T^{-1}$
B. $M^{1} L^{2} T^{-2}$
C. $M^{2} L^{-2} T^{2}$
D. $M^{1} L^{1} T^{-2}$

Answer: B

(Watch Video Solution

61. A sheet of copper is inserted in the air gap of a parallel plate capacitor, without touching any of the two plates of the capacitor. The capacitance of the capacitor is
A. maximum when the sheet is mid way between the plates
B. maximum when the sheet is just near the positive plates
C. maximum when the sheet is just near the negative plate
D. invariant for all positions of the sheet

Answer: D
62. A condenser has a capacity of $2 \mu F$ and is cahrged to a potential of 50 V . the energy stored in it is
A. $25 \times 10 \mathrm{erg}$
B. $25 \times 10^{3} \mathrm{erg}$
C. $25 \times 10^{5} \mathrm{erg}$
D. 25 J

Answer: B

- Watch Video Solution

63. A condenser charged to a potential of 200 V ,
has the energy of 1 joule. The capacity of the condenser is
A. $25 \mu F$
B. $50 \mu F$
C. $75 \mu F$
D. $30 \mu F$

Answer: B
64. A $100 \mu F$ capacitor is to have an energy content of 50 J to operate a flash bulb. The voltage required to charge the capacitor is
A. 1000 V
B. 2000 V
C. 500 V
D. 250 V

Answer: A

- Watch Video Solution

65. A parallel plate air capacitor has plates of area $0.5 \mathrm{~m}^{2}$ and plate separation of 2 cm . if $\varepsilon_{0}=8.8 \times 10^{-12} C^{2} / N-m^{2} \quad$ then the
capacitance of the capacitor is
A. $1.1 \times 10^{-10} F$
B. $3.3 \times 10^{-10} F$
C. $2.2 \times 10^{-10} F$
D. $4.4 \times 10^{-10} F$

Answer: C
66. A conductor, when given a charge of 5×10^{-3}

C, acquires a potential of 500 V . the capacity of the conductor is
A. $5 \mu F$
B. $10 \mu F$
C. $15 \mu F$
D. $20 \mu F$

Answer: B

- Watch Video Solution

67. A parallel plate air condenser of capacity $4 \mu F$ is charged to a potential of 1000 V . the energy of the condenser is
A. 1 joule
B. 4 joule
C. 6 joule
D. 2 joule

Answer: D

- Watch Video Solution

68. A parallel plate capacitor is to be prepared by
using plates of the same area, of one of the
dielectric given below:

Which dielectric gives the maximum capacitance?
A. Mica
B. Teflon
C. Glass
D. Quartz

- Watch Video Solution

69. If the energy stored in a condenser of capacity $8 \mu F$ is 4 J , what is the cahrge on the condenser?
A. $2 \times 10^{-3} C$
B. $4 \times 10^{-3} C$
C. $6 \times 10^{-3} C$
D. $8 \times 10^{-3} C$

Answer: D
70. A condenser of capacity $40 \mu F$ is cahrged to a potential of 1 KV . What is the work done in raising the potential ?
A. 5 J
B. 10 J
C. 20 J
D. 30 J

Answer: C

- Watch Video Solution

71. The plates of a parallel plate capacitor of capacity C_{1} are moved closer together until they are half their original separation. What is the new capacitance?
A. $C_{2}=C_{1}$
B. $C_{2}=2 C_{1}$
C. $C_{2}=\frac{C_{1}}{2}$
D. $C_{2}=3 C$

Answer: B
72. A parallel plate capacitor has a capacity C. if a thin metal plate (M) joins the two coatings A and B off the capacitor, its new capacitance is

A. 2 C
B. C/2
C. zero
D. infinity

Answer: D

- View Text Solution

73. A parallel plate capcitance of $4 \mu F$ is having a charge of 0.5 C . What will be its capacity if the charge is increased to 1 coulomb?
A. $8 \mu F$
B. $4 \mu F$
C. $2 \mu F$
D. $16 \mu F$

Answer: B

- Watch Video Solution

74. if the capacity of a spherrical conductor is $1 \mu F$,
the diameter of the conductor will be
A. $1.2 \times 10^{4} m$
B. $1.8 \times 10^{4} m$
C. $2.4 \times 10^{4} m$
D. $3 \times 10^{4} m$

- Watch Video Solution

75. There is an air filled 1 pF parallel plate capacitor.

When the plate separation is doubled and the space is filled with wax, the capacitance increases to $2 p F$. The dielectric constant of wax is
A. 8
B. 6
C. 4
D. 2

Answer: C

- Watch Video Solution

76. A condenser is charged through a P.D. of 100 volts and acquires a charge of 0.1 C . when discharged, it would release an energy
A. 1 J
B. 2 J
C. 5 J
D. 10 J

Answer: C

- Watch Video Solution

77. What is the capacity of earth? (radius of the earth $\left.=6400 K m, 4 \pi \varepsilon_{0}=\frac{1}{9 \times 10^{9}}\right)$
A. $71.1 \mu F$
B. $711 \mu F$
C. $7 F$
D. $71 F$

- Watch Video Solution

78. In a parallel plate capacitor, the distance between the plates is d and potential difference across the plate is V. Energy stored per unit volume between the plates of capacitor is
A. $\frac{1}{2} \varepsilon_{0} \frac{V^{2}}{x^{2}}$
B. $\frac{1}{2} \varepsilon_{0} \frac{V^{2}}{x^{2}}$
C. $\frac{1}{2} \varepsilon_{0} \frac{V}{x}$
D. $\frac{1}{2} \varepsilon_{0} \frac{x^{2}}{V^{2}}$

D Watch Video Solution

79. M and N are the plates of unequal areas of a parallel plate capacitor. Let A_{1} and A_{2} be the areas of M and N . let $A_{1}>A_{2}, \mathrm{M}$ and N are connected to the +eve and -we terminals of a battery. If Q^{+}and Q^{-}are the charges on the plates M and N respectively, then
A. $Q^{+}>Q^{-}$
B. $Q^{+}<Q^{-}$
C. $Q^{+}=Q^{-}$
D. Q^{+}very large and Q^{-}is negligible

Answer: C

- Watch Video Solution

80. A $4 \mu F$ capacitor is charged to 4000 V , if the plates joined through a resistanceof $4 K \omega$, then the heat produced in the resistance will be
A. 0.08 J
B. 0.16 J
C. 0.32 J
D. 0.4 J

Answer: C

- Watch Video Solution

81. The potentials of the two plates of capacitor are +10 V and -10 V . The charge on one of the plate is $40 C$. The capacitance of the capacitor is
A. $4 \mu F$
B. $2 \mu F$
C. $0.5 F$
D. $0.4 F$

Answer: B

- Watch Video Solution

82. A parallel plate air capacitor is charged to a potential difference of V volts. After disconnecting the charging battery the distance between the plates of the capacitor is increased using an isulating handle. As a result the potential difference between the plates
A. $\frac{V}{\sqrt{3}}$
B. 3 V
C. $\frac{V}{3}$
D. $\sqrt{3} V$

Answer: B

D Watch Video Solution

83. The capacity of a paralel plate condenser is
$12 \mu F$. What is its new capacity if the separation
between the plates is doubled and the area is halved?
A. $1.5 \mu F$
B. $3 \mu F$
C. $6 \mu F$
D. $8 \mu F$

Answer: B

- Watch Video Solution

84. A capacitor of capacitance $20 \mu F$ is cahrged to

10 V . what will be the increase in its potential energy if the potential difference is incrased from 10 V to 20 V ?
A. $3 \times 10^{-4} J$
B. $3 \times 10^{-3} J$
C. $15 \times 10^{-3} J$
D. $25 \times 10^{-4} J$

Answer: B

D Watch Video Solution
85. A 80 pF capacitor is charged to 15 V by connecting it to a battery. How many electrons are transferred from one plate to another?
A. 7.5×10^{9}
B. 6×10^{9}
C. 5×10^{8}
D. 9×10^{8}

Answer: A

- Watch Video Solution

86. What potential difference should be applied to
$2 \mu F$ capacitor to get an energy of 10^{-2} joule?
B. 50 V
C. 75 V
D. 100 V

Answer: D

- Watch Video Solution

87. 8 drops of Hg are combined to form a single big
drop. What is the ratio of the capacitance of a
single small drop and that of the single big drop?
A. $1: 2$
B. $1: 8$
C. $8: 1$
D. None of these

Answer: A

D Watch Video Solution

88. If the circumference of a sphere is 2 m , then
capacitance of sphere in water would be
A. $2700 p F$
B. 2760 pF
C. 2780 pF
D. 2830 pF

Answer: D

- Watch Video Solution

89. A $500 \mu F$ uncharged capacitor is cahrged at a steady rate of $100 \mu C$ second.t he potential difference across the capacitor will be 10 V after time t equal to
A. 5 sec
B. 25 sec
C. 20 sec
D. 50 sec

Answer: D

- Watch Video Solution

90. The capacitance of a metallic sphere will be $1 \mu F$, if its radius is nearly
A. 9 km
B. 10 m

C. 1.11 m

D. 1.11 cm

Answer: A

- Watch Video Solution

91. A parallel plate capacitor having a plate
separation of 2 mm is charged by connecting it to a $300 v$ supply. The energy density is
A. $0.01 \mathrm{~J} / \mathrm{m}^{3}$
B. $0.1 \mathrm{~J} / \mathrm{m}^{2}$
C. $1.0 \mathrm{~J} / \mathrm{m}^{3}$
D. $10 \mathrm{~J} / \mathrm{m}^{3}$

Answer: B

- Watch Video Solution

92. A capacitor is used to store 24 watt hour of enegy at 1200 volt. What should be the capacitance of the capacitor?
A. $120 m F$
B. $120 \mu F$
C. $24 \mu F$
D. $24 m F$

Answer: A

- Watch Video Solution

93. A parallel plate capacitor has an electric field of $10^{5} \mathrm{~V} / \mathrm{m}$ between the plates. If the charge on the
capacitor plate is $1 \mu C$, the force on each capacitor plate is
A. 0.5 N
B. 0.05 N
C. 0.005 N
D. 5 N

Answer: B

- Watch Video Solution

94. Which one of the following is known as an electrical energy tank?
A. Resistor
B. Inductor
C. Capacitor
D. Transistor

Answer: C

D Watch Video Solution

95. A parallel plate capacitor having a capacitance
of $4 \mu F$ has a charge of $1 \mu F$ on its plates. If the
charge on the plates is increased to $2 \mu F$, then the new capacitance of the capacitor will be
A. $8 \mu F$
B. $2 \mu F$
C. $4 \mu F$
D. $6 \mu F$

Answer: C

D Watch Video Solution

96. Three charges $+5 \mathrm{C},+7 \mathrm{~V}$ and -4 C are situated
within a closed surface and charges $-5 \mathrm{C},-7 \mathrm{C}$ and
+4 C are situated outisde the surace what is the
T.N.E.I. over the closed surface?
A. $-8 C$
B. 0
C. $+8 C$
D. $10 C$

Answer: C

- Watch Video Solution

97. The charge on a $48 \mu F$ capacitor is increased from 0.1 C to 0.5 C. the enerrgy stored in the capacitor increases by
A. 250 J
B. 2500 J
C. $2.5 \times 10^{6} J$
D. $2.42 \times 10^{-6} J$

Answer: B

(Watch Video Solution

98. A.P.D. of V volts is applied across the plates of a parallel plate capacitor having plate area A. if Q is the charge on its plates and K is the dielectric
constant of the medium, between the plates, then the plate separation is given by
A. $d=A K \varepsilon_{0} V / Q$
B. $d=K \varepsilon_{0} V / Q$
C. $d=A K \varepsilon_{0} Q / V$
D. $d=K \varepsilon_{0} Q / V$

Answer: A
99. The magnitude of electric field \vec{E} in the annular region of a charged cylindrical capacitor.
A. is same throughout
B. is higher near the outer cylinder than near
the inner cylinder
C. varies as $1 / r$ where r is distance from the axis
D. varies as $1 / r^{2}$ where r is distance from the
axis

Answer: C

100. What is the capacitance of a spherical conductor with radius 1 m ?
A. $10^{-6} F$
B. $10^{-3} F$
C. $1.1 \times 10^{-10} F$
D. $9 \times 10^{-9} F$

Answer: C

D Watch Video Solution
101. Consider the situation shown in the figure. The
capacitor A has a charge q on it whereas B is uncharged. The charge appearing on the capacitor B a long 7 time after the switch is closed is :

A. zero
B. $\frac{q}{2}$
C. q
D. $2 q$

Answer: A

D Watch Video Solution

102. A capacitor is charged by connecting a battery
across its plates. It stores energy U. now the battery is disconnected and another identical
capacitor is connected across it. What will be the energy stored by both capacitors of the system?

$$
\text { A. } \frac{U}{2}
$$

B. $2 U$
C. $\frac{3}{2} U$
D. U

Answer: A

D Watch Video Solution

103. A parallel plate condenser with oil (dielectric constant 2) between the plates has capacitance C.

If oil is removed, the capacitance of capacitor becomes
A. $\frac{C}{2}$
B. $\frac{C}{\sqrt{2}}$
C. $2 C$
D. $\sqrt{2 C}$

Answer: A

D Watch Video Solution

104. The capacity of a parallel plate condenser can
be increased by
A. decreasing the area of the plates
B. increasing the area of the plates
C. increasing the distance between plates
D. decreasing dielectric constant of the medium

Answer: B

D Watch Video Solution

105. A 700 pF capacitor is charged by a 50 V
battery. The electrostatic energy stored it is
A. $13.6 \times 10^{-9} J$
B. $17.0 \times 10^{-8} \mathrm{~J}$
C. $8.7 \times 10^{-7} J$
D. $9.5 \times 10^{-9} J$

Answer: C

- Watch Video Solution

106. If the distance between the plates of parallel plate capacitor is halved and the dielectric constant of dielectric is doubled, then its capacity will
A. increase by 2 times
B. remain the sae
C. increase by 4 times
D. increase by 16 times

Answer: C

D Watch Video Solution

107. A paralel plate capacitory has each plate of ara
$A=10 \mathrm{sq} . \mathrm{cm}$. it is given a charge of 1 C . as one of the plates was slightly damaged it was cut annd the plate area was reduced to $5 \mathrm{sq} . \mathrm{cm}$. the quantity of charge on each plate will
A. increase
B. decrease
C. remain constant
D. be doubled

Answer: C

- Watch Video Solution

108. A parallel plate capacitor has a capacitance of

60 PF, when the plates of the capacitor and separated by a distance d. if a metal plate of
thickness $t=\frac{d}{3}$ is introduced between the plates, the capacitance will be
A. 60 PF
B. 40 PF
C. 90 PF
D. 75 PF

Answer: C

- Watch Video Solution

109. The work done in placing a charge of $8 \mu C$ on a condenser of capacity $100 \mu F$ is
A. $16 \times 10^{-5} J$
B. $32 \times 10^{-6} J$
C. $3.2 \times 10^{-4} J$
D. $16 \times 10^{-4} J$

Answer: C

- Watch Video Solution

110. A capacitor is charged to a potential difference

of 100 V and is then connected across a resistor.
The potential difference across the capacitor decays exponentially with respect to time. After 1 sec, the P.D. between the plates of the capacitor is 80 V . what will be the potential difference between the plates after 2 sec ?
A. 32 V
B. 48 V
C. 64 V
D. 70 V

Answer: C

D Watch Video Solution

111. A $40 \mu F$ capacitor in a medical instrument is charged to 300 V . the energy stored in the
capacitor is sent through patient's brain during a pulse of duration 2 millisecond. What is the power delivered to the brain of the putient ?
A. 500 W
B. 600 W
C. 750 W
D. 900 W

Answer: D

- Watch Video Solution

112. The distance between the circular plates of a parallel plate condenser 40 mm in diameter, in order to have same capacity as a sphere of radius 1 m is
A. 0.01 mm
B. 0.1 mm
C. 1.0 mm
D. 10 mm

Answer: B

D Watch Video Solution

113. Two spherical conductors each of capacity C are charged to potetnial V and $-V$. These are then conneted by means of a fine wire. The loss of energy will be

$$
\text { A. } \frac{1}{2} C V^{2}
$$

B. zero
C. $C V^{2}$
D. $2 C V^{2}$

Answer: C

D Watch Video Solution

114. The energy stored in a condenser of capacity
$10 \mu F$, charged to 6 kV is used to lift a body of mass of 10 gm . What is the height to 2hich the body can be raised? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. 180 m
B. 18 m
C. 1.8 m
D. 1800 m

Answer: D

- Watch Video Solution

115. A capacitor of capacity $10 \mu F$ is charged to a potential of 10000 V and a wire is stretched by 0.2
m by a force of 5000 N . the ratio of the potential energies stored in them will be
A. 1
B. 500
C. 0.002
D. 0.0001

Answer: A

D Watch Video Solution

116. A battery is used to charge a parallel plate capacitor till the potential differece between the plates becomes equal to the electromotive force of
the battery. The ratio of the energy stored in the capacitor and the work done by the battery will be
A. 1
B. $\frac{1}{2}$
C. 2
D. $\frac{1}{4}$

Answer: B

117. A fully charged capacitor has a capacitance ' C '.

It is discharged through a small coil of resistance wire embedded in a thermally insulated block of specific heat capacity 's' and mass ' m '. If the temperature of the block is raised by 'DeltaT', the potential difference ' V ' across the capacitance is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{2 m C \Delta T}{s}} \\
& \text { B. } \frac{m C \Delta T}{s} \\
& \text { C. } \sqrt{\frac{2 m s \Delta T}{C}} \\
& \text { D. } \frac{m s \Delta T}{C}
\end{aligned}
$$

118. In the given circuit diagram, in the steady state
the current through the battery and the charge on
the capacitor respectively are

A. 2 A and $3 \mu C$
B. 11 A and $3 \mu C$
C. $\frac{6}{11} A$ and $\frac{12}{7} \mu C$
D. zero ampere and $3 \mu F$

Answer: B

- Watch Video Solution

119. The capacitance of a variable capacitor cann be changed from $50 \mu F$ to $400 \mu F$ by turning the knob from 0° to 180° on a calibrated semicircular dial.

When the knob is set at 180°, the capacitor is connected to a 100 V battery. When it is fully charged, the battery is disconnected and the knob
is brought back to 0°. what is the P.D. across the capacitor when the knob is at 0°.
A. 700 V
B. 750 V
C. 800 V
D. 850 V

Answer: C
120. A parallel plate4 capacitor is cahrged and the charging battery is then disconnected. If the plates of the capacitor are moved further apart by means
of insulation handles, then which one of the following statements is wrong?
A. The electrostatic energy stored in the
capacitor increases
B. The capacitance decreases
C. the cahrge on the capacitor increases
D. The voltage across the plates increases

- Watch Video Solution

121. Two conducting spheres of radii r_{1} and r_{2}
having charges Q_{1} and Q_{2} respectively are connected to each other. There is
A. No change in the energy of the system
B. An increase in the energy of the system
C. Always a decreases in the energy of the
system
D. A decrease in the energy of the system
unless $Q_{1} R_{2}=Q_{2} R_{1}$.

- Watch Video Solution

122. If the charge on a capacitorn is increased by

2 C , then the energy stored in it increases by 20%.
The original charge on the capacitor is
A. 10 C
B. 20 C
C. 30 C
D. 40 C

D Watch Video Solution

123. The capacitance of a parallel plate capacitor with air as the medium is $3 \mu F$. With the introduction of dielectric medium between the plates, the capacitance becomes $15 \mu F$. What is the permittivity of the medium?
$\left(\varepsilon_{0}=8.85 \times 10^{-12} C^{2} / N m^{2}\right)$
A. 5
B. 15
C. $0.44 \times 10^{-10} C^{2} N^{-1} m^{-2}$
D. $8.854 \times 10^{-11} C^{2} N^{-1} m^{-2}$

Answer: C

D Watch Video Solution

124. The capacitance of a capacitor made by a thin metal foil is $2 \mu F$. If the foil is filled with paperr of thickness 0.15 mm , dielectric constant of paper is
2.5 and width of the paper is 400 mm . what is the length of foil?
A. 8.5 m
B. 13 m
C. 3.4 m
D. 34 m

Answer: D

- Watch Video Solution

125. A parallel plate capacitor is connected to a
battery. The plates are pulled apart with uniform
speed. If x is the separation between the plates,
then the rate of change of electrostatic energy of the capacitor is proportional to
A. x^{-2}
B. x
C. x^{-1}
D. x^{2}

Answer: A
126. The plates of a capacitor are charged to a potential difference of 320 volt and are then connected across a resistor. The potential difference across the capacitor decays exponentially with time. After 1 sec the potential difference between the plates of the capacitor is

240 volts. what is the potential difference between the plates after 2 s ?
A. 200 V
B. 180 V
C. 160 V
D. 140 V

- Watch Video Solution

127. For the circuit shown in the figrue which one of the following statements is true?

A. With S_{1} and S_{2} closed $V_{1}=V_{2}=0$
B. With
S_{1} and S_{3}
closed

$$
V_{1}=30 \mathrm{~V} \text { and } V_{2}=20 \mathrm{~V}
$$

C. with S_{1} closed $V_{1}=15 \mathrm{~V}, V_{2}=20 \mathrm{~V}$
D. With S_{3} closed $V_{1}=V_{2}-25 \mathrm{~V}$

Answer: B

D View Text Solution

> 128. $\begin{aligned} & \text { In } \\ & \text { the }\end{aligned}$ given
> $E=10 V, r=1 \Omega, R_{1}=1 \Omega, R_{3}, R_{2}=4 \Omega, C=3 \mu F$

What is the magnitude of the charge on each plate

A. $18 \mu C$
B. $12 \mu C$
C. $6 \mu C$
D. $3 \mu C$

Answer: B
129. A sheet of aluminium foil of negligible thickness is introduced between the plates of a capacitor. The capacitance of the capacitor
A. the samme
B. doubled
C. half
D. K times

Answer: A
130. Two spherical conductors A and B of radii 1 mm
and 2 mm are separated by a distance of 5 cm and are uniformly charged. If the spheres are connected by a conducting wire then in equilibrium condition, the ratio of the magnitude of the electric fields at the surfaces of spheres A and B is
A. $4: 1$
B. 1:2
C. 2:1
D. 1: 4

Answer: C

- Watch Video Solution

131. Force of attraction between the plates of a parallel plate capacitor is
A. $\frac{q^{2}}{\varepsilon_{0} A K}$
B. $\frac{q^{2}}{2 \varepsilon_{0} A K}$
C. $\frac{q^{2}}{2 \varepsilon_{0} A}$
D. $\frac{q^{2}}{2 \varepsilon_{0} A^{2} K}$

D Watch Video Solution

132. A dielectric slab of thickness d is inserted in a parallel plate capacitor whose negative plate is at $x=0$ and positive plate is at $x=3 d$. The slab is equidistant from the plates. The capacitor is given some charge. As one goes from 0 to $3 d(1998)$.
A. the magnitude of the electric field remains the same
B. the direction of the electric field changes

continuously

C. the electric potential increases continuously
D. the electric potential increases at first, then decreases and again increases

Answer: C

- Watch Video Solution

133. A parallel plate air capacitor of capacitance C
is connected to a cell of $e m F V$ and then
disconnected from it. A dielectric slab of dielectric constant K, which can just fill the air gap of the capacitor, is now inserted in it. Which of the following is incorrect ?
A. The energy stored in the capacitor decreases

K times
B.the change in energy stored is

$$
\frac{1}{2} C V^{2}\left(\frac{1}{K}-1\right)
$$

C. The charge on the capacitor is not conserved
D. the potential difference between the plates decreases K times

Answer: C

D Watch Video Solution

134. When a dielectric material is introduced between the plates of a charged condenser, after disconnected the battery the electric field between the plates
A. decreases
B. remains constant
C. increases
D. first increases and then decreases

- Watch Video Solution

135. The capacitance of a parallel plate air condenser is $10 \mu F$. When the space between the plates is filled with a liquid of dielectric constant K , the potential difference between the plates reduces to $1 / 5$ of the original value. The value of the dielectric constant of the liquid is
A. 2
B. 5
C. 10
D. 8

Answer: B

- Watch Video Solution

136. The capacitance of a parallel plate condenser with a separation of 4 mm between the plates is $7 \mu F$. If a mica sheet ($\mathrm{K}=6$) of thickness 2 mm and of the same area is introduced betwenn the plates, its capacitance will be
A. $6 \mu F$
B. $9 \mu F$
C. $12 \mu F$
D. $15 \mu F$

Answer: C

- Watch Video Solution

137. The capacitance of a capacitor between $4 / 3$ times its original value if a dielectric slab of thickness $t=d / 2$ is inserted between the plates
(d is the separation between the plates). What is the dielectric consant of the slab?
A. 2
B. 4
C. 5
D. 6

Answer: A
138. The capacity of a parallel plate condenserr is
$5 m F$. When a glas plate is introduced between the plates of the condenser, its potential difference reduces to $(1 / 8)$ th of the original value. The value of the dielectric constant of glass is
A. 6
B. 8
C. 4
D. 10

Answer: B
139. The separation between the plates of a parallel plate capacitor is d and the area of each plate is A. iff a dielectric slab of thickness x and dielectric constant K is introduced between the plates, then the capacitance will be

$$
\begin{aligned}
& \text { A. } \frac{\varepsilon_{0} A}{d-x\left(1-\frac{1}{K}\right)} \\
& \text { B. } \frac{\varepsilon_{0} A}{d+x\left(1-\frac{1}{K}\right)} \\
& \text { C. } \frac{\varepsilon_{0} A}{d+x\left(1+\frac{1}{K}\right)} \\
& \text { D. } \frac{\varepsilon_{0} A}{d-x\left(1+\frac{2}{K}\right)}
\end{aligned}
$$

- Watch Video Solution

140. An air capacitor is charged to a potential of 150 V and then the charging battery is disconnected. If the space between the plates is then completely filled with a material of dielectric constant 10 , then the potential between the plates will become
A. 5 V
B. 10 V
C. 15 V
D. 20 V

Answer: C

- Watch Video Solution

141. A metel plate of thickness 2 cm is introduced between the plates of a parallel plate air capacitor having a plate separation of 6 cm . what is the ratio of the capacities of the capacitor before and after introducing the metal plate?
A. $1: 2$
B. 2:3
C. 3:2
D. $2: 1$

Answer: B

- Watch Video Solution

142. A parallel plate capacitor with oil as a dielectric between the plates has a capacitance C. if the oil, with dielectric constannt $(\mathrm{K}=3)$, is
removed, then the capacitance of the capacitor will
be
A. $3 C$
B. $\frac{C}{\sqrt{3}}$
C. $\frac{C}{3}$
D. $\sqrt{3} C$

Answer: C
143. The capacities of a parallel plate capacitor first with air and then on introducing oil between its plates are $50 \mu F$ and $120 \mu F$ respectively. The dielectric constant of oil is
A. 2
B. 4.2
C. 2.4
D. 0.48

Answer: C
144. Two capacities plates equal and opposite charges. When the space between the plates is evacuated, the electric field between the plates is
$5 \times 10^{5} \mathrm{v} / \mathrm{m}$. when the space between the plates is
filled with a dielectric, the electric field becomes
$2 \times 10^{5} \mathrm{v} / \mathrm{m}$. what is the dielectric constant os the dielectric material?
A. 2
B. 3
C. 3.5
D. 2.5

- Watch Video Solution

145. If a dielectric slab of thickness 5 mm and dielectric constant $\mathrm{K}=6$ is introduced between the plates of a parallel plate air capacitor, with plate separation of 8 mm , then its capacitance is
A. 1. decreased
B. 2. unaffected
C. 3. almost halved
D. 4. almost doubled

- Watch Video Solution

146. There is an airfilled capacitor of capacity C. when the plate separation is doubled and a dielectric is introduced between the plates, the
capacitance becomes 2 C. the dielectric constant of the dielectric is
A. 2
B. 4
C. 6
D. 8

Answer: B

- Watch Video Solution

147. Between the plates of a parallel plate
capacitor of capacity C, two parallel plates of the same material and same area as the plates of the original capacitor are placed. If the thickness of each plate $=\frac{1}{5}$ the distance between the plates of the original capacitor, then the capacity of the new capacitor will be
A. a) $\frac{3}{5}$ C
B. b) $\frac{5}{3}$ C
C. c) $\frac{10}{3} C$
D. d) $\frac{5}{4}$ C

Answer: B

(D) Watch Video Solution

148. The terminals of a battery of emf V are connected to the two plates of a parallel plate capacitor. If the space between the plates of the
capacitor is filled with an insulator of dielectric constant K, then :
A. is less
B. is more
C. is the same
D. may be more or less depending upon the dielectric constant of the medium

Answer: B
149. When a dielectric is introduced between the plates of a charged parallel plate capacitor, whichi one of the following will not change?
A. 1.Charge
B. 2. Potential difference
C. 3. Electric field
D. 4. Energy

Answer: A

- Watch Video Solution

150. The capacitance of a capacitor becomes $\frac{7}{6}$ times its original value if a dielectric slab of thickness $t=\frac{2}{3}$ is introduced between its plates, where d is the separation between its plates, what is the dielectric constant of the slab?
A. a) $\frac{14}{11}$
B. b) $\frac{11}{7}$
C. c) $\frac{11}{14}$
D. d) $\frac{7}{11}$

Answer: A

151. A parallel state air capacitor has capacitance of
$100 \mu F$. The plates are at a distance d apart. If a slab of thickness $\mathrm{t}(t \leq d)$ and dielectric constant

5 is introduced between the parallel plates, then the capacitance can be
A. $50 \mu F$
B. $100 \mu F$
C. $200 \mu F$
D. $500 \mu F$
152. A parallel plate air capacitor has a capacitance
C. When it is half filled with a dielectric of dielectric
constant 5, the percentage increase in the
capacitance will be
A. 4
B. 0.666
C. 0.333
D. 200

- Watch Video Solution

153. In a parallel plate capacitor, the separation between the plates is 3 mm with air between them. Now a 1 mm thick layer of a material of dielectric constant 2 is introduced between the plates due to which the capacity increases. In order to bring its capacity of the original value, the separation between the plates must be made-
A. 4.5 mm
B. 3.5 mm
C. 2.5 mm

D. 1.5 mm

Answer: B

- Watch Video Solution

154. A parallel plate condenser with a dielectric of dielectric constant K between the plates has a capacity C and is charged to a potential V volt. The dielectric slab is slowly removed from between the plates and then reinserted. The net work done by the system in this process is

$$
\text { A. }(K-1) C V^{2}
$$

B. zero

$$
\begin{aligned}
& \text { C. } \frac{C V^{2}(K-1)}{K} \\
& \text { D. } \frac{(K-1) C V^{2}}{2}
\end{aligned}
$$

Answer: B

- Watch Video Solution

155. A parallel plate air capacitor is connected to a battery. The quantities charge, voltage, electric field and energy associated with this capacitor are given by Q_{0}, V_{0}, E_{0} and U_{0} respectively. A dielectric slab is now introduced to fill the space
between the plates with battery still in connection.
The corresponding quantities now given by $\mathrm{Q}, \mathrm{V}, \mathrm{E}$ and U are related to the previous one as
A. $V>V_{0}$
B. $U<U_{0}$
C. $Q>Q_{0}$
D. $E>E_{0}$

Answer: C

- Watch Video Solution

156. The capacitance of a parallel plate capacitor with air as medium is $3 \mu F$. With the introduction of a dielectric medium between the plates, the capacitance becomes $15 \mu F$. What is the permittivity of the medium?

$$
\left(\varepsilon_{0}=8.85 \times 10^{-12} C^{2} / N m^{2}\right)
$$

A. $5 C^{2} N / m^{2}$
B. $15 C^{2} N / m^{2}$
C. $0.44 \times 10^{-10} C^{2} N / m^{2}$
D. $8.854 \times 10^{-11} C^{2} N / m^{2}$

- Watch Video Solution

157. Two capacitors each of value C are connected in parallel. When this combination is connected in series with an identical combination, the effective capacitance becomes:
A. 4 C
B. 2 C
C. C/2
D. C

- Watch Video Solution

158. Five capacitors each of capacity C are joined as shown in the following figure. If theire resultant capacity $C_{R}=2 \mu F$, then the capacity of each capacitor is

A. $5 \mu F$
B. $20 \mu F$
C. $10 \mu F$
D. $4 \mu F$

Answer: C

- Watch Video Solution

159. Five identical condensers, each of capacity C are connected as shown in the figure

the equivalent capacitance between P and R is
A. C/2
B. C
C. 2C
D. 3C

Answer: B
160. You are given three condensers, each of capacitance $30 \mu F$ and a battery of emmf 200 V . they can be joined in series or in parallel. Which arrangement of the condensers will give the minimum energy?
A. All in series
B. All in parallel
C. Two in series and the third in parallel
D. Two in parallel and the third in series

D Watch Video Solution

161. Four metallic plates each of area A and separted from one another by a distance d are arranged as shown in the figure. What is the capacitance between X and Y ?

$$
\text { A. } C=\frac{\varepsilon_{0} A}{d}
$$

B. $C=\frac{4 \varepsilon_{0} A}{d}$
C. $C=\frac{2 \varepsilon_{0} A}{d}$
D. $C=\frac{3 \varepsilon_{0} A}{d}$

Answer: C

(D) Watch Video Solution

162. Five capacitors each of capacitance $20 \mu F$ are joined as shown in the figure. The equivalent
capacitance between A and C is

A. $10 \mu F$
B. $20 \mu F$
C. $30 \mu F$
D. $40 \mu F$

Answer: B
163. Two capacitors of capacitance $2 \mu F$ and $4 \mu F$ respectively are charged to a potential of 12 V . they are now connected to each other, with the positive plate of each joined to the negative plate of the other. The potential difference across each capacitor will be
A. 2 V
B. 3 V
C. 4 V
D. 6 V

Answer: C

- Watch Video Solution

164. What is the capacitance between the points P
and Q in the following combination of capacitors?

A. $9 \mu F$
B. $4.5 \mu F$
C. $2 \mu F$
D. $1 \mu F$

Answer: D

- Watch Video Solution

165. What is the net capacitance between the points A and B for the following arrangement of
the three capacitors?

A. $\frac{7}{3} \mu F$
B. $\frac{11}{3} \mu F$
C. $\frac{5}{3} \mu F$
D. $\frac{13}{3} \mu F$

- Watch Video Solution

166. if two capacitors of capacities
$C_{1}=4 \mu F$ and $C_{2}=1 \mu F$ are connected in series, the ratio of the potential drops across the capacitors C_{1} and C_{2} is
A. 1: 4
B. $4: 1$
C. 1:2
D. $2: 1$

- Watch Video Solution

167.

Three
capacitors
of
capacities
$12 \mu F, 6 \mu F$ and $4 \mu F$ are connected in series and a potential difference of 20 V is applied to their combination. What is the cahrge on the capacitor of $4 \mu F$?
A. $20 \mu C$
B. $40 \mu C$
C. $30 \mu C$
D. $50 \mu C$

Answer: B

- Watch Video Solution

168. Two capacitors of equal capacities are connected in parallel. Let C_{1} bet their resultant
capacity. If they are connected in series, then their resultant capacity will be
A. $4 C_{1}$
B. $2 C_{1}$
C. $\frac{C_{1}}{2}$
D. $\frac{C_{1}}{4}$

Answer: D

- Watch Video Solution

169. A capacitor or capacitance C_{1} is charge to a potential V and then connected in parallel to an uncharged capacitor of capacitance C_{2}. The fianl potential difference across each capacitor will be
A. $\frac{C_{1} V}{C_{1}+C_{2}}$
B. $\frac{C_{2} V}{C_{1}+C_{2}}$
C. $\frac{C_{1}+C_{2}}{C_{1} V}$
D. $\frac{C_{1}+C_{2}}{C_{2} V}$

Answer: A

- Watch Video Solution

170. If there are n capacitors each of capacitance C in series combination connected to a V volt source, then the energy stored in each capacitor is equal to :
A. $n C V^{2}$
B. $\frac{1}{2} n C V^{2}$
C. $\frac{1}{4} n C V^{2}$
D. $\frac{1}{2 n} C V^{2}$

Answer: D

D Watch Video Solution

171. Five equal capacitors connected in series have a resultant capacity of $5 \mu F$. What is their resultant capacity if they are connected in parallel?
A. $50 \mu F$
B. $75 \mu F$
C. $100 \mu F$
D. $125 \mu F$

Answer: D

- Watch Video Solution

172. 4 capacitors each of capacity $2 \mu F$ are joined as shown in the figure. What is the capacity
between the points A and B.

A. $\frac{1}{2} \mu F$
B. $\frac{2}{9} \mu F$
C. $\frac{4}{5} \mu F$
D. $\frac{7}{9} \mu F$

- Watch Video Solution

173. Minimum number of capacitors of $2 \mu F$ capacitance each required to obtain a capacitor of
$5 \mu F$ will be
A. 3
B. 4
C. 5
D. 6

Answer: B
174. Three equal condenser joined in parallel and connected to a cell of 2 volt battery have a charge of $1.8 \mu C$. What charge would they have if they are joined in series?
A. $1.2 \mu C$
B. $0.5 \mu C$
C. $0.2 \mu C$
D. $0.1 \mu C$
175. Three capacitors each of capacity C are first joined in parallel and then in series. It is found that the difference in their effective capacities when joined in parallel and series respectively is $16 \mu F$. What is the capacitance of each capacitor?
A. $3 \mu F$
B. $4 \mu F$
C. $5 \mu F$
D. $6 \mu F$

Answer: D

- Watch Video Solution

176. Two idential capacitors are joined in parallel, charged to a potential V and then separated and then connected in series i.e. the positive plate of one is connected to negative of the other
A. 10 V
B. 20 V
C. 40 V
D. 15 V

Answer: C

- Watch Video Solution

177. In which one of the following devices
(machines), corona discharge is used?
A. 1.Transformer
B. 2. Cyclotron
C. 3.Van de Graaff Generator
D. 4. Ballastic Galvanometer

- Watch Video Solution

178. A capacitor of $20 \mu F$ charged upto 500 V is connected in parallel with another capacitor of $10 \mu F$, which is charged upto 200 V . the common potential is
A. 200 V
B. 300 V
C. 400 V
D. 500 V
179. A capacitor of capacitance $4 \mu F$ is charged to a potential of 100 V . it is then disconnected from the battery and connected in parallel with another capacitor C_{2}. If their common potential is 40 volts,
then the value of C_{2} is
A. $2 \mu F$
B. $3 \mu F$
C. $5 \mu F$
D. $6 \mu F$

- Watch Video Solution

180. A $5 \mu F$ capacitor is placed across a 12 V
battery. It is disconnected from the battery and connected across a condenser of unknown capacity. The voltage then is found to be 3 V . The value of the unknownn capacity is
A. $5 \mu F$
B. $10 \mu F$
C. $15 \mu F$
D. $20 \mu F$

Answer: C

- Watch Video Solution

181. Van der Graafff electrostatic generator is based on
A. 1. Phenomenon of corona discharge only
B. 2. charge always resides on the outer surface

of a hollow conductor

C. 3. Colomb's law
D. d. both (a) and (b)

Answer: D

- Watch Video Solution

182. Three condensers each of capacity C are joined
first in series and then in parallel. If the capacity
becomes n times in the second case, what is the
value of n ?
A. 12
B. 9
C. 6
D. 3

Answer: B

- Watch Video Solution

183. Two capacitors A and B are connected in
series with a battery as shown in the figure. When
the switch S is closed and the two capacitors get
charged fully, then

A. the ratio of electrical energies stored in A
and B is 2:3
B. the potential difference across the plates of
A is 6 V and across the plates of B is $4 V$
C. the ratio of charge on A and B is 3:2
D. the potential difference across the plates of

A is 4 V and across the plates of B is 6 V

Answer: B

D Watch Video Solution

184. A $10 \mu F$ capacitor is charged to a potential difference of 50 V and is connected to another uncharged capacitor in parallel. Now the common potential difference becomes 20 volt. The capacitance of second capacitor is
A. $30 \mu F$
B. $20 \mu F$
C. $15 \mu F$
D. $10 \mu F$

Answer: C

(D) Watch Video Solution

185. A capacitor of $20 \mu F$ is charged to 500 volts and connected in parallel ith another capacitor of $10 \mu F$ and charged to 200 volts. The common potential is
A. 500 V
B. 300 V
C. 400 V
D. 200 V

Answer: C

D Watch Video Solution

186. Two capacitors having capacitances C_{1} and C_{2}
are charged with 120 V and 200 V batteries
respectively. When they are connected in parallel
now, it is found that the potential on each one of them is zero. Then,
A. $9 C_{1}=4 C_{2}$
B. $5 C_{1}=3 C_{2}$
C. $3 C_{1}=5 C_{2}$
D. $5 C_{1}=-3 C_{2}$

Answer: C
187. Four identical capacitors are connected such that, three capacitors are in parallel to which the fourth capacitor is connected in series. The effective capacity is $3.75 \mu F$. What is the value of each capacitor?
A. $3 \mu F$
B. $4 \mu F$
C. $5 \mu F$
D. $6 \mu F$

Answer: C
188. The combined capacity of the parallel combination of two capacitors is four times their combined capacity when connected in series. This means that
A. $2 \mu F$ and $4 \mu F$
B. equal
C. $1 \mu F$ and $2 \mu F$
D. $5 \mu F$ and $10 \mu F$

Answer: B
189. Four metallic plates each of surface area A and separated from one another by a distance d are arranged as shown in the figure. The capacitance between the points X and Y is

A. $\frac{4 \varepsilon_{0} A}{d}$
B. $\frac{3 \varepsilon_{0} A}{d}$
C. $\frac{2 \varepsilon_{0} A}{d}$
D. $\frac{\varepsilon_{0} A}{2 d}$

Answer: B

- Watch Video Solution

190. The difference in the effective capacities of two similar capacitors when joined in series and then in parallel is $6 \mu F$. The capacity of each capacitor is
A. $2 \mu F$
B. $4 \mu F$
C. $8 \mu F$
D. $16 \mu F$

Answer: B

- Watch Video Solution

191. A capacitor $C_{1}=4 \mu F$ is connected in series with another capaciitor $C_{2}=1 \mu F$. The combination is connected across a.d.c. source of 200 V . the ratio of potential across C_{2} to C_{2} is
A. $2: 1$
B. $4: 1$
C. $8: 1$
D. $16: 1$

Answer: B

- Watch Video Solution

192. In the following figure, what is the cahrge on
the $1.5 \mu F$ capacitor?

A. $30 \mu C$
B. $120 \mu C$
C. $90 \mu C$
D. $60 \mu C$

Answer: B
193. Two identical capacitors are first connected in series and then in parallel. The difference between
their effective capacities is $3 \mu F$. The capacity of each capacitor is
A. $3 \mu F$
B. $4 \mu E$
C. $2 \mu F$
D. $5 \mu E$

Answer: C
194. 4 capacitors each of capacity $10 \mu F$ are connected in a circuit as shown in figure.

The effective capacitance between the points A and B is
A. $5 \mu F$
B. $10 \mu F$
C. $\frac{10}{3} \mu F$
D. $\frac{20}{3} \mu F$

Answer: B

D View Text Solution

195. The effective capacitance between the points X and Y is

(all capacitor are of $4 \mu F$)
A. $1 \mu F$
B. $2 \mu F$
C. $3 \mu F$
D. $4 \mu F$

Answer: D
196. n capacitors each of capacity C are joined in parallel. If they are connected to a source of V volts, then the energy stored in the capacitor is
A. $C V^{2}$
B. $\frac{1}{2 n} C V^{2}$
C. $\frac{1}{2} n C V^{2}$
D. $\frac{1}{2} \frac{n}{C} V^{2}$

Answer: C

D Watch Video Solution
197. Four charged capacitors each of capacitannce
$5 \mu F$ are connected as shown in the figure. What is
the charge on each capacitor if the voltmeter reads 10 V ?

A. $25 \mu C$
B. $40 \mu C$
C. $50 \mu C$
D. $60 \mu C$

Answer: C

- Watch Video Solution

198. A network of four capacitors of capacity equal to $C_{1}=C, C_{2}=2 C, C_{3}=3 C$ and $C_{4}=4 C$ are connected to a battery as shown in the figure. The
ratio o the charges on C_{2} an C_{4} is

A. $\frac{4}{7}$
B. $\frac{3}{22}$
C. $\frac{7}{4}$
D. $\frac{22}{3}$

D Watch Video Solution

199. Two capacitors of capacitances C_{1} and C_{2} are connected in parallel. If a charge q is given to the assembly, the charge gets shared. The ratio of the charge on the capacitor C_{1} to the charge on C_{2} is
A. $\frac{C_{1}}{C_{2}}$
B. $\frac{C_{2}}{C_{1}}$
C. $C_{1} C_{2}$
D. $\frac{1}{C_{1} C_{2}}$

- Watch Video Solution

200. Two air capacitors A and B having capacities 1
μF and $4 \mu F$ respectively are connected in series
with a 35 V source. A medium of dielectric constant
$\mathrm{K}=3$ is introduced in between the plates of A . what
is the change in the charge on the combined
capacitor?
A. $60 \mu C$
B. $32 \mu C$
C. $28 \mu C$
D. $16 \mu C$

Answer: B

D Watch Video Solution

201. n idential condenser are joined in parallel and are charged tpo potential V. Now they are separted and joined in series. Then the total energy and potential difference of the combination will be
A. Energy and potential difference remain the same
B. Energy remainsi the same and potential difference becomes nV
C. Energy increases n times and potential difference is nV
D. Energy increases n times and potential
difference remains the same

Answer: B

202. A series combination of n_{1} capacitors, each of
value C_{1}, is charged by a source of potential difference $4 V$. When another parallel combination of n_{2} capacitors, each of value C_{2}, is charged by a source of potential difference V, it has same
(total) energy stored in it, as the first combination has. the value of C_{2}, in terms of C_{1}, is then

$$
\begin{aligned}
& \text { A. } \frac{2 C_{1}}{n_{1} n_{2}} \\
& \text { B. } \frac{16 C_{1}}{n_{1} n_{2}} \\
& \text { C. } \frac{n_{1} n_{2}}{16 C_{1}} \\
& \text { D. } 2 \frac{n_{2}}{n_{1}} C_{1}
\end{aligned}
$$

- Watch Video Solution

203. Three capacitors are connected in the arms of a triangle ABC as shown in the figure. A P.D of 5 V is applied between A and B. what is the voltage
between B and C ?

A. 2 V
B. $1 V$
C. 3V
D. 1.5 V

Answer: A

D View Text Solution

204. What is the potential difference between A and B in the following circuit?

A. 13.2 V

B. -13.2 V

C. $-6 V$
D. 6 V

Answer: C

D Watch Video Solution

205. Two parallel plate capacitors of capacitances C
and 2C are connected in parallel and charged to a potential difference V. The battery is then
disconnected and the region between the plates of
the capacitor C is completely filled with a material
of dielectric constant K. The potential differences across the capacitors now becomes.
A. $\frac{3 V}{K+2}$
B. $\frac{3 V}{K}$
c. $\frac{V}{K+2}$
D. $\frac{V}{K}$

Answer: A
206. Condenser A has a capacity of $15 \mu F$ when it is filled with a medium of dielectric constant 15 .

Another condenser B has a capacity $1 \mu F$ with air between the plates. Both are charged separately by a battery of 100 V . After charging, both are connected in parallel without the battery and the dielectric material being removed. The common potential now is
A. 400 V
B. 800 V
C. 1200 V
D. 1600 V

D Watch Video Solution

207. The following arrangement consists of four plates each of area A. the separation between the consecutive plates is d . what is the ratio of the effective capacitance between P and Q as shown in
figures (1) and (2).

Fig. (2)
A. 1
B. $\frac{2}{3}$
C. $\frac{3}{2}$
D. $\frac{4}{3}$

Answer: C

- Watch Video Solution

208. Two parallel plate capacitors of capacitances C and 2C are connected in parallel and charged to a potential difference V. The battery is then disconnected and the region between the plates of the capacitor C is completely filled with a material of dielectric constant K. The potential differences across the capacitors now becomes.

$$
\text { A. } \frac{3 V}{K+2}
$$

B. $\frac{2 U}{K+2}$
c. $\frac{3 U}{K+3}$
D. $\frac{U}{K+1}$

Answer: A

D Watch Video Solution

209. Two condenser, one of capacity C and the other of capacity $\frac{C}{2}$, are connected to a V volt battery, as shown in figure. The work done in
charging fully both the condensers is

A. $\frac{3}{4} C V^{2}$
B. $2 C V^{2}$
C. $\frac{1}{4} C V^{2}$
D. $\frac{1}{2} C V^{2}$

Answer: A
210. A particle of mass m and charge q is placed at rest in a uniform electric field E and then released, the kinetic energy attained by the particle after moving a distance y will be
A. $q E y^{2}$
B. $q E^{2} y$
C. $q E y$
D. $q^{2} E y$

Answer: C
211. Van de Graff generator produces
A. 1. high voltage and high current
B. 2.high voltage and low current
C. 3.low voltage and high current
D. 4. low voltage and low current

Answer: B

- Watch Video Solution

212. A parallel combination of $0.1 M \Omega$ resistor and
a $10 \mu F$ capacitor is connected across a 1.5 V source of negligible resistance. The time (in sec) required for the capacitor to get charged upto
0.75 V is approximately
A. $\log _{2} 2$
B. ∞
C. zero
D. $\log _{10} 2$

Answer: C
213. A uniform electric field pointing in positive x direction exists in a region. Let A be the origin, B be the point on the x -axis at $x=+1 \mathrm{~cm}$ and C be the point on the y-axis at $y=+1 \mathrm{~cm}$. then the potetial at the points A, B and C satisfy
a. $V_{A}<V_{B}$, b. $V_{A}>V_{B}$ c. $V_{A}<V_{C}$ d. $V_{A}>V_{C}$
A. $V_{A}<V_{B}$
B. $V_{A}>V_{B}$
C. $V_{A}<V_{C}$
D. $V_{A}>V_{C}$

- Watch Video Solution

214. a quantity X is given by $\varepsilon_{0} L \frac{\Delta V}{\Delta t}$ where ϵ_{0} is the permittivity of the free space, L is a length,
ΔV is a potential difference and Δt is a time interval. The dimensinal formula for X is the same as that of
A. charge
B. voltage
C. current
D. Resistance

Answer: C

- Watch Video Solution

215. Two small balls having equal poistive charges

Q(coulomb) on each are suspended by two insulating strings of equal length L (metre) from a hook fixed to a stand. The whole set up is taken in a satellite into space where there is no gravity (state of weightlessness). The angle between the
two strings is...............and the tenison in each string is newtons.

$$
\begin{aligned}
& \text { A. } 180^{\circ}, \frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{(2 l)^{2}} N \\
& \text { B. } 90^{\circ}, \frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{l^{2}} N \\
& \text { C. } 180^{\circ}, \frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{2 l^{2}} N \\
& \text { D. } 180^{\circ}, \frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{l^{2}} N
\end{aligned}
$$

Answer: A

- Watch Video Solution

216. What physical quantities may X and Y represent ? (Y represents the first mentioned quantity)

A. Pressure v / s temperature of a given gas
(constant volume)
B. Kinetic energy v / s velocity of a particle
C. Capacitance v / s charge to give a constant potential
D. Potential v / s capacitance to give a constant charge

Answer: D

D View Text Solution

217. Between the plates of a parallel plate capacitor a dielectric plate in introduced just to fill the
complete space between the plates. The capacitor is charged and later disconnected from the battery. The dielectric plate is then slowly drawn out of the capacitor plates. the plot of the potential difference across the plates and the length of the dielectric plate drawn out is
(1)

(2)

(3)

(4)

A. Figure 4
B. figure 3
C. figure 2
D. figure 1

Answer: C

- Watch Video Solution

218. Which one of the following graphs represents,
variation of the electric field strength E with
distance r from the centre of a charged conducting
sphere?
(1)

(2)

(3)

(4)

A. Figure 2
B. figure 3
C. Figure 4
D. Figure 1

Answer: D
219. The electric field intensity in free space at a distance ' r ' outside a charged conducting sphere of radius ' R ' in terms of surface charge density σ is
A. $\frac{\sigma}{\varepsilon_{0}}\left[\frac{R}{r}\right]^{2}$
B. $\frac{\varepsilon_{0}}{\sigma}\left[\frac{R}{r}\right]^{2}$
C. $\frac{R}{r}\left[\frac{\sigma}{\varepsilon_{0}}\right]^{2}$
D. $\frac{R}{\sigma}\left[\frac{r}{\varepsilon_{0}}\right]^{2}$

Answer: A
220. The intensity of the electric field at a pont close but outside a charged conducting cylinder is proportional to (r is the distance of the point from the axis of the cylinder)

$$
\begin{aligned}
& \text { A. } \frac{1}{r} \\
& \text { B. } \frac{1}{r^{2}} \\
& \text { C. } \frac{1}{r^{3}} \\
& \text { D. } r^{3}
\end{aligned}
$$

Answer: A
221. Two parallel plates separated by distance d are kept at potential difference V volt. A charge q of mass m enters in parallel plates with some velocity.

The acceleration of the charge particle will be

$$
\begin{aligned}
& \text { A. } \frac{q V}{d m} \\
& \text { B. } \frac{d m}{q V} \\
& \text { C. } \frac{q m}{d V} \\
& \text { D. } \frac{d V}{q m}
\end{aligned}
$$

222. Electrostatic enegy of $3.5 \times 10^{-4} \mathrm{~J}$ is stored in a capacitor of 700 V . what is the charge on the capacitor?
A. $5 \mu C$
B. $4 \mu C$
C. $1 \mu C$
D. $8 \mu C$

Answer: C
223. The energy density at a point in a medium of dielectric constant 6 is $26.55 \times 10^{6} \mathrm{~J} / \mathrm{m}^{3}$. What is the electric field intensity at that point ? $\left[\varepsilon_{0}=8.85 \times 10^{-12} S I\right.$ units $]$
A. $2 \times 10^{8} N / C$
B. $10^{9} \mathrm{~N} / \mathrm{C}$
C. $3 \times 10^{9} N / C$
D. $\sqrt{10^{9} N / C}$

Answer: B
224. A network of 4 capacitors, each of $6 \mu F$ is connected to a 240 V supply as shown in the figure. What are the charges on the capacitor C_{2} and C_{4} ?

A. 1.44 mC and 0.48 mC
B. 0.48 mC and 1.44 mC

C. 14.4 mC and 4.8 mC

D. 4.8 mC and 14.4 mC

Answer: B

- Watch Video Solution

225. Six capacitors of capacities
$5 \mu F, 5 \mu F, 5 \mu F, 5 \mu F, 10 \mu F$ and $\quad \mathrm{X} \quad \mu F$ are
connected in a network as shown in the figure.

What is the value of X if the network is balanced?

A. $20 \mu F$
B. $15 \mu F$
C. $10 \mu F$
D. $5 \mu F$

Answer: C

- Watch Video Solution

226. Three parallel plate air capacitors are
connected in parallel each capacitor has plate area
' A '
$\frac{A}{3}$ and the separation between the plates is ' d ',
'2d' and '3d' respectively. The equivalaent capacity
of combination is ($\varepsilon_{0}=$ absolute permittivity of free
space).

$$
\begin{aligned}
& \text { A. } \frac{7 \varepsilon_{0} A}{18 d} \\
& \text { B. } \frac{11 \varepsilon_{0} A}{18 d}
\end{aligned}
$$

C. $\frac{13 \varepsilon_{0} A}{18 d}$
D. $\frac{17 \varepsilon_{0} A}{18 d}$

Answer: B

- Watch Video Solution

227. Two identical parallel plate air capacitors are
connected in series to a battery of emf V . If one of
the capacitor is completely filled with dielectric material of constant K, then potential difference of the other capacitor will become
A. $\frac{K}{V(K+1)}$
B. $\frac{K V}{K+1}$
c. $\frac{K-1}{K V}$
D. $\frac{V}{K(K+1)}$

Answer: B

- Watch Video Solution

228. The amount of work done in increasing the voltage across the plates of capacitor from 5 V to 10 V is W . The work done in increasing it from 10 V to 15 V will be
A. W
B. 0.6 W
C. 1.25 W
D. 1.67 W

Answer: D

- Watch Video Solution

229. When threee capacitors of equal capacities are connected in parallel and one of the same capacity is connected in series withs its
combination . The resultant capacity is $3.75 \mu F$.
The capacity of each capacitor is
A. $5 \mu F$
B. $6 \mu F$
C. $7 \mu F$
D. $8 \mu F$

Answer: A
230. Two parallel plate air capacitance of same capacity C are connected in series to a battery of emf E . Then one of the capacitors is completely filled with dielectric material of constant K. The change in the effective capacity of the series combination is

$$
\begin{aligned}
& \text { A. } \frac{C}{2}\left[\frac{K-1}{K+1}\right] \\
& \text { B. } \frac{2}{C}\left[\frac{K-1}{K+1}\right] \\
& \text { C. } \frac{C}{2}\left[\frac{K+1}{K-1}\right] \\
& \text { D. } \frac{C}{2}\left[\frac{K-1}{K+1}\right]^{2}
\end{aligned}
$$

231. A parallel plate air capacity ' C ' farad, potential
'V' volt and energy ' E ' joule . When the gap between the plates is completely filled with dielectric
A. both V and E increase
B. both V and E decrease
C. V decreases, E increases
D. V increases, E decreases

D Watch Video Solution

Test Your Grasp

1. A surface $S=10 \hat{j}$ is kept in an electric field of
$\vec{E}=3 \hat{i}+5 \hat{j}+6 \hat{k}$. How much electric flux will
come out through the surface?
A. 30 units
B. 40 units
C. 50 units
D. 60 units

Answer: C

- Watch Video Solution

2. The voltage of clouds is $4 \times 10^{6} V$ with respect to ground. In a lightning strike lasting 0.1 s , a charge of 4 C is delivered to the ground. The power of the lightning strike is
A. 160 MW
B. 80 MW
C. 20 MW
D. 500 MW

Answer: A

- Watch Video Solution

3. What is T.N.E.I. through the surface A and B ?

A. $(q, 0)$
B. $(q, 2 q)$
C. $(-q,+q)$
D. $(0, q)$

Answer: D

- View Text Solution

4. An infinite line charge produces an electric field of $9 \times 10^{4} \mathrm{~N} / C$ at a distance of 2 cm . what is the
linear charge density?
A. $10^{-5} C / m$
B. $10^{-6} C / m$
C. $10^{-7} C / m$
D. $10^{-8} C / m$

Answer: C

D Watch Video Solution

5. A charge Q is enclosed by a Gaussian spherical surface of radius R. If the radius is doubled, then the outward electric flux will
A. be doubled
B. increase four times
C. be reduced to halff
D. remain the same

Answer: D

- Watch Video Solution

6. A capacitor of capacitance C is charged to a potential V. The flux of the electric field through a closed surface enclosing the capacitor is

$$
\text { A. } \frac{C V}{\varepsilon_{0}}
$$

B. $\frac{2 C V}{\varepsilon_{0}}$
C. $\frac{C V}{2 \varepsilon_{0}}$
D. zero
S_{1} and S_{2} ?

A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. $\frac{2}{5}$
D. $\frac{4}{3}$

Answer: C

- Watch Video Solution

8. The electric field in a region is radially outward with magnitude $E=A \gamma_{0}$. The charge contained in a sphere of radius γ_{0} centered at the origin is
A. $\frac{1}{4 \pi \varepsilon_{0}} A r_{0}^{3}$
B. $4 \pi \varepsilon_{0} A r_{0}^{3}$
C. $\frac{4 \pi \varepsilon_{0} A}{r_{0}}$
D. $\frac{1}{4 \pi \varepsilon_{0}} \frac{A}{r_{0}^{3}}$

- Watch Video Solution

9. The energy density in an electric field of intensity $100 \mathrm{~V} / \mathrm{m}$ is
A. $8.85 \times 10^{-8} \mathrm{~J} / \mathrm{m}^{3}$
B. $4.425 \times 10^{-8} \mathrm{~J} / \mathrm{m}^{3}$
C. $8.85 \times 10^{-6} \mathrm{~J} / \mathrm{m}^{3}$
D. $4.425 \times 10^{-10} \mathrm{~J} / \mathrm{m}^{3}$

- Watch Video Solution

10. The potential difference between the plates of a parallel plate condenser having a capacity of $10 \mu F$, is increased from 5 V to 25 V . the increase in its energy is
A. $3 \times 10^{-3} J$
B. $4 \times 10^{-3} J$
C. $5 \times 10^{-3} J$
D. $2 \times 10^{-3} J$

- Watch Video Solution

11. Eight drops of mercury of equal radii and possessing equal charges combine to form a single big drop. The ratio of the capacitance of the big drop to the capacity of a single drop is
A. 1:1
B. 2:1
C. 3:1
D. $4: 1$

- Watch Video Solution

12. A parallel plate air capacitor has a capacity of 2 pF . If the separation between its plates is doubled and a mica sheet is introduced between its plates, its capacity becomes 6 pF . What is the dielectric constant of mica?
A. 6
B. 5
C. 4
D. 3

- Watch Video Solution

13. The earth has volume ' V ' and surface area ' A '.

What is the capacitance of the earth?
A. $4 \pi \varepsilon_{0} \frac{A}{V}$
B. $4 \pi \varepsilon_{0} \frac{V}{A}$
C. $12 \pi \varepsilon_{0} \frac{V}{A}$
D. $12 \pi \varepsilon_{0} \frac{A}{V}$

- Watch Video Solution

14. The capacity of a parallel plate condenser with dielectric constant 10 is $16 \times 10^{-6} F$. If the dielectric is removed, then the new capacity will be
A. $1.6 \times 10^{-6} F$
B. $3.2 \times 10^{-6} F$
C. $0.8 \times 10^{-6} F$
D. $2 \times 10^{-6} F$

Answer: A

15. A sheet of aluminium foil of negligible thickness

is introduced between the plates of a capacitor.
The capacitance of the capacitor
A. become infinite
B. increases
C. decreases
D. remain unchanged

Answer: D

D Watch Video Solution
16. If C_{S} and C_{P} are the equivalent capacities of n identical condensers joined in series and in parallel respectively, then the ratio $\frac{C_{P}}{C_{S}}$ is
A. 1.n
B. 2. n^{2}
C. 3. $\frac{1}{n^{2}}$
D. 4. $\frac{n+1}{n}$

Answer: B

- Watch Video Solution

17. A network of capacitors is as shown in the diagram.

What is the equivalent capacitance between the points A and D ?

$$
\begin{aligned}
& \text { A. } C=3 \mu F \\
& \text { B. } C=4 \mu F \\
& \text { C. } C=2 \mu F \\
& \text { D. } C=5 \mu F
\end{aligned}
$$

- Watch Video Solution

18. The equivalent capacitance between the points
P and Q in the following arrangement of capacitor
is

A. $4 \mu F$
B. $2 \mu F$
C. $\frac{4}{3} \mu F$
D. $12 \mu F$

Answer: D

- Watch Video Solution

19. A parallel plate capacitor is made by stacking n equally spaced plates connected alternatively. If the capacitance between any two adjacent plates is ' C ' then the resultant capacitance is
A. nC
B. C
C. $(n+1)$ C
D. $(\mathrm{n}-1) \mathrm{C}$

Answer: D

- Watch Video Solution

20. The graph between the voltage and charrge of
a capacitor is as shown in the figure. The area of
the triangle OAB given the

A. Capacitance
B. Magnetic flux
C. Energy stored in the capacitor
D. Capacitive reactance

Answer: C

- Watch Video Solution

