びdoubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MARVEL PHYSICS (HINGLISH)

KINETIC THEORY OF GASES

,THERMODYNAMICS AND RADIATION

MULTIPLE CHOICE QUESTIONS

1. A vessel contains 60,000 molecules of a gas.

Due to a very fine hole in the wall, 10,000
molecules escape from the vessel. Then the mean free path of the molecules of the gas
A. is increased
B. is decreased
C. is not changed
D. may increase of decrease

Answer: A

D Watch Video Solution

2. There are N molecules of a gas in a containter. If this number is increased to 2 N , what will be (i) pressure (ii) total energy (iii) rms speed of the gas?
A. increase
B. decrease
C. not change
D. be halved

Answer: C
3. At constant volume, temperature is increased. Then
A. the collisions on the walls will be less
B. the number of collisions will not change
C. collisions will be in straight lines
D. number of collisions per unit time will
increase

- Watch Video Solution

4. For a planet, the escape velocity is V_{e}. The presence of atmosphere on the planet shows that the
A. $V_{\mathrm{rms}}=V_{e}$
B. $V_{\mathrm{rms}}=0$
C. $V_{\mathrm{rms}}<V_{e}$
D. $V_{\mathrm{rms}}>V_{e}$
5. The root mean square velocity of the molecules of a gas is $200 \mathrm{~m} / \mathrm{s}$. What will be the rms velocity of the molecules if the atomic weight is doubled and the absolute temperature is halved?
A. $50 \mathrm{~m} / \mathrm{s}$
B. $100 \mathrm{~m} / \mathrm{s}$
C. $200 \mathrm{~m} / \mathrm{s}$

D. $300 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

6. Molecular weight of oxygen is 32 and that of
hydrogen is 2 . The ratio of the rms velocity of
hydrogen molecule at 400 K to rms velocity of oxygen molecule at 900 K is given by
A. $\frac{2}{3}$

> B. $\frac{5}{3}$ C. $\frac{8}{3}$ D. $\frac{10}{3}$

Answer: C

D Watch Video Solution

7. The absolute temperature of the gas is increased 3 times. What will be the increases
in root mean square velocity of the gas molecules?
A. 3 times
B. 9 times
C. $\sqrt{3}$ times
D. $\frac{1}{\sqrt{3}}$ times

Answer: C

D Watch Video Solution
8. The temperature of the gas is raised from
$27^{\circ} \mathrm{C}$ to $927^{\circ} \mathrm{C}$, the root mean square
velocity is
A. twice
B. half
C. four times
D. one third

Answer: A

D Watch Video Solution

9. The velocities of 5 molecules are
$2 m / s, 3 m / s, 4 m / s, 5 m / s$ and $6 m / s$
respectively. What is their mean velocity?
A. $2 m / s$
B. $3 m / s$
C. $4 m / s$
D. $7 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

10. The velocities of 4 molecules are
$2 m / s, 4 m / s, 5 m / s$ and $6 m / s$ respectively.

What is their mean square velocity?
A. $\frac{51}{4} m^{2} / s^{2}$
B. $\frac{61}{4} m^{2} / s^{2}$
C. $\frac{71}{4} m^{2} / s^{2}$
D. $\frac{81}{4} m^{2} / s^{2}$

Answer: D

D Watch Video Solution

11. The translational K.E. of the molecules of a gas at absolute temperature (T) can be doubled
A. by increasing T to $4 T$
B. by increasing T to $\sqrt{2} T$
C. by decreasing T to $\frac{T}{2}$
D. by increasing T to $2 T$

Answer: D

D Watch Video Solution

12. The root mean square speed of hydrogen molecule at 300 K is $1930 \mathrm{~m} / \mathrm{s}$. Then the root
mean square speed of oxygen molecules at

900K will be...........

A. $643 m / s$
B. $836 \mathrm{~m} / \mathrm{s}$
C. $\frac{1930}{\sqrt{3}} \mathrm{~m} / \mathrm{s}$
D. $1930 \sqrt{3} \mathrm{~m} / \mathrm{s}$

Answer: B
(Watch Video Solution
13. A vessel contains one mole of oxygen and one mole of hydrogen at N.T.P. What is the ratio of the values of rms velocities of hydrogen and oxygen molecules?
A. $1: 16$
B. 16: 1
C. $4: 1$
D. 1: 4

Answer: C
14. The rms speed of the molecules of a gas in a vessel at $80^{\circ} \mathrm{C}$ is $200 \mathrm{~m} / \mathrm{s}$. If 40% of the gas is taken out of the vessel, what is the rms speed of the remaining molecules if their temperature is not changed?
A. $120 \mathrm{~m} / \mathrm{s}$
B. $280 \mathrm{~m} / \mathrm{s}$
C. $200 \mathrm{~m} / \mathrm{s}$
D. $200 \sqrt{3} m / s$

Answer: C

D Watch Video Solution

15. The mean free path of a gas molecule at
$27^{\circ} \mathrm{C}$ is 2 cm . If the rms velocity of the gas at
that temperature is $10 \mathrm{~m} / \mathrm{s}$, what is the time interval between two successive collisions?
A. $\frac{1}{5} s$
B. $\frac{1}{50} s$
C. $\frac{1}{500} s$

D. $\frac{1}{250} s$

Answer: C

D Watch Video Solution

16. Which of the following gases has maximum
rms speed at a given temperature?
A. Oxygen
B. Hydrogen
C. Carbon dioxide

D. Nitrogen

Answer: B

D Watch Video Solution

17. The phenomenon of Brownian motion is taken as an evidence of
A. particle nature of matter
B. kinetic theory of matter
C. wave nature of matter

D. relativistic variation of mass of matter

Answer: B

D Watch Video Solution

18. The molecules of an ideal gas possesses
A. only P.E.
B. only K.E.
C. both P.E. and K.E.
D. only gravitational energy

Answer: B

- Watch Video Solution

19. The number of molecules in a gram-mole of
molecule of a gas is called
A. Universal gas constant
B. Planck's constant
C. Avogadro's number
D. Boltzmann constant

Answer: C

D Watch Video Solution

20. When a gas is compressed as constant temperature:
A. is decreased
B. is increased
C. remains unchanged
D. becomes half

Answer: B

D Watch Video Solution

21. The temperature of the gas is raised from
$27^{\circ} \mathrm{C}$ to $927^{\circ} \mathrm{C}$, the root mean square velocity is
A. double
B. three times
C. one half
D. one fourth

Answer: C

D Watch Video Solution

22. At a certain temperature, hydrogen molecules have r.m.s. velocity of $3 \mathrm{~km} / \mathrm{s}$. What
is the r.m.s. velocity of the oxygen molecules at the same temperature?
A. $0.25 \mathrm{~km} / \mathrm{s}$
B. $0.5 \mathrm{~km} / \mathrm{s}$
C. $0.75 \mathrm{~km} / \mathrm{s}$

D. $6 \mathrm{~km} / \mathrm{s}$

Answer: C

D Watch Video Solution

23. At what temperature, the r.m.s. speed of
the molecules of a gas is half its value at NTP?
A. 0 K
B. 273 K
C. 150 K

D. 68.25 K

Answer: D

D Watch Video Solution

24. The r.m.s. velocity of the molecules of an ideal gas is C at a temperature of 100 K . At what temperature its r.m.s. velocity will be doubled?
A. 200 K

B. 400 K

C. 300 K

D. 50 K

Answer: B

D Watch Video Solution

25. The temperature of a gas is $-68^{\circ} \mathrm{C}$. To what temperature should it be heated, so that
the r.m.s. velocity of the molecules be doubled
A. $357^{\circ} C$
B. $457^{\circ} \mathrm{C}$
C. 547°
D. 820°

Answer: C

D Watch Video Solution

26. The velocities of 4 molecules are $4 \mathrm{~m} / \mathrm{s}$, $5 \mathrm{~m} / \mathrm{s}, 6 \mathrm{~m} / \mathrm{s}$ and $2 \mathrm{~m} / \mathrm{s}$ respectively. What is their rms velocity?
A. $0.15 m / s$
B. $0.25 \mathrm{~m} / \mathrm{s}$
C. $0.20 \mathrm{~m} / \mathrm{s}$
D. $0.30 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution
27. The molecular weights of H_{2} and O_{2} are 2
and 32 respectively. The rms velocity of H_{2}
molecule at N.T.P. is $2000 \mathrm{~m} / \mathrm{s}$. What is the rms

velocity of Oxygen molecules at N.T.P. ?

A. $400 \mathrm{~m} / \mathrm{s}$
B. $500 \mathrm{~m} / \mathrm{s}$
C. $1000 m / s$
D. $3000 \mathrm{~m} / \mathrm{s}$

Answer: B
(Watch Video Solution
28. A sample of gas is at $0^{\circ} C$. The temperature at which its rms speed of the molecule will be doubled is
A. $273^{\circ} C$
B. $623^{\circ} C$
C. $819^{\circ} C$
D. $1092^{\circ} C$

Answer: C

D Watch Video Solution
29. If the absolute temperature of a gas is increased 5 times, the r.m.s. velocity of the molecules will be
A. 5 times
B. 10 times
C. $\sqrt{5}$ times
D. 25 times

Answer: C

D Watch Video Solution
30. Root mean square velocity of gas
molecules is $300 \mathrm{~m} / \mathrm{sec}$. The $r . m$. s velocity of molecules of gas with twice the molecular weight and half the absolute temperature is :
A. $300 m / s$
B. $600 \mathrm{~m} / \mathrm{s}$
C. $150 \mathrm{~m} / \mathrm{s}$
D. $75 \mathrm{~m} / \mathrm{s}$

Answer: C

31. The temperature of an ideal gas is increased from $27^{\circ} C$ to $327^{\circ} C$. If the r.m.s. speed of its molecules at $27^{\circ} C$ is $200 \mathrm{~m} / \mathrm{s}$, then the new r.m.s. speed at $600^{\circ} \mathrm{K}$ will be
A. $200 m / s$
B. $200 \sqrt{5} \mathrm{~m} / \mathrm{s}$
C. $200 \sqrt{2} m / s$
D. $400 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

32. The root mean square velocity of the molecules of a gas is $200 \mathrm{~m} / \mathrm{s}$. What will be the rms velocity of the molecules if the atomic weight is doubled and the absolute temperature is halved?
A. $150 \mathrm{~m} / \mathrm{s}$
B. $100 \mathrm{~m} / \mathrm{s}$
C. $300 \mathrm{~m} / \mathrm{s}$
D. $400 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

33. Find the wrong statement from the following :

According to kinetic theory 0 K is that temperature at which
A. pressure of an ideal gas is zero
B. volume of an ideal gas is zero
C. internal energy of an ideal gas is zero
D. mass of an ideal gas is zero

Answer: D

D Watch Video Solution
34. There is no atomosphere on moon because
A. it is far away from the surface of the
earth
B. its surface temperature is $-10^{\circ} \mathrm{C}$
C. the r.m.s. velocity of all the gas
molecules is more than the escape
velocity of the moon's surface
D. the escape velocity of the moon's surface
is more than the r.m.s. velocity of all gas
molecules
35. In the equation $P V=n R T$, the value of ' R ' will not depend on:
A. nature of the gas
B. pressure of the gas
C. temperature of the gas
D. units of measurement

Answer: D
36. The rms speed of the molecules of a gas in
a vessel is $400 \mathrm{~ms}^{-1}$. If half of the gas leaks out at constant temperature, the rms speed of
the ramaining molecules will be.
A. $200 \sqrt{2} m / s$
B. $200 \mathrm{~m} / \mathrm{s}$
C. $400 \mathrm{~m} / \mathrm{s}$
D. $400 \sqrt{2} m / s$

Answer: C

- Watch Video Solution

37. At what temperature will the r.m.s. speed of
the hydrogen molecules be half of its value at $327^{\circ} C$?
A. $-123^{\circ} C$
B. $81.75^{\circ} \mathrm{C}$
C. $127^{\circ} \mathrm{C}$
D. $150^{\circ} \mathrm{C}$

Answer: A

D Watch Video Solution

38. The velocity of 4 gas molecules are given
by $1 \mathrm{~km} / \mathrm{s}, 3 \mathrm{~km} / \mathrm{s}, 5 \mathrm{~km} / \mathrm{s}$ and $7 \mathrm{~km} / \mathrm{s}$. Calculate
the difference between average and RMS velocity .
A. $0.583 \mathrm{~km} / \mathrm{s}$
B. $0.438 \mathrm{~km} / \mathrm{s}$
C. $0.358 \mathrm{~km} / \mathrm{s}$

D. $0.683 \mathrm{~km} / \mathrm{s}$

Answer: A

D Watch Video Solution

39. A gas is compressed isothermally. The rms
velocity of its molecules
A. remains the same
B. increases
C. decreases

D. first increases and then decreases

Answer: A

D Watch Video Solution

40. The temperature at which the rms velocity of oxygen molecules equals to that of nitrogen molecules at $0^{\circ} C$ is
A. $312^{\circ} C$
B. $292^{\circ} C$
C. $195^{\circ} C$
D. $39^{\circ} \mathrm{C}$

Answer: D

D Watch Video Solution

41. A perfect gas of volume 10 litre is compressed isothermally to a volume of 1 litre, the rms speed of the molecules will
A. increase by 5 times
B. decrease by 5 times
C. increase by 10 times
D. not change

Answer: D

- Watch Video Solution

42. A vessel X contains 1 mole of O_{2} gas (molar mass 32) at a temperature T and pressure p.

Another ideantical vessel Y contains one mole
of Ge gas (molar mass 4) at temperature 2 T , then
A. P
B. $\frac{P}{2}$
C. 2 P
D. 4 P

Answer: C
(Watch Video Solution
43. Cooking gas container are kept in a lorry moving with uniform speed. The temperature of the gas molecules inside will
A. remain the same
B. decrease for some, while increase for others
C. increase
D. decrease

Answer: A
44. At what temperature is the rms velocity of
a hydrogen molecule equal to that of an oxygen molecule at $47^{\circ} \mathrm{C}$?
A. 3 K
B. 20 K
C. 80 K
D. $-73 K$

Answer: B

- Watch Video Solution

45. If c_{s} is the velocity of sound in air and c is rms velocity, then
A. $c_{s}<c$
B. $c_{s}=c$
C. $c_{s}=c\left(\frac{\gamma}{3}\right)^{1 / 2}$
D. none of the above

Answer: C
46. The mean free path of molecules of a gas (radius r) is inversely proportional to
A. r
B. \sqrt{r}
C. r^{3}
D. r^{2}

Answer: D

- Watch Video Solution

47. Root mean square velocity of a particle is v at pressure P. If pressure is increased two
times, then the r.m.s. velocity becomes
A. v
B. 2v
C. 0.5 v
D. 4 v

Answer: A
48. The dimensions of universal gas constant is

$$
\begin{aligned}
& \text { A. }\left[M^{1} L^{1} T^{-2} K^{-1} \mathrm{~mol}^{-1}\right] \\
& \text { B. }\left[M^{2} L^{2} T^{-2} K^{-1} \mathrm{~mol}^{-1}\right] \\
& \text { C. }\left[M^{1} L^{2} T^{-2} K^{-1} \mathrm{~mol}^{-1}\right] \\
& \text { D. }\left[M^{2} L^{1} T^{-2} K^{-1} \mathrm{~mol}^{-1}\right]
\end{aligned}
$$

Answer: C

- Watch Video Solution

49. Air in a cylinder is suddenly compressed by
a piston, which is then maintained at the same position. With the passage of time
A. the pressure may increase or decrease depending upon the nature of the gas
B. the pressure remains the same
C. the pressure decreases
D. the pressure increases

Answer: C
50. What will be the r.m.s. speed of a gas at $800^{\circ} \mathrm{K}$?
A. Four times the value of 200 K
B. Half the value at 200 K
C. Twice the value at 200 K
D. Same as at 200 K

Answer: C

51. The temperature of a ideal gas is increased for 100 k to 400 k . If at 100 K the root mea square velocity of the gas molecules is v , at 400K it becomes
A. $4 x$
B. $\frac{x}{4}$
C. 2 x
D. $3 x$
52. The rms velocity of a gas kept at a temperature of $27^{\circ} \mathrm{C}$ in a vessel is $61 \mathrm{~m} / \mathrm{s}$.

The vessel is filled with

$$
[\mathrm{R}=8.31 \mathrm{~J} / \mathrm{molK}]
$$

A. O_{2}
B. N_{2}
C. CO_{2}
D. H_{2}

Answer: D

- Watch Video Solution

53. At room temperature the rms speed of the molecules of a certain diatomic gas is formed to be $1930 \mathrm{~m} / \mathrm{sec}$ The gas is .
A. H_{2}
B. O_{2}
C. $C l_{2}$
D. F_{2}

Answer: A

D Watch Video Solution

54. If we travel from the troposphere to the
thermosphere, the mean free path of the ait molecules
A. is considerably decreased
B. is considerably increased
C. does not change
D. becomes zero

Answer: B

- Watch Video Solution

55. The speed of sound in oxygen $\left(O_{2}\right)$ at a certain temperature is $460 \mathrm{~ms}^{-1}$. The speed of
sound in helium (He) at the same temperature will be (assume both gases to be ideal)
A. $330 \mathrm{~m} / \mathrm{s}$
B. $460 \mathrm{~m} / \mathrm{s}$
C. $1420 \mathrm{~m} / \mathrm{s}$

D. $920 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

56. Three closed vessels A, B and C are at the same temperature T and contain gases which obey the Maxwellian distribution of velocities.

Vessel A contains only O_{2}, B only N_{2} and C a mixture of equal quantities of O_{2} and N_{2}. If the average speed of the O_{2} molecules in
vessel A is V_{1}, that of the N_{2} molecules in
vessel B is V_{2}, the average speed of the O_{2} molecules in vessel C is (where M is the mass of an oxygen molecules)
A. $\sqrt{v_{1} v_{2}}$
B. $\sqrt{\frac{3 K T}{M}}$
C. $\frac{1}{2}\left(v_{1}+v_{2}\right)$
D. v_{1}

Answer: D

57. Two identical containers A and B with
frictionless pistons contain the same ideal gas
at the same temperature and the same velocity V . The mass of the gas in A is m_{A}, and
that in B is m_{B}. The gas in each cylinder is now allowed to expand isothermally to the same
final volume 2 V . The changes in the pressure in
A and B are found to be ΔP and $1.5 \Delta P$ respectively. Then
A. $4 m_{A}=9 m_{A}$
B. $9 m_{A}=4 m_{B}$
C. $2 m_{A}=3 m_{B}$
D. $3 m_{A}=2 m_{B}$

Answer: D

- Watch Video Solution

58. 1 mole of H_{2} gas in contained in a box of volume $V 1.00 \mathrm{~m}^{3}$ at $\mathrm{T}=300 \mathrm{~K}$. The gas is heated to a temperature of $\mathrm{T}=3000 \mathrm{~K}$ and the gas gets converted to a gas of hydrogen
atoms. The final pressure would be (considering all gases to be ideal)
A. same as the initial pressure
B. 2 times the initial pressure
C. 10 times the initial pressure
D. 20 times the initial pressure

Answer: D

D Watch Video Solution

59. What is the density of a gas at N.T.P. if the rms velocity of the gas molecules is $400 \mathrm{~m} / \mathrm{s}$?
(Take atmospheric
pressure

$$
\left.P=1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)
$$

A. $\frac{5}{8} \mathrm{~kg} / \mathrm{m}^{3}$
B. $\frac{11}{8} \mathrm{~kg} / \mathrm{m}^{3}$
C. $\frac{15}{8} \mathrm{~kg} / \mathrm{m}^{3}$
D. $\frac{25}{8} \mathrm{~kg} / \mathrm{m}^{2}$

Answer: C

60. n balls each of mass m impinge elastically
each second on a surface with velocity u. The average force experienced by the surface will be
A. μn
B. $\frac{m u n}{2}$
C. 2 mun
D. $\frac{\mathrm{mnu}^{2}}{2}$

Answer: A

D Watch Video Solution

61. n balls each of mass m impinge elastically
each second on a surface with velocity u. The average force experienced by the surface will be
A. $m n u^{2}$
B. $2 \mathrm{mnu}^{2}$
C. 2 mnu

D. $\frac{1}{2} m n u^{2}$

Answer: C

- Watch Video Solution

62. A molecule of mass m moving with a
velocity v makes 5 elastic collisions with a wall of the container per second. The change in its momentum per second will be
A. mv
B. 5 mv
C. $\frac{m v}{10}$
D. 10 mv

Answer: D

D Watch Video Solution

63. The root mean square speed of the molecules of an enclosed gas is ' v '. What will
be the root mean square speed if the pressure
is doubled, the temperature remaining the same?
A. x
B. $\frac{x}{2}$
C. 2 x
D. \sqrt{x}

Answer: A
(Watch Video Solution
64. Equal volumes of two gases, having their densities in the ratio $1: 16$ exert equal pressures on the walls of two containers. The ratio of their rms velocities $\left(\frac{C_{1}}{C_{2}}\right)$ is
A. $1: 8$
B. $8: 1$
C. $1: 4$
D. $4: 1$
65. If the pressures exerted by two ideal gases
are in the ratio 3:2 and their densities are in
the ratio $2: 1$, then the ratio of their r.m.s.
velocities is
A. $\sqrt{\frac{2}{3}}$
B. $\frac{2}{3}$
C. $\sqrt{\frac{3}{2}}$
D. $\frac{\sqrt{3}}{2}$

Answer: D

D Watch Video Solution

66. At a constant temperature, what is the
relation between pressure P and density ρ of gas?
A. $C \propto \frac{1}{\rho}$
B. $C \propto \rho$
C. $C \propto \frac{1}{\sqrt{\rho}}$
D. $C \propto \sqrt{\rho}$

D Watch Video Solution

67. Gases excert pressure on the walls of the container, because the gas molecules
A. have finite volume
B. obey Boyle's law
C. possess momentum
D. collide with one another

Answer: C

D Watch Video Solution

68. If masses of all molecules of a gas are
halved and the speed doubled. Then the ratio
of initial and final pressure is :
A. $2: 1$
B. 1:2
C. 1: 4
D. $4: 1$

Answer: B

- Watch Video Solution

69. Gas at a pressure P_{0} in contained as a
vessel. If the masses of all the molecules are halved and their speeds are doubles. The resulting pressure P will be equal to
A. $4 P_{0}$
B. $2 P_{0}$
C. P_{0}
D. $\frac{P_{0}}{2}$

Answer: B

D Watch Video Solution

70. Consider a gas with density ' ρ ' and \bar{c} as
the root mean square velocity of its molecules
contained in a volume. If the system moves as
whole with velocity ' v ' , then the pressure exerted by the gas is

$$
\text { A. } P=\frac{1}{3} \rho[C+V]^{2}
$$

> B. $P=\frac{1}{3} \rho C^{2}$
> C. $P=\frac{1}{3} \rho[C-V]^{2}$
> D. $P=\frac{1}{3} \rho\left[C^{2}-V^{2}\right]$

Answer: B

- Watch Video Solution

71. 10^{23} molecules of a gas, each having a mass of $3 \times 10^{-27} \mathrm{~kg}$ strike per second per sq. cm. of a rigid will at an angle of 60° with the normal and rebound with a velocity of
$500 \mathrm{~m} / \mathrm{s}$. What is the pressure exerted by the gas molecules on the wall?
A. $500 \mathrm{~N} / \mathrm{m}^{2}$
B. $1000 N / m^{2}$
C. $1500 \mathrm{~N} / \mathrm{m}^{2}$
D. $2000 \mathrm{~N} / \mathrm{m}^{2}$

Answer: C

- Watch Video Solution

72. A ring shaped tube contain two ideal gases
with equal masses and relative molar masses
$M_{1}=32$ and $M_{2}=28$.
The gases are separated by one fixed partiotin
and another movable stopper S which can
move freely without friction inside the ring.
The angle α as shown in the figure is
degrees.

A. 150°
B. 172°
C. 192°
D. 82°

Answer: C

- Watch Video Solution

73. Mole of an ideal gas is contained in a cubical volume V, ABCDEFGH at 300 K (figure).

One face of the cube (EFGH) is made up of a material which totally absorbs any gas molecule incident on it .At any given time.

A. the pressure on EFGH would be zero
B. the pressure on all the faces will be equal
C. the pressure on EFGH would be double
the pressure on $A B C D$

D. the pressure on EFGH would be half that

 on ABCD
Answer: D

74. At the same temperature, the mean kinetic energies of the molecules of hydrogen and oxygen are in the ratio
A. $1: 16$
B. 8:1
C. 16:1
D. 1:1

Answer: D

75. The kinetic energy per cubic metre of a perfect gas at N.T.P. is (Take atmospheric pressure $=1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$)
A. $1.5 \times 10^{5} \mathrm{~J} / \mathrm{m}^{3}$
B. $2 \times 10^{5} \mathrm{~J} / \mathrm{m}^{3}$
C. $0.75 \times 10^{5} \mathrm{~J} / \mathrm{m}^{3}$
D. $2.5 \times 10^{5} \mathrm{~J} / \mathrm{m}^{3}$

Answer: A

D Watch Video Solution

76. The kinetic energy of one gram molecule of

a gas at normal temperature and pressure is
($R=8.31 \mathrm{~J} / \mathrm{mol}-K)$
A. $3.4 \times 10^{3} \mathrm{~J}$
B. $1.3 \times 10^{2} J$
C. $0.56 \times 10^{4} J$
D. $3.74 \times 10^{-3} \mathrm{~J}$

Answer: A

- Watch Video Solution

77. In case of Boyle's law, if the pressure is increased by 1% the percentage decrease in volume is
A. 1%
B. $\frac{1}{100} \%$
c. $\frac{1}{101} \%$
D. $\frac{100}{101} \%$

Answer: D

- Watch Video Solution

78. If the universal gas constant is
$8.3 \mathrm{~J} / \mathrm{mole} / K$ and the Avogadro's number is
6×10^{23}, then the mean K.E. of the oxygen molecules at $327^{\circ} C$ will be
A. $2.49 \times 10^{20} J$
B. $4.10 \times 10^{-21} J$
C. $8.5 \times 10^{20} J$
D. $1.245 \times 10^{-20} \mathrm{~J}$

Answer: D
79. The kinetic energy of a gas at $27^{\circ} C$ is E .

What will be its K.E., if the temperature is increased to 500 K ?
A. E
B. 2 E
C. $\frac{5}{3} E$
D. $\sqrt{\frac{5}{3}} E$

Answer: C
80. A monoatomic gas of n -moles is heated from temperature T to T under two different conditions (i) at constant volume and (ii) at constant pressure. The change in internal energy of the gas is
A. is more in (ii)
B. is more in (i)
C. is the same in both cases
D. is $C_{p}-C_{v}$

D Watch Video Solution

81. The average kinetic energy of the molecules
of a gas at 27° is $9 \times 10^{-20} \mathrm{~J}$. What is its average K.E. at $227^{\circ} C$?
A. $5 \times 10^{-20} J$
B. $10 \times 10^{-20} J$
C. $15 \times 10^{-20} J$
D. $20 \times 10^{-20} J$

D Watch Video Solution

82. If the pressure of an ideal gas is decreased
by 10% isothermally, then its volume will
A. increase by 10%
B. increase by 11.1%
C. decrease by 10%
D. decrease by 9%

Answer: B

D Watch Video Solution

83. If E is the kinetic energy per mole of a gas,
and T is the absolute temperature, then the
universal gas constant is given by
A. $R=\frac{3 T}{2 E}$
B. $R=\frac{2 E}{3 T}$
C. $R=\frac{3 E}{2 T}$
D. $R=\frac{2 T}{3 E}$

Answer: B

- Watch Video Solution

84. A gas has volume V and pressure P. The total translational kinetic energy of all the molecules of the gas is equal to $\frac{3}{2} P V$
A. if the gas is monoatomic
B. if the gas is diatomic
C. if the gas is triatomic
D. in all cases

Answer: D

D Watch Video Solution

85. At what temperature will the average K.E.
of the hydrogen molecules be half of its value
at N.T.P. ?
A. 136.5 K
B. 273 K
C. 1052 K
D. 546 K

D Watch Video Solution

86. In the Boyle's law experiment, if the volume
of the enclosed air is to be decreased from 20
cc to 18 cc , then its pressure should be increased by about
A. 0.2
B. 0.15
C. 0.05
D. 0.11

Answer: D

- Watch Video Solution

87. In the expression for boyle 's law the product pV has dimensions of
A. Force
B. Impulse
C. Energy

Answer: C

D Watch Video Solution

88. KE per unit volume is E. The pressure
exerted by the gas is given by
A. $\frac{1}{3} E$
B. $\frac{1}{2} E$
C. $\frac{3}{2} E$
D. $\frac{2}{3} E$

Answer: D

D Watch Video Solution

89. The kinetic energy of translation of 20 gm
of oxygen at $47^{\circ} C$ is (molecular wt. of oxygen
is $32 \mathrm{gm} / \mathrm{mol}$ and $\mathrm{R}=8.3 \mathrm{~J} / \mathrm{mol} / \mathrm{K}$)
A. 2490 ergs
B. 2490 J
C. 249 J
D. 960 J

Answer: B

D Watch Video Solution

90. The average translational K.E. of O_{2} molecules (Molecular weight $=32$) at a particular temperature is 0.035 eV . What is the average translational K.E. of N_{2} molecules
(Molecular weight $=28$) at the same temperature ?
A. 0.028 eV
B. 0.055 eV
C. 0.035 eV
D. 0.075 eV

Answer: C

D Watch Video Solution
91. The average translational K.E. of the molecules in a sample of oxygen at 300 K is
$6 \times 10^{-20} \mathrm{~J}$. What is the average translational energy at 750 K ?

A. $2 \times 10^{-19} J$
B. $1.5 \times 10^{-19} J$
C. $3 \times 10^{-18} J$
D. $3.5 \times 10^{-21} J$

Answer: B
92. How much should the pressure be increased in order to decrease the volume of a gas 5\% at a constant temprature ?
A. 0.05
B. 0.1
C. 0.0526
D. 0.04

Answer: C
93. The average translational energy and the rms speed of molecules in a sample of oxygen gas at 300 K are $6.21 \times 10^{-21} \mathrm{~J}$ and $484 \mathrm{~m} / \mathrm{s}$, respectively. The corresponding values at 600 K are nearly (assuming ideal gas behaviour)

$$
\begin{aligned}
& \text { A. } 8.78 \times 10^{-21} J, 684 \mathrm{~m} / \mathrm{s} \\
& \text { B. } 0.21 \times 10^{-21} \mathrm{~J}, 989 \mathrm{~m} / \mathrm{s} \\
& \text { C. } 12.42 \times 10^{-21} \mathrm{~J}, 684 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

D. $12.42 \times 10^{-21} \mathrm{~J}, 968 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

94. A mixture of 2 moles of helium gas (
$(a \rightarrow$ micmass $)=4 a . m . u)$ and 1 mole of
argon gas $((a \rightarrow$ micmass $)=40 a . m . u)$ is
kept at 300 K in a container. The ratio of the
rms speeds $\left(\frac{v_{r m s}(\text { helium })}{\left(v_{r m s}(\text { argon })\right)}\right.$ is
A. 0.32
B. 0.45
C. 2.24
D. 3.16

Answer: D

- Watch Video Solution

95. Two thermally insulated vessel 1 and 2 are
filled with air at temperature
$\left(T_{1} T_{2}\right)$, volume $\left(V_{1} V_{2}\right)$ and pressure $\left(P_{1} P_{2}\right)$
respectively. If the valve joining the two vessels
is opened, the temperature inside the vessel at equilibrium will be

$$
\begin{aligned}
& \text { A. } \frac{T_{1} T_{2}\left(P_{1} V_{1}+P_{2} V_{2}\right)}{P_{1} V_{1} T_{2}+P_{2} V_{2} T_{1}} \\
& \text { B. } \frac{T_{1} T_{2}\left(P_{1} V_{1}+P_{2} V_{2}\right)}{P_{1} V_{1} T_{1}+P_{2} V_{2} T_{2}} \\
& \text { C. } \frac{T_{1}+T_{2}}{2} \\
& \text { D. } T_{1}+T_{2}
\end{aligned}
$$

Answer: B

D Watch Video Solution

96. At what temperature does the average translational K.E. of a molecule in a gas becomes equal to K.E. of an electron accelerated from rest through potential difference of V volt ? All symbols have their usual meaning.
A. $\frac{2 e V N}{3 R}$
B. $\frac{3 R}{2 e V N}$
C. $\frac{\mathrm{NeV}}{R}$
D. $\frac{2 N e V}{R}$

Answer: A

D Watch Video Solution

97. T_{1} is the temperature of oxygen enclosed
in a cylinder. The temperature is increased to
T_{2} and Maxwellian distribution curves for O_{2}
at temperatures T_{1} and T_{2} are plotted. If
A_{1} and A_{2} are the areas under the curves
and the speed axis, in both cases, then

$$
\text { A. } A_{1}>A_{2}
$$

B. $A_{1}<A_{2}$
C. $A_{1}=A_{2}$
D. $A_{1}=\sqrt{A_{2}}$

Answer: C

D Watch Video Solution

98. Calculate the total number of degree of freedom for a mole of diatomic gas at STP.
A. 6.02×10^{23}
B. 18.06×10^{23}
C. 30.1×10^{23}
D. 36.12×10^{23}

Answer: C

D Watch Video Solution

99. The value of $\gamma=\frac{C_{P}}{C_{V}}$ for a gas is given by $\gamma=1+\frac{2}{f}$ where f is the number of degrees of freedom of a molecule of a gas

What is the ratio of $\frac{\gamma_{\text {monoatomic }}}{\gamma_{\text {diatomic }}}$?
A. $\frac{25}{21}$
B. $\frac{21}{25}$
C. $\frac{5}{7}$
D. $\frac{3}{5}$

Answer: A

- Watch Video Solution

100. The gases carbon-monoxide (CO) and nitrogen at the same temperature have kinetic energies E_{1} and E_{2} respectively. Then
A. $E_{1}=E_{2}$
B. $E_{1}>E_{2}$
C. $E_{1}<E_{2}$
D. E_{1} and E_{2} cannot be compared

Answer: A

D Watch Video Solution
101. Each atom of mass m of a monoatomic gas has three degrees of freedom. The r.m.s.
velocity of these atom is given by $\sqrt{\frac{3 K T}{2 m}}$. What is the r.m.s. velocity of a diatomic molecule of mass m which has got five degrees os freedom?
A. $\operatorname{sqrt}((\mathrm{KT}) /(\mathrm{m}))^{\prime}$
B. $\operatorname{sqrt}((K T) /(2 m))^{\prime}$
C. $\operatorname{sqrt}((3 \mathrm{KT}) /(2 \mathrm{~m}))^{\prime}$
D. $\operatorname{sqrt}((5 \mathrm{KT}) /(2 \mathrm{~m}))^{\prime}$

Answer: C
102. Which one of the following molecules does not possess vibrational energy?
A. Oxygen
B. Nitrogen
C. Argon

D. CO_{2}

Answer: C

103. The ratio of the specific heats $\frac{C_{p}}{C_{v}}=\gamma$ in terms of degrees of freedom (n) is given by

$$
\begin{aligned}
& \text { А. }\left(1+\frac{n}{3}\right) \\
& \text { в. }\left(1+\frac{2}{n}\right) \\
& \text { C. }\left(1+\frac{n}{2}\right) \\
& \text { D. }\left(1+\frac{1}{n}\right)
\end{aligned}
$$

Answer: B

- Watch Video Solution

104. For a gas, $R=\frac{2}{3} C_{V}$. This suggests that the gas consists of molecules, which are
A. Polyatomic
B. Diatomic
C. Monoatomic
D. A mixture of diatomic and polyatomic molecules

Answer: C
105. A diatomic gas undergoes adiabatic changes. What is its bulk modulus at 2 atmospheric pressure ?
[Atmospheric pressure $=10^{5} \mathrm{~N} / \mathrm{m}^{2}$]
A. $1 N / m^{2}$
B. $1.4 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
C. $2.8 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
D. $2 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$

Answer: C
106. When an ideal diatomic gas is heated at
constant pressure, the fraction of the heat
energy supplied, which increases the internal
energy of the gas, is
A. $\frac{2}{5}$
B. $\frac{5}{7}$
C. $\frac{3}{7}$
D. $\frac{3}{5}$

Answer: B

D Watch Video Solution

107. A vessel contains a mixture of one of oxygen and two moles of nitrogen at $300 K$

The ratio of the average rotational kinetic energy per O_{2} molecule to N_{2} molecule is .
A. $1: 2$
B. 2:1
C. $1: 1$

D. depends upon the moment of inertia of

 the two molecules
Answer: C

D Watch Video Solution

108. One kg of a diatomic gas is at pressure of
$8 \times 10^{4} N / m^{2}$. The density of the gas is
$4 \mathrm{~kg} / \mathrm{m}^{3}$. What is the energy of the gas due to its thermal motion?
A. $5 \times 10^{4} J$
B. $6 \times 10^{4} J$
C. $7 \times 10^{4} J$
D. $3 \times 10^{4} J$

Answer: A

D Watch Video Solution

109. How many degrees of freedom have the gas molecules, if under standard conditions
the gas density is $1.3 \mathrm{kgm}^{-3}$ and the velocity of sound propagation in it is $C=330 \mathrm{~ms}^{-1}$.
A. 2
B. 3
C. 4
D. 5

Answer: D
(Watch Video Solution
110. A polyatomic gas with (n) degress of freedom has a mean energy per molecule given by.

$$
\begin{aligned}
& \text { A. } \frac{n K T}{N} \\
& \text { B. } \frac{3 K T}{2} \\
& \text { C. } \frac{n K T}{2 N} \\
& \text { D. } \frac{n K T}{2}
\end{aligned}
$$

Answer: D
111. The molar specific heat at constant pressure of an ideal gas is $\frac{7}{2} R$. The gas is made up of molecules which are
A. Monoatomic
B. Diatomic
C. Triatomic
D. Polyatomic

Answer: B

D Watch Video Solution
112. Equal amounts of heat are supplied to equal masses of helium and oxygen, kept at the same initial temperature. If $T_{H e}$ and T_{O} denote the increase in temperatures of helium and oxygen, then
A. $T_{H e}=T_{O}$
B. $T_{H e}>T_{O}$
C. $T_{H e}<T_{O}$
D. $T_{H e}=\frac{1}{16} T_{O}$
113. The heat required to raise the temperature of 1 g of O_{2} through $1^{\circ} C$ at constant volume is Q . What is the heat required to raise the temperature of 1 g of O_{2} through $1^{\circ} \mathrm{C}$ at constant pressure ?
A. $Q+R$
B. $Q+\frac{R}{32}$
C. $Q+\frac{R}{16}$
D. $Q+\frac{R}{8}$

Answer: B

D Watch Video Solution

114. Find $\frac{C_{p}}{C_{v}}$ for monatomic ideal gas.
A. >1
B. <1
C. $=1$
D. ≥ 1

Answer: B

- Watch Video Solution

115. A gas mixture consists of 2 moles of oxygen and 4 of Argon at temperature T.

Neglecting all vibrational modes, the total internal energy of the system is
A. 5RT
B. 9RT
C. 11RT

D. 15RT

Answer: C

D Watch Video Solution

116. Three moles of oxygen ar mixed with two
moles of helium. What will be the ratio of
specific heats at constant pressure and constant volume for the mixture?
A. 1.2
B. 1.5
C. 2
D. 1.8

Answer: B

D Watch Video Solution

117. If one mole of a monatomic gas $\left(\gamma=\frac{5}{3}\right)$
is mixed with one mole of a diatomic gas
$\left(\gamma=\frac{7}{5}\right)$, the value of gamma for mixture is
A. 1.25
B. 1.40
C. 1.50
D. 1.60

Answer: C

D Watch Video Solution

118. A gaseous mixture consists of 16 g of
helium and 16 g of oxygen. The ratio $\frac{C_{p}}{C_{v}}$ of
the mixture is

A. 1.62
B. 1.55
C. 1.81
D. 1.45

Answer: A
119. For argon, $c_{v}=0.075 \mathrm{Kcal} / \mathrm{kg} / \mathrm{K}$. What is its atomic weight? $[\mathrm{R}=2 \mathrm{cal} / \mathrm{mol} / \mathrm{k}]$
A. 20
B. 30
C. 40
D. 50

Answer: C
(Watch Video Solution
120. If one mole of a monoatomic gas
$(\gamma=5 / 3)$ is mixed with one mole of a
diatomic gas $(\gamma=7 / 5)$ the value of γ for the mixture is .
A. $\frac{15}{23}$
B. $\frac{23}{15}$
C. $\frac{7}{3}$
D. $\frac{3}{7}$

Answer: B
121. X and Y are two cylinders, fitted with
frictionless pistons. Both of them contain equal amounts of oxygen at 200K. Equal amount of heat is given to the gas in each
cylinder. However, the piston of A is fixed while that of B is movable. What is the rise in temperature of the gas in B, if the rise in temperature of A is 42 K ?
A. 50 K
B. 40 K

C. 30 K

D. 25 K

Answer: C

- Watch Video Solution

122. A mixture of n_{1} moles of monoatomic gas
and $\quad n_{2}$ moles of diatomic gas has
$\frac{C_{p}}{C_{V}}=\gamma=1.5$

$$
\text { A. } n_{1}=2 n_{2}
$$

$$
\begin{aligned}
& \text { B. } n_{1}=n_{2} \\
& \text { C. } n_{2}=2 n_{1} \\
& \text { D. } n_{1}=\frac{3}{2} n_{2}
\end{aligned}
$$

Answer: B

D Watch Video Solution

123. Heat is supplied to a diatomic gas at constant pressure.

The ratio of $\Delta Q: \Delta U: \Delta W$ is
A. $2: 3: 5$
B. 5:3:2
C. 2:5:7
D. 7:5:2

Answer: D

D Watch Video Solution

124. P - V plots for two gases, undergoing adiabatic processes are as shown in the figure.

Plots 1 and 2 should correspond respectively to
A. He and O_{2}
B. He and Ar
C. O_{2} and He
D. O_{2} and N_{2}

Answer: C

D Watch Video Solution

125. A gaseous mixture enclosed in a vessel consists of one gram mole of a gas A with
$\gamma=\left(\frac{5}{3}\right)$ and some amount of gas B with
$\gamma=\frac{7}{5}$ at a temperature T.
The gases A and B do not react with each other and are assumed to be ideal. Find the number of gram moles of the gas B if γ for the gaseous mixture is $\left(\frac{19}{13}\right)$.
A. 3
B. 4
C. 2
D. 5

Answer: C

D Watch Video Solution

126. Two rigid boxes containing different ideal gases are placed on a table. Box A contains one mole of nitrogen at temperature T_{0}, while

Box contains one mole of helium at
temperature $\left(\frac{7}{3}\right) T_{0}$. The boxes are then put into thermal contact with each other, and heat flows between them until the gasses reach a common final temperature (ignore the heat capacity of boxes). Then, the final temperature of the gasses, T_{f} in terms of T_{0} is

$$
\begin{aligned}
& \text { A. } T_{f}=\frac{3}{7} T_{0} \\
& \text { В. } T_{f}=\frac{7}{3} T_{0} \\
& \text { C. } T_{f}=\frac{3}{2} T_{0} \\
& \text { D. } T_{f}=\frac{5}{2} T_{0}
\end{aligned}
$$

Answer: C

D Watch Video Solution

127. A gas expands adiabatically at constant pressure such that its temperature $T \propto \frac{1}{\sqrt{V}}$, the value of C_{P} / C_{V} of gas is
A. 2.00
B. 1.50
C. 1.67

D. 1.30

Answer: B

D Watch Video Solution

128. We consider a thermodynamic system. If
ΔU represents the increase in its internal energy and W the work done by the system, which of the following statements is true?
A. $\Delta U=\mathrm{dW}$ is an isothermal process
B. $\Delta U=-\mathrm{dW}$ is an adiabatic process
C. $\Delta U=-\mathrm{dW}$ is an isothermal process
D. $\Delta U=\mathrm{dW}$ is an adiabatic process

Answer: B

D Watch Video Solution

129. If the specific heat of a gas at constant volume is $\frac{3}{2} R$, then the value of γ will be

$$
\text { A. } \frac{5}{2}
$$

B. $\frac{5}{3}$
C. $\frac{5}{4}$
D. $\frac{3}{5}$

Answer: B

- Watch Video Solution

130. Which of the following statements is correct for any thermodynamic system?
A. The work done in an adiabatic process is
always zero
B. The change in entropy can never be zero
C. The internal energy changes in all
processes
D. Internal energy and entropy are state
functions

Answer: D

131. An ideal gas A and a real gas B have their
volumes increases from $V \rightarrow 2 V$ under
isothermal condtitions. The increase in
internal energy
A. will be same in both A and B

B. will be zero in both the gases

C. of B will be more than that of A
D. of A will be more than that of B

Answer: B
132. A sample of gas expands from volume V_{1}
to V_{2}. The amount of work done by the gas is greatest when the expansion is
A. adiabatic
B. isobaric
C. isothermal
D. equal in all above cases

Answer: B
133. Which of the following processes is reversible?
A. Transfer of heat by radiation
B. Electrical heating of nichrome wire
C. Transfer of heat by conduction
D. Isothermal compression

Answer: D

134. The molar specific heat at constant pressure of an ideal gas is $(7 / 2 R)$. The ratio of specific heat at constant pressure to that at constant volume is
A. $\frac{7}{5}$
B. $\frac{8}{7}$
C. $\frac{5}{7}$
D. $\frac{9}{7}$
135. The specific heat at constant pressure and at constant volume for an ideal gas are
C_{p} and C_{v} and its adiabatic and isothermal eleasticities are E_{ϕ} and E_{θ} respectively. The ratio of E_{ϕ} to E_{θ} is
A. $\frac{1}{C_{p} C_{v}}$
B. $C_{p} C_{v}$
C. $\frac{C_{v}}{C_{p}}$
D. $\frac{C_{p}}{C_{v}}$

Answer: D

D Watch Video Solution

136. A gas is being compressed adiabatically.

The specific heat of the gas during compression is
A. undefined
B. infinite

C. zero

D. finite but non-zero

Answer: C

D Watch Video Solution

137. A polyatomic gas $\left(\lambda=\frac{4}{3}\right)$ is
compressed to $\frac{1}{8}$ of its voulme Adiabatically. If initial pressure is P_{0}, Its mew perssure will be
A. $6 P_{0}$
B. $2 P_{0}$
C. $8 P_{0}$
D. $16 P_{0}$

Answer: D

- Watch Video Solution

138. For a gas undergoing an adiabatic change,
the relation between temperature and volume
is found to be $T V^{0.4}=$ constant. This gas must be
A. Helium
B. Carbon dioxide
C. Argon
D. Hydrogen

Answer: D

D Watch Video Solution

139. Which of the following parameters does
not characterize the thermodynamic state of

matter?

A. Work
B. Volume
C. Pressure
D. Temperature

Answer: A

- Watch Video Solution

140. In an adiabatic change, the pressure p and temperature T of a diatomic gas are
related by the relation $p \propto T^{\alpha}$, where α equals
A. 2.5
B. 3.5
C. 1.4
D. 2.25

Answer: B

D Watch Video Solution
141. A monoatomic ideal gas, initially at temperature T_{1}, is enclosed in a cylinder
fitted with a friction less piston. The gas is allowed to expand adiabatically to a temperature T_{2} by releasing the piston suddenly. If L_{1} and L_{2} are the length of the gas column before expansion respectively, then $\frac{T_{1}}{T_{2}}$ is given by
A. $\left(\frac{L_{1}}{L_{2}}\right)^{2 / 3}$
B. $\left(\frac{L_{2}}{L_{1}}\right)^{2 / 3}$
C. $\sqrt{\frac{L_{2}}{L_{1}}}$
D. $\sqrt{\frac{L_{1}}{L_{2}}}$

Answer: A

D Watch Video Solution

142. In an adiabatic change, the pressure and temperature of a monoatomic gas are related with relation as $P \propto T^{C}$, Where C is equal to:

5
A. $\frac{5}{2}$
B. $\frac{2}{5}$
C. $\frac{3}{5}$
D. $\frac{5}{3}$

Answer: A

D Watch Video Solution

143. If mass-energy equivalence is taken into account, when water is cooled to form ice, the mass of water should :-(Note: The mass energy of an object is the energy equivalent of its
mass, as given by $E=m c^{2}$, where $\mathrm{m}=$ mass of

object \& c = speed of light)

A. first increase then decrease
B. decrease
C. remain unchanged
D. increase

Answer: B

D Watch Video Solution

144. A gas for which $\lambda=4 / 3$, is heated at constant pressure. What percentage of the total heat supplied is used up for external work?
A. 0.3
B. 0.4
C. 0.5
D. 0.6

Answer: B
145. An ideal gas under goes a quasi static, reversible process in which its molar heat capacity C remains constant. If during this process the relation of pressure P and volume

V is given by $P V^{n}=$ cons $\tan t$, then n is given by (Here C_{P} and C_{V} are molar specific heat at constant pressure and constant volume, respectively):

$$
\text { A. } n=\gamma-1
$$

$$
\text { B. } n=\gamma
$$

$$
\text { C. } n=\gamma+1
$$

$$
\text { D. } n=1-\gamma
$$

Answer: B

D Watch Video Solution

146. The work of 146 kJ is performed in order to
compress one kilo mole of a gas adiabatically
and in this process the temperature of the gas
increases by $7^{\circ} C$. The gas is
$\left(R=8.3 \mathrm{ml}^{-1} \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right)$
A. mixture of monoatomic and diatomic
B. monoatomic
C. diatomic
D. triatomic

Answer: C

D Watch Video Solution

147. An insulated box containing a monoatomic gas of molar mass (M) moving with a speed v_{0} is suddenly stopped. Find the
increment is gas temperature as a result of
stopping the box.
A. $\frac{M v^{2}}{3 R}$
B. $\frac{M v^{2}}{5 R}$
C. $\frac{2 M v^{2}}{5 R}$
D. $\frac{M v^{2}}{5 R}$

Answer: B

D Watch Video Solution
148. An ideal gas at pressure P and temperature T is enclosed in a vessel of volume V. Some gas leaks through a hole from the vessel and the pressure of the enclosed gas falls to P'. Assume that the temperature of the gas remains constant during the leakage.

What is the number of moles of the gas that have leaked?

$$
\begin{aligned}
& \text { A. } \frac{V}{R T}\left(P+P^{\prime}\right) \\
& \text { B. } \frac{2 V}{R T}\left(P+P^{\prime}\right) \\
& \text { C. } \frac{V}{R T}\left(P-P^{\prime}\right)
\end{aligned}
$$

$$
\text { D. } \frac{V}{2 R T}\left(P-P^{\prime}\right)
$$

Answer: C

D Watch Video Solution

149. With same initial conditions, an ideal gas expands from volume V_{1} to V_{2} in three different ways. The work done by the gas is
W_{1} if the process is isothermal , W_{2} if isobaric and W_{3} if adiabatic, then

$$
\text { A. } W_{1}>W_{2}>W_{3}
$$

B. $W_{2}>W_{3}>W_{1}$
C. $W_{1}>W_{3}>W_{2}$
D. $W_{2}>W_{1}>W_{3}$

Answer: D

- Watch Video Solution

150. During an experiment, an ideal gas is found to obey an additional law
$V P^{2}=$ cons $\tan t$, The gas is initially at a
temperature T , and volume V . When it expands to a volume $2 V$, the temperature becomes.
A. 2 T
B. $\frac{T}{2}$
C. $\sqrt{2} T$
D. $\frac{T}{\sqrt{2}}$

Answer: C

- Watch Video Solution

151. An ideal gas with pressure P, volume V and
temperature T is expanded isothermally to a
volume 2 V and a final pressure P_{i}, If the same
gas is expanded adiabatically to a volume 2 V ,
the final pressure P_{a}. The ratio of the specific heats of the gas is 1.67 . The ratio $\frac{P_{a}}{P_{1}}$ is
A. 0.43
B. 0.53
C. 0.63
D. 0.73

Answer: C

D Watch Video Solution

152. A diatomic ideal gas is compressed adiabatically to $1 / 32$ of its initial volume. If the initial temperature of the gas is T_{i} (in Kelvin) and the final temperature is a T_{i}, the value of a is
A. 3
B. 4
C. 5
D. 6

Answer: B

D Watch Video Solution

153. Two moles of ideal helium gas are in a rubber balloon at $30^{\circ} \mathrm{C}$. The balloon is fully expandable and can be assumed to require no energy in its expansion. The temperature of the gas in the balloon is slowly changed to
$35^{\circ} \mathrm{C}$. The amount of heat required in raising the temperature is nearly (take R

$=8.31 \mathrm{~J} / \mathrm{mol} . \mathrm{K})$

A. 62 J
B. 104 J
C. 124 J
D. 208 J

Answer: D

D Watch Video Solution
154. One mole of an ideal gas at an initial temperature true of $T K$ does $6 R$ joule of work adiabatically. If the ratio of specific heats of this gas at constant pressure and at constant volume is $5 / 3$, the final temperature of the gas will be
A. $(T+2.4) K$
B. $(T-2.4) K$
C. $(T+4) K$
D. $(T-4) K$

Answer: D

D Watch Video Solution

155. A monoatomic gas at a pressure p, having
a volume 2 V and then adiabatically to a
volume 16 V . The final pressure of the gas is
(take $\gamma=\frac{5}{3}$)
A. P/64
B. 16P
C. 64 P

Answer: A

- Watch Video Solution

156. One mole of an ideal monoatomic gas
requires 200 J heat to increase its temperature
by 10 K , when heated at constant pressure.

The same gas is then heated at constant
volume to increase its temperature by 10 K .

What is the heat required ?
A. 200 J
B. 300 J
C. 120 J
D. 80 J

Answer: C

D Watch Video Solution

157. Certain perfect gas is found to obey the
law $P V^{3 / 2}=$ constant, during adiabatic process. If such a gas at initial temprerature T
is adiabatically compressed to half of the initial volume, its final temperature will be
A. 4 T
B. $2^{1 / 2} T$
C. 2 T
D. $2 \sqrt{2} T$

Answer: B
(Watch Video Solution
158. Suppose that A, B, C, D represent the energies of 1 erg, 1 Joule, 1 calorie, 1 Kcalorie.

What is the correct order of magnitudes of their energies ?
A. $A>C>B>D$
B. $A<B<C<D$
C. $A>B>C>D$
D. $AC<D$

Answer: B
159. If $R=$ universal gas constant, the amount of heat needed to raise the temperature of 2 mole of an ideal monoatomic gas from 273 K to 373 K when no work is done
A. 500 R
B. 300 R
C. 150 R
D. 100 R

Answer: B

D Watch Video Solution

160. When an ideal monoatomic gas is heated
at constant pressure, fraction of heat energy
supplied which increases the internal energy
of gas, is
A. $\frac{3}{7}$
B. $\frac{3}{5}$
C. $\frac{2}{5}$
D. $\frac{5}{7}$

Answer: B

D Watch Video Solution

161. A gas is compressed at a constant pressure of $50 \mathrm{~N} / \mathrm{m}^{2}$ from a volume $10 \mathrm{~m}^{3}$ to a volume of $4 \mathrm{~m}^{3} .100$ J of heat is added to the gas then its internal energy is
A. increased by 200 J
B. increased by 400 J
C. decreased by 200 J
D. increased by 100 J

Answer: B

D Watch Video Solution

162. The temperature of 10 moles of a gas is increased from $30^{\circ} C$ to $80^{\circ} C$ at constant pressure. If $\mathrm{R}=8.2 \mathrm{~J} /$ mole K , then the external work done in this process is
A. 410 J
B. 820 J
C. 4100 J
D. 2050 J

Answer: C

D Watch Video Solution

163. Which of the following is incorrect regarding the first law of thermodynamics?
A. It is a restatement of the principle of conservation of energy
B. It is applicable to any cyclic process
C. It introduces the concept of entropy

D. It introduces the concept of the internal

energy

Answer: C

D Watch Video Solution

164. If Q, E and W denote respectively the heat
added, change in internal energy and the work done in a closed cycle process, then

$$
\begin{aligned}
& \text { A. } W=0 \\
& \text { B. } Q=W=0 \\
& \text { C. } E=0 \\
& \text { D. } Q=0
\end{aligned}
$$

Answer: C

- Watch Video Solution

165. In a thermodynamic system working substance is ideal gas, its internal energy is in
the form of
A. potential energy only
B. neither kinetic nor potential energy
C. kinetic energy only
D. kinetic and potential energy

Answer: C

D Watch Video Solution
166. In a given process on an ideal gas,
$d W=0$ and $d Q$ is negative, then for the gas:
A. T will increase
B. T will decrease
C. V will increase
D. P may increase or decrease

Answer: B
(Watch Video Solution
167. "Heat cannot by itself flow from a body at lower temperature to a body at higher temperature" is a statement or consequence of
A. first law of thermodynamics
B. conservation of mass
C. conservation of momentum
D. second law of thermodynamics

Answer: D

168. A monatomic gas expands at constant pressure on heating. The percentage of heat supplied that increases the internal energy of
the gas and that is involed in the expansion is
A. 0.3
B. 0.4
C. 0.5
D. 0.6

Answer: D

- Watch Video Solution

169. The work done during expansion of a gas
in vacuum is zero, because there is
A. no change in volume $(\Delta V=0)$
B. no change in temperature
C. no change in internal energy
D. no opposing pressure (noatmospheric pressure)

Answer: D

- Watch Video Solution

170. An ideal gas is filled in a closed rigid and
thermally insulated container. A coil of 100Ω
resistor carrying current 1 A for 5 minutes
supplies heat to the gas. The change in internal energy of the gas is
A. 10 KJ
B. 15 KJ

C. 20 KJ

D. 30 KJ

Answer: D

- Watch Video Solution

171. When a system is taken from state i to
state f along the path iaf, it is found that
$Q=50 c a l$ and $W=20 c a l$. Along the path
ibf $Q=36 \mathrm{cal}$. W along the path ibf is

A. 66 cal
B. 16 cal
C. 14 cal
D. 6 cal

Answer: D

- Watch Video Solution

172. A thermally insulated vessel contains an ideal gas of molecular mass M and ratio of specific heats γ. It is moving with speed v and
it's suddenly brought to rest. Assuming no heat is lost to the surroundings, Its temperature increases by:
A. $\frac{(\gamma-1)}{2(\gamma+1)} M v^{2}$
B. $\frac{(\gamma-1)}{2 \gamma R} M v^{2}$
C. $\frac{\gamma M v^{2}}{2 R}$

$$
\text { D. } \frac{(\gamma-1)}{2 R} M v^{2}
$$

Answer: D

D Watch Video Solution

173. One mole of a monoatomic ideal gas is contained in an insulated and rigid container.

It is heated by passing a current of 2 A for 10 minutes through a filament of resistance 100Ω
. What is change in the internal energy of the gas?
A. 240 KJ
B. 30 KJ
C. 60 KJ
D. 120 KJ

Answer: A

D Watch Video Solution

174. Two moles of a monoatomic ideal gas occupy a volume V at $27^{\circ} \mathrm{C}$. The gas is expanded adiabatically to a volume $2 \sqrt{2} V$. The
final temperature is 150 K . What is the work done by the gas ? $[R=8.3 \mathrm{~J} / \mathrm{K} / \mathrm{mol}]$

A. 1660 J

B. 3735 J
C. 2490 J
D. 1240 J

Answer: B

D Watch Video Solution

175. A container of volume $1 m^{3}$ is divided into two equal parts by a partition. One part has an ideal gas at 300 K and the other part is vacuum. The whole system is thermally isolated from the surroundings. When the partition is removed, the gas expands to occupy the whole volume. Its temperature will now be
A. 600 K
B. 150 K
C. 300 K

D. 450 K

Answer: C

D Watch Video Solution

176. The source tempreature of a Carnot engine is $127^{\circ} \mathrm{C}$. It takes 500 cal of heat from the source and rejects 400 cal to the sink during each cycle. What is the temperature of the sink ?

$$
\text { A. } 37^{\circ} C
$$

B. $47^{\circ} C$
C. $20^{\circ} \mathrm{C}$
D. $27^{\circ} \mathrm{C}$

Answer: B

D Watch Video Solution

177. A carnot engine working between 450 K and 600 K has a work output of $300 \mathrm{~J} / \mathrm{cycle}$.

What is the amount of heat energy supplied to the engine from the source in each cycle?
A. 400 J
B. 800 J
C. 1200 J
D. 1600 J

Answer: C

D Watch Video Solution

178. For which combination of working temperatures the efficiency of Carnot's engine is highest
A. 40 K and 20 K
B. 50 K and 30 K
C. 70 K and 50 K
D. 90 K and 60 K

Answer: A

D Watch Video Solution

179. A carnot engine has the same efficiency between 800 K and 500 K and x K to 400 K . What is the value of x ?
A. 900 K
B. 750 K
C. 640 K
D. 550 K

Answer: C

D Watch Video Solution
180. A cornot engine has the same efficiency
between (i) 100 K and 500 K and (ii) T and 900
K. Find T .
A. 130 K
B. 160 K
C. 180 K
D. 200 K

Answer: C

D Watch Video Solution

181. A carnot engine first works between
$100^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ and then between
$0^{\circ} C$ and $-100^{\circ} C$. What is the ratio of its efficiency in these two cases ?
A. 0.51
B. 0.63
C. 0.73
D. 0.85

Answer: C
(Watch Video Solution
182. A Carnot engine takes in heat from a reservoir of heat at $427^{\circ} \mathrm{C}$. How many calories
of heat must it take from the reservoir in
order to procuce useful mechanical work at
the rate of $357 w a$?
A. $150 \mathrm{cal} / \mathrm{s}$
B. $160 \mathrm{cal} / \mathrm{s}$
C. $170 \mathrm{cal} / \mathrm{s}$
D. $180 \mathrm{cal} / \mathrm{s}$

Answer: C

- Watch Video Solution

183. In a Carnot engine, the temperature of the reservoir is $927^{\circ} \mathrm{C}$ and that of the skin is
$27^{\circ} \mathrm{C}$. The work done by the engine when it transfers heat from the reservoir to the sink is
$12.6 \times 10^{6} \mathrm{~J}$. What is the quantity of heat absorbed by the engine from the reservoir ?
A. $16.8 \times 16^{6} J$
B. $4 \times 16^{6} J$
C. $4.2 \times 16^{6} J$

D. $7.6 \times 16^{6} J$

Answer: A

D Watch Video Solution

184. An ideal gas heat engine operates in

Carnot cycle between $227^{\circ} \mathrm{C}$ and $127^{\circ} \mathrm{C}$. It absorbs $6.0 \times 10^{4} \mathrm{cal}$ of heat at high temperature. Amount of heat converted to work is :
A. $2.4 \times 10^{4} \mathrm{cal}$
B. $6 \times 10^{4} \mathrm{cal}$
C. $1.2 \times 10^{4} \mathrm{cal}$
D. $4.8 \times 10^{4} \mathrm{cal}$

Answer: C

D Watch Video Solution

185. The temperature inside and outside a refrigerator are 273 K and 300 K respectively.

Assuming that the refrigerator cycle is
reversible. For every joule of work done heat delivered to the surrounding will be nearly :-
A. 5 J
B. 7 J
C. 9 J
D. 12 J

Answer: C

D Watch Video Solution
186. The temperature of a refrigeratoe is kept
at $7^{\circ} C$ to keep the food articles kept in it in
good condition. What is its coefficient of
performance, if the room temperature is $37^{\circ} C$
A. 7.5
B. 8.3
C. 9.33
D. 10.5

Answer: C
187. A Carnot engine, having an efficiency of $\eta=\frac{1}{10}$ as heat engine, is used as a refrigerator. If the work done on the system is

10 J , the amount of energy absorbed from the reservoir at lower temperature is
A. 99 J
B. 90 J
C. 1 J
D. 100 J

Answer: B

- Watch Video Solution

188. An ideal refrigerator has a freezer at a temperature of $-13^{\circ} \mathrm{C}$. The coefficient of performance of the engine is 5 . The temperature of the air (to which heat is rejected) will be
A. 320 K
B. $39^{\circ} \mathrm{C}$

C. 39 K

D. $325^{\circ} \mathrm{C}$

Answer: B

D Watch Video Solution

189. A Carnot engine takes 3×10^{6} cal of heat
from a reservoir at $627^{\circ} \mathrm{C}$ and gives it to a sink at $27^{\circ} \mathrm{C}$. The work done by the engine is:
A. zero
B. $16.8 \times 10^{6} \mathrm{~J}$
C. $8.4 \times 10^{6} \mathrm{~J}$
D. $4.2 \times 10^{6} \mathrm{~J}$

Answer: C

D Watch Video Solution
190. Which statement is incorrect ?
A. Carnot cycle has the maximum efficiency in all cycles
B. Carnot cycle is a reversible one
C. Reversible cycle has more efficiency than
an irreversible one
D. All reversible cycles have the same
efficiency

Answer: D

D Watch Video Solution

191. Even Carnot engine cannot give 100% efficiency because we cannot
A. reach absolute zero temperature
B. find ideal sources
C. eliminate friction
D. prevent radiation

Answer: A

- Watch Video Solution

192. An ideal Carnot's engine whose efficiency 40% receives heat of 500 K . If the efficiency is to be 50% then the temperature of sink will be
A. 900 K
B. 800 K
C. 700 K
D. 600 K

Answer: D

193. The temperature of the source and the sink of a heat engine are $127^{\circ} \mathrm{C}$ and $27^{\circ} \mathrm{C}$ respectively, An inventor claims its efficiency to be 30%, then
A. it is impossible
B. it is possible with high probability
C. it is possible with low probability
D. data is insufficient

Answer: A
194. A carnot engine has an efficiency of 20%.

The energy is supplied to the engine at the rateof $2 k W$. What is the output power of the engine?
A. 300 W
B. 400 W
C. 500 W
D. 600 W
195. For a carnot engine the source and the sink temperatures are $527^{\circ} \mathrm{C}$ and $47^{\circ} \mathrm{C}$ respectively and the engine extracts 800 J of heat in each cycle. What is the area enclosed by the P-V diagram in terms of energy units ?
A. 480 J
B. 600 J
C. 350 J

D. 280 J

Answer: A

D Watch Video Solution

196. A carnot engine operates between
$227^{\circ} \mathrm{C}$ and $127^{\circ} \mathrm{C}$. It absorbs 80 kilocalories
of heat from the source. What is the work done in joule?
A. $4.5 \times 10^{4} J$
B. $5.3 \times 10^{4} J$
C. $6.72 \times 10^{4} J$
D. $7.32 \times 10^{4} J$

Answer: C

D Watch Video Solution

197. The efficiency of carnot engine is 50% and temperature of sink is 500 K . If temperature of source is kept constant and its efficiency
raised to 60%, then the required temperature of the sink will be :-
A. 600 K
B. 500 K
C. 400 K
D. 300 K

Answer: C

- Watch Video Solution

198. A Carnot engine whose sinl is at $300 K$ has
an efficiency of 40%. By how much should the
temperature of source be increased so as to
increase its efficiency by 50% of original efficiency.
A. 225 K
B. 250 K
C. 275 K
D. 350 K

Answer: B
199. A carnot engine operating between temperatures T_{1} and T_{2} has efficiency $\frac{1}{6}$. When T_{2} is lowered by 62 K , its efficience increases to $\frac{1}{3}$. Then T_{1} and T_{2} are respectively:
A. 372 K and 310 K
B. 372 K and 330 K
C. 330 K and 268 K

D. 310 K and 248 K

Answer: A

D Watch Video Solution

200. A Carnot engine, whose efficiency is 40%,
takes in heat from a source maintained at a temperature of 500K. It is desired to have an engine of efficiency 60%. Then, the intake temperature for the same exhaust (sink) temperature must be:

A. 1200 K

B. 750 K

C. 600 K

D. efficiency of carnot engine cannot be made larger than 50\%

Answer: B

- Watch Video Solution

201. The efficiency of a carnot heat engine is
0.6 when the absolute temperatures of the
source and sink are T_{1} and T_{2} respectively.
The efficiency of another carnot engine is also
0.6 but the source and sink temperatures are different. What are the temperatures of the source and the sink of the other engine?

$$
\begin{aligned}
& \text { A. } T_{1}+5, T_{2}+5 \\
& \text { в. } T_{1}+10, T_{2}-10
\end{aligned}
$$

C. $2 T_{1}, 2 T_{2}$
D. $2 T_{1}$ and $\frac{T_{2}}{2}$

Answer: C

D Watch Video Solution

202. A Carnot engine whose sinl is at $300 K$
has an efficiency of 40%. By how much should
the temperature of source be increased so as
to increase its efficiency by 50% of original
efficiency.
A. 275 K
B. 325 K
C. 250 K
D. 380 K

Answer: C

D Watch Video Solution

203. An engine has an efficiency of $\frac{1}{6}$. When the temperature of sink is reduced by $62^{\circ} \mathrm{C}$, its efficiency is doubled. Temperature of the source is
A. $124^{\circ} C$
B. $37^{\circ} \mathrm{C}$
C. $62^{\circ} C$
D. $99^{\circ} \mathrm{C}$

Answer: D

D Watch Video Solution

204. A diatomic ideal gas is used in a Carnot engine as the working substance. If during the adiabatic expansion part of the cycle the
volume of the gas increase from V to 32 V , the efficiency of the engine is
A. 0.25
B. 0.5
C. 0.75
D. 0.99

Answer: C
(Watch Video Solution
205. Calculate the least amount of work that must be done to freeze one gram of wate at $0^{\circ} \mathrm{C}$ by means of a refrigerator. Temperature of surroundings is $27^{\circ} \mathrm{C}$. How much heat is passed on the surroundings in this process? Latent heat of fusion $L=80 \mathrm{cal} / \mathrm{g}$.
A. 70 cal
B. 50 cal
C. 79 cal
D. 63 cal

Answer: C

- Watch Video Solution

206. Find relation between efficiency (η) of
carnot engine and coefficient of performance
$(\eta))^{\prime}$ of refrigerator.

$$
\begin{aligned}
& \text { A. } \eta=\frac{1}{\beta} \\
& \text { B. } \eta=\frac{1}{\beta+1} \\
& \text { C. } \eta \beta=\frac{1}{2} \\
& \text { D. } \eta=\frac{1}{\beta-1}
\end{aligned}
$$

Answer: B

D Watch Video Solution

207. A Carnot engine, having an efficiency of
$\eta=1 / 10$ as heat engine, is used as a
refrigerator. If the work done on the system is

10 J, the amount of energy absorbed from the
reservoir at lower temperature is
A. 100 J
B. 99 J
C. 90 J
D. 10 J

Answer: C

D Watch Video Solution

208. Four copper plates of the same dimensions are painted with red, green, white and black colours. All of them are heated upto a temperature of $300^{\circ} \mathrm{C}$ and then allowed to cool in the surrounding, which is at room
temperature. Which plate would cool at the earliest?
A. Green
B. White
C. Black
D. Red

Answer: C
(Watch Video Solution
209. A black body emits which type of wavelength?
A. Infrared wavelengths
B. Ultraviolet wavelengths
C. All wavelengths
D. A particular wavelengths

Answer: C

D Watch Video Solution

210. In which of the following process, convection does not take place primarily
A. Heating of air around a furnace
B. Boiling of water
C. Heating of the glass cover of a bulb due
to hot filament
D. Land and sea breezes

Answer: C

D Watch Video Solution
211. Which is not a true statement about black body radiation?
A. intensity is same for all wavelengths
B. intensity is less for longer wavelengths
C. intensity is more for shorter
wavelengths
D. a black body emits all wavelengths

Answer: A

- Watch Video Solution

212. Which of the following is more close to a

 black body?A. Black holes
B. Red roses
C. Blackboard paint
D. Green leaves

Answer: C

213. For an opaque body, coefficient of reflection is 0.3 . If 200 J of heat energy is incident on it then the heat absorbed by the body will be
A. 140 J
B. 70 J
C. zero
D. 60 J

Answer: A
214. Assuming the sun to have a spherical outer surface of radius r radiating like a black body at temperature $t^{\circ} C$. The power received by a unit surface (normal to the incident rays)
at a distance R from the centre of the sun is
where σ is the Stefan's constant.

$$
\begin{aligned}
& \text { A. } \frac{4 \pi r^{2} t^{4}}{R^{2}} \\
& \text { B. } \frac{r^{2} \sigma(t+273)^{4}}{4 \pi R^{2}} \\
& \text { C. } \frac{r^{2} \sigma(t+273)^{4}}{R^{2}}
\end{aligned}
$$

D. $\frac{16 \pi^{2} r^{2} \sigma t^{4}}{R^{2}}$

Answer: C

D Watch Video Solution

215. You are given a disc, a cube and a sphere,

All of them have the same material, volume and nature of the surface. They are heated to
$400^{\circ} C$ and are left in air. Which one of these
will have the lowest rate of cooling?
A. Cube
B. Disc
C. Sphere
D. All will have the same rate of cooling

Answer: C

D Watch Video Solution

216. A block of metal is heated to a temperature of $200^{\circ} \mathrm{C}$ which is much higher
than the room temperature. It is allowed to
cool up to room temperature, in a room which
is free from air currents. Its cooling curve (graph of temperature against time) is based on
A. only Stefan's law
B. only Newton's law of cooling
C. both Stefan's law and Newton's law of
cooling
D. neither Stefan's law nor Newton's law
but by Kirchoffs law

Answer: C

- Watch Video Solution

217. A black body at a temperature of $227^{\circ} \mathrm{C}$ radiates heat energy at the rate of $5 \mathrm{cal} / \mathrm{cm}^{2}$ sec. At a temperature of $727^{\circ} \mathrm{C}$, the rate of heat radiated per unit area in $\mathrm{cal} / \mathrm{cm}^{2}$-sec will be
A. $80 \mathrm{cal} / \mathrm{cm}^{2} s$
B. $500 \mathrm{cal} / \mathrm{cm}^{2} s$
C. $100 \mathrm{cal} / \mathrm{cm}^{2} \mathrm{~s}$

D. $250 \mathrm{cal} / \mathrm{cm}^{2} s$

Answer: A

D Watch Video Solution

218. A perfectly black body emits radiation at temperature $T_{1} \mathrm{~K}$. If is to radiate at 16 times
this power, its temperature $T_{2} \mathrm{~K}$ should be

$$
\begin{aligned}
& \text { А. } T_{2}=4 T_{1} \\
& \text { В. } T_{2}=8 T_{1}
\end{aligned}
$$

C. $T_{2}=2 T_{1}$

$$
\text { D. } T_{2}=16 T_{1}
$$

Answer: C

D Watch Video Solution

219. The sphere of radii 8 cm and 2 cm are cooling. Their temperatures are $127^{\circ} \mathrm{C}$ and $527^{\circ} \mathrm{C}$ respectively. Find the ratio of energy radiated by them in the same time
A. 0.5
B. 0.06
C. 2
D. 1

Answer: D

D Watch Video Solution

220. The temperature of a piece of iron is
$27^{\circ} \mathrm{C}$ and it is radiating energy at the rate of
$Q k W m^{-2}$. If its temperature is raised to
$151^{\circ} \mathrm{C}$, the rate of radiation of energy will become approximately

A. $2 Q \mathrm{kw} / \mathrm{m}^{2}$
B. $4 \mathrm{Q} \mathrm{kw} / \mathrm{m}^{2}$
C. $6 \mathrm{Q} \mathrm{kw} / \mathrm{m}^{2}$
D. $8 Q \mathrm{kw} / \mathrm{m}^{2}$

Answer: B

- Watch Video Solution

221. If the temperature of the sun (black body)

is doubled, the rate of energy received on earth will be increase by a factor of
A. 2
B. 4
C. 16
D. 8

Answer: C

- Watch Video Solution

222. If the temperature of a black body becomes half of its original temperature, then
the amount of radiation emitted by the body per second will be reduced to

> A. $\frac{1}{2}$
> B. $\frac{1}{4}$
> C. $\frac{1}{16}$
> D. $\frac{1}{8}$

Answer: C
223. A black body at high temperature $T K$ radiates energy at the rate of $E W / m^{2}$. When
the temperature falls to $(T / 2) K$, the radiated energy will be
A. $\frac{E}{4}$
B. $\frac{E}{16}$
c. $\frac{E}{2}$
D. 2 E

Answer: B

D Watch Video Solution

224. The temperature of a black body is
increased from $7^{\circ} C$ to $567^{\circ} C$, then the rate of energy radiation becomes
A. 3 times
B. 27 times
C. 9 times
D. 81 times

Answer: D

- Watch Video Solution

225. A blackbody of surface area $10 \mathrm{~cm}^{2}$ is
heated to $127^{\circ} \mathrm{C}$ and is suspended in a room at temperature $27^{\circ} \mathrm{C}$. Calculate the initial rate of loss of heat from the body to the room.
A. 0.5 W
B. 1 W
C. 1.5 W

D. 2 W

Answer: B

D Watch Video Solution

226. A black body A at a temperature of $527^{\circ} \mathrm{C}$
, emits radiant energy at the rate of 16 watt.

Another black body B at temperature $127^{\circ} \mathrm{C}$, emits radiant energy at the rate 8 watt in the same surrounding. Compare the surface areas of A and B.
A. $1: 4$
B. 1:8
C. 2:1
D. $4: 1$

Answer: B

D Watch Video Solution

227. A black body of surface area $5 \mathrm{~cm}^{2}$, is kept at $127^{\circ} \mathrm{C}$. The rate of energy radiated by it is
E. If its temperature is increased to $527^{\circ} \mathrm{C}$,
then the increase in the rate of energy

radiation will be

A. 2 E
B. 8 E
C. 15 E
D. 20 E

Answer: C
(Watch Video Solution

228. Two spheres P and Q of the same colour

and having radii 4 cm and 2 cm are kept at $127^{\circ} \mathrm{C}$ and $527^{\circ} \mathrm{C}$ respectively. The ratio of the energies radiated by P and Q
A. $1: 2$
B. 1: 4
C. $3: 1$
D. $4: 1$

Answer: B
229. If the temperature of a hot-black body is
increased by 10\%, the heat energy radiated by
it would increase by
A. 1
B. 1.26
C. 1.46
D. 1.76

Answer: C
230. A black body of $127^{\circ} \mathrm{C}$ radiates heat at the rate of $5 \mathrm{cal} / \mathrm{cm}^{2}$-second. At $527^{\circ} \mathrm{C}$, the rate of heat radiated in the same units will be
A. 32
B. 48
C. 64
D. 80
231. A sphere, a cube and a thin circular plate
all made of the same material and having the
same mass are initially heated to a temperature of $300^{\circ} \mathrm{C}$. Which one of these cools faster ?
A. Circular plate
B. Sphere
C. Cube

D. All will cool at the same rate

Answer: A

D Watch Video Solution

232. The ratio of energy of emitted radiation
of black body at $27^{\circ} \mathrm{C}$ and $927^{\circ} \mathrm{c}$ is
A. $1: 4$
B. 1:16
C. $1: 256$

D. 1: 64

Answer: C

D Watch Video Solution

233. A body radiates heat at the rate of
$4 \mathrm{cal} / \mathrm{m}^{2} / \mathrm{s}$, when its temperature is $227^{\circ} \mathrm{C}$.

What is the heat radiated by the same body
when its temperature is $727^{\circ} \mathrm{C}$?
A. $8 \mathrm{cal} / \mathrm{m}^{2} / \mathrm{s}$
B. $16 \mathrm{cal} / \mathrm{m}^{2} / \mathrm{s}$
C. $64 \mathrm{cal} / \mathrm{m}^{2} / \mathrm{s}$
D. $32 \mathrm{cal} / \mathrm{m}^{2} / \mathrm{s}$

Answer: C

D Watch Video Solution

234. A sphere II A cube III A thin circular plate

All made of the same material having the same mass are initially heated to $200^{\circ} \mathrm{C}$ Identify the
order in which the objects cool faster when left in air room temperature?.
A. sphere
B. thin circular plate
C. cube
D. all at the same rate

Answer: B

D Watch Video Solution

235. The velocity of thermal radiations (V) is

 related to the velocity of light (C) asA. $V>C$
B. $V<C$
C. $V=\frac{C}{2}$
D. $V=C$

Answer: D

D Watch Video Solution
236. The dimensional formula for Boltzmann's constant is
A. $M^{0} L^{0} T^{-2} K^{-4}$
B. $M^{1} L^{1} T^{-2} K^{-2}$
C. $M^{1} L^{0} T^{-3} K^{-4}$
D. $M^{0} L^{2} T^{-3} K^{-3}$

Answer: C

D Watch Video Solution
237. Energy is being emitted from the surface of a black body at $127^{\circ} \mathrm{C}$ temperature at the rate of $1.0 \times 10^{6} \mathrm{~J} / \mathrm{sec}-m^{2}$. Temperature of the black at which the rate of energy emission is $16.0 \times 10^{6} \mathrm{~J} / \mathrm{sec}-m^{2}$ will be
A. $254^{\circ} \mathrm{C}$
B. $381^{\circ} \mathrm{C}$
C. $527^{\circ} \mathrm{C}$
D. $80^{\circ} \mathrm{C}$

Answer: C

- Watch Video Solution

238. Suppose that the sun expands, so that its
diameter becomes 10 times its present diameter and its surface temperature becomes half of its present value. Then the total energy emitted by the sun per unit time, will increase by a factor of
A. 4.25
B. 5.25
C. 6.25
D. 7.25

Answer: C

D Watch Video Solution

239. A body with surface area (A), temperature
(T) and emissivity (e) $=0.6$ is kept inside a spherical black body. What will be the maximum energy radiated?
[σ is Stefan's constant]
A. $0.2 \sigma A T^{4}$
B. $0.4 \sigma A T^{4}$
C. $0.6 \sigma A T^{4}$
D. $0.8 \sigma A T^{4}$

Answer: C

D Watch Video Solution

240. At what temperature, a perfectly black body would radiate energy at a rate of $90.72 \times 10^{4} W / m^{2} ?$
A. 1500 K
B. 1800 K
C. 2000 K
D. 2500 K

Answer: C

D Watch Video Solution
241. The temperature of the sun is 6000 K and
is treated as a black body. The solar heat energy radiated by the sun is $10^{9} W / m^{2}$.

What is the temperature of a black body if it radiated heat energy of $10^{5} \mathrm{~W} / \mathrm{m}^{2}$?
A. $227^{\circ} \mathrm{C}$
B. $27^{\circ} \mathrm{C}$
C. $327^{\circ} \mathrm{C}$
D. $400^{\circ} \mathrm{C}$

Answer: C
(Watch Video Solution
242. Two sphere made of the same material
have their radii in the ratio of $2: 1$. What is the
ratio of the radiant energy emitted per second by them if both of them are at the same temperature ?
A. $4: 1$
B. 1: 4
C. 2:1
D. 1:2

- Watch Video Solution

243. The quantity of heat radiated per unit
time by a perfectly black body at 300 K is
$81 \mathrm{~kJ} / \mathrm{s}$. What is the power radiated by a body of emissivity 0.8 and having the same area as that of the black at 500 K ?
A. $250 k \frac{\mathrm{~J}}{\mathrm{~s}}$
B. $400 \mathrm{k} \frac{\mathrm{J}}{\mathrm{s}}$
C. $500 \mathrm{k} \frac{\mathrm{J}}{\mathrm{s}}$
D. $625 k \frac{\mathrm{~J}}{\mathrm{~s}}$

Answer: C

D Watch Video Solution

244. The sphere of radii 8 cm and 2 cm are
cooling. Their temperatures are $127^{\circ} \mathrm{C}$ and
$527^{\circ} \mathrm{C}$ respectively. Find the ratio of energy radiated by them in the same time
A. 1
B. 2
C. 3
D. 0.5

Answer: A

D Watch Video Solution

245. The radiant energy from the Sun incident normally at the surface of earth is $20 \mathrm{kcal} / \mathrm{m}^{2}$ min What would have been the radiant energy
incident normally on the earth if the sun had a
temperature twice of the present one?.
A. $160 \mathrm{Kcal} / \mathrm{m}^{2} \mathrm{~min}$.
B. $40 \mathrm{Kcal} / \mathrm{m}^{2} \mathrm{~min}$.
C. $320 \mathrm{Kcal} / \mathrm{m}^{2} \mathrm{~min}$.
D. $80 \mathrm{Kcal} / \mathrm{m}^{2} \mathrm{~min}$.

Answer: C

- Watch Video Solution

246. If temperature of a black body increases
from $7^{\circ} \mathrm{C}$ to $287^{\circ} \mathrm{C}$, then the rate of energy
radiation increases by
A. $\left(\frac{287}{7}\right)^{4}$ times
B. 15 times
C. 4 times
D. $(287-7)^{4}$ times

Answer: B
247. A spherical body of emissivity e, placed inside a perfectly black body (emissivity = 1) is maintained at absolute temperature T . The energy radiated by a unit area of the body per second will be (σ is Stefan's constant)

$$
\begin{aligned}
& \text { A. }(1-e) \sigma T^{4} \\
& \text { B. } e \sigma T^{4} \\
& \text { C. } \sigma T^{4} \\
& \text { D. }(1+e) \sigma T^{4}
\end{aligned}
$$

Answer: B
248. A spherical black body with a radius of 12 cm radiates 450 W power at 500 K . If the radius were halved and the temperature doubled, the power radiated in watt would be
(a)225 (b) 450
(c) $900(\mathrm{~d}) 1800$
A. 450
B. 900
C. 1800
D. 225

Answer: C

D Watch Video Solution

249. If the temperature of the sun were to
increase form T to 2 T and its radius from R to
$2 R$, then the ratio of the radiant energy received on earth to what it was previously will be
B. 4
C. 64
D. 82

Answer: C

- Watch Video Solution

250. The unit of Stefan's constant σ is

A. Watt $m^{-2} K^{-1}$
B. Watt $m^{-2} K^{-4}$
C. $\mathrm{N} m^{-2} K^{-4}$
D. Watt $m^{-2} S^{-1} K^{-4}$

Answer: B

D Watch Video Solution

251. A star behaves like a perfectly black body
emitting radiant energy The ratio of radiant energy per second by this star to that emitted by another star having 8 times the radius of
former, but having temperature, one-fourth
that of the former in Kelvin is .
A. $4: 1$
B. 1: 4
C. $1: 8$
D. $8: 1$

Answer: A
(Watch Video Solution
252. The temperature of a black body is increased by 50%, then the percentage of increases of radiation is approximetaly
A. 1
B. 1.5
C. 2.5
D. 4

Answer: D

D Watch Video Solution
253. Two spheres of the same material have
radii $1 m$ and $4 m$ and temperature $4000 K$ and
$2000 K$ respectively . How The energy radiated
per second by the first sphere is related to second sphere? .
A. greater than that of B
B. less than that of B
C. equal to that of B
D. double that of B

- Watch Video Solution

254. Two bodies A and B at temperatures
$T_{1} K$ and $T_{2} K$ respectively have the same dimensions. Their emissivities are in the ratio
of $1: 3$. If they radiate the same amount of heat per unit area per unit time, then the relation between their temperatures is given by

$$
\begin{aligned}
& \text { А. } \frac{T_{1}}{T_{2}}=\frac{1}{3} \\
& \text { в. } \frac{T_{1}}{T_{2}}=\frac{81}{1}
\end{aligned}
$$

> C. $\frac{T_{1}}{T_{2}}=3^{1 / 4}: 1$
> D. $\frac{T_{1}}{T_{2}}=9^{1 / 4}: 1$

Answer: C

D Watch Video Solution

255. The solar constant for the earth is about
$1.8 \mathrm{~J} / \mathrm{m}^{2} / \mathrm{s}$. What is the solar constant for a black body situated on a planet which is situated at a distance of 0.3 times the distance of the earth from the sun?
A. $9 J / m^{2} / s$
B. $12 \mathrm{~J} / \mathrm{m}^{2} / \mathrm{s}$
C. $15 \mathrm{~J} / \mathrm{m}^{2} / \mathrm{s}$
D. $20 \mathrm{~J} / \mathrm{m}^{2} / \mathrm{s}$

Answer: D

- Watch Video Solution

256. Two spherical black bodies of radii R_{1} and

R_{2} and with surface temperature T_{1} and T_{2}
respectively radiate the same power. R_{1} / R_{2}
must be equal to
A. $\left(\frac{T_{1}}{T_{2}}\right)^{2}$
B. $\left(\frac{T_{1}}{T_{2}}\right)^{4}$
C. $\left(\frac{T_{2}}{T_{1}}\right)^{2}$
D. $\left(\frac{T_{2}}{T_{1}}\right)^{4}$

Answer: C

D Watch Video Solution
257. The rectangular surface area $12 \mathrm{~cm} \times 6 \mathrm{~cm}$ of a black body at a temperature of $127^{\circ} \mathrm{C}$, emits heat energy at the rate of Q units per second. If the length and breadth of the surface area are each reduced to half of its initial value and the temperature is increased to $327^{\circ} C$, then the rate of emission of heat energy will be
A. $\frac{81}{16} Q$
B. $\frac{81}{32} Q$
C. $\frac{81}{64} Q$

D. $\frac{9}{4} \times Q$

Answer: C

D Watch Video Solution

258. The temperature of the sun is T. If it becomes $2 T$, then
A. the rate of emission of energy will
become four times
B. the rate of emission of energy will be doubled
C. there will be considerable increase in the emission of infrared radiations
D. there will be considerable increase in the
emission of ultraviolet radiations

Answer: D

- Watch Video Solution

259. Three discs, A, B and C having radii $2 m, 4 m$
and6m respectively are coated with carbon
black on their outer surfaces. The wavelengths
corresponding to maximum intensity are $300 \mathrm{~nm}, 400 \mathrm{~nm}$ and 500 nm , respectively. The power radiated by them are Q_{A}, Q_{B} and Q_{C} respectively
(a) Q_{A} is maximum (b) Q_{B} is maximum (c) Q_{C}
is maximum (d) $Q_{A}=Q_{B}=Q_{C}$

$$
\text { A. } Q_{A}=Q_{B}=Q_{C}
$$

B. Q_{A} is maximum
C. Q_{B} is maximum
D. Q_{C} is maximum

Answer: C

D Watch Video Solution

260. Assuming the Sun to be a spherical body of radius R at a temperature of $T K$, evaluate the total radiant powered incident of Earth at a distance r from the sun
where r_{0} is the radius of the Earth and σ is

Stefan's constant.

$$
\begin{aligned}
& \text { A. } \frac{r_{0}^{2} R^{2} \sigma T^{4}}{4 \pi r^{2}} \\
& \text { B. } \frac{R^{2} \sigma T^{4}}{r^{2}} \\
& \text { C. } \frac{4 \pi r_{0}^{2} R^{2} \sigma T^{4}}{r^{2}} \\
& \text { D. } \frac{\pi r_{0}^{2} R^{2} \sigma T^{4}}{r^{2}}
\end{aligned}
$$

Answer: C

D Watch Video Solution

261. A spherical black body with a radius of 12
cm radiates 450 W power at 500 K . What would be the power of radiation if radius were to be halved and the temperature is doubled?
A. 1800 W
B. 2000 W
C. 1500 W
D. 1200 W

Answer: A
262. Suppose the sun expands so that its radius becomes 100 times its present radius and its surface temperature becomes half of its present value. The total energy emited by it then will increase by a factor of :
A. 625
B. 1000
C. 256
D. 16

Answer: A

- Watch Video Solution

263. A hot liquid takes 10 minute to cool from
$70^{\circ} \mathrm{C} \rightarrow 60^{\circ} \mathrm{C}$. The time taken by the liquid to cool from $60^{\circ} \mathrm{C} \rightarrow 50^{\circ} \mathrm{C}$ is
A. 10 minute
B. less than 10 minute
C. more than 10 minute

D. more or less than 10 minute depending

upon the liquid and the surrounding

Answer: C

D Watch Video Solution

264. If a sphere, a cube and a thin plate are heated and are left in air. Then the one which cools first is
A. the sphere

B. the thin plate

C. the cube

D. cannot decide as their material, volume

 and nature of the surface is not given
Answer: D

D Watch Video Solution

265. Newton's law of cooling leads us to the following expression.
A. $\left(\theta-\theta_{0}\right)=K t+C$
B. $\log \left(\theta-\theta_{0}\right)=K t+C$
C. $\log \theta=K t+C$
D. $\theta=K \theta_{0}+C$

Answer: B

D Watch Video Solution

266. Water is filled in a vessel which is kept in a room at a temperature of $20^{\circ} \mathrm{C}$. The temperature of the water is slowly increased.

When the temperature of water is $40^{\circ} \mathrm{C}$, it loses heat at the rate of $10 \mathrm{cal} / \mathrm{s}$. What will be the rate of loss of heat when the temperature of water is $80^{\circ} C$?
A. 20cal/s
B. $30 \mathrm{cal} / \mathrm{s}$
C. $40 \mathrm{cal} / \mathrm{s}$
D. $60 \mathrm{cal} / \mathrm{s}$

Answer: B
267. The rate of cooling of a body is
$0.5^{\circ} \mathrm{C}$ / minute, when the body is $50^{\circ} \mathrm{C}$ above
the surrounding. What is the rate of cooling if the body is $30^{\circ} \mathrm{C}$ above the surrounding ?
A. $24^{\circ} C /$ hour
B. $18^{\circ} \mathrm{C} /$ hour
C. $30^{\circ} \mathrm{C} /$ hour
D. $12{ }^{\circ} \mathrm{C} /$ hour

Watch Video Solution

268. A body cools from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 10 min .

Find its temperature at the end of next 10 min
if the room temperature is $25^{\circ} \mathrm{C}$. Assume
Newton's law of cooling holds.
A. $\left(\frac{200}{7}\right)^{\circ} C$
B. $\left(\frac{300}{7}\right)^{\circ} C$
c. $\left(\frac{100}{7}\right)^{\circ} C$
D. $\left(\frac{400}{7}\right)^{\circ} C$

Answer: B

D Watch Video Solution

269. A vessel full of hot water is kept in a room
and it cools from $80^{\circ} C$ to $75^{\circ} C$ in T_{1} minutes, from $75^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ in T_{2} minutes and from $70^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ in T_{3} minutes Then.
A. $t_{1}>t_{2}>t_{3}$
B. $t_{1}<t_{2}=t_{3}$
C. $t_{1}=t_{2}=t_{3}$

$$
\text { D. } t_{1}<t_{2}<t_{3}
$$

Answer: D

D Watch Video Solution

270. Liquid is filled in a vessel which is kept in a
room with temperature $20^{\circ} \mathrm{C}$. When the temperature of the liquid is $80^{\circ} \mathrm{C}$, then it loses heat at the rate of $60 \mathrm{cal} / \mathrm{sec}$. What will be the
rate of loss of heat when the temperature of the liquid is $40^{\circ} \mathrm{C}$?
A. $180 \mathrm{cal} / \mathrm{s}$
B. $40 \mathrm{cal} / \mathrm{s}$
C. $30 \mathrm{cal} / \mathrm{s}$
D. $20 \mathrm{cal} / \mathrm{s}$

Answer: D

D Watch Video Solution

271. According to Newton's law of cooling, the
rate of cooling of a body is proportional to
$(\Delta \theta)^{n}$, where $\Delta \theta$ is the difference of the
temperature of the body and the surroundings, and n is equal to
A. $n=0.5$
B. $\mathrm{n}=1$
C. $n=3 / 2$
D. $n=2$

Answer: B
(Watch Video Solution

272. A body cools from $100^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ in 8

second. If the room temperature is $15^{\circ} \mathrm{C}$, and
assuming that Newton's law of cooling holds
good, then time required for the body to cool
from $70^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ is
A. 7 s
B. 14 s
C. 10 s
D. 20 s
273. A body cools from $50.0^{\circ} \mathrm{C}$ to $49.9^{\circ} \mathrm{C}$ in

10s. How long will it take to cool from $40.0^{\circ} \mathrm{C}$
to $39.9^{\circ} \mathrm{C}$? Assume the temperature of the surrounding to be $30.0^{\circ} \mathrm{C}$ and Newton's law of cooling to be valid.
A. 10 s
B. 20 s
C. 2.5 s
D. 5 s

Answer: B

D Watch Video Solution

274. The ratio of the wavelengths of emission
corresponding to the maximum emission in
the spectrum of a black body heated to temperatures 1000 K and 2000 K respectively is
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. $4: 1$
D. 2:1

Answer: D

D Watch Video Solution

275. The temperature corresponding to maximum intensity of emission of wavelength
$4800 \AA{ }^{\circ}$ is
[Given $b=0.002898 \mathrm{mK}$]
A. 2037 K
B. 4037 K
C. 6037 K
D. 8037 K

Answer: C

D Watch Video Solution

276. The light emitted by the sun has maximum wavelength of 570 nm . The light emitted by another star has the maximum
wavelength of 380 nm . What is the ratio of the
surface temperatures of the star and the sun?
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. $\frac{3}{4}$
D. $\frac{5}{3}$

Answer: B

D Watch Video Solution
277. The wavelengths corresponding to maximum energy density of radiation, emitted by the moon and the sun are $10^{-4} m$ and $4 \times 10^{-7} m$ respectively. What is the ratio of their temperatures ?

> A. $\frac{1}{100}$
> B. $\frac{1}{150}$
> C. $\frac{1}{200}$
> D. $\frac{1}{250}$
278. If the temperature of a black body is doubled, the frequency at which the spectral intensity becomes maximum will be
A. doubled
B. halved
C. unchanged
D. quadrupled
279. A black body radiates heat at temperatures T_{1} and $T_{2}\left(T_{2}>T_{1}\right.$ the frequency corresponding to maxium energy is
A. more at T_{1}
B. more at T_{2}
C. equal in two cases
D. can not find, because the dimensions of
the body are not given

Answer: B

D Watch Video Solution

280. The phenomenon of black body radiation

was explained satisfactorily by
A. kinetic theory
B. classical theory
C. quantum theory
D. theory of relativity

Answer: C

- Watch Video Solution

281. Solar radiation emitted by the sun resembles the radiations emitted by a black body at the temprature of 6000 K . Maximum intensity is emitted at a wavelength of $4800 \AA$.

If the temperature of the sun decreases from 6000 K to 4000 K , then the peak intensity would occur at a wavelength of
A. $3200 \AA{ }^{\circ}$
B. $5200 \AA{ }^{\circ}$
C. $7200 \AA{ }^{\circ}$
D. $9600 \AA 8$

Answer: C

D Watch Video Solution
282. The maximum wavelength of radiation emitted at 1500 K is $5 \mu \mathrm{~m}$. The maximum
wavelength of radiation emitted at 2500 K will be
A. $2 \mu m$
B. $3 \mu m$
C. $4 \mu m$
D. $10 \mu \mathrm{~m}$

Answer: B
(Watch Video Solution
283. If wavelengths of maximum intensity of
radiations emitted by the sun and the moon
are $0.5 \times 10^{-6} \mathrm{~m}$ and $10^{-4} \mathrm{~m}$ respectively,
the ratio of their temperature is
A. 200
B. 100
C. $\frac{1}{200}$
D. $\frac{1}{100}$

Answer: C

284. The temperature of a furnace is $2327^{\circ} \mathrm{C}$
and the intensity is maximum in its radiation spectrum at $12000 \AA$. If the intensity in the spectrum of a star is maximum at $4800 \AA$, then the surface temperature of the star is
A. 6500 K
B. 6000 K
C. 4800 K
D. 7500 K

Answer: A

D Watch Video Solution

285. The maximum wavelength of radiation emitted by a black body at $1227^{\circ} \mathrm{C}$ is λm.

What is its maximum wavelength at $2227^{\circ} \mathrm{C}$?
A. $\frac{\lambda m}{2}$
B. $\frac{\lambda m}{3}$
C. $\frac{3}{5} \lambda m$
D. $\frac{9}{25} \lambda m$

Answer: C

- Watch Video Solution

286. The sun emits light with a maximum wavelength of 510 nm while another star X emits light of maximum wavelength of 350 nm .

What is the ratio of the surface temperatures
of the sun and the star?
A. 0.35
B. 1.5

C. 1.1

D. 0.69

Answer: D

- Watch Video Solution

287. Two stars X and Y emit blue and yellow
lights respectively. What is the relation between their temperatures $\left(T_{x}\right.$ and $\left.T_{y}\right)$?

$$
\text { A. } T_{x}>T_{y}
$$

B. $T_{x}<T_{y}$
C. $T_{x}=T_{y}$
D. $T_{x}=\frac{1}{2} T_{y}$

Answer: A

- Watch Video Solution

288. The surface temperature of a black body
is 1200 K. What is the wavelength
corresponding to maximum intensity of
emission of radiation if Wien's constant $b=$ $2.892 \times 10^{-3} m K ?$
A. $2.41 \times 10^{-4} m$
B. $2.41 \AA$
C. $2.41 \mu m$
D. 2.41 cm

Answer: C
(Watch Video Solution
289. At what temperature a body will appear blue if Wiens constant $\mathrm{b}=0.3 \mathrm{~cm}-\mathrm{K}$ and the wavelength of maximum emission for blue collour is $5000 \AA$?
A. 5000 K
B. 5500 K
C. 6000 K
D. 6500 K

Answer: C

290. Two stars A and B radiate maximum
energy $5200 \AA$ and $6500 \AA$ respectively. Then
the ratio of absolute temperatures of A and B
is
A. $25: 16$
B. $5: 4$
C. $4: 5$
D. $16: 25$

Answer: B

- Watch Video Solution

291. What is the temperature of a star having maximum emission at $\lambda_{\max }=4800 \AA$, if for the sun, the surface temperature is 6000 K and the maximum emission is at $\lambda_{m}=5000 \AA$.
A. 5500 K
B. 5800 K
C. 6100 K

D. 6250 K

Answer: D

D Watch Video Solution

292. The surface temperature of a particular star which is assumed to behave like a black body is about $5 \times 10^{4} \mathrm{~K}$. What is the wavelength in nanometre at which its intensity of radiation becomes maximum ? $[\mathrm{b}=$ $\left.2.9 \times 10^{-3} \mathrm{mK}\right]$
A. 48
B. 58
C. 38
D. 38

Answer: B

D Watch Video Solution
293. If the temperature of a black body be increased from $27^{\circ} \mathrm{C}$ to $327^{\circ} \mathrm{C}$ the radiation emitted increases by a fraction of
A. doubled
B. unchanged
C. halved
D. tripled

Answer: C

D Watch Video Solution
294. The earth radiates in the infra-red region
of the spectrum. The spectrum is correctly
given by
A. Stefan's law of radiation
B. Wien's law
C. Rayleigh Jeans law
D. Planck's law of radiation

Answer: B

- Watch Video Solution

A. mK
B. m / K
C. K / m
D. $1 / M k$

Answer: A

- Watch Video Solution

296. The colour of a star indicates its
A. size

B. temperature

C. mass
D. distance from the earth

Answer: B

D Watch Video Solution

297. The surface temperature of the sun is about 6000 K . If the temperature of the sun becomes twice the present temperature, then

$$
\left[b=2.9 \times 10^{-3} \mathrm{mK}\right]
$$

A. the output of radiant energy will be doubled
B. it will radiate predominantly in the infrared region
C. the frequency spectrum of the radiated
energy will not change
D. it will radiate predominantly in the
ultraviolet region

Answer: D

298. A black body radiates power P and maximum energy is radiated by it at a wavelength λ_{0}. The temperature of the black body is now so changed that it radiates maximum energy at the wavelength $\frac{3 \lambda_{0}}{4}$. What is the power radiated by it at the new temperature ?

$$
\begin{aligned}
& \text { A. } \frac{16}{9} P \\
& \text { B. } \frac{256}{81} P \\
& \text { C. } \frac{4}{3} P
\end{aligned}
$$

D. $\frac{64}{27} P$

Answer: B

D Watch Video Solution

299. Two black bodies A and B at temperatures

5802 K and 1934 K emits total radiations at the
same rate. The wavelength λ_{B} corresponding to maximum spectral radiancy from B is shifted from the wavelength corresponding to
maximum spectral radiancy in the radiation
from A by $1.00 \mu m$. Then

> A. $\lambda_{A}=\frac{3}{2} \mu m$
> B. $\lambda_{B}=0.5 \mu m$
> C. $\lambda_{B}=\frac{3}{2} \mu m$
> D. $\lambda_{B}=3 \mu m$

Answer: C

D Watch Video Solution
300. In an atomic bomb, the temperature of

10million degrees is developed at the moment of explosion In what region of the spectrum of explosion In what region of the spectrum do
the wavelength corresponding to maximum
energy density
lie
$\left(b=0.28 \times 10^{-2} S\right.$. Iunit $)$.
A. visible region
B. X-ray region
C. infrared region

D. microwaves regions

Answer: B

D Watch Video Solution

301. The absolute temperature of a body X is 4
times that of body Y. For X and Y , the difference in wavelength at which enrgy radiated is maximum is $3 \mu \mathrm{~m}$. What is the wavelength (in μm) at which the body Y radiates maximum energy ?
A. $2 \mu m$
B. $3 \mu m$
C. $4 \mu m$
D. $5 \mu m$

Answer: C

D Watch Video Solution

302. Two spheres A and B having radii 3 cm and 5 cm respectively are coated with carbon black on their outer surfaces. The wavelengths
of maximum intensity of emitted radiation are 300 nm and 500 nm respectively. If the powers
radiated are Q_{A} and Q_{B} respectively, then $\frac{Q_{A}}{Q_{B}}$ is
A. $\left(\frac{5}{3}\right)^{2}$

5
B. $\frac{5}{3}$
C. $\left(\frac{5}{3}\right)^{4}$
D. $\sqrt{\frac{5}{3}}$

Answer: A
303. Two spherical bodies A (radius 6 cm) and B (radius 18 cm) are at temperature T_{1} and T_{2} respectively The maximum intensity in the emission spectrum of A is at 500 nm and in that of B is at 1500 nm considering them to be black bodies, what will be the ratio of the rate of total energy radiated by A to that of B .?
A. 8
B. 9
C. 10
D. 12

Answer: B

D Watch Video Solution

304. On observing light from three different stars P, Q and R, it was found that intensity of violet colour is maximum in the spectrum of
P, the intensity of green colour is maximum in
the spectrum of R and the intensity of red
colour is maximum in the spectrum of Q. if T_{P},
T_{Q} and T_{R} are respective absolute temperature of P, Q and R. then it can be concluded from the above observation that
A. $T_{P}>T_{R}>T_{Q}$
B. $T_{P}<T_{R}<T_{Q}$
C. $T_{P}<T_{Q}<T_{R}$
D. $T_{P}>T_{Q}>T_{R}$

Answer: A

305. Which one of the following is a green house gas ?
A. Oxygen
B. Nitrogen
C. Carbon dioxide
D. Hydrogen

Answer: C

D Watch Video Solution
306. Which one of the following in not a green house gas ?
A. Nitrous oxide ($N_{2} \mathrm{O}$)
B. Oxygen $\left(O_{2}\right)$
C. Methane $\left(\mathrm{CH}_{4}\right)$
D. Carbon dioxide $\left(\mathrm{CO}_{2}\right)$

Answer: B

D Watch Video Solution
307. In the absence of gree house effect, the temperature of the earth would have been
A. absolute zero
B. 155 K
C. 255 K
D. 355 K

Answer: C

D Watch Video Solution
308. The phenomenon of global warming is due to
A. rotation of the earth
B. ultraviolet radiations
C. green house effect
D. land and sea freezes

Answer: C

- Watch Video Solution

309. The graph of a thermodynamic process is a straight line parallel to pressure axis in $\mathrm{P}-\mathrm{V}$ diagram. What is the work done in that process?

A. zero
B. infinity
C. 2 PV
D. $\sqrt{P V}$

Answer: A

D Watch Video Solution

310. In following figs. Variation of volume by change of pressure is shown in Fig. A gas is taken along the path $A B C D A$. The change in
internal energy of the tgas will be:

A. zero in all the four cases
B. positive in cases (i), (ii) and (iii) but zero
in case (iv)
C. positive in all the cases (i) to (iv)

D. negative in cases (i), (ii) and (iii) but zero

in case (iv)

Answer: A

D Watch Video Solution

311. The $P-V$ diagram of a system undergoing
thermodynamic changes is as shown in the
figure. The work done by the system in going from $A \rightarrow B \rightarrow C$ is 30 J . If 68 J of heat is given to the system, then the change in the
internal energy of the system between A and C is

A. 34 J
B. 38 J
C. 50 J
D. 55 J

Answer: B

D Watch Video Solution

312. A system goes from A and B via two processes. I and II as shown in figure. If
ΔU_{1} and ΔU_{2} are the changes in internal energies in the processes I and II respectively,
then
p

A. $\Delta U_{2}<\Delta U_{1}$
B. $\Delta U_{2}>\Delta U_{1}$
C. relation between ΔU_{1} and ΔU_{2} cannot be determined
D. $\Delta U_{1}=\Delta U_{2}$

Answer: D

D Watch Video Solution

313. In the P - V diagram, I is the initial state and F is the final state. The gas goes from I to

F by
(i) IAF, (ii) IBF and (iii) ICF.

?

The heat absorbed by the gas is
A. the same in all the three processes
B. the same in (i) and (ii)
C. more in (i) than in (ii)
D. the same in (ii) and (iii)

Answer: C

- Watch Video Solution

314. An ideal monoatomic gas is taken through
the thermodynamic states
$A \rightarrow B \rightarrow C \rightarrow D$ via the paths shown in the figure. U_{A}, U_{B}, U_{C} and U_{D} represent the internal energies of the gas in the states A, B,
C and D respectively. Which is the wrong
statement from the following ?

A. $U_{C}>U_{D}$
B. $U_{B}=U_{C}$
C. $U_{B}<U_{A}$
D. $U_{A}=U_{D}$

Answer: C

- Watch Video Solution

315. An ideal monoatomic gas is taken round the cycle $A B C D$ A shown in the PV diagram in the given fig. The work done the cycle is

A. $2 P_{1} V_{1}$
B. $\frac{1}{2} P_{1} V_{1}$
C. zero

$$
\text { D. } P_{1} V_{1}
$$

Answer: D

- Watch Video Solution

316. In Newton's law of cooling experiment, we plot a graph of $\left(\frac{d \theta}{d t}\right)$ against the temperature difference $\left(\theta-\theta_{0}\right)$. The graph is
A. a curve passing through the origin
B.a straight line passing through the origin
C. a straight line having an intercept on
the y axis
D. a straight line having an intercept on
the temperature axis

Answer: B

D Watch Video Solution
317. The frequency $\left(v_{m}\right)$ corresponding to which energy emitted by a black body is maximum may vary with temperature T of the body as shown in Which of the curves repersents correct variation ?

A. curve D

B. curve C

C. curve B

D. curve A

Answer: C

D Watch Video Solution

318. An ideal gas is taken through the cycle
$A \rightarrow B \rightarrow C \rightarrow A$, as shown in the figure, If
the net heat supplied to the gas in the cycle is

5J, the work done by the gas in the process

CtoA is

$\mathrm{V}\left(\mathrm{m}^{3}\right){ }_{\mathrm{P}\left(\mathrm{N} / \mathrm{m}^{2}\right)}^{\text {2 }}$

A. $-20 J$
B. $-5 J$
C. $-10 J$
D. -15 J

Answer: B
319. The graph, shown in the adjacent diagram, represents the variation of temperature (T) of two bodies, x and y having same surface area, with time (t) due to the emission of radiation.

Find the correct relation between the emissivity and absorptivity power of the two
bodies

A. $E_{x}<E_{y}, a_{x}<a_{y}$
B. $E_{x}>E_{y}, a_{x}<a_{y}$
C. $E_{x}<E_{y}, a_{x}>a_{y}$
D. $E_{x}>E_{y}, a_{x}>a_{y}$

Answer: D

- Watch Video Solution

320. The plots of intensity versus wavelength
for three black bodies at temperatures T_{1}, T_{2} and T_{3} respectively are shown in Their temperatures are shown in How their temperatures are related ?

A. $T_{2}>T_{3}>T_{1}$
B. $T_{3}>T_{2}>T_{1}$
C. $T_{1}>T_{2}>T_{3}$
D. $T_{1}>T_{3}>T_{2}$

Answer: D

D Watch Video Solution
321. Which one of the following graphs
correctly gives the ideal gas behaviour ?
A.

B.
c.

D.

Answer: A
322. Heat energy absorbed by a system in going through a cyclic process shown in figure is

A. $10^{-3} \pi J$
B. $10^{2} \pi J$
C. $10^{3} \pi J$
D. $10^{4} \pi J$

Answer: B

D Watch Video Solution

323. An ideal gas is taken through the cycle
$A \rightarrow B \rightarrow C \rightarrow A$, as shown in the figure, If
the net heat supplied to the gas in the cycle is
5J, the work done by the gas in the process

CtoA is

$$
\mathrm{V}\left(\mathrm{~m}^{3}\right){ }_{\mathrm{P}\left(\mathrm{~N} / \mathrm{m}^{2}\right)}^{\substack{\text { 2 }}}
$$

A. $-10 J$
B. $-15 J$
C. $-5 J$
D. -20 J

Answer: C

- Watch Video Solution

324. A system changes from the state $\left(P_{1}, V_{1}\right)$
to $\left(P_{2} V_{2}\right)$ as shwon in the diagram. The workdone by the system is

A. 7×10^{5} Joule
B. 12×10^{5} Joule
C. 25×10^{5} Joule
D. 6×10^{5} Joule

Answer: B

D Watch Video Solution

325. The number of degrees of freedom for a

rigid diatomic molecule is
A. 3
B. 5
C. 6
D. 7

Answer: B

- Watch Video Solution

326. The wavelength range of thermal radiation is
A. from $4000 \AA$ to $7000 \AA$
B. from $7700 \AA ̊$ to $4 \times 10^{16} \AA$
C. from $10^{6} \AA$ to $10^{8} \AA$
D. from $4 \times 10^{-12} \AA$ to $4 \times 10^{8} \AA$

Answer: B

D Watch Video Solution

327. The substance which allows heat radiations to pass through it is
A. Iron
B. Water vapour
C. Wood
D. Dry air

Answer: D

- Watch Video Solution

328. The coefficient of reflection of an opaque

 body is 0.16 . Its coefficient of emission isA. 0.94
B. 0.84
C. 0.74
D. 0.64

Answer: B

D Watch Video Solution

329. A metal ball cools from $64^{\circ} C$ to $50^{\circ} C$ in

10 minutes and to $42^{\circ} C$ in the next 10 minutes. The ratio of the rates of fall of temperature during the two intervals is
A. $\frac{4}{7}$
B. $\frac{7}{4}$
C. 2
D. 2.5

Answer: B

D Watch Video Solution

330. The light from th sun is found to have a

 maximum intensity near the wavelength of 470 nm . Assuming that the surface of the sunemits as a blackbody, calculate the temperature of the surface of the sun.
A. 5800 K
B. 6050 K
C. 6166 K
D. 6500 K

Answer: C
(Watch Video Solution
331. Two copper spheres of radii 6 cm and 12
cm respectively are suspended in an evacuated. Each of them is at a temperature
$15^{\circ} \mathrm{C}$ above the surroundings. The ratio of their of loss of heat is
A. 2: 1
B. 1: 4
C. $1: 8$
D. $8: 1$

Answer: B
332. For polyatomic molecules having 'f' vibrational modes, the ratio of two specific heats, $\frac{C_{P}}{C_{V}}$ is
A. $\frac{1+f}{2+f}$
B. $\frac{2+f}{3+f}$
C. $\frac{4+f}{3+f}$
D. $\frac{5+f}{4+f}$

- Watch Video Solution

333. For a gas $\frac{R}{C_{V}}=0.4$, where R is the universal gas constant and C, is molar specific
heat at constant volume. The gas is made up of molecules which are
A. rigid diatomic
B. monoatomic
C. non-rigid diatomic
D. polyatomic

Answer: A

D Watch Video Solution

334. Assuming the expression for the pressure exerted by the gas on the walls of the container, it can be shown that pressure is
A. $\left[\frac{1}{3}\right]^{r d}$ kinetic energy per unit volume of
the gas
B. $\left[\frac{2}{3}\right]^{r d}$ kinetic energy per unit volume of
the gas
C. $\left[\frac{3}{4}\right]^{r d}$ kinetic energy per unit volume of
the gas
D. $\frac{3}{2} \times$ kinetic energy per unit volume of the gas

Answer: B

D Watch Video Solution

335. A black rectangular surface of area A emits energy E per second at $27^{\circ} \mathrm{C}$. If length and breadth are reduced to one third of initial
value and temperature is raised to $327^{\circ} \mathrm{C}$,
then energy emitted per second becomes

$$
\begin{aligned}
& \text { A. } \frac{4 E}{9} \\
& \text { B. } \frac{7 E}{9} \\
& \text { C. } \frac{10 E}{9} \\
& \text { D. } \frac{16 E}{9}
\end{aligned}
$$

Answer: D

D Watch Video Solution

336. Two spherical black bodies of radii R_{1} and
R_{2} and with surface temperature T_{1} and T_{2}
respectively radiate the same power. R_{1} / R_{2} must be equal to

> A. $\frac{T_{1}}{T_{2}}$
> B. $\frac{T_{2}}{T_{1}}$
> C. $\left(\frac{T_{1}}{T_{2}}\right)^{2}$
> D. $\left(\frac{T_{2}}{T_{1}}\right)^{2}$

Answer: C
337. For a rigid diatomic molecule, univerisal gas constant $R=m c_{p}$, where ${ }^{\prime} C_{p}$ ' is the molar specific heat at constant pressure and ' n ' is a number. Hence n is equal to
A. 0.2257
B. 0.4
C. 0.2857
D. 0.3557

Answer: C

D Watch Video Solution

338. A ideal gas has pressure ' p ', volume ' V ' and absolute temperature ' T '. It ' m ' is the mass of each molecules and ' K ' is the Boltzmann constant, the density of the gas is
A. $\frac{P m}{K T}$
B. $\frac{K T}{P m}$
C. $\frac{K m}{P T}$
D. $\frac{P K}{T m}$

Answer: A

D Watch Video Solution

TEST YOUR GRASP - 9

1. The velocities of 4 molecules are $4 \mathrm{~m} / \mathrm{s}, 5 \mathrm{~m} / \mathrm{s}$,
$6 \mathrm{~m} / \mathrm{s}$ and $2 \mathrm{~m} / \mathrm{s}$ respectively. What is their rms
velocity?

5
A. $\frac{5}{2} m / s$
B. $\frac{7}{2} m / s$
C. $\frac{9}{2} m / s$
D. $\frac{3}{2} m / s$

Answer: C

D Watch Video Solution

2. Oxygen and hydrogen gas are at same temperature and pressure. And the oxygen
molecule has 16 times the mass of hydrogen
molecule. Then the ratio of their rms speed is
A. 2
B. 4
C. $\frac{1}{4}$
D. $\frac{1}{2}$

Answer: C
(Watch Video Solution
3. The mean free path of nitrogen molecules at
$27^{\circ} \mathrm{C}$ is $3 \times 10^{-7} \mathrm{~m} / \mathrm{s}$. If the average speed of nitrogen molecules at the same temperature is $600 \mathrm{~m} / \mathrm{s}$ then the collision frequency will be
A. $10^{9} / \mathrm{sec}$
B. $1.5 \times 10^{9} / \mathrm{sec}$
C. $2 \times 10^{9} / \mathrm{sec}$
D. $3 \times 10^{9} / \mathrm{sec}$

Answer: C
4. The equation of state for 15 gram of oxygen at pressure P , volume V and temperature T is given by
A. $P V=15 R T$
B. $P V=\frac{15 R T}{2}$
C. $P V=\frac{15}{32} R T$
D. $P V=R T$

- Watch Video Solution

5. The rms velocity of the molecules of a gas at temperature T is $1200 \mathrm{~m} / \mathrm{s}$. If the atmospheric pressure is $10^{5} \mathrm{~N} / \mathrm{m}^{2}$, then the density of the gas at that temperature is approximately equal to
A. $0.1 \mathrm{~kg} / \mathrm{m}^{3}$
B. $0.2 \mathrm{~kg} / \mathrm{m}^{3}$
C. $0.02 \mathrm{~kg} / \mathrm{m}^{3}$

D. $0.03 \mathrm{~kg} / \mathrm{m}^{3}$

Answer: B

D Watch Video Solution

6. If atmospheric pressure
$P=1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ and $R=8 \mathrm{~J} / \mathrm{mole} /{ }^{\circ} \mathrm{K}$,
then the kinetic energy per mole of a gas at
N.T.P. is
A. 1638 joule/mole
B. 819 joule/mole
C. 3276 joule/mole
D. 4000 joule/mole

Answer: C

D Watch Video Solution

7. At what temperature is the K. E. Of a gas molecules half that of its value at $27^{\circ} C$
A. $135^{\circ} C$

B. $150^{\circ} \mathrm{C}$

C. ${ }^{`} 150 \mathrm{~K}$

D. 300 K

Answer: C

D Watch Video Solution

8. Each molecule of a gas has F degrees of
freedom. The ratio $\frac{C_{p}}{C_{V}}=\gamma$ for the gas is
A. $1+\frac{2}{f}$
B. $\frac{1}{2}+f$
C. $1+\frac{f}{2}$
D. $\frac{1+f}{2}$

Answer: A

- Watch Video Solution

9. Argon gas is heated at constant volume
through $1^{\circ} C$. The heat supplied to a gas is
used to increase the translational and rotational kinetic energies of the gas
molecules. What is the percentage share of translational and rotational kinetic energies of the molecules of Argon?
A. 60% and 40%
B. 40% and 60%
C. 50% and 50%
D. 100% and 0%

Answer: D

D Watch Video Solution
10. C_{v} denotes the molar specific heat of a gas at constant volume and γ is the adiabatic constant, then the universal gas constant R is given by
A. $C_{v}[\gamma-1]$
B. $C_{v}=\left[\frac{1}{\gamma}-1\right]$
C. $C_{v}[1-\gamma]$
D. $C_{v}=\left[1-\frac{1}{\gamma}\right]$

Answer: A

D Watch Video Solution
11. One mole of a monoatomic ideal gas is mixed with one mole of a diatomic ideal gas . The molar specific heat of the mixture at constant volume is
A. 1.5R
B. 2 R
C. 2.5R
D. 3 R

- Watch Video Solution

12. Which one of the following is not true about the following thermodynamic processes
A. For isobaric process $\Delta P=0$
B. For adiabatic process $\Delta Q=0$
C. For isothermal process $\Delta T=0$
D. For isochoric process $\Delta E=0$
13. During an adiabatic process, the pressure of gas is found to be proportional to the cube of its absolute temperature. The ratio of $\left(C_{p, m} / C_{v, m}\right)$ for gas is:
A. 2
B. $\frac{3}{2}$
C. $\frac{4}{3}$
D. $\frac{5}{3}$

Answer: B

- Watch Video Solution

14. The difference between the principal specific heats of a gas is $300 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ and the ratio of its specific heats $\left(\frac{C_{p}}{C_{v}}\right)$ is 1.4. Then the value of C_{p} expressed in $\mathrm{J} / \mathrm{kg} \mathrm{K}$ is
A. 750
B. 1250
C. 1050

D. 500

Answer: C

D Watch Video Solution

15. When the temperature of 4 moles of a gas
was increased from $80^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$, at constant volume, the change in internal energy was 60J. What is the total heat capacity of the gas at constant volume?
A. $2 \mathrm{~J} / \mathrm{K}$
B. $4 \mathrm{~J} / \mathrm{K}$
C. $0.5 \mathrm{~J} / \mathrm{K}$
D. $3 \mathrm{~J} / \mathrm{K}$

Answer: D

D Watch Video Solution

16. 100 g of water is heated from
$30^{\circ} C \rightarrow 50^{\circ} C$. Ignoring the slight expansion of the water, the change in its internal energy is (specific heat of water is $4184 \mathrm{~J} / \mathrm{kg} / \mathrm{K}$):
A. 4.2 KJ
B. 8.4 kJ
C. 84 kJ
D. 2.1 kJ

Answer: B

- Watch Video Solution

17. The temperature of sink of Carnot engine is
$27^{\circ} \mathrm{C}$. Efficiency of engine is 25%. Then
A. $127^{\circ} C$
B. $227^{\circ} \mathrm{C}$
C. $327^{\circ} C$
D. $27^{\circ} \mathrm{C}$

Answer: A

D Watch Video Solution

18. In an ideal refrigerator, heat from inside at 280 K is transferred to a room at 300 K . What is the amount of heat (in joule) which will be
transferred to the room for each joule of electrical energy consumed in the process ?
A. 12 J
B. 13 J
C. 15 J
D. 18 J

Answer: C
(Watch Video Solution
19. Which one of the following statements is
true in the case of radiation emitted by a human body?
A. It is emitted only during the day
B. It lies in the infrared region
C. It lies in the ultraviolet region and hence
it is invisible
D. It is emitted during the summer and
absorbed during the winter

Answer: B

- Watch Video Solution

20. A perfectly black sphere of diameter 0.2 m
is in thermal equilibrium with the
surrounding. What is the temperature of the surrounding, if its rate of absorption of heat energy from the surrounding is
$5.67 \times 4 \pi \times 10^{2}$ watt?
[$\sigma=5.67 \times 10^{-8}$ s.I. units]
A. 10 KJ
B. 100 K

C. 1000 K

D. 10000 K

Answer: C

D Watch Video Solution
21. The radiation emitted by a star A is 100
times that of the sun. If the surface

K and 2000 K respectively, then the ratio of the radii of the star and the sun is
A. $30: 1$
B. $90: 1$
C. $60: 1$
D. 100: 1

Answer: B

D Watch Video Solution

22. Three black bodies A, B and C in the form of

 cubes of sides in the ratio $3: 4: 5$ are kept at the same high temperature. The ratio of the quantity of heat lost per second by A, B and C will beA. $27: 64: 125$
B. 5:4:3
C. 9:16:25
D. 25: 16:9
23. The rate of dissipation of heat by a black body at temperature T is Q. What will be the the rate of dissipation of heat by another body at temperature $2 T$ and emissivity 0.25 ?
A. 8 Q
B. 4 Q
C. 162
D. 32 Q

Answer: B

- Watch Video Solution

24. A body is heated to a temperature of $75^{\circ} \mathrm{C}$
and is allowed to cool. If the temperature of
the surrounding is $35^{\circ} \mathrm{C}$, then the temperature at which the rate of cooling will be exactly half of that initially will be

$$
\text { A. } 37.5^{\circ} \mathrm{C}
$$

$$
\text { B. } 50^{\circ} \mathrm{C}
$$

C. $55^{\circ} \mathrm{C}$

D. $30^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution

25. A body cools from $50^{\circ} C$ to $46^{\circ} C$ in 5
minutes and to $40^{\circ} C$ in the next 10 minutes.

The surrounding temperature is :
A. $36^{\circ} C$
B. $32^{\circ} \mathrm{C}$
C. $30^{\circ} C$
D. $28^{\circ} \mathrm{C}$

Answer: D

D Watch Video Solution

26. The maximum wavelength of radiation emitted from the sun at 6000 K is about 550 nm. What would be the wavelength of
maximum radiation emitted from the earth at
$27^{\circ} C ?$
A. $22 \mu m$
B. $33 \mu m$
C. $11 \mu m$
D. $44 \mu m$

Answer: C
(Watch Video Solution
27. The temperature of a black body is gradually increased. The colour of the body will change from
A. White - green - red
B. Red - yellow - blue
C. Red - violet - yellow
D. Yellow - green - red

Answer: B

D Watch Video Solution
28. The wavelength of maximum energy
released during an atomic axplosion was
$2.93 \times 10^{-10} \mathrm{~m}$. Given that Wien's constant is
$2.93 \times 10^{-3} m-K, \quad$ the
maximum
temperature attained must be of the order of
A. $10^{3} \mathrm{~K}$
B. $10^{5} \mathrm{~K}$
C. $10^{7} \mathrm{~K}$
D. $10^{-10} \mathrm{~K}$

Answer: C
29. Which rays are responsible for green house effect?
A. Ultraviolet rays
B. Infrared rays
C. X-rays
D. Cosmic rays

Answer: B
30. An ideal monoatomic gas is taken round the cycle ABCDA as shown in the P-V diagram.

The work done during the cycle is

A. zero
B. PV

C. 2 PV

D. $\frac{P V}{2}$

Answer: C
(Watch Video Solution

