

MATHS

BOOKS - TARGET MATHS (HINGLISH)

BOARD QUESTION PAPER: MARCH 2019

A Solve The Following Questions Any Four

1. If ΔABC ~ ΔPQR and $\angle = 60^{\circ}$, then $\angle P$?

2. In right-angled ΔABC , if $\angle B = 90^{\circ}$, AB = 6

, BC=8, then find AC.

Watch Video Solution

3. Write the length of largest chord of a circle

with radius 3.2 cm.

B Solve The Following Questions Any Two

1. Draw seg AB of length 5.7 cm and bisect it.

Watch Video Solution

2. In right-angled triangle PQR, if $\angle P = 60^{\circ}, \angle R = 30^{\circ}$ and PR =12, then find the values of PQ and QR.

3. In a right circular cone, if perpendicular height is 12 cm and radius is 5 cm, then find its slant height.

Watch Video Solution

A Choose The Correct Alternative

1. ΔABC and ΔDEF are equilateral triangles. If $A(\Delta ABC): A(\Delta DEF) = 1:2$ and AB=4, then what is the length of DE?

A. $2\sqrt{2}$

B. 4

C. 8

D. $4\sqrt{2}$

Answer:

2. Out of the following which is a Pythagorean

triplet ?

A. (5, 12, 14,)

B. (3, 4, 2)

C. (8, 15, 17)

D. (5, 5, 2)

Answer:

3. $\angle ACB$ is inscribed in arc ACB of a circle with centre O. If $\angle ACB = 65^{\circ}$, find m(arc ACB).

A. 130°

B. $295^{\,\circ}$

C. 230°

D. $65^{\,\circ}$

Answer:

4. $1 + \tan^{\circ} \theta$ =?

- A. $\sin^2 heta$
- $\mathsf{B.}\sin^2 heta$
- $\mathsf{C.}\cos ec^2 heta$
- D. $\cot^2 \theta$

Answer:

B Solve The Following Questions Any Two

1. Draw a tangent at any point R on the circle

of radius 3.4 cm and centre at P?

2. Find slope of a line passing through the points A(3, 1) and B(5, 3).

3. Find the surface area of a sphere of radius

3.5 cm.

1

Watch Video Solution

A Complete The Following Acitivites Any Two

$$A - D - C$$
, side $DE \mid$ side BC , $A - E - B$

RD hisects $\angle ARC$

Prove that,
$$rac{AB}{BC}=rac{AE}{EB}.$$

In ΛABC ray

Complete the activity by filling the boxes.

In ΔABC , ray BD is the bisector of $\angle ABC$

 $\therefore \frac{AB}{BC} = \Box \dots (I)$ (By angle bisector

theorem)

In $\triangle ABC$, seg $DE \mid \mid$ side BC

$$\therefore \frac{AE}{EB} = \frac{AD}{DC} \dots (II) \square$$
$$\therefore \frac{AB}{\Box} = \frac{\Box}{EB} \dots [From (I) and (II)]$$

2. Inscribed Angle Theorem

The measure of an inscribed angle is half of the measure of the arc intercepted by it. Given : In a circle with centre O, $\angle BAC$ is inscribed in an arc BAC. $\angle BAC$ intercepts are BXC of the circle.

To prove $:m ota{BAC} = rac{1}{2}$ m (arc BXC) .

AD = 4, DC = 9, then find BD.

2. Verify whether the following points are collinear or not:
A (1, -3), B (2, -5), C (-4, 7).

Watch Video Solution

3. If
$$\sec heta = rac{25}{7}$$
, then find the value of tan $heta$

> Watch Video Solution

Solve The Following Questions Any Three

1. In ΔPQR ,seg PM is a median , PM=9 and $PQ^\circ + PR^2 = 290$. Find the length of QR. Watch Video Solution

2. In the figure, O is the centre of circle $\angle QPR = 70^{\circ}$ and m (arc PYR) = 160° , then find the value of each of the following : (a) m (arc QXR) (b) $\angle QOR$

(c) $\angle PQR$

3. Draw a circle of radius 3.5 cm . Take a point P outside the circle at a distance of 7 cm from the centre of the circle and construct a pair of tangents to the circle from the point.

Watch Video Solution

4. When an observer at a distance of 12 m from a tree looks at the top of the tree, the angle of elevation is 60° . What is the height of the tree?

Solve The Following Questions Any One

1. A circle with centre P is inscribed in the \triangle ABC. Side AB, side BC and side AC touch the circle at points L,M and N respectively. Radius of the circle is r. Prove that:

2. In $\triangle ABC, \angle ACB = 90^{\circ}, \text{ seg } CD \perp$ side AB and seg CE is angle bisector of $\angle ACB$

3. Show that the points (2,0), (-2,0) and (0,2)

are the vertices of

a triangle. Also state with reason the type of

the triangle .

4. In the figure, $\Box XLMT$ is a rectangle. $\angle M = 21cm$, XL = 10. 5 cm. Diameter of the smaller semicircle is half the diameter of larger semicircle. Find the area of non-shaded

region.

