©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MARVEL PHYSICS (HINGLISH)

INTERFERENCE AND DIFFRACTION

Mcqs

1. The optical path difference between two
identical light waves arriving at a point is 31.5
λ, where λ is the wavelength of light. The point is
A. Bright
B. Dark
C. Alternatively bright and dark
D. Neither bright nor dark

Answer: B
(Watch Video Solution
2. The distance of a point on a screen from two coherent light sources differs by 93 wavelengths. If the path difference is 0.0465 mm , then the wavelength of light used is
A. $4000 \AA$
B. $4500 \AA$
C. $5000 \AA$
D. $7500 \AA$

Answer: C
3. The displacement of two interfering light
waves are given by

$$
y_{1}=3 \sin \omega t, y_{2}=4 \sin (\omega t+\pi / 2) . \quad \text { The }
$$

amplitude of the resultant wave is
A. 3
B. 5
C. zero
D. one

Answer: B

- Watch Video Solution

4. The displacement of two coherent light

$$
\begin{aligned}
& \text { waves are } \quad \text { given } \\
& y_{1}=a_{1} \cos \omega t \text { and } y_{2}=a_{2} \cos (\pi / 2-\omega t) \text {. }
\end{aligned}
$$

The resultant intensity is given by
A. $a_{1}-a_{2}$
B. $a_{1}+a_{2}$
C. $\left(a_{1}^{2}+a_{2}^{2}\right)$

$$
\text { D. }\left(a_{1}^{2}-a_{2}^{2}\right)
$$

Answer: C

D Watch Video Solution

5. Two coherent sources of wavelength
$4.8 \times 10^{-7} \mathrm{~m} \mathrm{~m}$ produce steady interference
pattern. The path difference corresponding to

10th order maximum will be

$$
\text { A. } 12 \times 10^{-6} m
$$

$$
\text { B. } 4.8 \times 10^{-8} \mathrm{~m}
$$

C. $24 \times 10^{-7} m$
D. $4.8 \times 10^{-6} \mathrm{~m}$

Answer: D

- Watch Video Solution

6. Four independent waves are expressed as
$y_{1}=a_{1} \sin \omega t$. $y_{2}=a_{2} \sin 2 \omega t$,
$y_{3}=a_{3} \cos \omega t$,
$y_{4}=a_{4} \sin (\omega t+\pi / 3)$.

A steady interference patternn cann be otained by using
A. y_{1} and y_{3}
B. y_{1} and y_{4}
C. y_{3} and y_{4}
D. not possible at all

Answer: D

- Watch Video Solution

7. If the ratio of the intensities of two waves
producing interference is $9: 4$, then the ratio of
the resultant maximum and minimum intensities will be
A. $3: 2$
B. 4:9
C. 25:1
D. 5:1

Answer: C

8. Two monochromatic sources of light A and B of wavelengths $5500 \AA$ and $4400 \AA$ respectively are used simultanesouly to produce interference bands on a screen. Which orders of the fringes in the two interference patterns will coincide?
A. $5^{\text {th }}$ order of A and 3 rd order of B
B. 10th order of A and 8 th order of B
C. 8th order of A and 10th order of B

D. 4th order of A and 6th order of B

Answer: C

D Watch Video Solution

9. If the ratio of the amplitudes of two interfering wave is $4: 3$, then the ratio of the maximumum and minimum intensities in the interference pattern is
A. $9: 16$
B. 16: 9
C. $49: 1$
D. 1: 49

Answer: C

D Watch Video Solution
10. The amplitude ratio of two superposing
waves 3:1. what is the ratio of the maximum and minimum intensities?
A. $1: 1$
B. $9: 1$
C. $4: 1$
D. 3:1

Answer: C

D Watch Video Solution

11. Two waves gives by $y_{1}=10 \sin \omega t \mathrm{~cm}$ and $y_{2}=10 \sin \left(\omega t+\frac{\pi}{3}\right) \mathrm{cm}$ are superimposed. What is the amplitude of the resultannt wave?
A. 10 cm
B. $10 \sqrt{2} \mathrm{~cm}$
C. $5 \sqrt{3} \mathrm{~cm}$
D. $10 \sqrt{3} \mathrm{~cm}$

Answer: D

D Watch Video Solution

12. The optical path difference between two waves starting from a monochromatic source of light is $(100.5) \lambda$. If the path difference
between the waves is 60.3 micron, the wavelength of light used is
A. $4000 \AA$
B. $4500 \AA$
C. $6000 \AA$
D. $5550 \AA$

Answer: C

D Watch Video Solution
13. If two waves represented by $y_{1}=4 \sin \omega t$
and $y_{2}=3 \sin \left(\omega t+\frac{\pi}{3}\right)$ interfere at a point
find out the amplitude of the resulting wave
A. 7
B. 6
C. 5
D. 3.5

Answer: B

D Watch Video Solution
14. Two coherent sources of intensities I_{1} and
I_{2} produce an interference pattern. The maximum intensity in the interference pattern will be
A. $I_{1}+I_{2}$
B. $I_{1}^{2}+I_{2}^{2}$
C. $\left(I_{1}+I_{2}\right)^{2}$
D. $\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}$

Answer: D

15. An interference pattern has maximum and
minimum intensities in the ratio of $36: 1$, what
is the ratio of theire amplitudes?
A. 5: 7
B. 7: 4
C. $4: 7$
D. $7: 5$

Answer: D
16. Find the wrong option from the following.

Two beams of light will give rise to an interference pattern. If they are
A. coherent
B. having the same wavelength
C. linearly polarised perrpendicular to each
other
D. monochromatic

Answer: C

- Watch Video Solution

17. Two light waves of amplitudes A_{1} and A_{2}
superimpose with each other such that
$A_{1}>A_{2}$. The difference between maximum and minimum amplitudes is
A. $A_{1}-A_{2}$
B. $2 A_{2}$
C. $2 A_{1}$

D. $A_{1}+A_{2}$

Answer: B

D Watch Video Solution

18. To deminstrate the phenimenon of
interference, we require two sources which emit radiation
A. the samme frequency and having a definite phase relationship
B. different wavelength
C. the samme frequency
D. nearly the same frequency

Answer: A

D Watch Video Solution

19. The disntances of poinnt on the screen

$$
\begin{array}{lcc}
\text { from two } & \text { slits } & \text { are } \\
1.8 \times 10^{-5} m & \text { and } 1.23 \times 10^{-5} m . & \text { If the }
\end{array}
$$

wavelength of light used is $6000 \AA$, then the
number of bright or dark band formed at that point is
A. 10th dark
B. 10th bright
C. 8th dark
D. 9th bright

Answer: A

D Watch Video Solution
20. In Young's double slit experiment, a minimum is obtained when the phase difference of super imposing waves is
A. $n \pi$
B. $(2 n-1) \pi$
C. 0
D. $(n+1) \pi$

Answer: B

D Watch Video Solution
21. In Young's double slit experiment carried out with light of wavelength $\lambda=5000 \AA$, the distance between the slits is 0.2 mm and screen is 2.0 m away from the slits. The central maximum is at $n=0$. the third maximum will be formed at a distance x (from the central maxima) equal to
A. 0.5 cm
B. 1.67 cm
C. 1.5 cm

D. 5 cm

Answer: C

D Watch Video Solution

22. Two waves of equal amplitude and frequency interfere each other. The ratio of intensity when the two waves arrive in phase to that when they arrive 90° out of phase is
A. $1: 1$
B. $\sqrt{2}: 1$
C. $4: 1$
D. 2:1

Answer: D

D Watch Video Solution

23. The optical path difference between two identical light waves arriving at a point (P) on the screen is $27 \times 10^{-7} \mathrm{~m}$. For P to be a dark point, the wavelength of light used should be
A. $3000 \AA$
B. $4000 \AA$
C. $5000 \AA$
D. $6000 \AA$

Answer: D

D Watch Video Solution

24. Light from two coherent sources of the same amplitude A and wavelength λ
illuminates the screen. The intensity of the
central maximum is I_{0}. If the sources were incoherent, the intensity at the same point will be
A. $\frac{I_{0}}{2}$
B. I_{0}
C. $2 I_{0}$
D. $4 I_{0}$

Answer: A

D Watch Video Solution
25. Two identical light waves, propagating in the same direction, have a phase difference δ.

After they superpose, the intensity of the resulting wave will be proportional to
A. $\cos \delta$
B. $\cos \left(\frac{\delta}{2}\right)$
C. $\cos ^{2}\left(\frac{\delta}{2}\right)$
D. $\cos ^{2} \delta$

Answer: C
26. The waves of wavelength $6000 \AA$ emitted by any atom or molecule must have some finite length whichis known as coherence length. For solution light, the length is 2.4 cm . what is the number of oscillations for this length?
A. 4×10^{8}
B. 4×10^{4}
C. 4×10^{6}
D. 4×10^{5}

Answer: B

D Watch Video Solution

27. Two beam of light having intensities I and

41 interfere to produce a fringe pattern on a
screen. The phase difference between the beams is $\frac{\pi}{2}$ at point A and π at point B . Then the difference between resultant intensities at

A and B is : $(2001,2 M)$
A. 21
B. 41
C. 51
D. 71

Answer: B

D Watch Video Solution

28. Two coherent monochromatic light beams
of intensities 4/ and 9/ are superimosed the
maxmum and minimum possible intenties in
the resulting beam are
A. 31 and 21
B. 9l and 5I
C. 161 and 31
D. 25 I and I

Answer: D

D Watch Video Solution

29. Two coherent sources of intensity ratio α interfere. In interference pattern $\frac{I_{\max }-I_{\min }}{I_{\max }-I_{\min }}$
A. $\frac{2 \alpha}{1+\alpha}$
B. $\frac{2 \sqrt{\alpha}}{1+\alpha}$
C. $\frac{2 \alpha}{1+\sqrt{\alpha}}$
D. $\frac{1+\alpha}{2 \alpha}$

Answer: B

D Watch Video Solution

30. In Young's experiment $\mathrm{d}=1 \mathrm{~m}, \mathrm{D}=1 \mathrm{~m}$, $X=0.6 \mathrm{~mm}$, then wavelength of light used is
A. 4000 A.U.
B. 4800 A.U.
C. 5000 A.U.
D. 6000 A.U.

Answer: D

D Watch Video Solution

31. In Young's double slit experiment the ratio of intensities at the position of maxima and
minima is $9 / 1$. the ratio of amplitudes of light waves is

> A. $\frac{2}{1}$
> B. $\frac{3}{1}$
> C. $\frac{4}{1}$
> D. $\frac{1}{4}$

Answer: A
(Watch Video Solution
32. In Young's double slit experiment, the distance between the two slits is 0.1 mm , the distance between the screen and the slit is 100 cm . if the width of the fringe is 5 mm , then the wavelength of monochromatic light used is
A. $4000 \AA$
B. $6000 \AA$
C. $5000 \AA$
D. $5400 \AA$

Answer: C

- Watch Video Solution

33. The path difference between two interfering light waves meeting at a point on the screen is $\left(\frac{87}{2}\right) \lambda$. The band obtained at that point is
A. 87th bright band
B. 87th dark band
C. 44th dark bannd
D. 44th light band

Answer: C

D Watch Video Solution

34. In a double slit or a biprism experiment,
the fringe width for red colour as compared to
that for violet colour is approximately
A. four times
B. two times
C. three times
D. five times

Answer: B

D Watch Video Solution

35. In Young's double slit experiment, the fringe width is found to be 0.6 mm . without distrubing anything, the whole arrangment is dipped in water of refractive index $\frac{4}{3}$ the new fringe width will be
A. 0.15 mm
B. 0.3 mm

C. 0.6 mm

D. 0.45 mm

Answer: D

D Watch Video Solution

36. Light of wavelength $5000 \AA$ is incident on a double with and the interference fringes are
formed on a screen plated at a distance of 1 m from the slits. If the distance between the two
consecutive dark bands is 1 mm , then the distance between the two slits is
A. 0.5 mm
B. 0.05 mm
C. 1 mm
D. 2 mm

Answer: A

D Watch Video Solution
37. Two parallel slits 1 mm apart are illuminated with light of wavelength 5000 A , from a single slit. Interference pattern is obtained on a screen placed at 1 m from the slits, what is the distance between the first bright bannd and the seventh dark band?
A. 1.5 m
B. 2 mm
C. 2.25 mm
D. 2.75 mm

Answer: D

D Watch Video Solution

38. If the distance between the screen and the sources is decreased by 25%, then the change in fringe width is
A. 25% decrease
B. 25% increase
C. 75% increase
D. 75% decrease

Answer: A

- Watch Video Solution

39. In Young's experiment, monochromatic
light is used to illuminate the two slits A and
B. Interference fringes are observed on a screen placed in front of the slits. Now if a thin glass plate is placed normally in the path of
the beam coming from the slit

A. fringes will disappear
B. fringe width will increase
C. fringe width will decrease
D. fringe width will not change

Answer: D

- Watch Video Solution

40. If white light is used in Young's double slit experiment, then a few coloured fringes can be seen
A. with a central green fringe
B. with a central dark fringe
C. with first order violet fringe being closer to the central white fringe

D. with first order red fringe being coser to

the central white fringe

Answer: C

D Watch Video Solution

41. In a Young's double slit experiment, the separation of the two slits is doubled. To keep
the samme spacing of fringes, the distance D of the screen from the slits should be made
A. 2D
B. D
C. $\frac{D}{2}$
D. 3D

Answer: A

- Watch Video Solution

42. In Young's double slit experiment, $\mathrm{D}=1.5 \mathrm{~m}$, $\mathrm{d}=4.5 \times 10^{-3} \mathrm{~m}$ and fringe width $\mathrm{X}=0.2 \mathrm{~mm}$.
what is the path difference between the interfering beams for two successive maxima
A. $4.5 \times 10^{-7} m$
B. $5.25 \times 10^{-7} m$
C. $6 \times 10^{-7} m$
D. $6.5 \times 10^{-7} m$

Answer: C

- Watch Video Solution

43. If the amplitude of two interfering light waves are not equal, then the intensity in the dark region formed in the interference pattern will be
A. Zero
B. Same
C. Less
D. More

Answer: D

44. In Young's double slit experiment, we get

15 fringes per cm on the screen, using light of wavelength $5600 \AA$. For the samme setting, how many fringes per cm will be obtained with light of wavelength 7000 Å?
A. 10
B. 12
C. 15
D. 18

Answer: B

- Watch Video Solution

45. In Young's double slit experiment, interference fringes eachh of width 1 mm are observed with light of wavelength 500 nm . Without distrubing the experimental arrangement, if the source is replaced by one having a wavelength 600 nm , then the fringe width will be
A. 1 mm
B. 1.2 mm
C. 0.8 mm
D. 1.4 mm

Answer: B

D Watch Video Solution

46. In two separate set-ups of the Young's double slit experiment, fringes of equal width are observed when lights of wavelength in the
ratio of $1: 2$ are used. If the ratio of the slit separation in the two cases is $2: 1$, the ratio of the distance between the plane of the slits and the screen in the two set-ups are
A. $1: 4$
B. $1: 1$
C. $2: 1$
D. $4: 1$

Answer: D

47. Two sources of light of wavelength $4500 \AA$ annd $6000 \AA$ are used simultaneously in Young's double slit experiment. At which order of the two wavelength pattern,s the fringes coincide?
A. 3 rd orders of both λ_{1} and λ_{2}
B. 4th orders of both λ_{1} and λ_{2}
C. 4th order of $\lambda_{1}=4500 \AA$ and 3 rd order
of $\lambda_{2}=6000 \AA$

D. 3rd order of $\lambda_{1}=4500 \AA$ and 4th order

$$
\text { of } \lambda_{2}=6000 \AA
$$

Answer: C

D Watch Video Solution

48. In Young's double-slit experiment the angular width of a fringe formed on a distant screen is 1°. The wavelength of light used is $6000 \AA$. What is the spacing between the slits?
A. 0.02 mm
B. 0.05 mm
C. 0.0344 mm
D. 0.012 mm

Answer: C

D Watch Video Solution

49. In Young's double experiment, slits are kept 0.4 mm apart from each other and the screen is placed at 2 m from the slit. The fringe
width for a given monochromatic source of
light is 0.8 mm . if the whole set up is kept in a medium of R.I. 1.6 , the fringe width will be
A. 0.3 mm
B. 0.4 mm
C. 0.2 mm
D. 0.5 mm

Answer: D

D Watch Video Solution
50. In Young's double slit experiment using sodium light ($\lambda=5898 \AA$) 92 fringes are seen if given colour $(\lambda=5461 \AA)$ is used how many fringes will be seen
A. 33
B. 66
C. 99
D. 120

Answer: C

D Watch Video Solution
51. A thin mica sheet of thickness $2 \times 10^{-6} \mathrm{~m}$ and refractive index $(\mu=1.5)$ is introduced in the path of the first wave. The wavelength of the wave used is $5000 \AA$. The central bright maximum will shift
A. 2 fringes upwards
B. 4 fringes upwards
C. 10 fringes downwards
D. 8 fringes downwards

Answer: A

D Watch Video Solution

52. In a Young's double slit esperiment, the angular width of a fringe formed on a distant screen is 1°. The slit separation is 0.01 mm . The wavelength of the light is
A. $0.174 \mu m$
B. $0.174 \AA$
C. $0.174 \times 10^{-4} m$

D. 0.174 mm

Answer: A

D Watch Video Solution

53. The Young's experiment is performed with
the lights of blue $(\lambda=4360 \AA)$ and green colour $(\lambda=5460 \AA)$. If the distance of the 4 th fringe from the centre is x, then
A. x (Blue) $=x$ (Green)

B. x (Blue) $>x$ (Green)

C. x (Blue) $<x$ (Green)

$$
\text { D. } \frac{x(\text { Blue })}{x(\text { Green })}=\frac{5460}{4360}
$$

Answer: C

D Watch Video Solution

54. In Young's double slit experiment, if the widths of the slits are in the ratio $4: 9$, the ratio of the intensity at maxima to the intensity at minima will be
A. $169: 25$
B. $81: 16$
C. 25: 1
D. 9: 4

Answer: C

D Watch Video Solution
55. In Young's double slit experiment, the phase difference between the light waves
producing the third bright fringe from the central fringe will be $(\lambda=6000 \AA$)
A. Zero
B. 2π
C. 4π
D. 6π

Answer: D

D Watch Video Solution
56. In Young's experiment one slit is covered
with a blue filter and the other (slit) with a
yellow filter then the interference pattern
A. will be blue
B. will be yellow
C. will be green
D. will not be formed

Answer: D

D Watch Video Solution
57. In a Young's experiment, two coherent sources are placed 0.90 mm apart and the fringes are observed one metre away. If is produces the second dark fringe at a distance of 1 mm from the central fringe, the wavelength of monochromatic light used would be
A. $6 \times 10^{-4} \mathrm{~cm}$
B. $8 \times 10^{-4} \mathrm{~cm}$
C. $8 \times 10^{-5} \mathrm{~cm}$

D. $6 \times 10^{-5} \mathrm{~cm}$

Answer: D

- Watch Video Solution

58. In young's double slit experiment with a source of light of wavelength $6320 \AA$, the first maxima will occur when
A. path difference is $9480 \AA$
B. Phase difference is $\frac{\pi}{2}$ radian

C. path difference is $6320 \AA$

D. phase difference is π radian

Answer: C

D Watch Video Solution

59. If the width ratio of the two slits in Young's
double slit experiment is $4: 1$, then the ratio of
intensity at the maxima and minima in the interference patternn will be
A. $1: 4$
B. $3: 1$
C. $9: 1$
D. 16: 1

Answer: C

D Watch Video Solution

60. The path difference at a point on the screen in young's experiment is 5λ. The
distance of that point from the central bright band is 0.5 mm . what is the bandwidth?
A. 2.5 mm
B. 1 mm
C. 0.1 mm
D. 10 mm

Answer: C

D Watch Video Solution

61. Two slits separated by a distance of 0.5 mm are illuminated by light of wavelength 5000 Å.

The interference fringes are obtained on a screen at a distance of 1.2 m . what is the phase difference between two interfering waves at a point 3 mm from the central bbright fringe?
A. $7 \pi \mathrm{rad}$
B. $3 \pi \mathrm{rad}$
C. $5 \pi \mathrm{rad}$
D. $4 \pi \mathrm{rad}$

Answer: C

- Watch Video Solution

62. In a Young's double slit experiment, the source is white light. One of the holes is
covered by a red filter and another by a blue
filter. In this case
A. there shall be alternate interference patterns of red and blue
B. there shall be an interference patterns
for red which is different from that of
blue
C. there shall be no interference fringes
D. there shall be an interference pattern
for red mixing with one for blue

Answer: C

D Watch Video Solution

63. Two slits separated by a distance of 0.5 mm
are illuminated by light of wavelength 5000 Å.

The interference fringes are obtained on a screen at a distance of 1.2 m . what is the phase difference between two interfering waves at a point 3 mm from the central bright fringe?
A. $7 \pi \mathrm{rad}$
B. $3 \pi \mathrm{rad}$
C. $5 \pi \mathrm{rad}$
D. $4 \pi \mathrm{rad}$

Answer: C

D Watch Video Solution

64. In a double slit experiment, the distance between the slits is increased 10 times wheares their distance from the screen is halved, then what is the new fringes width if the original fringe width is X ?
A. Becomes $\frac{X}{20}$
B. Becomes $\frac{X}{10}$
C. Becomes $\frac{X}{90}$
D. It remains same

Answer: A

D Watch Video Solution

65. If a torch is used in place of monochromatic light in Young's experiment what will happen?
A. Only bright fringes will appear
B. Fringes will occur as from
monochromatic light
C. No fringes will appear
D. Fringe will appear for a moment then it
will disappear

Answer: C

- Watch Video Solution

66. The path difference produced by two waves
at a point is $3.75 \mu \mathrm{~m}$ and the wavelength is $5000 \AA$. The point is
A. partially bright
B. dark
C. bright
D. uncertain

Answer: B

D Watch Video Solution
67. In young's experiment, fringes are obtained on a screen placed at a distance of 75 cm from the slits. If the separation of the narrow slits is doubled, the fringe width is decreased.

Through what distance the screen should be moved, in order to restore the spacing of the fringes?
A. Through 150 cm , away from the slits
B. Through 50 cm , towards the slits
C. Through 75 cm , away from the slits
D. Through 25 cm , towards the slits.

Answer: C

D Watch Video Solution

68. On placing a thin film of mica of thickness
$12 \times 10^{-5} \mathrm{~cm}$ in the path of one of the interfering beams in young's double slit experiment using monochromatic light, the fringe pattern shifts through a distance equal to the width of a bright fringe. If
$\lambda=6 \times 10^{-5} \mathrm{~cm}$, the refractive index of mica is
A. 1.1
B. 1.3
C. 1.5
D. 1.4

Answer: C

D Watch Video Solution
69. In Young's double slit experiment, the angular width of a fringe formed on a distant screen is 0.1°. What is the spacing between the slits, if the waveelngth of light used is 6000 Å?

> A. $3.44 \times 10^{-4} \mathrm{~m}$
> B. $2.44 \times 10^{-4} \mathrm{~m}$
> C. $1.44 \times 10^{-4} \mathrm{~m}$
> D. $5.44 \times 10^{-4} \mathrm{~m}$

Answer: A
70. In an interference experiment, the two slits
S_{1} and S_{2} are not equidistant from the source S. then the central fringe at 0 will be

A. always dark
B. always bright
C. either bright or dark depending upon the position of S
D. neither dark nor bright

Answer: C

D Watch Video Solution

71. Two coherent sources A and B of wavelenth
$6 \times 10^{-5} \mathrm{~cm}$ produce interference at ann arbitrary observation point P.
what is the path difference BP-AP if the point P
is at a dark band between the third and forth order maxima?
A. $2.1 \times 10^{-2} \mathrm{~cm}$
B. $2.1 \times 10^{-4} \mathrm{~cm}$
C. $4.2 \times x 10^{-4} \mathrm{~cm}$
D. $4.2 \times 10^{-3} \mathrm{~cm}$

Answer: B

D Watch Video Solution
72. In a double slit experiment, the distance between the slits is d. The screen is at a distance D from the slits. If a bright fringe is formed opposite to one of the slits, its order is
A. $\frac{d^{2}}{\lambda D}$
B. $\frac{d^{2}}{2 \lambda D}$
C. $\frac{d^{2}}{4 \lambda D}$
D. $\frac{d^{2}}{3 \lambda D}$

Answer: B
73. in a two-slit experiment with monochromatic light, fringes are obtained on a screen placed at some distance from the slits. If the screen is moved by $5 \times 10^{-2} \mathrm{~m}$ towards the slits, the change in fringe width is
3×10^{-5}. If the distance between the slits is $10^{-3} \mathrm{~m}$, calculate the wavelength of the light used.
A. $4000 \AA$
B. $4500 \AA$

C. $5000 \AA$

D. $6000 \AA$

Answer: D

D Watch Video Solution

74. In a double slit experiment, instead of taking slits of equal widths, one slit is made twice as wide as the other then in the interference pattern.
A. The intensities of both the maxima and
the minima increase
B. The intensity of maxima increase and the minima has zero intensity
C. The intensity of maxima decreases and
that of the minima increases
D. The intensity of maxima decreases and
the minima has zero intensity

Answer: A

75. Yong's double-slit experiment is carried out by using green, red and blue light, one color at a time. The fringe widths recorded are β_{G}, β_{R} and β_{B}, respectively. Then
A. $\beta_{G}>\beta_{B}>\beta_{R}$
B. $\beta_{B}>\beta_{G}>B_{R}$
C. $\beta_{R}>\beta_{B}>\beta_{G}$
D. $\beta_{R}>\beta_{G}>\beta_{B}$
76. A beam of electron is used $Y D S E$ experiment . The slit width is d when the velocity of electron is increased ,then
A. no interference is observed
B. Fringe width increases
C. Fringe width decreases
D. Fringe width remains same

- Watch Video Solution

77. The disntances of poinnt on the screen
from two slits are
$1.8 \times 10^{-5} \mathrm{~m}$ and $1.23 \times 10^{-5} \mathrm{~m}$. If the wavelength of light used is $6000 \AA$, then the number of bright or dark band formed at that point is
A. 10th dark
B. 10th bright
C. 8th dark

D. 9th bright

Answer: A

- Watch Video Solution

78. A micture of light, consisting of wavelength

590nm and an unknown wavelength,
illuminates Young's double slit and gives rise to two overlapping interference patterns on the scree. The central maximum of both lights coincide. Further, it is obseved that the third
bright fringe of known light coincides with the

4th bright fringe of the unknown light. From
this data, the wavelength of the unknown light is:
A. 393.4 nm
B. 885.0 nm
C. 442.5 nm
D. 776.8 nm

Answer: C

79. Young's double slit experiment is made in a
liquid. The tenth bright fringe in liquid lies in
screen where 6th dark fringe lies in vacuum.
The refractive index of the liquid is approximately
A. 1.52
B. 1.62
C. 1.82
D. 1.22

Answer: C

D Watch Video Solution

80. Interference fringes were observed in an interference chamber, where air was present.now, the chamber is evacuated and without disturbing the arrangement, intererence pattern is again obserbed. A careful observer will see
A. no interference
B. uniform illumination
C. an interference patternn with a slight increase in the width of the fringes
D. an interference pattern with a slight decrease in the width of the fringes

Answer: C

D Watch Video Solution

81. If the eighth bright band due to light of wavelength λ_{1} and coincides with ninth bright band from light of wavelength λ_{2} is young's double slit experiment, then the possible wavelength of visible light are
A. 400 nm and 450 nm
B. 425 nm and 400 nm
C. 400 nm and 425 nm
D. 450 nm and 400 nm
82. The maximum intensity of fringes in

Young's experiment is I. If one of the slit is closed, then the intensity at that place becomes I_{o}. Which of the following relation is true?
A. $I=I_{0}$
B. $I=2 I_{0}$
C. $I=4 I_{0}$

$$
\text { D. } I=\frac{I_{0}}{4}
$$

Answer: C

D Watch Video Solution

83. In a Young's double slit experiment (slit
distance d) monochromatic light of
wavelength λ is used and the figure pattern observed at a distance L from the slits. The angular position of the bright fringes are

$$
\text { A. } 0=\sin ^{-1}\left(\frac{N \lambda}{d}\right)
$$

> B. $\theta=\sin ^{-1}\left(\frac{\left(H N+\frac{1}{2}\right) \lambda}{d}\right)$
> C. $\theta=\sin ^{-1}\left(\frac{N \lambda}{L}\right)$
> D. $\theta=\sin ^{-1}\left(\frac{\left(N+\frac{1}{2}\right) \lambda}{L}\right)$

Answer: A

D Watch Video Solution

84. In Young's double slit experiment, angular width of fringes is 0.20° for sodium light of wavelength $5890 \AA$. If the complete system is
dipped in water, then the angular width of

fringes will become

A. 0.11°
B. 0.15°
C. 0.22°
D. 0.30°

Answer: B
(Watch Video Solution
85. In Young's double slit experiment, one of the slit is wider than other, so that amplitude of the light from one slit is double of that from other slit. If I_{m} be the maximum intensity, the resultant intensity I when they interfere at phase difference ϕ is given by:

$$
\begin{aligned}
& \text { A. } \frac{I_{m}}{9}(4+5 \cos \phi) \\
& \text { B. } \frac{I_{m}}{3}\left(1+2 \cos ^{2} \frac{\phi}{2}\right) \\
& \text { C. } \frac{I_{m}}{5}\left(1+4 \cos ^{2} \frac{\phi}{2}\right) \\
& \text { D. } \frac{I_{m}}{9}\left(1+8 \cos ^{2} \frac{\phi}{2}\right)
\end{aligned}
$$

Answer: D

D Watch Video Solution

86. In Young's double slit experiment intensity
at a point is $\left(\frac{1}{4}\right)$ of the maximum intersity.
Angular position of this point is
A. $\sin ^{-1}\left(\frac{\lambda}{d}\right)$
B. $\sin ^{-1}\left(\frac{\lambda}{2 d}\right)$
C. $\sin ^{-1}\left(\frac{\lambda}{3 d}\right)$
D. $\sin ^{-1}\left(\frac{\lambda}{4 d}\right)$

Answer: C

D Watch Video Solution

87. In Young's double slit experiment, the intensity on the screen at a pont where path difference λ is K . what will be the intensity at the point where the path difference is $\frac{\lambda}{4}$?

$$
\text { A. } \frac{K}{4}
$$

B. $\frac{K}{2}$
C. K
D. Zero

Answer: B

D Watch Video Solution

88. In the figure is shown Young's double slit experiment. Q is the position of the first bright fringe on the right side of $O . P$ is the $11^{t h}$ bright fringe on the other side, as measured
from Q. If the wavelength of the light used is

600 nm . Then $S_{1} B$ will be equal to

A. $6 \times 10^{-6} m$
B. $6.6 \times 10^{-6} m$
C. $3.138 \times 10^{-7} m$
D. $3.144 \times 10^{-7} m$

Answer: A

D Watch Video Solution

89. In Young's double-slit experiment, the two
slits act as coherent sources of equal amplitude A and of wavelength λ. In another experiment with the same set-up the two slits are sources of equal amplitude A and wavelength λ, but are incoherent. The ratio of
the intensity of light at the midpoint of the

case is....

A. $1: 2$
B. $2: 1$
C. $4: 1$
D. 1:1

Answer: B
(Watch Video Solution
90. In double slit experiment fringes are obtained using light of wavelength $4800 \AA$ One
slit is covered with a thin glass film of refractive index. 1.4 and another slit is covered
by a film of same thickness but refractive index
1.7. By doing so, the central fringe is shifted to
fifth bright fringe in the original pattern. The
thickness of glass film is
A. $8 \mu m$
B. $6 \mu m$
C. $4 \mu m$

D. $10 \mu m$

Answer: A

D Watch Video Solution

91. The maximum number of possible
interference maxima for slit-separation equal
to twice the wavelength in Young's double-slit experiment is
A. Infinite
B. Five
C. Three
D. Zero

Answer: B

D Watch Video Solution
92. In the Young's double slit experiment, the
ratio of intensities of bright and dark fringes
is 9 . this means that
A. the intensities of individual sources are

5 and 4 units respectively

B. the intensities of individual sources are

4 and 1 units respectively
C. the ratio of their amplitudes is 3
D. the ratio of their amplitudes is $\frac{3}{2}$

Answer: B
(Watch Video Solution
93. A Young's double slit experiment uses a monochromatic source. The shape of the interference fringes formed on a screen is
A. straight line
B. Parabola
C. Hyperbola
D. Circle

Answer: C

D Watch Video Solution
94. In Young's double slit experiment, the intensity at a point where the path difference
is $\frac{\lambda}{6}$ (λ is the wavelength of light) is I. if I_{0} denotes the maximum intensities, then I / I_{0} is equal to

> A. $\frac{I}{2}$
> B. $\frac{3}{4}$
> C. $\frac{1}{\sqrt{2}}$
> D. $\frac{3}{\sqrt{2}}$

Answer: B

- Watch Video Solution

95. When a transparent film of refractive index
1.5 is kept over one of the openings of a double slit experiment apparatus, the interference pattern is shifted through six successive maxima, towards the side, where the film was placed. What is the thickness of the film if the wavelength of light used in 6000 Å?
B. 5200 nm
C. 7200 nm
D. 6200 nm

Answer: C

- Watch Video Solution

96. In a Young's double slit experiment, 12 fringes are observed to be formed in a certain segment of the screen when light of wavelength 600 nm is used. If the wavelength
of light is changed to 400 nm , number of
fringes observed in the same segment of the screen is given by
A. 18
B. 24
C. 8
D. 12

Answer: A

D Watch Video Solution
97. In the ideal double-slit experiment, when a glass-plate(refractive index 1.5) of thickness t is introduced in the path of one of the interfering beams (wave-length λ), the intensity at the position where the central maximum occurred previously remains unchanged. The minimum thickness of the glass-plate is
A. $2 \lambda / 3$
B. λ
C. $\lambda / 3$

D. 2λ

Answer: D

- Watch Video Solution

98. White light is used to illuminate the two
slits in a Young's double slit experiment. The
separation between the slits is b and theh
screen is at a distance $d(\gg b)$ from the slits At a point on the screen directly in front of one of the slits, certain wavelengths are
missing some of these missing wavelengths are

$$
\begin{aligned}
& \text { A. } \lambda=\frac{b^{2}}{2 d} \\
& \text { B. } \lambda=\frac{b^{2}}{3 d} \\
& \text { C. } \lambda=\frac{b^{2}}{4 d} \\
& \text { D. } \lambda=\frac{2 b^{2}}{3 d}
\end{aligned}
$$

Answer: B

D Watch Video Solution

99. In Young's double slit experiment, using monochromatic light, the fringe patternn
shifts by a certain distance on the screen, when a transparent sheet of thickness ' t ' and refractive index μ is introduced in the path of one of the interfering waves. the sheet is then removed and the distance between the screen and the slits is doubled. it is found that the distance between the successive maxima (or minima) now is the samme as the observed fringe shift when the sheet was introduced. what is the wavelength of light used?

$$
\begin{aligned}
& \text { A. } \lambda=(\mu-1) t \\
& \text { В. } \lambda=\frac{(\mu-1) t}{2} \\
& \text { С. } \lambda=(\mu+1) t \\
& \text { D. } \lambda=\frac{(\mu+1) t}{2}
\end{aligned}
$$

Answer: B

D Watch Video Solution

100. A beam of light consisting of two wavelength $6500 \AA \AA \& 5200 \AA$ is used to obtain interferance fringes in a young's double slit
experiment. The distance between the slits is
2.0 mm and the distance between the plane of the slits and thescreen is 120 cm ,what is the least distance from the central maximum where the bright fringes due to both the wave length coincides?
A. 1.56 mm
B. 2.56 mm
C. 3.12 mm
D. 0.86 mm

- Watch Video Solution

101. A double slit apparatus is immersed in a
liquid of refractive index 1.33. it has slit separation of 1 mm and distance between the plane of the slits and the screen is 1.33 m . the slits are illuminated by a parallel beam of light whose wavelength in air is $6300 \AA$. what is the fringe width?
A. $(1.33 \times 0.63) m m$
B. $\frac{0.63}{1.33} \mathrm{~mm}$

0.63
 C. $\frac{0.63}{(1.33)^{2}} \mathrm{~mm}$
 D. 0.63 mm

Answer: D

D Watch Video Solution

102. Figure shows a standard two slit arrangement with slits $S_{1}, S_{2} . P_{1}, P_{2}$ are the two minima points on either side of P (Figure).

At P_{2} on the screen, there is a hole and behind
P_{2} is a second 2-slit arrangement with slits
S_{3}, S_{4} and a second screen behind them.
A. there would be no interference pattern
on the second screen but it would be
lighted
B. the second screen would be totally dark
C. there would be a single bright point on
the second screen
D. there would be a regular two slit pattern
on the second screen

Answer: D

D Watch Video Solution

103. In Young's experiment, the ratio of the
intensities at the maxima and minima in the interference pattern is $36: 16$. what is the ratio of the widths of the two beams?
A. 15
B. 20
C. 25

D. 30

Answer: C

D Watch Video Solution

104. In young double slit experiment the ratio
of intentsities of bright and dark bands is 16
which means
A. the ratio of their amplitudes is 5
B. intensities of individual sources are 25
and 9 units respectively
C. the ratio of their amplitudes is 4
D. intensities of individual sources are 4
and 3 units respectively

Answer: B

D Watch Video Solution

105. In the experiment of interfernece, p is the number of bright bands for a light of wavelength λ_{1}. If the source of light is replaced by λ_{2} then the number of bright bands will be

$$
\begin{aligned}
& \text { A. } \frac{p \lambda_{2}}{\lambda_{1}} \\
& \text { B. } \frac{p \lambda_{1}}{\lambda_{2}} \\
& \text { C. } p \lambda_{1} \\
& \text { D. } p \lambda_{2}
\end{aligned}
$$

Answer: B
106. In a biprism experiment, the distance (d)
between the two sources is doubled and the distance between the slit and the eye piece is also doubled. Then the width of the fringe
A. is doubled
B. is halved
C. remains unchanged
D. is reduced to $\frac{1}{3}$

Answer: C

D Watch Video Solution

107. In a biprism experiment, the fringe width
is 0.4 mm . The distance between the fourthh dark fringe and the sixth bright fringe is
A. 0.5 mm
B. 0.75 mm
C. 1 mm
D. 1.5 mm

Answer: C

- Watch Video Solution

108. In a biprism experiment, if the width of
the fourth bright bannd is 1 mm , then the width of the 8th bright band will be
A. 0.5 mm
B. 1.5 mm
C. 1 mm
D. 2 mm

Answer: C

D Watch Video Solution

109. In Fresnel's biprism experiment, the 5th
maximum for wavelength λ_{1} is at a distance d_{1}
from the central bright bannd. If the 5th maximum for wavelength λ_{2} is at a distance d_{2}
from the central bright band, then the ratio
$\frac{d_{1}}{d_{2}}$ is

$$
\text { A. } \frac{\lambda_{1}^{2}}{\lambda_{2}^{2}}
$$

B. $\frac{\lambda_{2}^{2}}{\lambda_{1}^{2}}$
C. $\frac{\lambda_{1}}{\lambda_{2}}$
D. $\frac{\lambda_{2}}{\lambda_{1}}$

Answer: C

- Watch Video Solution

110. In fresnel's biprismm experiment, the second dark band is at a distance of 1 mm
from the central bright band. If $D=1 m$ and $\mathrm{d}=0.9 \mathrm{~mm}$, then the wavelength of light used is
A. $6000 \AA$
B. $7000 \AA$
C. $5000 \AA$
D. $5500 \AA$

Answer: A

D Watch Video Solution

111. In a biprism experiment, the distance between the two virtual sources is 0.1 mm and
the screen is placed at 100 cm from the slits. If
the wavelength of light used is $5000 \AA$, then
the distance of the 4th bright band from the central bright band will be
A. 2 cm
B. 1.5 cm
C. 1 cm
D. 3 cm

Answer: A

D Watch Video Solution
112. In the interference pattern obtained in a biprism experiment, 5th order bright fringe is obtained at a point on the screen, when monochromatic light of wavelength $6000 \AA$ is used. What is the order of the bright fringe produced at the samme point, if the light of wavelength $5000 \AA$ is used?
A. $n=3$
B. $n=4$
C. $n=6$
D. $n=10$

Answer: C

- Watch Video Solution

113. In the biprism experiment, if the images
produced by the convex lens in the two positions between the biprism annd the eye piece are 4.5 mm and 2 mm apart, then the distance (d) between the two virtual sources is
A. 2 mm
B. 3 mm

C. 4 mm

D. 5 mm

Answer: B

D Watch Video Solution

114. In a biprism experiment, using monochromatic lightof wavelength 6000 Å, 8th bright band is obtained at a point on the screen. What is the wavelength of the another
source, which produces the 12th bright band at the samme point?
A. $3000 \AA$
B. $4000 \AA$
C. $5000 \AA$
D. $6000 \AA$

Answer: B
(Watch Video Solution
115. In a biprism experiment, the distance of
the 7th dark band from the central bright band is 2.6 mm . the width of the fringe is
A. 0.4 mm
B. 0.03 mm
C. 0.8 mm
D. 0.5 mm

Answer: A

D Watch Video Solution
116. In a biprism experiment, if the 6th bright bannd with a wavelength λ_{1} coincides with

7th dark band with a wavelength λ_{2}, then the ratio of the wavelengths $\left(\frac{\lambda_{1}}{\lambda_{2}}\right)$ is
A. $\frac{12}{13}$
B. $\frac{13}{12}$
C. $\frac{6}{7}$
D. $\frac{7}{6}$

Answer: B
117. In a biprism experiment, the slit is
illuminated with light of wavelength $5000 \AA$.

The number of bright fringes passing on a screen, if the path difference is changed by
0.005 cm will be
A. 50
B. 100
C. 150
D. 200

Answer: B

D Watch Video Solution

118. The distance of the 10th dark band from
the centre of interference pattern is 28.5 mm .
the band width is
A. $.15 \times 10^{-3} m$
B. $2.85 \times 10^{-3} m$
C. $3 \times 10^{-3} m$
D. $2.25 \times 10^{-3} \mathrm{~m}$

Answer: C

D Watch Video Solution

119. In a Biprism experiment, the slit separation is 1 mm . Using monochromatic light of wavelength 5000 Å, an interference patternn is obtained on a screen. For changing the bond width by $2.5 \times 10^{-5} \mathrm{~m}$.
A. the screen is moved away from the slits
B. the screen is moved towards the slits by

10 cm

C. the screen is moved away or towards the
slits by 5 cm
D. the screen is moved away or towards the

slits by 10 cm

Answer: C

D Watch Video Solution
120. In a biprism experiment, the fifth dark fringe is formed opposite to one of the slits.

What is the wavelength of light?

$$
\begin{aligned}
& \text { A. } \frac{d^{2}}{3 d} \\
& \text { B. } \frac{d^{2}}{9 D} \\
& \text { C. } \frac{d^{2}}{8 D} \\
& \text { D. } \frac{d^{2}}{12 D}
\end{aligned}
$$

Answer: B
121. In a Fresnel's biprism experiment, $D=1.3 \mathrm{~m}$
and $d=0.65 \mathrm{~mm}$. if the eyepiece has to be moved through a distance of 1.6 cm for 16 fringes to crss the firled of view, then the wavelength of light used is
A. $4000 \AA$
B. $4500 \AA$
C. $5000 \AA$
D. $5500 \AA$

Answer: C

- Watch Video Solution

122. In a biprism experiment, using monochromatic light. Fringes are obtained on a screen placed at a distance D from the slits. Separated by 1 mm . If the screen is moved through 5 cm towards the slits, the fringe width changes by 0.03 mm . what is the wavelength of light used?
A. $6000 \AA$
B. $5500 \AA$

C. $5000 \AA$

D. $4500 \AA$

Answer: A

D Watch Video Solution

123. The fringe widthh in a biprism experiment
is 0.3 mm . what will be the fringe width, if the
whole experiment setup is immersed in water
of refractive $\frac{4}{3} ? a^{n} w=\frac{4}{3}$
A. 0.4 mm
B. 0.225 mm
C. 0.5 mm
D. 0.15 mm

Answer: B

D Watch Video Solution

124. In a biprism experiment, the optical path difference between the two identical waves arriving at a point is 0.05 cm . if the wavelength
of light used of $5000 \AA$, then the number of dark friges passing through that point will be
A. 100
B. 200
C. 1000
D. 500

Answer: C
(Watch Video Solution
125. Fringes are produced with monochromatic light of wavelength $5500 \AA$. A thin glass plate of R.I. 1.5 is then placed normally in one of the paths of interfering beams and the central bright fringe is found to be shifted to the position, previously occupied by the third bright band from the centre. the thickness of the glass plate is

$$
\begin{aligned}
& \text { A. } 33 \times 10^{-4} m \\
& \text { B. } 16.5 \times 10^{-7} m \\
& \text { C. } 33 \times 10^{-7} m
\end{aligned}
$$

$$
\text { D. } 33 \times 10^{-5} m
$$

Answer: C

D Watch Video Solution

126. In a biprism experiment $\mathrm{d}=1 \mathrm{~mm}$.

Interference fringes of width $\mathrm{X}=2.25 \mathrm{~mm}$ are observed on a screen at a distance of 3 m from
the plane of the slit. The wavelength of incident light lies in the ___region.
A. green
B. yellow
C. red
D. violet

Answer: C

D Watch Video Solution

127. In a biprism experiment, if we want to increase the fringe width (X), by keeping the distance between theslit and the screen (D) constant, then we should
A. increase d and decrease λ
B. decrease d and increase λ
C. increase d and increase λ
D. decrease d and decrease λ

Answer: B

D Watch Video Solution

128. The biprism experiment was perfomred by using red light of wavleength 7500 Å and blue light of wavelength $5000 \AA ̊$. The value of n for
which $(\mathrm{n}+1)$ th blue bright band coincides with $n^{\text {th }}$ red band is
A. 5
B. 4
C. 3
D. 2

Answer: D
(Watch Video Solution
129. The biprism experiment is performed by
using first the blue light of wavelength $4800 \AA$
and then with red light. It is found that the
fourth bright band of blue light coincides with
the third bright band of red light. What is the wavelength of red light?
A. $5200 \AA$
B. $5600 \AA$
C. $6000 \AA$
D. $6400 \AA$

Answer: D

D Watch Video Solution

130. A ray of light from a monochromatic point source of light is incident at a point on the
screen. If a thin mica film of thickness t annd refractive index n is introduced in its path, then the optical path
A. is increased by $(n-1) t$
B. is decreased by $(n-1) t$
C. is not affected
D. is increased by $(\mathrm{n}+1) \mathrm{t}$

Answer: A

D Watch Video Solution

131. A screen is placed 90 cm away from a
luminous object. The image of the object on
the screen is formed by a convex lens at two different positions separated by 30 cm . what is the focal length of the lens?
A. 15 cm
B. 20 cm
C. 25 cm
D. 35 cm

Answer: B

D Watch Video Solution

132. Biprism experiment is performed by using
light of wavelength of $5000 \AA$. The distance between the virtual sources is 0.2 mm annd
the micrometer eyepiece is at a distance of

100 cm from the slits. What is the distance
between the consecutive bright and dark bands?
A. 1.25 mm
B. 2.5 mm
C. 3.5 mm
D. 0.25 mm

Answer: B
133. In an interference experiment with a
biprism, the distance of the slits from the screenn is increased by 25% annd the separation between the slits is halved. If X represents the original fringe width, the new fringe width will be
A. 2 X
B. 1.5 X
C. 2.5 X
D. 4 X

Answer: C

D Watch Video Solution

134. A lens if placed between a source of light and a wall. It forms images of area A_{1} and A_{2} on the wall for its two different positions. The area of the source or light is
A. $\left(A_{1}+A_{2}\right)^{1 / 2}$
B. $\left[\frac{1}{A_{1}}+\frac{1}{A_{2}}\right]^{-1}$
C. $\sqrt{A_{1} A_{2}}$

$$
\text { D. }\left[\sqrt{A_{1}}+\sqrt{A_{2}}\right]^{2}
$$

Answer: C

D Watch Video Solution

135. In a biprism experiment, if the distance
between the slit and the biprism is slightly increased, without disturbing the remaining setting, then the bandwidth will
A. increase
B. decrease
C. not change
D. may incrase or decrease

Answer: B

- Watch Video Solution

136. If the refracting angle of a Fresnel Biprism
is increased, then
A. the interference ringes will disappear

B. fringes will not be affected

C. the fringe width is increased
D. the fringe width is decreased

Answer: D

D Watch Video Solution

137. If in a biprism experiment, light of wavelength $5000 \AA$ is replaced by $10,000 \AA$, then the fringes will
A. be of double the original width
B. be of the samme width as original
C. will not be seen
D. will be fo half the original width

Answer: C

D Watch Video Solution

138. In an interference pattern produced by using a biprism, the zeroth order maxima is at a distance of 4.7 mm from a point P on the
screen. If the fringe width is 0.2 mm , then the
distance of the second minima from the point
P will be
A. only 4.4 mm
B. only 5 mm
C. either 4.4 mm or 5 mm depending upon
the position of P
D. 6 mm

Answer: C

D Watch Video Solution
139. In Young's double slit experiment, the central bright fringe can be identified
A. By using white light instead of monochromatic light
B. As it is narrower than other bright
fringes
C. As it is wider than other bright fringes
D. As it has a greater intensity than the other bright fringes

Answer: A

D Watch Video Solution

140. In Fresnel's biprism $(\mu=1.5)$ experiment
the distance between source and biprism is
$0.3 m$ and that between biprism and screen is
$0.7 m$ and angle of prism is 1°. The fringe width with light of wavelength $6000 \AA$ will be
A. 3 cm
B. 0.011 cm

C. 2 cm

D. 4 cm

Answer: B

D Watch Video Solution

141. A single slit diffraction pattern is obtained
by using a beam of red light. What will happen
to the diffraction bands if the red light is replaces by green light?
A. No change is the pattern
B. The bands will disappear
C. Bands will become narrower and
crowded
D. Bands will become broader annd will
move apart

Answer: C

D Watch Video Solution
142. A slit of width a is illuminiated by white light. The first diffraction minimum for light of $\lambda=6500 \AA$ is formed at $\theta=30^{\circ}$, then the width (a) of the slit is
A. $6.5 \times 10^{-5} m$
B. $13 \times 10^{-6} m$
C. $1.3 \mu m$
D. $2.6 \times 10^{-5} \mathrm{~m}$

Answer: C
143. Which one of the following undergo maximum diffraction?
A. Visible light
B. X rays
C. Radiowaves
D. α waves

Answer: C
144. Light of wavelength 5500 Å falls normally on a slit of width $11 \times 10^{-7} m$ and the franhofer diffraction patternn is received on a screen. What is the angular position of the first minimum?
A. 60°
B. 30°
C. 45°
D. 20°

Answer: B

- Watch Video Solution

145. In the experiment of diffraction at a single
slit, if the slit width is decreased, the wdith of
the central maximum
A. becomes zero
B. does not change
C. is increased
D. is decreased

Answer: C

- Watch Video Solution

146. A laser beam having $\lambda=7000 \AA$ and aperture $d=10^{-2} m$ is sent to the moon.

What is the angular spread of the beam?
A. 7×10^{-4} radian
B. $\left(7 \times 10^{-4} \times 10 \frac{\pi}{180}\right)^{0}$
C. 7×10^{-5} radian
D. $\frac{7}{2} \times 10^{-5}$ radian

Answer: C

D Watch Video Solution

147. Plane microwaves are incident on a long slit of width 6 cm . if the first diffraction minimum is formed at 30° then the wavelength of microwaves is
A. 6 cm
B. 4 mm
C. 6 mm
D. 3 cm

Answer: D

D Watch Video Solution

148. The first diffraction minima in a single slit
diffraction pattern is at $\theta=30^{\circ}$, for light of
wavelength=5000 A. The width of the slit is

$$
\text { A. } 2.5 \times 10^{-4} \mathrm{~mm}
$$

$$
\text { B. } 5 \times 10^{-4} \mathrm{~mm}
$$

C. $7.5 \times 10^{-4} \mathrm{~mm}$
D. $10 \times 10^{-4} \mathrm{~mm}$

Answer: D

D Watch Video Solution

149. What will be the angle of diffraction for
the first secondary maximum due to diffraction at a single slit of width 0.5 mm and using light off 5000 Å?
A. 1.5×10^{-4} radian
B. 1.5×10^{-3} radian
C. 0.75×10^{-3} radian
D. 0.001 radian

Answer: B

D Watch Video Solution
150. The direction of the first secondary maximum in the fraunhoffer diffraction
pattern at a single slit is given by (a is the width of the slit)

$$
\begin{aligned}
& \text { A. } a \sin \theta=\frac{\lambda}{2} \\
& \text { B. } a \cos \theta=\frac{3 \lambda}{2} \\
& \text { C. } a \sin \theta=\lambda \\
& \text { D. } a \sin \theta=\frac{3 \lambda}{2}
\end{aligned}
$$

Answer: D

D Watch Video Solution

151. Light of wavelength $5500 \AA$ is incident on

a slit of width 'a'. For what vlaue of 'a' the first minimum in the diffraction pattern falls at 30° ?
A. $5.5 \times 10^{-6} m$
B. $7.5 \times 10^{-6} m$
C. $1.1 \times 10^{-6} m$
D. 1.3×10^{-6}

Answer: C
152. A parallel beam of monochromatic light off wavelength $\lambda=5 \times 10^{-7} m$ is incident normally on a single narrow slit of width 10^{-3} mm . what is angle of diffraction, the first minimum if formed?
A. 30°
B. 45°
C. 60°
D. 75°

Answer: A

- Watch Video Solution

153. For a parallel beam of monochromatic.

Light of wavelength ' λ ' diffraction is produced by a single slit whose width 'a' is of the order of the wavelength of the lightl. If ' D '
is the distance of the screen from the slit, the width of the central maxima will be
A. $\frac{D \lambda}{a}$
B. $\frac{D a}{\lambda}$
C. $\frac{2 D a}{\lambda}$
D. $\frac{2 D \lambda}{a}$

Answer: D

D Watch Video Solution

154. In a single slit diffraction pattern intensity and width of fringes are
A. have equal intensity
B. have equal width
C. have unequal intensity ad unequal width
D. have unequal intensity and equal width

Answer: C

D Watch Video Solution

155. The frequency of the emm. Wave, which is best suitable to observe a particle of the size of $3 \times 10^{-6} m$ is of the order of
A. $10^{14} \mathrm{~Hz}$
B. $10^{15} \mathrm{~Hz}$
C. $2 \times 10^{13} \mathrm{~Hz}$
D. $3 \times 10^{15} \mathrm{~Hz}$

Answer: A

D Watch Video Solution

156. If I_{0} is the intensity of the principal maximum in the single slit diffraction pattern.

Then what will be its intensity when the slit width is doubled?
A. $\frac{I_{0}}{2}$
B. I_{0}
C. $4 I_{0}$
D. $2 I_{0}$

Answer: B
(Watch Video Solution
157. Yellow light is used in single slit diffraction experiment with slit width 0.6 mm . If yellow light is replaced by X -rays then the pattern will reveal
A. more number of fringes
B. less number of fringes
C. no diffraction pattern
D. a very narrow central maxima

Answer: C

158. A single slit of width a is illuminated by
violet light of wavelength 400 nm and the width of the diffraction pattern is measured as
y. When half of the slit width is covered and
illuminated by yellow light of wavelength

600 nm , the width of the diffraction pattern is
A. The patternn vanishes and the width is
zero
B. $\frac{y}{3}$
C. $3 y$
D. None of these

Answer: C

D Watch Video Solution

159. In a single slit diffraction pattern, the first minima for a wavelength $\lambda_{1}=6000 \AA$ coincides with the first maxima for a wavelength λ_{2}. Then the value of λ_{2} is
A. $8000 \AA$
B. $4000 \AA$
C. $5500 \AA$
D. $3500 \AA$

Answer: B

D Watch Video Solution

160. A parallel beam of fast moving electrons is incident normally on a narrow slit. A
fluorescent screen is placed at a large distance
from the slit. If the speed of the electrons is increased, which of the following statements is correct?
A. Diffraction patternn is not observed on
the screen in the case of electrons
B. The angular width of the central maxima
of the diffraction pattern will increase
C. The angular width of the central maxima
will decrease
D. The angularr width of the central

maxima will remain the same

Answer: C

- Watch Video Solution

161. A single slit Fraunhoffer diffraction patternn is formed with white light. For what wavelength of light the third secondary maximum in the diffraction pattern coincides
with the second secondary maximum in the patternn of red light of wavelength $6300 \AA$ Å?
A. $4400 \AA$
B. $4800 \AA$
C. $4500 \AA$
D. $5500 \AA$

Answer: C

D Watch Video Solution

162. A parallel monochromatic beam of light is incident normally on a narrow slit. A diffraction pattern is formed on a screen placed perpendicular to the direction of the incident beam. At the first minimum of the diffraction pattern, the phase difference between the rays coming from the two edges of the slit is
A. π
B. $\frac{\pi}{2}$
C. 2π

D. zero

Answer: C

D Watch Video Solution

163. In a double slit experiment, the two slits
are 1 mm apart and the screen is placed 1 m
away. A monochromatic lightg of wavelength
500 nm is used, what will be the width of each
slit for obtaining ten maxima of double slit
within the central maxima of single slit pattern?
A. 0.1 mm
B. 0.5 mm
C. 0.02 mm
D. 0.2 mm

Answer: D
(Watch Video Solution
164. The aperrture of the largest telescope in
the world is about 5 m . if the separation
between the moon and the earth is
$4 \times 10^{5} \mathrm{~km}$ and the wavelength of visible light
is $5000 \AA$, then the minimum separation between the objects on the surface of the moon which can be just resolved is approximately equal to
A. 200 m
B. 100 m
C. 50 m
D. 25 m

Answer: C

D Watch Video Solution

165. If the blue light is replaced by red light
illuminating the object in a microscope, the resolving power of the microscope
A. is increased
B. is decreased

C. gets halved

D. remains constant

Answer: B

D Watch Video Solution

166. Which colour will give maximum resolving power for a telescope?
A. Red
B. Gblue

C. Green

D. Violet

Answer: D

D Watch Video Solution

167. A telescope is used to resolve two stars
having an angular separation of 3.66×10^{-6}
radian. What is the diameter of the objective
of the telescope if monochromatic light of wavelength $6000 \AA$ is used?
A. 10 cm
B. 20 cm
C. 25 cm
D. 30 cm

Answer: B

D Watch Video Solution
168. Two points separated by a distance of 0.1 mm can just be resolved in a microscope when
a light of wavelength $6000 \AA$ is used. If the
light of wavelength $4800 \AA$ is used this limit of resolution becomes :-
A. 0.05 mm
B. 0.06 mm
C. 0.07 mm
D. 0.08 mm

Answer: D
(Watch Video Solution
169. The resolving power of a telescope whose
lens has a diameter of 1.22 m for a wavelength of $5000 \AA$ is

A. 1.50×10^{6}

B. 1.75×10^{6}
C. 2.25×10^{6}
D. 2.0×10^{6}

Answer: D

D Watch Video Solution
170. Wavelength of light used in an optical instrument are $\lambda_{1}=4500 \AA$ and $\lambda_{2}=6000 \AA$.

What is the ratio of the resolving powers corresponding to λ_{1} and λ_{2} ?

> A. $\frac{3}{4}$
> B. $\frac{4}{3}$
> C. $\frac{9}{16}$
> D. $\frac{16}{9}$

Answer: B
171. The angular separation of a 100 cm telescope for $\lambda=5500 \AA$ is approximately equal to
A. 0.14°
B. 1°
C. 1°
D. 0.3°

Answer: A
172. The objective of a microscope is first illuminated with blue light. Then it is
illuminated by yellow light, without changing
the experimental set up. In the second case its resolving power.
A. will increase
B. will decrease
C. will not change
D. will be doubled

Answer: B

- Watch Video Solution

173. A man wants to distinguish between two
pillars located at a distance of 11 km . What
should be the minimum distance between the
pillars?
A. 1.6 m
B. 3.2 m
C. 0.8 mm
D. 5 m

Answer: B

D Watch Video Solution

174. If the aperature of a telescope is decreased resolving power will
A. increases
B. does not change
C. becomes infinity

D. decreases

Answer: D

D Watch Video Solution

175. Resolving power of a telescope can be increased by
A. increasing the diameter of the objectie of the telescope
B. decreasing the diameter of the objective of the telescope
C. increasing the wavelength of light
D. none of these

Answer: A

D Watch Video Solution
176. Aperture of the human eye is 2 mm .

Assuming the mean wavelength of light to be
$5000 \AA$ A, the angular resolution limit of the eye
is nearly
A. 1°
B. 20°
C. 1.5×10^{-3} radian
D. 1°

Answer: A
(Watch Video Solution
177. The diameter of human eye lens is $2 m m$.

What should be the minimum separation
between two points situated at 50 m from eye,
to resolve tham. Take wavelength of light $=5000 \AA$.
A. 1.25 cm
B. 2.35 cm
C. 3.5 cm
D. 4.8 cm

Answer: A

- Watch Video Solution

178. The headlights of a truck are 1.22 m apart and light of wavelength $5000 \AA$ is used for the headlights. The pupil of the eye of the obeserver has a diameter of 1 mm . what should be the maximum distance of the truck from observer, so that the headlights are just separated for him?
A. 2 km
B. 1.5 km
C. 3 km

D. 3.5 km

Answer: A

D Watch Video Solution

179. The human eye has an approximate angular resolution of $\phi=5.8 \times 10^{-4} \mathrm{rad}$ and
a typical photo printer prints a minimum of 300 dpi (dots per inch, $=2.54 \mathrm{~cm}$). Aminimum distance 'z' should a printed page be held so
that one doesnot see the indivdual dots is
A. 17 cm
B. 12.5 cm
C. 14.5 cm
D. 16.3 cm

Answer: C
(Watch Video Solution
180. If numerical aperture of a microscope is
increased, then its
A. resolving power decreases
B. limit of resoltuion decreases
C. resolving power remains constant
D. limit off resolution increases

Answer: B

- Watch Video Solution

181. The limit of resolution of microscope, if the numerical aperture of microscope is 0.12 , and the wavelength of light used is 600 nm , is
A. $0.25 \times 10^{-7} m$
B. $2.5 \times 10^{-7} \mathrm{~m}$
C. $25 \times 10^{-7} m$
D. $250 \times 10^{-7} \mathrm{~m}$

Answer: C

D Watch Video Solution

182. The frings produces in a diffraction patternn are of
A. equal width with the same intensity
B. unequal width with varying intensity
C. equal width with varying intensity
D. equal widt with varying intensity

Answer: B

D Watch Video Solution

183. What is the resolving power of a telescope of aperture 100 cm , for light of wavelength $5.5 \times 10^{-7} \mathrm{~m} ?$
A. 0.149×10^{7}
B. 1.49×10^{7}
C. 14.9×10^{7}
D. 149×10^{7}

Answer: A

D Watch Video Solution
184. In the diffraction pattern due to a single
slit of width 'd' with incident light of wavelength ' λ ', at an angle of diffraction ' θ ', the condition for first minimum is
A. $\lambda \sin \theta=d$
B. $d \cos \theta=\lambda$
C. $d \sin \theta=\lambda$
D. $\lambda \cos \theta=d$

Answer: C

185. The resolving power of a telescope depends on
A. length of the telescope
B. focal length of the objective
C. diameter of the objective
D. focal length of eyepiece

Answer: C

- Watch Video Solution

186. Interference fringes are produced on a screen by using two light sources of intensities / and 9/. The phase difference between the beams $\frac{\pi}{2}$ is at point P and π at point Q on the screen. The difference between the resultant intensities at point P and Q is
A. 21
B. 41
C. 61
D. 81

Answer: C

D Watch Video Solution

187. Two coherent sources P and Q produce interference at point A on the screen where there is a dark band which is formed between

4th bright band and 5th bright band.
Wavelength of light used is $6000 \AA$. The path difference between PA and QA is

$$
\text { A. } 1.4 \times 10^{-4} m
$$

B. $2.7 \times 10^{-4} \mathrm{~m}$
C. $4.5 \times 10^{-4} \mathrm{~cm}$
D. $6.2 \times 10^{-4} \mathrm{~cm}$

Answer: B

D Watch Video Solution

188. Resolving power of telescope increases
when
A. wavelength of light decreases
B. wavelength of light increases
C. focal length of eye-piece increases
D. focal length of eye-piece decreases

Answer: A

D Watch Video Solution

189. In Fraunhofer diffraction pattern, slit
width is 0.2 mm and screen is at 2 m away
from the lens. If wavelength of light used is $5000 \AA$, then the distance between the first
minimum on either side of the central
maximum is $(\theta$ is small and measured in
radian)
A. $10^{-1} m$
B. $10^{-2} m$
C. $2 \times 10^{-2} m$
D. $2 \times 10^{-1} m$

Answer: B

D Watch Video Solution
190. Two identical light waves having phase difference ' ϕ ' propagate in same direction.

When they superpose, the intensity of resultant wave is proportional to
A. $\cos ^{2} \phi$
B. $\cos ^{2} \frac{\phi}{2}$
C. $\cos ^{2} \frac{\phi}{3}$
D. $\cos ^{2} \frac{\phi}{4}$

Answer: B
191. In Young's double experiment, in air interference pattern second minimum is observed exactly in front of one slit. The distance beween the two coherent source is 'd' and the distance between source and screen ' D '. The wavelength of light source used is
A. $\frac{d^{2}}{D}$
B. $\frac{d^{2}}{2 D}$
C. $\frac{d^{2}}{3 D}$
D. $\frac{d^{2}}{4 D}$

Answer: C

- Watch Video Solution

Test Your Grasp

1. Two waves having the intensities in the ratio
of $9: 1$ produce interference. The ratio of maximum to minimum intensity is equal to
A. 10: 8
B. 2:1
C. $9: 1$
D. $4: 1$

Answer: D

D Watch Video Solution

2. A point P is situated at 40.1 cm and 40.2 cm

away from two coherent sources. If the wavelength of light used is $5000 \AA$, then the point P
A. is dark
B. is bright
C. neigher bright nor dark
D. may be bright or dark

Answer: B

D Watch Video Solution

3. Two coherent monochromatic light beams
of intensities 1 and 41 are superposed. The
maximum and minimum possible intensities in
the resulting beam are
A. 51 and 31
B. 91 and I
C. 91 and 31
D. 51 and I

Answer: B
(Watch Video Solution
4. In Young's double slit experiment carried out with wavelength $\lambda=5000 \AA$, the distance between the slits is 0.2 mm and the screen is 2 m away from the slits. The central maxima is at $\mathrm{n}=0$. the third maxima will be at a distance x (from central maxima) is equal to
A. 0.5 cm
B. 1.5 cm
C. 5 cm
D. 1.67 cm

Answer: B

D Watch Video Solution

5. In Young's experiment, interference fringes are obtained on a screen placed at some distance from the slits. When the screen is moved towards the slits by $5 \times 10^{-2} m$, the fringe width is changed by $3.5 \times 10^{-5} \mathrm{~m}$. If the separation between the slits is 1 mm , then th wavelength of light used is
A. $4000 \AA$
B. $5000 \AA$
C. $6000 \AA$
D. $7000 \AA$

Answer: D

D Watch Video Solution

6. In a young's double slit experiment, one of
the slits is covered by a glass sheet of
thickness $2.5 \times 10^{-5} \mathrm{~m}$. Due to this, the
position of the central bright fringe is shifted
to position originally occupied by the 30th
bright fringe. If $\lambda=5000 \AA$, then the refractive index of glass is
A. 1.45
B. 1.5
C. 1.6
D. 1.65

Answer: C

7. In Young's double slit experiment, the two slits are at a distance 'd' apart. Interference pattern is observed on a screen at a distance

D front the slit, if at a point on the screen, directly opposite to the slits, the first dark fringe is observed, then wave length of the wave will be

$$
\begin{aligned}
& \text { А. } \lambda=\frac{d^{2}}{2 D} \\
& \text { В. } \lambda=\frac{d^{2}}{D} \\
& \text { С. } \lambda=\frac{2 d^{2}}{D}
\end{aligned}
$$

D. $\lambda=\frac{D}{d^{2}}$

Answer: B

D Watch Video Solution

8. In Youngs 's double slit experiment, the
fringe
width
obtained
by
using
monochromatic light of wavelength $6000 \AA$ is
2 mm . if the whole apparatus is immersed in
water of R.I. 1.33, then the change in fringe
width will be
A. 1 mm
B. 1.2 mm
C. 1.5 mm
D. 0.5 mm

Answer: D

D Watch Video Solution

9. In Young's double slit experiment, the maximum intensity is I_{0}. What is the intensity
at a point on the screen where the path

?

A. I_{0}
B. $\frac{I_{0}}{3}$
C. $\frac{I_{0}}{4}$
D. $\frac{I_{0}}{2}$

Answer: D

- Watch Video Solution

10. In a biprism experiment the band width is
0.4 mm when the eye piece is at a distance of

1 m from the slit. If the eye piece is moved through a distanc eof 25 cm towards the biprism, without changing any other arrangement, then the change in fringe width is
A. 0.1 mm
B. 0.01 mm
C. 0.001 mm

D. 0.0001 mm

Answer: A

D Watch Video Solution

11. In a biprism experiment, the distance between the consecutive bright bands is 0.32 mm, when red light of wavelength $6400 \AA$ is used. By how much would the band width change, if blue light of wavelenth $4800 \AA$ is used, with the same setting?
A. 0.02 mm
B. 0.04 mm
C. 0.06 mm
D. 0.08 mm

Answer: D

D Watch Video Solution

12. Microwave ocillators S_{1} and S_{2} are used to show interference of electromagnetic waves
on a screen which in parallel to $S_{1} S_{2}$ and 2 m
away from $S_{1} S_{2}$. If $S_{1} S_{2}=20 \mathrm{~cm}$ and
$\lambda=4 \mathrm{~cm}$, then the distance between the successive maxima and minima will be
A. 20 cm
B. 30 cm
C. 40 cm
D. 50 cm

Answer: C

D Watch Video Solution
13. Two sources of light P and Q have wavelengths $6000 \AA$ and $5500 \AA$ respectively. In a biprism experiment, first the source P is used, and then it is replaced by the source Q . it is found that the position of the $n^{t h}$ bright band corresponding to P is occupied by $(n+1)^{t h}$ bright band of Q . what is the value of n ?
A. 5
B. 7
C. 9

D. 11

Answer: D

D Watch Video Solution

14. Light of wavelength $5000 \AA$, illuminates the
slit in a biprism experiment. If it is replaced by
light of wavelength $6500 \AA$, then the fringe width will
A. increase by 20%
B. decrease by 20\%
C. increase by 30%
D. decrease by 30\%

Answer: C

D Watch Video Solution

15. A diffraction patter is obtained by making

Ibue light incident on a narrow slit. It blue light is replaced by red light then
A. diffraction bands disappear
B. diffraction bands become broader
C. diffraction bands become narrower
D. there is not change in diffraction
pattern

Answer: B

- Watch Video Solution

16. Light of wavelength λ is incident on a slit of width d and distance between screen and
slit is D. Then width of maxima and width of slit will be equal if D is --

$$
\begin{aligned}
& \text { A. } \frac{a^{2}}{\lambda} \\
& \text { B. } \frac{\lambda}{2 a^{2}} \\
& \text { C. } \frac{a^{2}}{2 \lambda} \\
& \text { D. } \frac{2 a}{\lambda^{2}}
\end{aligned}
$$

Answer: C

17. A light wave is incident normally over a slit of width $24 \times 10^{-5} \mathrm{~cm}$. The angular position of second dark fringe from the central maxima is 30°. What is the wavelength of light?
A. $6000 \AA$
B. $5000 \AA$
C. $3000 \AA$
D. $1500 \AA$

Answer: A

D Watch Video Solution

18. In a Fraunhoffer diffraction at single slit of
width 'a' with incident light of wavlength of
$5500 \AA$, the first minimum is observed, at an
angle of 30°. At what angle the first secondary
maximum is observed?

$$
\begin{aligned}
& \text { A. } \sin ^{-1} \frac{1}{\sqrt{2}} \\
& \text { B. } \sin ^{-1} \frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } \sin ^{-1} \frac{3}{4} \\
& \text { D. } \frac{\sin ^{-1}(\sqrt{3})}{2}
\end{aligned}
$$

Answer: C

- Watch Video Solution

19. By using light of wavelength $5200 \AA$, two points separated by a distance of 0.12 mm can just be resolved by a microscope. What will be the limit of resolution, if light of wavelength $6500 \AA$ is used?
A. 0.10 mm
B. 0.08 mm
C. 0.15 mm
D. 0.2 mm

Answer: C

- Watch Video Solution

20. What is the resolving power of a telescope whose objective lens has a diameter 1.22 m from a wavelength $4000 \AA$ Å?
A. 2×10^{6}
B. 2.5×10^{6}
C. 2×10^{5}
D. 2.5×10^{4}

Answer: B

- Watch Video Solution

