©゙" doubtnut

MATHS

BOOKS - TARGET MATHS (HINGLISH)

CIRCLE AND CONICS

CLASSICAL THINKING

1. Centre of the circel $(x-3)^{2}+(y-4)^{2}=5$ is
A. $(3,4)$
B. $(-3,-4)$
C. $(4,3)$
D. $(-4,-3)$

- Watch Video Solution

2. The equation of the circle which touches both the axes and whose radius is a, is
A. $x^{2}+y^{2}-2 a x-2 a y+a^{2}=0$
B. $x^{2}+y^{2}+a x+a y-a^{2}=0$
C. $x^{2}+y^{2}+2 x+2 a y-a^{2}=0$
D. $x^{2}+y^{2}-a x-a y+a^{2}=0$

Answer: A
3. The equation of the circle which touches both axes and whose centre is $\left(x_{1}, y_{1}\right)$ is
A. $x^{2}+y^{2}+2 x_{1}(x+y)+x_{1}^{2}=0$
B. $x^{2}+y^{2}-2 x_{1}(x+y)+x_{1}^{2}=0$
C. $x^{2}+y^{2}=x_{1}^{2}+y_{1}^{2}$
D. $x^{2}+y^{2}+2 x x_{1}+2 y y_{1}=0$

Answer: B

- Watch Video Solution

4. Find the equation of the circle which touches the x-axis and whose center is (1, 2).
A. $x^{2}+y^{2}-2 x+4 y+1=0$
B. $x^{2}+y^{2}-2 x-4 y+1=0$
C. $x^{2}+y^{2}+2 x+4 y+1=0$
D. $x^{2}+y^{2}+4 x+2 y+4=0$

Answer: B

- Watch Video Solution

5. A circle touches the y-axis at the point $(0,4)$ and cuts the x-axis in a chord of length 6 units. Then find the radius of the circle.
A. 3
B. 4
C. 5
D. 6

- Watch Video Solution

6.

Find
the
radius
of
the
circle
$(x-5)(x-1)+(y-7)(y-4)=0$.
A. 3
B. 4
C. $\frac{5}{2}$
D. $\frac{7}{2}$

Answer: C

7. The circle represented by the equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ will be a point circle, if
A. $g^{2}+f^{2}=c$
B. $g^{2}+f^{2}>c$
C. $g^{2}+f^{2}+c=0$
D. $g^{2}+f^{2}<c$

Answer: A

- Watch Video Solution

8. If the radius of the circle $x^{2}+y^{2}-18 x+12 y+k=0$ be 11 , then $k=$
B. 4
C. -4
D. 49

Answer: C

- Watch Video Solution

9. For the circle $x^{2}+y^{2}+3 x+3 y=0$, which of the following relation is true?
A. Centre lies on X -axis
B. Centre lies on Y-axis
C. Centre is at origin
D. Circle passes through origin

- Watch Video Solution

10. For the circle $x^{2}+y^{2}+6 x-8 y+9=0$, which of the following statement is true?
A. Circle passes through the point $(-3,4)$
B. Circle touches X-axis
C. Circle touches Y -axis
D. None of these

Answer: B

11. If the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ touches X -axis, then
A. $g=f$
B. $g^{2}=c$
C. $f^{2}=c$
D. $g^{2}+f^{2}=c$

Answer: B

- Watch Video Solution

12. If the radius of the circel $x^{2}+y^{2}+2 g x+2 f y+c=0$ be r, then it will touch both the axes, if
A. $g=f=c$
B. $g=f=c=r$
C. $g=f=\sqrt{c}=r$
D. $g=f$ and $c^{2}=r$

Answer: C

- Watch Video Solution

13. The circle $x^{2}+y^{2}+4 x-4 y+4=0$ touches
A. X -axis
B. Y-axis
C. X -axis and Y -axis
D. None of these
14. Circle $x^{2}+y^{2}+6 y=0$ touches
A. Y-axis at the origin
B. X-axis at the origin
C. X -axis at the point $(3,0)$
D. Y-axis at the point $(0,2)$

Answer: B

- Watch Video Solution

15. Which of the following line is a diameter of the circel
$x^{2}+y^{2}-6 x-8 y-9=0 ?$
A. $3 x-4 y=0$
B. $4 x-y=0$
C. $x+y=7$
D. $x-y=1$

Answer: C

- Watch Video Solution

16. If the line $x+2 b y+7=0$ is a diameter of the circle $x^{2}+y^{2}-6 x+2 y=0$, then find the value of b
A. 3
B. -5
C. -1
D. 5

- Watch Video Solution

17. The equation of the circle concentric with the circle $x^{2}+y^{2}-4 x-6 y=0-$ is
A. $x^{2}+y^{2}+8 x+10 y+59=0$
B. $x^{2}+y^{2}+8 x+10 y-59=0$
C. $x^{2}+y^{\circ}-4 x-6 y+87=0$
D. $x^{2}+y^{2}-4 x-6 y-87=0$

Answer: B
18. Find the equation of the circle which touches both the axes and the line $3 x-4 y+8=0$ and lies in the third quadrant.
A. $x^{2}+y^{2}-4 x+4 y-4=0$
B. $x^{2}+y^{2}-4 x+4 y+4=0$
C. $x^{2}+y^{2}+4 x+4 y+4=0$
D. $x^{2}+y^{2}-4 x-4 y-4=0$

Answer: C

- Watch Video Solution

19. Find the equation of circle whose centre is the point $(1,-3)$
and touches the line $2 x-y-4=0$

$$
\text { A. } 5 x^{2}+5 y^{2}-10 x+30 y+49=0
$$

B. $5 x^{2}+5 y^{2}+10 x+30 y-49=0$
C. $5 x^{2}+5 y^{2}+10 x+30 y-49=0$
D. $5 x^{2}+5 y^{2}-10 x-30 y+49=0$

Answer: A

- Watch Video Solution

20. Thte parametric form of the equation of circle $4 x^{2}+4 y^{2}=9$
is
A. $x=\frac{3}{2} \cos \theta, y=\frac{3}{2} \sin \theta$
B. $x=\frac{2}{3} \sin \theta, y=\frac{2}{5} \cos \theta$
C. $x=\frac{3}{4} \sin \theta, y=\frac{3}{4} \cos \theta$
D. $x=3 \sin \theta, y=\sqrt{2} \cos \theta$

- Watch Video Solution

21. The parametric representation of the circel $(x-3)^{2}+(y+4)^{2}=25$ is
A. $x=5+3 \cos \theta, y=5-3 \sin \theta$
B. $x=5+3 \cos \theta, y=5+3 \sin \theta$
C. $x=3+5 \cos \theta, y=-4+5 \sin \theta$
D. $x=3+5 \cos \theta, y=-3+5 \sin \theta$

Answer: C

22. Parametric form of equation given by $x^{2}+y^{2}+2 x-4 y-4=0$ is
A. $x=1-3 \cos \theta, y=1+3 \sin \theta$
B. $x=-1+3 \cos \theta, y=2+2 \sin \theta$
C. $x=2-3 \cos \theta, y=2-3 \sin \theta$
D. $x=5-\cos \theta, y=5-\sin \theta$

Answer: B

- Watch Video Solution

23. The centre of the circel $x=-1+2 \cos \theta, y=3+2 \sin \theta$,
is
A. $(1,-3)$
B. $(-1,3)$
C. $(1,3)$
D. $(-1,-3)$

Answer: B

- Watch Video Solution

24. The parabola $y^{2}=x$ is symmetric about
A. X -axis
B. Y-axis
C. Both X -axis and Y -axis
D. The line $y=x$
25. If have vertex of a parabola be at origin and directrix be $x+5=0$, then its latus pectum is
A. 5
B. 10
C. 20
D. 40

Answer: C

- Watch Video Solution

26. If the probola $y^{2}=4 a x$ passes through $(-3,2)$, then length of its latus rectum is
A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. $\frac{4}{3}$
D. 4

Answer: C

- Watch Video Solution

27. A parabola passing through the point $(-4,-2)$ has its vartex at the origin and Y-axis as its axis. The latus rectum of the parabola is
A. 6
B. 8
C. 10
D. 12

Answer: B

- Watch Video Solution

28. The end points of latus rectum of the parabola $x^{2}=4 a y$ are
A. $(a, 2 a),(2 a, a)$
B. $(-a, 2 a),(2 a, a)$
C. $(a,-2 a),(2 a, a)$
D. $(-2 a, a) \cdot(2 a, a)$

Answer: D

29. The co-ordinates of end points of the latus rectum of the parabola $5 y^{2}=4 x$ are
A. $\left(\frac{1}{5}, \frac{2}{5}\right),\left(-\frac{1}{5}, \frac{2}{5}\right)$
B. $\left(\frac{1}{5}, \frac{2}{5}\right),\left(\frac{1}{5},-\frac{2}{5}\right)$
C. $\left(\frac{1}{5}, \frac{4}{5}\right),\left(\frac{1}{5}, \frac{4}{5}\right)$
D. $\left(\frac{1}{5}, \frac{4}{5}\right),\left(-\frac{1}{5}, \frac{4}{5}\right)$

Answer: B

- Watch Video Solution

30. The ends of latus rectum of parabola $x^{2}+8 y=0$ are
A. $(-4,-2)$ and $(4,2)$
B. $(4,-2)$ and $(-4,2)$
C. $(-4,-2)$ and $(-4,2)$
D. $(4,2)$ and $(-4,2)$

Answer: C

- Watch Video Solution

31. The points on the parabola $y^{2}=12 y$ whose focal distance is

4, are
A. $(2, \sqrt{3}),(2,-\sqrt{3})$
B. $(1,2 \sqrt{3}),(1-2 \sqrt{3})$
C. $(1,2)$
D. None of these
32. The point on the parabola $y^{2}=36 x$ whose ordinate is three times the abscissa, is
A. $(4,12)$
B. $(6,2)$
C. $(2,6)$
D. $(1,3)$

Answer: A

- Watch Video Solution

33. Which of the following points lie on the parabola $x^{2}=4 a y$
A. $x=a t^{2}, y=2 a t$
B. $x=2 a t, y=a t$
C. $x=2 a t^{2}, y=a t$
D. $x=2 a t, y=a t^{2}$

Answer: D

- Watch Video Solution

34. Vertex of the parabola $y^{2}+2 y+x=0$ lies in the
A. First quadrant
B. Second quadrant
C. Third quadrant
D. Fourth quadrant
35. If $(2,0)$ is the vertex and y-axis the directrix of a parabola then its focus is
A. $(2,0)$
B. $(-2,0)$
C. $(4,0)$
D. $(-4,0)$

Answer: C

- Watch Video Solution

36. The focus of the parabola $y^{2}=4 y-4 x$ is
A. $(0,2)$
B. $(1,2)$
C. $(2,0)$
D. $(2,1)$

Answer: A

- Watch Video Solution

37. The equation of the directirix of the parabola $x^{2}-4 x-8 y+12=0$ is-
A. $x=1$
B. $y=0$
C. $x=-1$
D. $y=-1$

- Watch Video Solution

38. Axis of the parabola $x^{2}-4 x-3 y+10=0$ is
A. $y+2=0$
B. $x+2=0$
C. $y-2=0$
D. $x-2=0$

Answer: D

39. The length of the latus rectum of the parabola $x^{2}-4 x-8 y+12=0$ is
A. 4
B. 6
C. 8
D. 10

Answer: C

- Watch Video Solution

40. The end points of the latus rectum of the parabola $x^{2}+5 y=0$ is
A. $\left(\pm \frac{5}{2},-\frac{5}{4}\right)$
B. $\left(\pm \frac{2}{5}, \pm \frac{4}{5}\right)$
C. $\left(\pm \frac{4}{5}, \pm \frac{4}{5}\right)$
D. $\left(\pm \frac{5}{4},-\frac{5}{2}\right)$

Answer: A

- Watch Video Solution

41. The equation of the ellipse whose one cocus is at $(4,0)$ an whose eccentricity is $\frac{4}{5}$, is
A. $\frac{x^{2}}{3^{2}}+\frac{y^{2}}{5^{2}}=1$
B. $\frac{x^{2}}{5^{2}}+\frac{y^{2}}{3^{2}}=1$
C. $\frac{x^{2}}{5^{2}}+\frac{y^{2}}{4^{2}}=1$
D. $\frac{x^{2}}{4^{2}}+\frac{y^{2}}{5^{2}}=1$

- Watch Video Solution

42. Find the equation of an ellipse whose eccentricity is $2 / 3$, the latus rectum is 5 and the centre is at the origin.
A. $\frac{x^{2}}{81}+\frac{y^{2}}{45}=1$
B. $\frac{4 x^{2}}{81}+\frac{4 y^{2}}{45}=1$
C. $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$
D. $\frac{x^{2}}{81}+\frac{y^{2}}{45}=5$

Answer: B

43. For the ellipse $\frac{x^{2}}{64}+\frac{y^{2}}{28}=1$, the eccentricity is
A. $\frac{3}{4}$
B. $\frac{4}{3}$
C. $\frac{1}{\sqrt{7}}$
D. $\frac{1}{3}$

Answer: A

- Watch Video Solution

44. Eccentricity of conic $16 x^{2}+7 y^{2}=112$ is
A. $\frac{3}{\sqrt{7}}$
B. $\frac{7}{16}$
C. $\frac{3}{4}$
D. $\frac{4}{3}$

Answer: C

- Watch Video Solution

45. If the distance between the directrices is thrice the distance between the foci, then find eccentricity of the ellipse.
A. $\frac{1}{2}$
B. $\frac{2}{3}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{3}{2}$

Answer: C

46. If the distance between the foci of an ellipse is equal to its axis, then its eccentricity is
A. $\frac{1}{2}$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{1}{3}$
D. $\frac{1}{\sqrt{3}}$

Answer: B

- Watch Video Solution

47. If the foci and vetrices of an ellipse be $(\pm 1,0)$ and $(\pm 2,0)$, then the minor axis of the ellipse is
B. 2
C. 4
D. $2 \sqrt{3}$

Answer: D

- Watch Video Solution

48. Equation $x=a \cos \theta, y=b \sin \theta(a>b)$ represent a conic sectin whose eccentricity e is given by
A. $e^{2}=\frac{a^{2}+b^{2}}{a^{2}}$
B. $e^{2}=\frac{a^{2}+b^{2}}{b^{2}}$
C. $e^{2}=\frac{a^{2}-b^{2}}{a^{2}}$
D. $e^{2}=\frac{a^{2}-b^{2}}{b^{2}}$
49. For the ellipse $3 x^{2}+4 y^{2}=12$, the length of latus rectum is
A. $\frac{3}{2}$
B. 3
C. $\frac{8}{3}$
D. $\sqrt{\frac{3}{2}}$

Answer: B

50. the length of the latusrectum of the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{49}=1$, is
A. $\frac{98}{6}$
B. $\frac{72}{7}$
C. $\frac{72}{14}$
D. $\frac{98}{12}$

Answer: B

- Watch Video Solution

51. If the eccentricity of an ellipse be $\frac{1}{\sqrt{2}}$, then its latus rectum is equal to its
A. minor axis
B. semi-minor axis
C. major axis
D. semi-major axis

Answer: D

- Watch Video Solution

52. If the eccentricity of an ellipse is $\frac{5}{8}$ and the distance between its foci is 10 , then find the latusrectum of the ellipse.
A. $\frac{39}{4}$
B. 12
C. 15
D. $\frac{37}{2}$

- Watch Video Solution

53. The distance of the point θ on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ from a focus is
A. $a(e+\cos \theta)$
B. $a(e-\cos \theta)$
C. $a(1+e \cos \theta)$
D. $a(1+2 e \cos \theta)$

Answer: C

54. The coentre of the ellipse $4 x^{2}+9 y^{2}-16 x-54 y+61=0$ is
A. $(1,3)$
B. $(2,3)$
C. $(3,2)$
D. $(3,1)$

Answer: B

- Watch Video Solution

55. The equation of hyperbola whose foci are
$(2,4)$ and $(-2,4)$ and eccentricity is $\frac{4}{3}$, is

$$
\text { A. } x^{2}-(y-4)^{2}=5
$$

B. $\frac{x^{2}}{9}-\frac{4(y-4)^{2}}{7}=1$
C. $\frac{x^{2}}{9}-\frac{y^{2}}{7}=\frac{1}{4}$
D. None of these

Answer: B

- View Text Solution

56. The equation of the conic with focus at $(1,-1)$, directrix along $x-y+1=0$ and with eccentricity $\sqrt{2}$, is
A. $x^{2}-y^{2}=1$
B. $x y=1$
C. $2 x y-4 x+4 y+1=0$
D. $2 x y+4 x-4 y-1=0$

- Watch Video Solution

57. If the length of the transverse and conjuigate axes of hyperbola be 8 and 6 respectively, then the difference of focal distance of any point of the hyperbola will be
A. 8
B. 6
C. 14
D. 2

Answer: A

- Watch Video Solution

58. The foci of the hyperbola $9 x^{2}-16 y^{2}=144$ are $(\pm 4,0)$ b.
$(0, \pm 4)$ c. $(\pm 5,0)$ d. $(0, \pm 5)$
A. $(\pm 4,0)$
B. $(0, \pm 4)$
C. $(\pm 5,0)$
D. $(0, \pm 5)$

Answer: C

D Watch Video Solution
59. The eccentricity of the hyperbola can never be equal to
A. $\sqrt{\frac{9}{5}}$
B. $2 \sqrt{\frac{1}{9}}$
C. $2 \sqrt{\frac{1}{3}}$
D. 2

Answer: B

- Watch Video Solution

60. The eccentricity of the hyperbola $x^{2}-y^{2}=25$ is
A. $\sqrt{2}$
B. $\frac{1}{\sqrt{2}}$
C. 2
D. $1+\sqrt{2}$

Answer: A

61. Eccentricity of hypewrbola $\left.\frac{x^{2}}{k}+\frac{y^{2}}{k}\right)=1(k<0)$ is
A. $\sqrt{1+k}$
B. $\sqrt{1-k}$
C. $\sqrt{1+\frac{1}{k}}$
D. $\sqrt{1-\frac{1}{k}}$

Answer: D

D View Text Solution

62. If $(4,0)$ and $(-4,0)$ be the vertices and $(6,0)$ and $(-6,0)$ be the foci of a hyperbola, then its eccentricity is
A. $\frac{5}{2}$
B. 2
C. $\frac{3}{2}$
D. $\sqrt{2}$

Answer: C

- Watch Video Solution

63. The latus rectum of the hyperbola $16 x^{2}-9 y^{2}=144$ is $16 / 3$
b. $32 / 3$ c. $8 / 3$ d. $4 / 3$
A. $\frac{16}{3}$
B. $\frac{32}{3}$
C. $\frac{8}{3}$
D. $\frac{4}{3}$

- Watch Video Solution

64. The length of the latus rectum of the hyperbola

$$
3 x^{2}-y^{2}=4 \text { is }
$$

A. $8 \sqrt{3}$
B. $4 \sqrt{3}$
C. 16
D. 32

Answer: B

65. A point on the curve $\frac{x^{2}}{A^{2}}-\frac{y^{2}}{B^{2}}=1$ is
A. $(A \cos \theta, B \sin \theta)$
B. $(A \sec \theta, B \tan \theta)$
C. $\left(A \cos ^{2} \theta, B \sin ^{2} \theta\right)$
D. None of these

Answer: B

- Watch Video Solution

66. The distance between the directrices of the hyperabola
$x=8 \sec \theta, y=8 \tan \theta$ is-
A. $16 \sqrt{2}$
B. $\sqrt{2}$
C. $8 \sqrt{2}$
D. $4 \sqrt{2}$

Answer: C

- Watch Video Solution

67. The centre of the hyperbola

$$
9 x^{2}-36 x-16 y^{2}+96 y-252=0, \text { are }
$$

A. $(2,3)$
B. $(-2,-3)$
C. $(-2,3)$
D. $(2,-3)$
68. The eccentricity of the hyperbola $5 x^{2}-4 y^{2}+20 x+8 y=4$ is
A. $\sqrt{2}$
B. $\frac{3}{2}$
C. 2
D. 3

Answer: B

- Watch Video Solution

69. The equation $x=\frac{e^{t}+e^{-t}}{2}, y=\frac{e^{t}-e^{-t}}{2}, t \in R$,
A. An ellipse
B. A parabola
C. A hyperbola
D. A circel

Answer: C

- Watch Video Solution

70. The auxiliary equation of circle of hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, is
A. $x^{2}+y^{2}=a^{2}$
B. $x^{2}+y^{2}=b^{2}$
C. $x^{2}+y^{2}=a^{2}+b^{2}$
D. $x^{2}+y^{2}=a^{2}-b^{2}$

- Watch Video Solution

CRITICAL THINKING

1. Radius of the circle $x^{2}+y^{2}+2 x \cos \theta+2 y s \int h \eta-8=0$ is 1
2.33.2 $\sqrt{3} 4 . \sqrt{10} 5.2$
A. 1
B. 3
C. $2 \sqrt{3}$
D. $\sqrt{10}$

Answer: B
2. Find the equation of the circle having $(1,-2)$ as its centre and passing through the intersection of the lines $3 x+y=14 a d n 2 x+5 y=18$.
A. $x^{2}+y^{2}-2 x+4 y-20=0$
B. $x^{2}+y^{2}-2 x-4 y-20=0$
C. $x^{2}+y^{2}+2 x-4 y-20=0$
D. $x^{2}+y^{2}+2 x+4 y-20=0$

Answer: A

- Watch Video Solution

3. Find the equation of the circle passing through the origin and cutting intercepts of lengths 3 units and 4 unitss from the
positive exes.
A. $x^{2}+y^{2}+6 x+8 y+1=0$
B. $x^{2}+y^{2}-6 x-8 y=0$
C. $x^{2}+y^{2}+3 x+4 y=0$
D. $x^{2}+y^{2}-3 x-4 y=0$

Answer: D

- Watch Video Solution

4. If the lines $x+y=6$ and $x+2 y=4$ be diameters of the circel whose diameter is 20 , then the equation of the circle is
A. $x^{2}+y^{2}-16 x+4 y-32=0$
B. $x^{2}+y^{2}+16 x+4 y-32=0$
C. $x^{2}+y^{2}+16 x+4 y+32=0$
D. $x^{2}+y^{2}+16 x-4 y+32=0$

Answer: A

D Watch Video Solution

5. A circle has radius 3 units and its centre lies on the line $y=x-1$. Find the equation of the circle if it passes through $(7,3)$.
A. $x^{2}+y^{2}-8 x-6 y+16=0$
B. $x^{2}+y^{2}+8 x+6 y+16=0$
C. $x^{2}+y^{2}-8 x-6 y-16=0$
D. $x^{2}+y^{2}+8 x-6 y-16=0$

Answer: A

6. The equation of a circel with center $(-4,3)$ and touching the

 circel $x^{2}+y^{2}=1$, isA. $x^{2}+y^{2}+8 x-6 y+9=0$
B. $x^{2}+y^{2}+8 x+6 y-11=0$
C. $x^{2}+y^{2}+8 x+6 y-9=0$
D. None of these

Answer: A

- Watch Video Solution

7. The equation of the circel with cente at $(2,-2)$ and passing through the centre of the given circle $x^{2}+y^{2}+2 y-3=0$, is
A. $x^{2}+y^{2}-2 x+4 y+3=0$
B. $x^{2}+y^{2}-2 x+4 y-3=0$
C. $x^{2}+y^{2}+2 x-4 y-3=0$
D. $x^{2}+y^{2}+2 x-4 y+3=0$

Answer: A

- Watch Video Solution

8. Find the equation of the circle concentric with the circle $x^{2}+y^{2}-4 x-6 y-3=0$ and which touches the y axis
A. $x^{2}+y^{2}-4 x-6 y-9=0$
B. $x^{2}+y^{2}-4 x-6 y+9=0$
C. $x^{2}+y^{2}-4 x-6 y+3=0$
D. None of these

- Watch Video Solution

9. Equation of the circel which touches the lines $x=0, y=0$ and $3 x+4 y=4$ is
A. $x^{2}-4 x+y^{2}+4 y+4=0$
B. $x^{2}-4 x+y^{2}-4 y+4=0$
C. $x^{2}+4 x+y^{2}+4 y+4=0$
D. $x^{2}+4 x+y^{2}-4 y+4=0$

Answer: B

10. Find the equation of the circle whose radius is $5 a n d$ which touches the circle $x^{2}+y^{2}-2 x-4 y-20=0$ externally at the point (5, 5).

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}-18 x-16 y-120=0 \\
& \text { B. } x^{2}+y^{2}-18 x-16 y+120=0 \\
& \text { C. } x^{2}+y^{2}+18 x+16 y-120=0 \\
& \text { D. } x^{2}+y^{2}+18 x-16 y+120=0
\end{aligned}
$$

Answer: B

- Watch Video Solution

11. The equation of circle concentric with circle $x^{2}+y^{2}-6 x+12 y+15=0$ and double its area is
A. $x^{2}+y^{2}-6 x+12 y-15=0$
B. $x^{2}+y^{2}-6 x+12 y+15=0$
C. $x^{2}+y^{2}-6 x+12 y+45=0$
D. None of these

Answer: A

- Watch Video Solution

12. the equation of the circle passing through the point $(2,1)$ and touching y-axis at the origin is
A. $x^{2}+y^{2}-5 x=0$
B. $2 x^{2}+2 y^{2}-5 x=0$
C. $x^{2}+y^{2}+5 x=0$
D. None of these

- Watch Video Solution

13. Find the locus of the center of the circle which cuts off intercepts of lengths $2 a a n d 2 b$ from the x-and the y-axis, respectively.
A. $x+y=a+b$
B. $x^{2}+y^{2}=a^{2}+b^{2}$
C. $x^{2}-y^{2}=a^{2}-b^{2}$
D. $a x^{2}+y^{2}=a^{2}-b^{2}$

Answer: C

14. If a circle passes through the point $(0,0),(a, 0)$ and $(0, b)$, then find its center.
A. (a, b)
B. (b, a)
C. $\left(\frac{a}{2}, \frac{b}{2}\right)$
D. $\left(\frac{b}{2}, \frac{a}{2}\right)$

Answer: C

- Watch Video Solution

15. For what value ofk, the points $(0,0),(1,3),(2,4)$ and $(k, 3)$ are con-cyclic :
A. 2
B. 1
C. 4
D. 5

Answer: B

- Watch Video Solution

16. The centre and radius of a circle given by equation $x=2+3 \cos \theta, y=3-3 \sin \theta$ are
A. centre $=(2,3)$, radius $=3$ units
B. centre $=(3,2)$, radius $=5$ units
C. centre $=(1,3)$, radius $=3$ units
D. centre $=(3,2)$, radius $=3$ units

- Watch Video Solution

17. Radius of the parametric equation represented by
$x=2 a\left(\frac{1-t^{2}}{1+t^{2}}\right), y=\frac{4 a t}{1+t^{2}}$ is
A. a
B. a^{2}
C. $3 a$
D. $2 a$

Answer: D

18. Prove that for all values of θ, the locus of the point of intersection of the lines $x \cos \theta+y \sin \theta=a \quad$ and $x \sin \theta-y \cos \theta=b$ is a circle.
A. An ellipse
B. A circle
C. A parabola
D. A hyperbola

Answer: B

- Watch Video Solution

19. The equatio of the parabola with its vertex at the origin, axis on the Y-axis and passing through the point $(6,-3)$ is
A. $y^{2}=12 x+6$
B. $x^{2}=12 y$
C. $x^{2}=-12 y$
D. $y^{2}=-12 x+6$

Answer: C

- Watch Video Solution

20. Equation of the parabola, whose vertex is $(-1,-2)$, axis is vertical and which passes through the point (3,6), is
A. $x^{2}+2 x-2 y-3=0$
B. $2 x^{2}=3 y$
C. $x^{2}-2 x-y+3=0$
D. $3 x^{2}=2 y$

- Watch Video Solution

21. The equation of the parabola whose vertex is at $(2,1)$ and focus at $(2,-3)$, is
A. $x^{2}+4 x-8 y-12=0$
B. $x^{2}-4 x+8 y+12=0$
C. $x^{2}+8 y=12$
D. $x^{2}-4 x+12=0$

Answer: B

22. Equation of the parabola whose directrix is $y=2 x-9$ and focus $(-8,-2)$, is
A. $x^{2}+4 y^{2}+4 x y+16 x+2 y+259=0$
B. $x^{2}+4 y^{2}+4 x y+116 x+2 y+259=0$
C. $x^{2}+y^{2}+4 x y+116 x+2 y+259=0$
D. None of these

Answer: B

- Watch Video Solution

23. The equation of the parabola with focus (a, b) and directrix $\frac{x}{a}+\frac{y}{b}=1$ is given by
A. $(a x-b y)^{2}-2 a^{3} x-2 b^{3} y+a^{4}+a^{2} b^{2}+b^{4}=0$
B. $(a x+b y)^{2}-2 a^{3} x-2 b^{3} y-a^{4}+a^{2} b^{2}-b^{4}=0$
C. $(a x-b y)^{2}+a^{4}+b^{4}-2 a^{3} x=0$
D. $(a x-b y)^{2}-2 a^{3} x=0$

Answer: A

- Watch Video Solution

24. Write the equation of the parabola with focus $(0,0)$ and directrix $x+y-4=0$.
A. $x^{2}+y^{2}-2 x y+8 x+8 y-16=0$
B. $x^{2}+y^{2}-2 x y-2 x y+8 x+8 y=0$
C. $x^{2}+y^{2}+8 x+-16=0$
D. $x^{2}-y^{2}+8 x+8 y-16=0$

- Watch Video Solution

25. The equation

$(13 x-1)^{2}+(13 y-1)^{2}=k(5 x-12 y+1)^{2}$ will represent a parabola, if
A. $k=2$
B. $k=81$
C. $k=89$
D. $k=1$

Answer: D

26. vertex of the parabola $9 x^{2}-6 x+36 y+9=0$ is
A. $\left(\frac{1}{3},-\frac{2}{9}\right)$
B. $\left(\frac{-1}{3}, \frac{-1}{2}\right)$
C. $\left(\frac{-1}{3}, \frac{1}{2}\right)$
D. $\left(\frac{1}{3}, \frac{1}{2}\right)$

Answer: A

- Watch Video Solution

27. The equation of parabola is $y^{2}+8 x-12 y+20=0$, then which of the following is correct?
A. Vertex $(2,6)$
B. Focus $(0,6)$
C. Latus rectum $=14$
D. Axis $y=4$

Answer: A::B

- Watch Video Solution

28. If the vertex of the parabola $y=x^{2} x+c$ lies on x -axis, then the value of c, is
A. -16
B. -4
C. 4
D. 16

Answer: D

29. If the line $x-1=0$ is the directrix of the parabola $y^{2}-k x+8=0$, then one of the values of k is $\frac{1}{8}$ (b) 8 (c) 4 (d) $\frac{1}{4}$
A. $\frac{1}{8}$
B. 0
C. 4
D. $\frac{1}{4}$

Answer: C

D Watch Video Solution
30. The axis of the parabola $9 y^{2}-16 x-12 y-57=0$ is
A. $3 y=2$
B. $x+23 y=3$
C. $2 x=3$
D. $y=3$

Answer: A

- Watch Video Solution

31. The latus ractum of a parabola whose directrix is $x+y-2=0$ and focus is $(3,-4)$, is
A. $2 \sqrt{2}$
B. $3 \sqrt{2}$
C. $6 \sqrt{2}$
D. $\frac{3}{\sqrt{2}}$

- Watch Video Solution

32. The equation of the latus rectum of a parabola is $x+y=8$ and the equation of the tangent at the vertex is $x+y=12$.

Then find the length of the latus rectum.
A. $4 \sqrt{2}$
B. $2 \sqrt{2}$
C. 8
D. $8 \sqrt{2}$

Answer: D

33. Prove that the equation $y^{2}+2 A x+2 B y+c=0$ is represent a parabola and whose axis is parabola to x axis.

$$
\begin{aligned}
& \text { A. } x=\frac{B^{2}+A^{2}-C}{2 A} \\
& \text { B. } x=\frac{B^{2}-A^{2}+C}{2 A} \\
& \text { C. } x=\frac{B^{2}-A^{2}-C}{2 A} \\
& \text { D. } x=\frac{A^{2}-B^{2}-C}{2 A}
\end{aligned}
$$

Answer: C

D Watch Video Solution

34. The length of the latus rectum of the parabola whose focus is $\left(\frac{u^{2}}{2} g \sin 2 \alpha,-\frac{u^{2}}{2} g \cos 2 \alpha\right)$ and directrixis $\mathrm{y}=\mathrm{u}^{\wedge} 2 / 2 \mathrm{~g}^{\text {, }}$, is
A. $\frac{u^{2}}{g} \cos ^{2} \alpha$
B. $\frac{u^{2}}{g} \cos 2 \alpha$
C. $\frac{2 u^{2}}{g} \cos ^{2} 2 \alpha$
D. $\frac{2 u^{2}}{g} \cos ^{2} \alpha$

Answer: D

- Watch Video Solution

35. The co-ordinates of a point on $2 y^{2}=7 x$ whose parameter is
-2 are
A. $\left(\frac{7}{2},-\frac{7}{2}\right)$
B. $\left(\frac{1}{2}, \frac{1}{3}\right)$
C. $(1,-2)$
D. $(1,-3)$

- Watch Video Solution

36. $x-2=t^{2}, y=2 t$ are the parametric equations of the parabola-
A. $y^{2}=4 x$
B. $y^{2}=-4 x$
C. $x^{2}=-4 y$
D. $y^{2}=4(x-2)$

Answer: D

37. The parametic representation $\left(2+t^{2}, 2 t+1\right)$ represents
A. A parabola with focus $(1,2)$
B. A parabola with vertex $(2,1)$
C. A parabola wit vertex $(0,0)$
D. A parabola with vetex $(1,2)$

Answer: B

- Watch Video Solution

38. The equation of the ellipse whose centre is at origin and which passes through the points $(-3,1)$ and $(2,-2)$ is
A. $5 x^{2}+3 y^{2}=32$
B. $3 x^{2}+5 y^{2}=32$
C. $5 x^{2}-3 y^{2}=32$
D. $3 x^{2}+5 y^{2}+32=0$

Answer: B

D View Text Solution
39. The locus of a variable point whose distance from $(-2,0)$ is $\frac{2}{3}$ times its distance from the line $x=-\frac{9}{2}$ is
A. Ellipes
B. Parabola
C. Hyperbola
D. None of these
40. The equation of the ellipse whose centre is $(2,-3)$, one of the foci is $(3,-3)$ and the corrsponding vertex is $(4,-3)$ is
A. $\frac{(x-2)^{2}}{3}+\frac{(y+3)^{2}}{4}=1$
B. $\frac{(x-2)^{2}}{4}+\frac{(y+3)^{2}}{4}=1$
C. $\frac{x^{2}}{3}+\frac{y^{2}}{4}=1$
D. $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$

Answer: B

- View Text Solution

41. The equation of the ellipse whose vertices are $(\pm 5,0)$ and foci at $(\pm 4,0)$ is
A. $9 x^{2}+25 y^{2}=225$
B. $25 x^{2}+9 y^{2}=225$
C. $3 x^{2}+4 y^{2}=192$
D. $4 x^{2}+3 y^{2}=192$

Answer: A

- Watch Video Solution

42. Find the equation of the ellipse with foci at $(\pm 5,0)$ and $x=\frac{36}{5}$ as one of the directrices.
A. $\frac{x^{2}}{36}+\frac{y^{2}}{11}=1$
B. $\frac{x^{2}}{6}+\frac{y^{2}}{\sqrt{11}}=1$
C. $\frac{x^{2}}{6}+\frac{y^{2}}{11}=1$
D. $\frac{x^{2}}{11}+\frac{y^{2}}{6}=1$

- Watch Video Solution

43. The equation of the ellipse whose one of the vertices is $(0,7)$ and the corresponding dirctrix is $y=12$, is
A. $95 x^{2}+144 y^{2}=4655$
B. $144 x^{2}+95 y^{2}=4655$
C. $95 x^{2}+144 y^{2}=13680$
D. $144 x^{2}+95 y^{2}=13680$

Answer: B

44. An ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through the point $(-3,1)$ and its eccentricity is $\sqrt{\frac{2}{5}}$. The equation of the ellipse is
$3 x^{2}+5 y^{2}=32$
(b) $3 x^{2}+5 y^{2}=48 \quad 5 x^{2}+3 y^{2}=32$
$5 x^{2}+3 y^{2}=48$
A. $3 x^{2}+5 y^{2}=32$
B. $3 x^{2}+5 y^{2}=25$
C. $3 x^{2}+y^{2}=4$
D. $3 x^{2}+y^{2}=9$

Answer: A

- Watch Video Solution

45. The latus rectum of an ellipse is 10 and the minor axis is equal to the distnace betweent the foci. The equation of the

ellipse is

A. $x^{2}+2 y^{2}=100$
B. $x^{2}+\sqrt{2} y^{2}=10$
C. $x^{2}-2 y^{2}=100$
D. $\sqrt{2} x^{2}+y^{2}=10$

Answer: A

- Watch Video Solution

46. Find the equation of an ellipse the distance between the foci is 8 units and the distance between the directrices is 18 units.
A. $5 x^{2}-9 y^{2}=180$
B. $9 x^{2}+5 y^{2}=180$
C. $x^{2}+9 y^{2}=180$
D. $5 x^{2}+9 y^{2}=180$

Answer: D

- Watch Video Solution

47. The equatio $\frac{x^{2}}{2-r}+\frac{y^{2}}{r-5}+1=0$ represents an ellipse, if
A. $r>2$
B. $2<r<5$
C. $r>5$
D. None of these

Answer: B

D Watch Video Solution
48. The equation of the directrice of the ellipse $16 x^{2}+25 y^{2}=400$ are
A. $2 x= \pm 25$
B. $5 x= \pm 9$
C. $3 x= \pm 10$
D. $3 x= \pm 25$

Answer: D

- Watch Video Solution

49. If the distance betweent a focus and corresponding directrix of an ellipse be 8 and the eccentricity be $\frac{1}{2}$, then length of the minor axis is
A. 3
B. $4 \sqrt{2}$
C. 6
D. $\frac{16 \sqrt{3}}{3}$

Answer: D

- Watch Video Solution

50. The distnce between the foci of the ellipse $3 x^{2}+4 y^{2}=48$ is
A. 2
B. 4
C. 6
D. 8
51. Eccentricity of the ellipse whose latus rectum is equal to the distnce between two focus points, is
A. $\frac{\sqrt{5}+1}{2}$
B. $\frac{\sqrt{5}-1}{2}$
C. $\frac{\sqrt{5}}{2}$
D. $\frac{\sqrt{3}}{2}$

Answer: B

- Watch Video Solution

52. Filnd the distance between the directrices the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{20}=1$.
A. 8
B. 12
C. 18
D. 24

Answer: C

- Watch Video Solution

53. The equation of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and having centre at $(0,3)$ is _
A. 3
B. 5
C. 4
D. None of these

Answer: C

- Watch Video Solution

54. Prove that the curve represented by $x=3(\cos t+\sin t), y=4(\cos t-\sin t), t \in R$, is an ellipse
A. an elipse
B. a parabola
C. a hyperbola
D. a circle

Answer: A
55. The length of the axes of the conic $9 x^{2}+4 y^{2}-4 y+1=0$, are
A. $\frac{1}{2}, 9$
B. $3, \frac{2}{5}$
C. $1, \frac{2}{3}$
D. 3,2

Answer: C

- Watch Video Solution

56. The co-ordinates of the foci of the ellipse $3 x^{2}+4 y^{2}-12 x-8 y+4=0$, are
A. $(1,2),(3,4)$
B. $(1,4),(3,1)$
C. $(1,1),(3,1)$
D. $(2,3),(5,4)$

Answer: C

- Watch Video Solution

57. The eccentricity of the ellipse
$4 x^{2}=9 y^{2}=8 x+36 y+4=0$ is $\frac{5}{6}$ b. $\frac{3}{5}$ c. $\frac{\sqrt{2}}{3}$ d. $\frac{\sqrt{5}}{3}$
A. $\frac{5}{6}$
B. $\frac{3}{5}$
C. $\frac{\sqrt{2}}{3}$
D. $\frac{\sqrt{5}}{3}$

- Watch Video Solution

58. An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm , the length of the string and distance between the pins are
A. $6,2 \sqrt{5}$
B. $5, \sqrt{5}$
C. $4,2 \sqrt{5}$
D. $6+2 \sqrt{5}, 2 \sqrt{5}$

Answer: D

59. The length of the transverse axis of a hyperbola is 7 and it passes through the point $(5,-2)$. The equation of the hyperbola is
A. $\frac{5}{49} x^{2}-\frac{196}{51} y^{2}=1$
B. $\frac{49}{4} x^{2}-\frac{51}{196} y^{2}=1$
C. $\frac{4}{49} x^{2}-\frac{51}{196} y^{2}=1$
D. $\frac{51}{4} x^{2}-\frac{490}{196} y^{2}=1$

Answer: C

- Watch Video Solution

60. If the centre, vertex and focus of a hyperbola be (0,0), (4,0)
and $(6,0)$ respectively, then the equation of the hyperbola is
A. $4 x^{2}-5 y^{2}=8$
B. $4 x^{2}-5 y^{2}=80$
C. $5 x^{2}-4 y^{2}=80$
D. $5 x^{2}-4 y^{2}=8$

Answer: C

- Watch Video Solution

61. Equation of the hyperbola with eccentricity $\frac{3}{2}$ and foci at $(\pm 2,0)$ is
A. $\frac{x^{2}}{4}-\frac{y^{2}}{5}=\frac{4}{9}$
B. $\frac{x^{2}}{9}-\frac{y^{2}}{9}=\frac{4}{9}$
C. $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$
D. $\frac{x^{2}}{5}-\frac{y^{2}}{9}=1$

- Watch Video Solution

62. If the latus rectum of an hyperbola be 8 and eccentricity be $\frac{3}{\sqrt{5}}$ the the equation of the hyperbola is
A. $4 x^{2}-5 y^{2}=100$
B. $5 x^{2}-4 y^{2}=100$
C. $4 x^{2}+5 y^{2}=100$
D. $5 x^{2}+4 y^{2}=100$

Answer: A

63. Find the equation of the hyperbola whose conjugate axis is 5 and the distance between the foci is 13 .
A. $25 x^{2}-144144 y^{2}=900$
B. $144 x^{2}-25 y^{2}=900$
C. $144 x^{2}+25 y^{2}=900$
D. $25 x^{2}+144 y^{2}=900$

Answer: A

- Watch Video Solution

64. A hyperbola, centred at the prigin, has transverse axis 2 a . If it passes through a given point $\left(x_{1}, y_{1}\right)$, then its eccentricity is

$$
\text { A. } \sqrt{\frac{x_{1}^{2}-y_{1}^{2}-a^{2}}{x_{1}^{2}-y_{1}^{2}}}
$$

B. $\sqrt{\frac{a^{2}-x_{1}^{2}-y_{1}^{2}}{a^{2}-x_{1}^{2}}}$
C. $\sqrt{\frac{a^{2}+x_{1}^{2}+y_{1}^{2}}{a^{2}-x_{1}^{2}}}$
D. none of these

Answer: B

- Watch Video Solution

65. The equation of the hyperbola whose foci are (6.5), (-4,5) and eccentricity $5 / 4$ is
A. $\frac{(x-2)^{2}}{16}-\frac{(y-5)^{2}}{9}=1$
B. $\frac{(x-5)^{2}}{16}-\frac{(y-5)^{2}}{9}=1$
C. $\frac{(x-1)^{1}}{16}-\frac{(y-5)^{2}}{9}=-1$
D. $\frac{(x-1)^{2}}{9}-\frac{(y-5)^{2}}{16}=1$

- Watch Video Solution

66. The equation of the hyperbola whose directrix is $2 x+y=1$, focus $(1,1)$ and eccentricity $=\sqrt{3}$, is
A. $7 x^{2}+12 x y-2 y^{3}-2 x+4 y-7=0$
B. $11 x^{2}+12 x y+2 y^{2}-10 x-4 y=0$
C. $11 x^{2}+2 y^{2}-14 x-14 y+1=0$
D. $7 x^{2}+10 x y-2 y^{2}-2 x+4 y-7=0$

Answer: A
67. If e and e^{\prime} be the eccentricities of two conics $S=0$ and $S^{\prime}=0$ and if $e^{2}+e^{2}=3$, then both S and S^{\prime} can be
A. Parabola
B. Ellipse
C. Hyperbola
D. None of these

Answer: C

- Watch Video Solution

68. The vertices of the hyperbola
$9 x^{2}-16 y^{2}-36 x+96 y-252=0$ are
A. $(6,3)$ and $(-6,3)$
B. $(6,3)$ and $(-2,3)$
C. $(6,3)$ and $(-6,-3)$
D. $(3,6)$ and $(-3,2)$

Answer: B

- Watch Video Solution

69. The equation of the directrices of the conic $x^{2}+2 x-y^{2}+5=0$ are
A. $x= \pm 1$
B. $y= \pm 2$
C. $y= \pm \sqrt{2}$
D. $x= \pm \sqrt{3}$

Answer: C

- Watch Video Solution

70. The latus rectum of the hyperbola $9 x^{2}-16 y^{2}+72 x-32 y-16=0$ is
A. $\frac{9}{2}$
B. $-\frac{9}{2}$
C. $\frac{32}{3}$
D. $-\frac{32}{3}$

Answer: A
71. The locus of the point of intersection of the lines $a x \sec \theta+b y \tan \theta=a$ and $a x \tan \theta+b y \sec \theta=b$ is
A. A straight line
B. A circle
C. An ellipse
D. A hyperbola

Answer: D

- Watch Video Solution

72. The equation $x=\frac{1}{2}\left(t+\frac{1}{t}\right), y=\frac{1}{2}\left(t-\frac{1}{t}\right), t \neq 0$ represents
A. An ellipse
B. A parabola
C. A circle
D. A hyperbola

Answer: D

- Watch Video Solution

73. The locus of the point of intersection of the lines
$b x y-a y t=a b$ and $b x+a y=a b y$ is
A. A parabola with focus $(1,2)$
B. An ellipse
C. A hyperbola
D. None of these

D View Text Solution

74. If e and e' are the eccentricities of the ellipse $5 x^{2}+9 y^{2}=45$ and the hyperbola ${ }^{`} 5 x^{\wedge}(2)-4 y^{\wedge}(2)=45$ respectively, then ee' is equal to
A. 9
B. 5
C. -4
D. 1

Answer: D

75. The centres of the circles
$x^{2}+y^{2}=1, x^{2}+y^{2}+6 x-2 y=1$ and $x^{2}+y^{2}-12 x+4 y=1$
are
A. Same
B. Collinear
C. Non-collinear
D. None of these

Answer: B

D Watch Video Solution

COMPEIITIVE THINKING

1. If (α, β) is the centre of a circle passing through the origin, then its equation is
A. $x^{2}+y^{2}-\alpha x-\beta y=0$
B. $x^{2}+y^{2}+2 \alpha x+2 \beta y=0$
C. $x^{2}+y^{2}-2 \alpha x-2 \beta y=0$
D. $x^{2}+y^{2}+\alpha x+\beta y=0$

Answer: C

- Watch Video Solution

2. Find the equation of a circle with centre $(2,2)$ and passes through the point $(4,5)$.
A. $x^{2}+y^{2}-4 x+4 y-77=0$
B. $\left.x^{2}+y^{92}\right)-4 x-4 y-5=0$
C. $x^{2}+y^{2}+2 x+2 y-59=0$
D. $x^{2}+y^{2}-2 x-2 y-23=0$

Answer: B

- Watch Video Solution

3. The centre of a circe is $(2,-3)$ and the circumference is 10π.

Then, the equation of the circle is
A. $x^{2}+y^{2}+4 x+6 y+12=0$
B. $x^{2}+y^{2}-4 x+6 y+12=0$
C. $x^{2}+y^{2}-4 x+6 y-12=0$
D. $x^{2}+y^{2}-4 x-6 y-12=0$

Answer: C

- Watch Video Solution

4. The equation of the circle in the first quadrant which touches each axis at a distance 5 from the origin, is
A. $X^{2}+Y^{2}+5 X+5 Y+25=0$
B. $X^{2}+Y^{2}-10 x-10 y+25=0$
C. $x^{2}+y^{20}-5 x-5 y+25=0$
D. $x^{2}+y^{2}+10 x+10 y+25=0$

Answer: B

5. The equation of the circle of radius 5 and touching the coordinates axes in third quadrant, is
A. $(x-5)^{2}+(y+5)^{2}=25$
B. $(x+4)^{2}+(y+4)^{2}=25$
C. $(x+6)^{2}+(y+6)^{2}=25$
D. $(x+5)^{2}+(y+5)^{2}=25$

Answer: D

- Watch Video Solution

6. The equation of the circel which touches X-axis at $(3,0)$ and passes through $(1,4)$ is given by
A. $x^{2}+y^{2}-6 x-5 y+9=0$
B. $x^{2}+y^{2}+6 x+5 y-9=0$
C. $x^{2}+y^{2}-6 x+5 y-9=0$
D. $x^{2}+y^{2}+6 x-5 y+9=0$

Answer: A

- Watch Video Solution

7. Consider the circel with centre at the point $(1,2)$ and having the line $x=y$ as a tangent. The area of the circel is
A. $\frac{\pi}{4}$
B. π
C. 2π
D. $\frac{\pi}{2}$

- Watch Video Solution

8. A circel which passes through origin and cuts imtercepts on axes a and b, the equation of circle is
A. $x^{2}+y^{2}-a x-b y=0$
B. $x^{2}+y^{2}+a x+b y=0$
C. $x^{2}+y^{2}-a x+b y=0$
D. $x^{2}+y^{2}+a x-b y=0$

Answer: A

D Watch Video Solution
9. The line segment joining the points $(4,7)$ and $(-2,-1)$ is diameter of a circle. If the circel intersects the X-axis at A and B, then $A B$ is equal to
A. 4
B. 5
C. 6
D. 8

Answer: D

- Watch Video Solution

10. If the lines $2 x+3 y+1=0$ and $3 x-y-4=0$ lie along diameters of a circle of circumference 10π, then the equation of the circle is
A. $x^{2}+y^{2}+2 x-2 y-23=0$
B. $x^{2}+y^{2}-2 x-2 y-23=0$
C. $x^{2}+y^{2}+2 x-2 y+23=0$
D. $x^{2}+y^{2}-2 x+2 y-23=0$

Answer: D

- Watch Video Solution

11. The lines $2 x-3 y=5$ and $3 x-4 y=7$ are the diameters of a circle of area 154 sq. units. Then the equation of the circle is

$$
\begin{array}{ll}
x^{2}+y^{2}+2 x-2 y=62 & x^{2}+y^{2}+2 x-2 y=47 \\
x^{2}+y^{2}-2 x+2 y=47 x^{2}+y^{2}-2 x+2 y=62
\end{array}
$$

A. $x^{2}+y^{2}+2 x-2 y=62$
B. $x^{2}+y^{2}-2 x+2 y=47$
C. $x^{2}+y^{2}+2 x-2 y=47$
D. $x^{2}+y^{2}-2 x+2 y=62$

Answer: B

- Watch Video Solution

12. The equation of circle whose centre lies on $3 x-y-4=0$ and $x+3 y+2=0$ and has an area 154 square units, is
A. $x^{2}+y^{2}-2 x+2 y-47=0$
B. $x^{2}+y^{2}-2 x+2 y+47=0$
C. $x^{2}+y^{2}-2 x-2 y-47=0$
D. None of these

- Watch Video Solution

13. The equation of the circle whose diameter lies on
$2 x+3 y=3$ and $16 x-y=4$ which passes through $(4,6)$ is
A. $5\left(x^{2}+y^{2}\right)-3 x-8 y=200$
B. $x^{2}+y^{2}-4 x-8 y=200$
C. $5\left(x^{2}+y^{2}\right)-4 x=200$
D. $x^{2}+y^{2}=40$

Answer: A
14. The equation of the circle which passes through the points
$(2,3)$ and $(4,5)$ and the centre lies on the straight line $y-4 x+3=0$, is
A. $x^{2}+y^{2}+4 x-10 y+25=0$
B. $x^{2}+y^{2}-4 x-10 y+25=0$
C. $x^{2}+y^{2}-4 x-10 y+16=0$
D. $x^{2}+y^{2}-14 y+8=0$

Answer: B

- Watch Video Solution

15. Find the equation of the circle whose centre is at $(3,-1)$ and which cuts off a chord of length 6units on the line $2 x-5 y+18=0$.
A. $(x-3)^{2}+(y+1)^{2}=38$
B. $(x+3)^{2}+(y+1)^{2}=38$
C. $(x-3)^{2}+(y+1)^{2}=38$
D. None of these

Answer: A

- Watch Video Solution

16. $(0,0)$ is the centre of the circle passing through the vertices of an equilateral triangle. If the length of the median of the triangle is 9 units then equation of the circle is
A. $x^{2} y^{2}=18$
B. $x^{2}+y^{2}=81$
C. $x^{2}+y^{2}=36$
D. $x^{2}+y^{2}=9$

Answer: C

- Watch Video Solution

17. $A B C D$ is a square, the length of whose side is a. Taking $A B$ and $A D$ as the coordinate axes, the equation of the circel passing through the ceteices of the square is
A. $x^{2}+y^{2}+a x+a y=0$
B. $x^{2}+y^{2}-a x-a y=0$
C. $x^{2}+y^{2}+1 a x+2 a y=0$
D. $x^{2}+y^{2}-2 a x-2 a y=0$

Answer: B
18. The circle passing through the point $(-1,0)$ and touching the y axis at $(0,2)$ also passes through the point:
A. $\left(-\frac{3}{2}, 0\right)$
B. $\left(-\frac{5}{2}, 2\right)$
C. $\left(-\frac{3}{2}, \frac{5}{2}\right)$
D. $(-4,0)$

Answer: D

- Watch Video Solution

19. The length of the diameter of the circle which touches the x axis at the point $(1,0)$ and passes through the point $(2,3)$ is _
A. $\frac{10}{3}$
B. $\frac{3}{5}$
C. $\frac{6}{5}$
D. $\frac{5}{3}$

Answer: A

- Watch Video Solution

20. The equatio of a circel touching the coordinate axes and the line $3 x-4 y=12$ is
A. $x^{2}+y^{2}+6 x+6 y+9=0$
B. $x^{2}+y^{2}+6 x+6 y-9=0$
C. $x^{2}+y^{2}-6 x+6 y-9=0$
D. $x^{2}+y^{2}-6 x-6 y-9=0$

- Watch Video Solution

21. The equation $\left(x-x_{-} 1\right)\left(x-x_{-} 2\right)+\left(y-y_{-} 1\right)\left(y-y_{-} 2=0\right.$ © Represents a circle whose centre is
A. $\left(\frac{x_{1}-x_{2}}{2}, \frac{y_{1}-y_{2}}{2}\right)$
B. $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
C. $\left(x_{1}, y_{2}\right)$
D. $\left(x_{2}, y_{2}\right)$

Answer: B
22. The equation of a circle whose diameter is the line joining the points $(-4,3)$ and $(12,-1)$ is
A. $x^{2}+y^{2}+8 x+2 y+51=0$
B. $x^{2}+y^{2}+8 x-2 y-51=0$
C. $x^{2}+y^{2}+8 x+2 y-51=0$
D. $x^{2}+y^{2}-8 x-2 y-51=0$

Answer: D

- Watch Video Solution

23. The equation of the circle passing through the point
$(1,0)$ and $(0,1)$ and having the smallest radius is
A. $x^{2}+y^{2}-2 x-2 y+1=0$
B. $x^{2}+y^{2}-x-y=0$
C. $x^{2}+y^{2}+2 x+2 y-7=0$
D. $x^{2}+y^{2}+x+y-2=0$

Answer: B

- Watch Video Solution

24. The sides of a rectangle are given by $x= \pm a$ and $y= \pm b$. The equation of the circle passing through the vertices of the rectangle is
A. $x^{2}+y^{2}=a^{2}$
B. $x^{2}+y^{2}=a^{2}+b^{2}$
C. $x^{2}+y^{2}=a^{2}-b^{2}$
D. $(x-a)^{2}+(y-b)^{2}=a^{2}+b^{2}$

- Watch Video Solution

25. For the equation
$a x^{2}+b y^{2}+2 h x y+2 g x+2 f y+c=0 \quad$ where $\quad a \neq 0, \quad$ to represent a circle, the condition will be
A. $a=b=0$ and $c=0$
B. $f=g$ and $h=0$
C. $a=b \neq 0$ and $h=0$
D. $f=g$ and $c=0$

Answer: C

26. $a x^{2}+2 y^{2}+2 b x y+2 x-y+x=0$ represents a circle through the origin, if
A. $a=0, b=0, c=2$
B. $a=1, b=0, c=0$
C. $a=2, b=2, c=0$
D. $a=2, b=0, c=0$

Answer: D

- Watch Video Solution

27. The equation $x^{2}+y^{2}+4 x+6 y+13=0$ represents
A. circle
B. pair of coincident straight lines
C. pair of concurrent straight lines
D. point circle

Answer: D

- Watch Video Solution

28. Equation of circle with centre $(-a,-b)$ and radius $\sqrt{a^{2}-b^{2}}$ is
A. $x^{2}+y^{2}+2 a x+2 b y+2 b^{2}=0$
B. $x^{2}+y^{2}-2 a x-2 b y-2 v^{2}=0$
C. $x^{2}+y^{2}-2 a x-2 b y+2 b^{2}=0$
D. $x^{2}+y^{2}-2 a x+2 b y+2 a^{2}=0$

Answer: A

29. If the equation $\frac{K(x+1)^{2}}{3}+\frac{(y+2)^{2}}{4}=1$ represents a ciecle, then $\mathrm{K}=$
A. $\frac{3}{4}$
B. 1
C. $\frac{4}{3}$
D. 12

Answer: A

- Watch Video Solution

30. $x^{2}+y^{2}+(2 K-1) x y-2 x+4 y+3=0$ represents the equation of a circle, find k and radius of the circle ?
A. $-2, \sqrt{2}$
B. $\frac{1}{2}, \sqrt{2}$
C. $-2, \sqrt{3}$
D. $2, \sqrt{3}$

Answer: B

- Watch Video Solution

31. $x^{2}+h x y+y^{2}-6 x-2 y+k=0$ is the equation of the circle and 2 is the radius of the circle, then find the values of h and k ?
A. $h=0, k=-6$
B. $h=0, k=6$
C. $h=-3, k=6$
D. $h=3, k=6$

Answer: B

- Watch Video Solution

32. A circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ passing through $(4,-2)$ is concentric to the circle $x^{2}+y^{2}-2 x+4 y+20=0$, then the value of c will be
A. -4
B. 4
C. 0
D. 1

Answer: A
33. Find the centre and radius of the circles $2 x^{2}+2 y^{2}-x=0$
A. $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
B. $\left(-\frac{1}{2}, 0\right)$ and $\frac{1}{2}$
C. $\left(\frac{1}{2}, 0\right)$ and $\frac{1}{2}$
D. $\left(0,-\frac{1}{4}\right)$ and $\frac{1}{4}$

Answer: A

- Watch Video Solution

34. If one end of a diameter of the circle $x^{2}+y^{2}-4 x-6 y+11=0$ is $(3,4)$, then find the coordinates of the other end of the diameter.
A. $(0,0)$
B. $(1,1)$
C. $(1,2)$
D. $(2,1)$

Answer: C

- Watch Video Solution

35. The point diametrically opposite to the point $P(1,0)$ on the circle $x^{2}+y^{2}+2 x+4 y-3=0$ is
A. $(-3,4)$
B. $(-3,-4)$
C. $(3,4)$
D. $(3,-4)$

- Watch Video Solution

36. If the line $x+2 b y+7=0$ is a diameter of the circle $x^{2}+y^{2}-6 x+2 y=0$, then find the value of b
A. 3
B. -5
C. -1
D. 5

Answer: D

37. If one of the diameters of the curve ${ }^{2}+y^{2}-4 x-6 y+9=0$ is a chord of a circle with centre $(1,1)$ then the radius of this circel is
A. 3
B. 2
C. $\sqrt{2}$
D. 1

Answer: A

D Watch Video Solution

38. If one of the diameters of the circle, given by the equation $x^{2}+y^{2}+4 x+6 y-12=0$, is a chord of a circle S , whose centre is $(1,-3)$, the radius of S is
A. $\sqrt{41}$ units
B. $3 \sqrt{5}$ units
C. $5 \sqrt{2}$ units
D. $2 \sqrt{5}$ units

Answer: A

- Watch Video Solution

39. Find the equation of a circle of radius 5 which lies within the circle $x^{2}+y^{2}+14 x+10 y-26=0$ and which touches the given circle at the point $(-1,3)$.
A. $x^{2}+y^{2}+8 x+2 y-8=0$
B. $x^{2}+y^{2}+10 x+2 y+1=0$
C. $x^{2}+y^{2}+8 x+4 y-4=0$
D. $x^{2}+y^{2}+8 x+6 y=0$

Answer: A

- Watch Video Solution

40. The equation of the circle which passes through the points of intersection of the circles $x^{2}+y^{2}-6 x=0 \quad$ and $x^{2}+y^{2}-6 y=0$ and has its centre at $(3 / 2,3 / 2)$, is
A. $x^{2}+y^{2}+3 x+3 y+9=0$
B. $x^{2}+y^{2}+3 x+3 y=0$
C. $x^{2}+y^{2}-3 x-3 y=0$
D. $x^{2}+y^{2}-3 x-3 y+9=0$

Answer: C
41. The intercept on the line $y=x$ by the circel $x^{2}+y^{2}-2 x=0$ is AB , then the question of the circel on AB as a diameter is-
A. $x^{2}+y^{2}-x-y=0$
B. $x^{2}+y^{2}-2 x-y=0$
C. $x^{2}+y^{2}-x+y=0$
D. $x^{2}+y^{2}+x-y=0$

Answer: A

- Watch Video Solution

42. Let the line segment joining the centres of the circles $x^{2}-2 x+y^{2}=0$ and $x^{2}+y^{2}+4 x+8 y+16=0$ intersect the circles at P and Q respectively. Then the equation of the circle with $P Q$ as its diameter is
A. $5 x^{2}+5 y^{2}-2 x-16 y+8=0$
B. $5 x^{2}+5 y^{2}-8 x-24 y+27=0$
C. $5 x^{2}+5 y^{2}+8 x+24 y+27=0$
D. $5 x^{2}+5 y^{2}+2 x+16 y+8=0$

Answer: D

- Watch Video Solution

43. If the lengths of the tangents drawn from P to the circles
$x^{2}+y^{2}-2 x+4 y-20=0$ and $x^{2}+y^{2}-2 x-8 y+1=0$
are in the ratio $2: 1$, then the locus of p is
A. $x^{2}+y^{2}+2 x+12 y+8=0$
B. $x^{2}+y^{2}-2 x+12 y+8=0$
C. $x^{2}+y^{2}+2 x-12 y+8=0$
D. $x^{2}+y^{2}-2 x-12 y+8=0$

Answer: D

- Watch Video Solution

44. IF the tangent at $(1,7)$ to the curve $x^{2}=y-6$ touches the circle $x^{2}+y^{2}+16 x+12 y+c=0$, then the value of c is
A. 185
B. 85
C. 95

Answer: C

- Watch Video Solution

45. Find the centre of the circle that passes through the point
$(1,0)$ and cutting the circles
$x^{2}+y^{2}-2 x+4 y+1=0$ and $x^{2}+y^{2}+6 x-2 y+1=0$ orthogonally is
A. $\left(-\frac{2}{3}, \frac{2}{3}\right)$
B. $\left(\frac{1}{2}, \frac{1}{2}\right)$
C. $(0,1)$
D. $(0,0)$

Answer: D

Watch Video Solution

46. The number of common tangents to the circles $x^{2}+y^{2}-4 x-6 y-12=0$ and $x^{2}+y^{2}+6 x+18 y+26=0$, is
A. 1
B. 2
C. 3
D. 4

Answer: C

47. The equation of the parabola with the focus $(3,0)$ and directrix $x+3=0$ is
A. $y^{2}=3 x$
B. $y^{2}=2 x$
C. $y^{2}=12 x$
D. $y^{2}=6 x$

Answer: C

- Watch Video Solution

48. The equation of the parabola with focus $(1,-1)$ and directrix $x+y+3=0$ is
A. $x^{2}+y^{2}-10 x-2 y-2 x y-5=0$
B. $x^{2}+y^{2}+10 x-2 y-2 x y-5=0$
C. $x^{2}+y^{2}+10 x+2 y-2 x y-5=0$
D. $x^{2}+y^{2}+10 x+2 y+2 x y-5=0$

Answer: A

- Watch Video Solution

49. A point on the parabola whose focus is $S(1,-1)$ ans whose vertex is $A(1,1)$ is
A. $\left(3, \frac{1}{2}\right)$
B. $(1,2)$
C. $\left(2, \frac{1}{2}\right)$
D. $(2,2)$

- Watch Video Solution

50. The focus of the parabola $x^{2}=-16 y$ is
A. $(4,0)$
B. $(0,4)$
C. $(-4,0)$
D. $(0,-4)$

Answer: D

- Watch Video Solution

51. Focus and directrix of the parabola $x^{2}=-8 a y$ are
A. $(0,-1 a)$ and $y=2 a$
B. $(0,2 a)$ and $y=-2 a$
C. $(2 a, 0)$ and $x=-2 a$
D. $(-2 a, 0)$ and $x=2 a$

Answer: A

- Watch Video Solution

52. The focus of the parabola $y^{2}-4 y-x+3=0$ is
A. $\left(\frac{3}{4}, 2\right)$
B. $\left(\frac{3}{4},-2\right)$
C. $\left(2, \frac{-3}{4}\right)$
D. $\left(\frac{-3}{4}, 2\right)$

- Watch Video Solution

53. The focus of the parabola $(y+1)^{2}=-8(x+2)$ is
A. $(-4,-1)$
B. $(-1,-4)$
C. $(1,4)$
D. $(4,1)$

Answer: A

- Watch Video Solution

54. Consider the equation of a parabola $y^{2}+4 a x=0$, where $a>0$. Which of the following is false ?
A. Vertex of the parabola is at the prigin.
B. Focus of the parabola is at $(a, 0)$
C. Directrix of the parabola is $x=a$
D. Tangent at the vertex is $x=0$.

Answer: B

- Watch Video Solution

55. The focal chord of the parabola perpendicular to its axis is called as
A. tangent.
B. secant
C. latus reactum.
D. normal.

Answer: C

- Watch Video Solution

56. If $(2,-8)$ is at an end of a focal chord of the parabola $y^{2}=32 x$, then find the other end of the chord.
A. $(2,-8)$
B. $(2,8)$
C. $(32,32)$
D. $(32,-32)$

- Watch Video Solution

57. If $\left(x_{a}, y_{1}\right)$ and $\left(x_{2},\left(y_{2}\right)\right.$ are the end points of a focal chord of the parabola $y^{2}=5 x$, then $4 x_{1} x_{2}+y_{1} y_{2}=$
A. 25
B. 5
C. 0
D. $\frac{5}{4}$

Answer: C

58. Find the area of the triangle formed by the lines joining the vertex of the parabola $x^{2}=12 y$ to the ends of its latus rectum
A. 20 sq. units
B. 18 sq. units
C. 17 sq. units
D. 19 sq. units

Answer: B

- Watch Video Solution

59. The focal distance of a point P on the parabola $y^{2}=12 x$ if the ordinate of P is 6 , is
A. 13
B. 6
C. 10
D. 12

Answer: B

- Watch Video Solution

60. Find the point on the parabola $y^{2}=18 x$ at which ordinate is

3 times its abscissa.
A. $(6,2)$
B. $(-2,-6)$
C. $(3,18)$
D. $(2,6)$

- Watch Video Solution

61. The equation of parabola whose vertex and focus are
$(0,4)$ and $(0,2)$ respectively, is
A. $y^{2}+8 x=32$
B. $y^{2}-8 x=32$
C. $x^{2}+8 y=32$
D. $x^{2}-8 y=32$

Answer: C

62. The equation of the parabola with its vertex at $(1,1)$ and focus at $(3,1)$ is
A. $(x-1)^{2}=8(y-1)$
B. $(y-1)^{2}=8(x-3)$
C. $(y-1)^{2}=8(x-1)$
D. $(x-3)^{2}=8(y-1)$

Answer: C

- Watch Video Solution

63. The equation of the parabola with $(-3,0)$ and focus and $x+5=0$ as directrix, is
A. $x^{2}=4(y+4)$
B. $x^{2}=4(y-4)$
C. $y^{2}=4(x+4)$
D. $y^{2}=4(x-4)$

Answer: C

- Watch Video Solution

64. Find the equation of the parabola whose focus is $(5,3)$ and directrix is the line $3 x-4 y+1=0$.
A. $(4 x+3 y)^{2}-256 x-142 y+849=0$
B. $(4 x-3 y)^{2}-256 x-142 y+849=0$
C. $(3 x+4 y)^{2}-142 x-256 y+849=0$
D. $(3 x-4 y)^{2}-256-142 y+849=0$

- Watch Video Solution

65. The equation of parabola whose vertex and focus lie on the axis of x at distances a and a_{1} from the origin respectively, is
A. $y^{2}=4\left(a^{\prime}-a\right)(x-a)$
B. $y^{2}=4\left(a^{\prime}-a_{x+a}\right.$
C. $y^{2}=4\left(a^{\prime}+a\right)(x-a)$
D. $y^{2}=\left(a^{\prime}+a\right)(x+a)$

Answer: A
66. If P is point on the parabola $y^{2}=8 x$ and A is the point
$(1,0)$, then the locus of the mid point of the line segment AP is
A. $y^{2}=4\left(x-\frac{1}{2}\right)$
B. $y^{2}-2(2 x+1)$
C. $y^{2}=x-\frac{1}{2}$
D. $y^{2}=2 x+1$

Answer: A

- Watch Video Solution

67. Eccentricity of the parabola $x^{2}-4 x-4 y+4=0$ is
A. $e=0$
B. $e=1$
C. $e>4$
D. $e=4$

Answer: B

- Watch Video Solution

68. A parabola has the origin as its focus and the line $x=2$ as the directrix. Then the vertex of the parabola is at $(1)(0,2)(2)(1$, 0) $(3)(0,1)(4)(2,0)$
A. $(1,0)$
B. $(0,1)$
C. $(2,0)$
D. $(0,2)$

- Watch Video Solution

69. The vertex of the parabola $y^{2}-4 y-x+3=0$ is
A. $(-1,3)$
B. $(-1,2)$
C. $(2,-1)$
D. $(3,-1)$

Answer: B

- Watch Video Solution

70. Vertex of the parabola $x^{2}+4 x+2 y-7=0$ is
A. $\left(-2, \frac{11}{2}\right)$
B. $(-1,2)$
C. $(-2,11)$
D. $(2,11)$

Answer: A

- Watch Video Solution

71. The focous of the parabola $y=2 x^{2}+x$ is
A. $(0,0)$
B. $\left(\frac{1}{2}, \frac{1}{4}\right)$
C. $\left(-\frac{1}{4}, 0\right)$
D. $\left(-\frac{1}{4}, \frac{1}{8}\right)$

D View Text Solution

72. The focus of the conic $x^{2}-6 x+4 y+1=0$ is
A. $(2,3)$
B. $(3,2)$
C. $(3,1)$
D. $(1,4)$

Answer: C

73. A line cuts the X -axis at $\mathrm{A}(5,0)$ and the Y -axis at $B(0,-3)$.

A variable line $P Q$ is drawn pependicular to $A B$ cutting the X-axis at P and the Y-axis at A. If $A Q$ and $B P$ meet at R, then the locus of R is
A. $x^{2}+y^{2}-5 x+3 y=0$
B. $x^{2}+y^{2}+5 x+3 y=0$
C. $x^{2}+y^{2}+5 x-3 y=0$
D. $x^{2}+y^{2}-5 x-3 y=0$

Answer: A

- Watch Video Solution

74. The distance between the vertex and the focus of the parabola $x^{2}-2 x+3 y-2=0$ is
A. $\frac{4}{5}$
B. $\frac{3}{4}$
C. $\frac{1}{2}$
D. $\frac{5}{6}$

Answer: B

D View Text Solution

75. Equation of the directrix of the parabola $y^{2}+4 x+2=0$ is
A. $y=3$
B. $3 y=2$
C. $2 y=3$
D. $3 y+2=0$

Answer: C

- Watch Video Solution

76. The equation of the directrix of the parabola $x^{2}+8 y-2 x=7$ is
A. $y=3$
B. $y=-3$
C. $y=2$
D. $y=0$

Answer: A
77. For the parabola $y^{2}+6 y-2 x=-5$
I) the vertex is $(-2,-3)$
II) the directrix is $y+3=0$

Which of the following is correct ?
A. Both I and II are correct
B. I is true, II is false
C. Both I and II are false
D. I is false, II is false

Answer: B

- Watch Video Solution

78. The two parabolas $x^{2}=4 y$ and $y^{2}=4 x$ meet in two distinct points. One of these is origin and the other point is
A. $(2,2)$
B. $(4,-4)$
C. $(4,4)$
D. $(-2,2)$

Answer: C

- Watch Video Solution

79. Let O be the vertex and Q be any point on the parabola, $x^{2}=8 y$. It the point P divides the line segment OQ internally in the ratio $1: 3$, then the locus of P is : (1) $x^{2}=y(2) y^{2}=x$ (3)

$$
y^{2}=2 x(4) x^{2}=2 y
$$

A. $x^{2}=y$
B. $y^{2}=x$
C. $y^{2}=2 x$
D. $x^{3}=2 y$

Answer: D

- Watch Video Solution

80. The cartesian co - ordinates of the point on the parabola $y^{2}=-16 x$, whose parameter is $\frac{1}{2}$, are
A. $(-2,4)$
B. $(4,1)$
C. $(-1,-4)$
D. $(-1,4)$

Answer: C

81. Tangent and normal are drawn at $P(16,16)$ on the parabola $y^{2}=16 x$ which intersect the axis of the parabola at A and B respectively. If C is the centre of the circle through the points P, A and B and $\angle C P B=\theta$ then the value of $\tan \theta$ is
A. 2
B. 3
C. $\frac{4}{3}$
D. $\frac{1}{2}$

Answer: A

- Watch Video Solution

82. The straight lines $y= \pm x$ intersect the parabola $y^{2}=8 x$ in points P and Q, then length of $P Q$ is
A. 4
B. $4 \sqrt{2}$
C. 8
D. 16

Answer: D

- Watch Video Solution

83. If $a \neq 0$ and the line $2 b x+3 c y+4 d=0$ passes through the points of intersection of the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$, then

$$
d^{2}+(2 b+3 c)^{2}=0
$$

$$
d^{2}+(3 b+2 c)^{2}=0
$$

$d^{2}+(2 b-3 c)^{2}=0$ none of these
A. $d^{2}+(3 b-2 c)^{2}=0$
B. $d^{2}+(3 b+2 c)^{2}=0$
C. $d^{2}+(2 b-3 c)^{2}=0$
D. $d^{2}+(2 b+3 c)^{2}=0$

Answer: D

- Watch Video Solution

84. The eccentricity of the ellipes $\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$ is
A. $\frac{2 \sqrt{5}}{6}$
B. $\frac{2 \sqrt{5}}{4}$
C. $\frac{2 \sqrt{13}}{6}$
D. $\frac{2 \sqrt{13}}{4}$

- Watch Video Solution

85.

A. $\frac{\sqrt{3}}{2}$
B. $\frac{\sqrt{3}}{4}$
C. $\frac{\sqrt{3}}{\sqrt{2}}$
D. $\frac{\sqrt{3}}{8}$

Answer: A
86. The eccentricity of the conic $x^{2}+y^{2}-2 x+3 y+2=0$ is
A. 0
B. $\frac{1}{\sqrt{2}}$
C. $\frac{1}{2}$
D. $\sqrt{2}$

Answer: B

- Watch Video Solution

87. The lengths of major and minor axis of an ellipse are 10 and 8 respectively and its major axis is along the Y-axis. The equation of the ellipse referred to its centre as origin is
A. $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
B. $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$
C. $\frac{x^{2}}{100}+\frac{y^{2}}{64}=1$
D. $\frac{x^{2}}{64}+\frac{y^{2}}{100}=1$

Answer: B

- Watch Video Solution

88. If the centre, one of the foci and semi-major axis of an ellipse are $(0,0),(0,3)$ and 5 , then its equation is
A. $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$
B. $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
C. $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$
D. $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$

- Watch Video Solution

89. The equation of the ellipse with foci $(\pm 2,0)$ and eccentricity $=\frac{1}{2}$ is
A. $3 x^{2}+4 y^{2}=48$
B. $4 x^{2}+3 y^{2}=48$
C. $3 x^{2}+4 y^{2}=0$
D. $4 x^{2}+3 y^{2}=0$

Answer: A

- Watch Video Solution

90. If the foci of an ellipse are $(\pm \sqrt{5}, 0)$ and its exccentricity is $\frac{\sqrt{5}}{3}$, then the equation of the ellipse is
A. $9 x^{2}+4 y^{2}=36$
B. $4 x^{2}+9 y^{2}=36$
C. $36 x^{2}+9 y^{2}=4$
D. $4 x^{2}+36 y^{2}=4$

Answer: B

- Watch Video Solution

91. Equation of the ellipse whose axes are the axes of coordinates and which passes through the point $(-3,1)$ and has eccentricity $\quad \sqrt{\frac{2}{5}} \quad$ is: (1) $\quad 3 x^{2}+5 y^{2}-32=0$
$5 x^{2}+3 y^{2}-48=0$
(3) $3 x^{2}+5 y^{2}-15=0$
$5 x^{2}+3 y^{2}-32=0$
A. $5 x^{2}+3 y^{2}=-48=0$
B. $3 x^{2}+5 y^{2}-15=0$
C. $5 x^{2}+3 y^{2}-32=0$
D. $3 x^{2}+5 y^{2}-32=$

Answer: D

- Watch Video Solution

92. Find the equation of an ellipse hose axes lie along the coordinate axes, which passes through the point $(-3,1)$ and has eccentricity equal to $\sqrt{2 / 5}$.

$$
\text { A. } 3 x^{2}+5 y^{2}-15=0
$$

B. $5 x^{2}+3 y^{2}-32=0$
C. $3 x^{2}+5 y^{2}-32=0$
D. $5 x^{2}+3 y^{2}-48=0$

Answer: D

- Watch Video Solution

93. The eccentricity of an ellipse with its centre at the origin is $\frac{1}{2}$. If one of the directrices is $x=4$, then the equation of ellipse is
A. $4 x^{2}+3 y^{2}=1$
B. $3 x^{2}+4 y^{2}=12$
C. $4 x^{2}+3 y^{2}=12$
D. $3 x^{2}+4 y^{2}=1$

- Watch Video Solution

94. If the equation of ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ then $S P+S^{\prime} P=$
A. a
B. 2 a
C. 2 b
D. b

Answer: B

95. Find the differential equation of an ellipse with major and

 minor axes 2 a and 2 b respectively.A. 2 a
B. $\frac{2 a}{b}$
C. $\frac{2 b}{a}$
D. $\frac{b^{2}}{a}$

Answer: A

- Watch Video Solution

96. If $\quad P=(x, y), F_{1}=(3,0), F_{2}=(-3,0), \quad$ and
$16 x^{2}+25 y^{2}=400$, then $P F_{1}+P F_{2}$ equal 8 (b) 6 (c) 10 (d) 12
A. 8
B. 6
C. 10
D. 12

Answer: C

- Watch Video Solution

97. The foci of $16 x^{2}+25 y^{2}=400$ are
A. $(\pm 3,0)$
B. $(0, \pm 3)$
C. $(3,-3)$
D. $(-3,3)$
98. If the angle betweent he lines joining the end points of minor axis of an ellipse with its foci is $\frac{\pi}{2}$, then the eccentricity of the ellipse is
A. $\frac{1}{2}$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{1}{2 \sqrt{2}}$

Answer: B

D View Text Solution

99. B is extermity of the minor axis of an elipse whose foci are S and S^{\prime}. If $\angle S B S^{\prime}$ is a right angle, then the eccfentricity of the ellipse is
A. $\frac{1}{2}$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{2}{3}$
D. $\frac{1}{3}$

Answer: B

- Watch Video Solution

100. Let S and s^{\prime} be the foci of an ellipse and B be one end of its minor axis. If SBS' is a isosceles right angled triangle then the eccentricity of the ellipse is
A. $\frac{1}{\sqrt{2}}$
B. $\frac{1}{2}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{1}{3}$

Answer: A

- Watch Video Solution

101. The distanve between the foci of an ellipse is 16 and eccentricity is $\frac{1}{2}$. Length of the major axis of the cellipse is
A. 8
B. 64
C. 16
D. 32

- Watch Video Solution

102. If the eccentricities of the two ellipse $\frac{x^{2}}{169}+\frac{y^{2}}{25}=1$ and $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and equal , then the value $\frac{a}{b}$, is
A. $\frac{5}{13}$
B. $\frac{6}{13}$
C. $\frac{13}{5}$
D. $\frac{15}{6}$

Answer: C

103. The length of the latus rectum of the ellipse $5 x^{2}+9 y^{2}=45$
is
A. $\frac{\sqrt{5}}{4}$
B. $\frac{\sqrt{5}}{2}$
C. $\frac{5}{3}$
D. $\frac{10}{3}$

Answer: D

- Watch Video Solution

104. The length of the latus rectum of the ellipse $9 x^{2}+4 y^{2}=1$, is
A. $\frac{3}{2}$
B. $\frac{8}{3}$
C. $\frac{4}{9}$
D. $\frac{8}{9}$

Answer: C

D View Text Solution

105. The length of the latus rectum of an ellipse is $\frac{1}{3}$ of the major axis. Its eccentricity is
A. $\frac{2}{3}$
B. $\sqrt{\frac{2}{3}}$
C. $\frac{5 \times 4 \times 3}{7^{3}}$
D. $\left(\frac{3}{4}\right)^{4}$

- Watch Video Solution

106. If the latusrectum of an ellipse is equal to one half of its minor axis , then eccentricity is equal to
A. $\frac{3}{2}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{2}{3}$
D. $\frac{\sqrt{2}}{3}$

Answer: B

107. The distance between the focii of the ellipse $x=3 \cos \theta, y=4 \sin \theta$ is
A. $2 \sqrt{7}$
B. $7 \sqrt{2}$
C. $\sqrt{7}$
D. $3 \sqrt{7}$

Answer: A

- Watch Video Solution

108. The equation of an ellipse whose focus is $(-1,1)$, directrix is $x-y+3=0$ and eccentricity is $\frac{1}{2}$, is given by

$$
\text { A. } 7 x^{2}+2 x y+7 y^{2}+10 x-10 y+7=0
$$

B. $7 x^{2}-2 x y+7 y^{2}-10 x+19 y+7=0$
C. $7 x^{2}-2 x y+7 y^{2}-10 x-10 y-7=0$
D. $7 x^{2}-2 x y+7 y^{2}+10 x 10 y-7=0$

Answer: A

D View Text Solution

109. The centre of the ellipse
$\frac{(x+y-3)^{2}}{9}+\frac{(x-y+1)^{2}}{16}=1$ is
A. $(-1,2)$
B. $(1,-2)$
C. $(-1,-2)$
D. $(1,2)$

D View Text Solution

110. Thet eccentricity of the ellipse
$\frac{(x-1)^{2}}{9}+\frac{(y+1)^{2}}{25}=1$ is
A. $\frac{4}{5}$
B. $\frac{3}{5}$
C. $\frac{5}{4}$
D. $\frac{5}{3}$

Answer: A

D View Text Solution
111. The ecfentricity of the ellipse
$\frac{(x-1)^{2}}{2}+\left(y+\frac{3}{4}\right)^{2} \frac{1}{16}$ is
A. $\frac{1}{\sqrt{2}}$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: A

D View Text Solution
112. The centre of ellipse
$4 x^{2}+y^{2}-8 x+4 y-8=0$ is
A. $(0,2)$
B. $(2,-1)$
C. $(2,1)$
D. $(2,-2)$

Answer: D

D View Text Solution
113. For the ellipse $25 x^{2}+9 y^{2}-150 x-90 y+225=0$, the eccentricity e =
A. $\frac{2}{5}$
B. $\frac{3}{5}$
C. $\frac{4}{5}$
D. $\frac{1}{5}$

Answer: C

- Watch Video Solution

114. The eccentricity of the curve represented by the equation $x^{2}+2 y^{2}-2 x+3 y+2=0$ is
A. 0
B. $\frac{1}{2}$
C. $\frac{1}{\sqrt{2}}$
D. $\sqrt{2}$

Answer: C

115. The foci of the ellipse

$25 x^{2}+4 y^{2}+100 x-4 y+100=0$ are
A. $\left(\frac{5 \pi \sqrt{21}}{10},-2\right)$
B. $\left(-2, \frac{5 \pm \sqrt{21}}{10}\right)$
C. $\left(\frac{2 \pm \sqrt{21}}{10},-2\right)$
D. $\left(-2, \frac{2 \pm \sqrt{21}}{10}\right)$

Answer: B

- Watch Video Solution

116. The equation $5 x^{2}+y^{2}+y=8$ represents
A. an ellipse
B. a parabola
C. a hyperbola
D. a circle

Answer: A

- Watch Video Solution

117. A man running around a race course notes that the sum of the distances of two flagposts from him a always 10 m and the distance between the flag posts is 8 m . Then the area of the path he encloses in square meters is 15π (b) 20π (c) 27π (d) 30π
A. 15π
B. 12π
C. 18π
D. 8π

- Watch Video Solution

118. Let P be a variable point on the elipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with foci F_{1} and F_{2}. If A is the area of the triangle $P F_{1} F_{2}$, then maximum value of A is
A. $a b$
B. abe
C. $\frac{e}{a b}$
D. $\frac{a b}{e}$

Answer: B
119. The equation of the hyperbola with vertices $(0, \pm 15)$ and foci $(0, \pm 20)$ is
A. $\frac{x^{2}}{175}-\frac{y^{2}}{2250=1}$
B. $\frac{x^{2}}{625}-\frac{y^{3}}{125}=1$
C. $\frac{y^{2}}{225}-\frac{x^{2}}{125}=1$
D. $\frac{y^{2}}{225}-\frac{x^{2}}{175}=1$

Answer: D

- Watch Video Solution

120. The equation of the hyperbola whose foci are $(-2,0)$ and $(2,0)$ and eccentricity is 2 is given by
A. $x^{2}-3 y^{2}=3$
B. $3 x^{2}-y^{2}=3$
C. $-x^{2}+3 y^{2}=3$
D. $-3 x^{2}+y^{2}=3$

Answer: B

- Watch Video Solution

121. If the distance between the foci of a hyperbola is 16 and its eccentricity is $\sqrt{2}$, then obtain its equation.
A. $x^{2}-y^{2}=32$
B. $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$
C. $2 x^{2}-3 y^{2}=7$
D. $y^{2}-x^{2}=32$

- Watch Video Solution

122. The equation of hyperbola whose coordinates of the foci are ($\pm 8,0$) and the length of latus rectum is 24 units is _
A. $3 x^{2}-y^{2}=48$
B. $4 x^{2}-y^{2}=48$
C. $x^{2}-3 y^{2}=48$
D. $x^{2}-4 y^{2}=48$

Answer: A
123. The foci of the hyperbola

$$
16 x^{2}-9 y^{2}-64 x+18 y-90=0 \text { are }
$$

A. $\left(\frac{24 \pm 5 \sqrt{145}}{12}, 1\right)$
B. $\left(\frac{21 \pm 5 \sqrt{145}}{12}, 1\right)$
C. $\left(1, \frac{24 \pm 5 \sqrt{145}}{2}, 1\right)$
D. $\left(1, \frac{21 \pm 5 \sqrt{145}}{2}\right)$

Answer: A

- View Text Solution

124. If $\frac{x^{2}}{36}-\frac{y^{2}}{k^{2}}=1$ is a hyperbola then which of the following statement is true.
A. $(-2,1)$ lies on the hyperbola
B. $(3,1)$ lies on the hyperbola
C. $(10,4)$ lies on the hyperbola
D. $(5,2)$ lies o the hyperbola

Answer: C

- Watch Video Solution

125. The equation $\frac{x^{2}}{12-k}+\frac{y^{2}}{8-k}=1$ represents a hyperbola if
A. a hyperbola is $k<8$
B. an ellipse if $k>8$
C. a hyperbola if $8<k<12$
D. None of these

Answer: C

- Watch Video Solution

126. Which of the followig is the equation of a hyperbola ?
A. $x^{2}-4 x+16 y+17=0$
B. $4 x^{2}+4 y^{2}-16 x+4 y-60=0$
C. $4 x^{2}+4 y^{2}+4 x+2 y-27=0$
D. $x^{2}-y^{2}+3 x-2 y-43=0$

Answer: D

127. The length of transverse axis of the hyperbola $3 x^{2}-4 y^{2}=32$ is
A. $\frac{8 \sqrt{2}}{\sqrt{3}}$
B. $\frac{16 \sqrt{2}}{\sqrt{3}}$
C. $\frac{3}{32}$
D. $\frac{64}{3}$

Answer: A

- View Text Solution

128. The directrix of the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ is
A. $x=9 \sqrt{13}$
B. $y=\frac{9}{\sqrt{13}}$
C. $x=6 \sqrt{13}$
D. $y=\frac{6}{\sqrt{13}}$

Answer: A

- Watch Video Solution

129. The eccentricity of the conic $x^{2}-4 y^{2}=1$ is
A. $\frac{2}{\sqrt{3}}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{2}{\sqrt{3}}$
D. $\frac{\sqrt{5}}{2}$

Answer: D

130. The eccentricity of the hyperbola $\frac{\sqrt{1999}}{3}\left(x^{2}-y^{2}\right)=1$, is
A. $\sqrt{3}$
B. $\sqrt{2}$
C. 2
D. $2 \sqrt{2}$

Answer: B

- Watch Video Solution

131. Eccentricity of the hyperbola passing through $(3,0)$ and $(3 \sqrt{2}, 2)$ is
A. $\sqrt{13}$
B. $\frac{\sqrt{13}}{3}$
C. $\frac{\sqrt{13}}{4}$
D. $\frac{\sqrt{13}}{2}$

Answer: B

(Watch Video Solution

132. The eccentricity of the hyperbola whose length of the latus rectum is equal to 8 and the length of its conjugate axis is equal to half of the distance between its foci, is : (1) $\frac{4}{3}$ (2) $\frac{4}{\sqrt{3}}$ (3) $\frac{2}{\sqrt{3}}$ (4) $\sqrt{3}$
A. $\frac{3}{4}$
B. $\frac{4}{\sqrt{3}}$
C. $\frac{2}{\sqrt{3}}$
D. $\sqrt{3}$

Answer: C

- Watch Video Solution

133. If the eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{9}=1$ and $\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$ are e_{1} and e_{2} respectively then prove that :
$\frac{1}{e_{1}^{2}}+\frac{1}{e_{2}^{2}}$
A. 1
B. 2
C. 3
D. 4

- Watch Video Solution

134. The difference of the focal distance of any point on the hyperbola $9 x^{2}-16 y^{2}=144$, is
A. 8
B. 7
C. 6
D. 4

Answer: A
135. The distance between two directrices of a rectangular hyperbola is 10 units. Find the distance between its foci.
A. $10 \sqrt{2}$
B. 5
C. $5 \sqrt{2}$
D. 20

Answer: D

- Watch Video Solution

136. IF t is a parameter, then $x=a\left(t+\frac{1}{t}\right)$ and $y=b\left(t-\frac{1}{t}\right)$ represents
A. an ellipse
B. a circle
C. a pair of straight lines
D. A hyperbola

Answer: D

- Watch Video Solution

137. $x^{2},-4 y^{2}-2 x+16 y-40=0$ reprsents
A. a pair of straight lines
B. an ellipse
C. a hyperbola
D. a parabola
138. The locust of the point of intersection of lines $\sqrt{3} x-y-4 \sqrt{3 k}=0$ and $\sqrt{2} k x+k y-4 \sqrt{3}=0$ for different value of k is a hyperbola whose eccentricity is 2 .
A. circle
B. parabola
C. hyperbola
D. ellipse

Answer: C

139. The line segment joining the foci of the hyperbola $x^{2}-y^{2}+1=0$ is one of thediameters of a circle. The equation of the circle is
A. $x^{2}+y^{2}=4$
B. $x^{2}+y^{2}=\sqrt{2}$
C. $x^{2}+y^{2}=2$
D. $x^{2}+y^{2}=2 \sqrt{2}$

Answer: C

- Watch Video Solution

140. If the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{125}$ coincide, the find the value of b^{2}.
A. 1
B. 5
C. 7
D. 9

Answer: C

- Watch Video Solution

141. Let the eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{3}}{b^{2}}=1$ be reciprocal to that of the ellipse $x^{2}+9 y^{2}=9$, then the ratio $a^{2}: b^{2}$ equals
A. 8: 1
B. 1: 8
C. 9:1
D. $1: 9$

Answer: A

- Watch Video Solution

142. Let the eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ be the reciprocal to that of the ellipse $x^{2}+4 y^{2}=4$. If the hyperbola passes through a focus of the ellipse, then the equation of the hyperbola, is
A. $(2,0)$
B. $(0,2)$
C. $(3,0)$
D. $(0,3)$

- Watch Video Solution

143. The length of the straight line $x-3 y=1$, intercept by the hyperbola $x^{2}-4 y^{2}=1$ is
A. $\sqrt{10}$ units
B. $\frac{6}{5}$ units
C. $\frac{1}{\sqrt{10}}$ units
D. $\frac{6}{5} \sqrt{10}$ units

Answer: D

- Watch Video Solution

144. The locue of the mis-points of the chords of the circel $x^{2}+y^{2}+2 x-2 y-2=0$ which make an angle of 90° at the
centre is
A. $x^{2}+y^{2}-2 x-2 y=0$
B. $x^{2}+y^{2}-2 x+2 y=0$
C. $x^{2}+y^{2}+2 x-2 y=0$
D. $x^{2}+y^{2}+2 x-2 y-1=0$

Answer: C

- Watch Video Solution

145. If $x+y+k=0$ touches the circle
$x^{2}+y^{2}-2 x-4 y+3=0$, then k can be
A. $-1,5$
B. $1,-5$
C. 1,5
D. $-1,-5$

Answer: D

- Watch Video Solution

146. If the lines $3 x-4 y+4=0 a d n 6 x-8 y-7=0$ are tangents to a circle, then find the radius of the circle.
A. $\frac{3}{2}$
B. $\frac{3}{4}$
C. $\frac{1}{10}$
D. $\frac{1}{20}$

Answer: B
147. From the point $\mathrm{A}(0,3)$ on the circle $x^{2}+4 x+(y-3)^{2}=0$ a chord $A B$ is drawn to a point such that $A M=2 A B$. The equation of the locus of M is :-

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}-8 x-6 y+9=0 \\
& \text { B. } x^{2}+y^{2}=8 x+6 y+9=0 \\
& \text { C. } x^{2}+y^{2}+8 x-6 y+9=0 \\
& \text { D. } x^{2}+y^{2}-8 x+6 y+9=0
\end{aligned}
$$

Answer: C

- Watch Video Solution

148. For any $a \in R$, then locus
$x^{2}+y^{2}-2 a y+a^{2}=0$ touches the line
A. $x=y$
B. $x=0$
C. $x+y=0$
D. None of these

Answer: B

- Watch Video Solution

149. The equation of a diameter of circle $x^{2}+y^{2}-6 x+2 y=0$, passing through origin is
A. $x+3 y=0$
B. $x-3 y=0$
C. $3 x+y=0$
D. $3 x-y=0$

- Watch Video Solution

150. The centres of those circles which touch the circle $x^{2}+y^{2}-8 x-8 y-4=0$ externally and also touch the x axis, lie on
A. a circle.
B. an ellipse which is not a circle.
C. a hyperbola.
D. a parabola.

Answer: D

151. Let A be the centre of the circle $x^{2}+y^{2}-2 x-4 y-20=0$
.The tangents at the points $B(1,7)$ and $C(4,-2)$ on the circle meet at the point D.If Δ denotes the area of the quadrilateral ABCD, then $\frac{\Delta}{25}$ is equal to
A. 150 sq. units
B. 50 sq. units
C. 75 sq. units
D. 70 sq. units

Answer: C

- Watch Video Solution

152. Let the orthocentre and centroid of a triangle be $(-3,5)$ and $B(3,3)$ respectively. If C is the circumcentre of the
triangle then the radrus of the circle having line segment AC as diameter, is
A. $2 \sqrt{10}$
B. $\sqrt[3]{\frac{5}{2}}$
C. $\frac{3 \sqrt{5}}{2}$
D. $\sqrt{10}$

Answer: B

- Watch Video Solution

153. The equation of a parabola which passes through the point of intersection of a straight line $x+y=0$ and the circel $x^{2}+y^{2}+4 y=0$ is

$$
\text { A. } y^{2}=4 x
$$

B. $y^{2}=x$
C. $y^{2}=2 x$
D. None of these

Answer: C

- Watch Video Solution

154. Let the equation of an ellipse be $\frac{x^{2}}{144}+\frac{y^{2}}{25}=1$. Then the radius of the circle with centre $(0, \sqrt{2})$ and passing through the foci of the ellipse is
A. 9
B. 7
C. 11
D. 5

- Watch Video Solution

155. The lines $y=2 x+\sqrt{76}$ and $2 y+x=8$ touch the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{12}=1$. If the point of intersection of these two lines lie on a circle, whose centre coincides with the centre of that ellipse, then the equation of that circle is
A. $x^{2}+y^{2}=16$
B. $x^{2}+y^{2}=12$
C. $x^{2}+y^{2}=28$
D. $x^{2}+y^{2}=(4+\sqrt{8})^{2}$

Answer: C

156. A bar of given length moves with its extremities on two fixed straight lines at right angles. Show that any point on the bar describes an ellipse.
A. Circle
B. parabola
C. Ellipse
D. Hyperbola

Answer: C

- Watch Video Solution

157. The distance of the mid -point of line joining two ponts $(4,0)$ and $(0,4)$ from the centre of the circle $x^{2}+y^{2}=16$ is
A. $\sqrt{2}$
B. $2 \sqrt{2}$
C. $3 \sqrt{2}$
D. $2 \sqrt{3}$

Answer: B

- Watch Video Solution

158. Tangents are drawn to the hyperbola $4 x^{2}-y^{2}=36$ at the points P and Q. If these tangents intersect at the point $T(0,3)$ then the area (in sq units) of $\triangle P T Q$ is
A. $54 \sqrt{3}$
B. $60 \sqrt{3}$
C. $36 \sqrt{5}$
D. $45 \sqrt{5}$

Answer: D

- Watch Video Solution

EVALUATION TEST

1. The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3 a is
A. $x^{2}+y^{2}=9 a^{2}$
B. $x^{2}+y^{2}=16 a^{2}$
C. $x^{2}+y^{2}=4 a^{2}$
D. $x^{2}+y^{2}=a^{2}$

Answer: C

- Watch Video Solution

2. If one end of the diameter is $(1,1)$ and the other end lies on the line $x+y=3$, then find the locus of the center of the circle.
A. $x+y=1$
B. $2(x-y)=5$
C. $2 x+2 y=5$
D. None of these

Answer: C

3. The centre of circle inscribed in a square formed by lines $x^{2}-8 x+12=0$ andy ${ }^{2}-14 y+45=0$ is $(4,7)(7,4)(9,4)$ $(4,9)$
A. $(4,7)$
B. $(7,4)$
C. $(9,4)$
D. $(4,9)$

Answer: A

- Watch Video Solution

4. The abscissa of two points A and B are the roots of the equation $x^{2}+2 a x-b^{2}=0$ and their ordinates are the roots of
the equation $y^{2}+2 p y-q^{2}=0$. The equation of the circle with $A B$ as diameter is
A. $x^{2}+y^{2}+2 a x+2 p y-b^{2}-q^{2}=0$
B. $x^{2}+y^{2}+2 a x+2 p y-b^{2}-q^{2}=0$
C. $x^{2}+y^{2}+2 a x+2 p y+b^{2}+q^{2}=0$
D. None of these

Answer: A

- Watch Video Solution

5. A circle is inscribed in an equilateral triangle of side a. The area of any square inscribed in this circle is (A) $\frac{a^{2}}{12}$ (B) $\frac{a^{2}}{6}$ (C) $\frac{a^{2}}{3}$ (D) $2 a^{2}$
A. $\frac{a^{2}}{3}$
B. $\frac{2 a^{2}}{3}$
C. $\frac{a^{2}}{6}$
D. $\frac{a^{2}}{12}$

Answer: C

- Watch Video Solution

6. On the parabola $y=x^{2}$, the point least distance from the straight line $y=2 x-4$ is
A. $(1,1)$
B. $(1,0)$
C. $(1,-1)$
D. $(0,0)$

- Watch Video Solution

7. The equation of a circle passing through the vertex and the extremites of the latus rectum of the parabola $y^{2}=8 x$ is
A. $x^{2}+y^{2}+10 x=0$
B. $x^{2}+y^{2}+10 y=0$
C. $x^{2}+y^{2}-10 x=0$
D. $x^{2}+y^{2}-5 x=0$

Answer: C

8. The eccentricity of the conjugate hyperbola of the hyperbola $x^{2}-3 y^{2}=1$ is 2 (b) $2 \sqrt{3}$ (c) 4 (d) $\frac{4}{5}$
A. 2
B. $\frac{2}{\sqrt{3}}$
C. 4
D. $\frac{4}{3}$

Answer: A

- Watch Video Solution

9. Tht line L passes through the points f intersection of the circles $x^{2}+y^{2}=25$ and $x^{2}+y^{2}-8 x+7=0$. The length of perpendicular from center of second circle onto the line L is
A. 4
B. 3
C. 1
D. 0

Answer: D

- Watch Video Solution

10. the equation of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and having centre at $(0,3)$ is
A. 4
B. 3
C. $\sqrt{12}$
D. $\frac{7}{2}$

- Watch Video Solution

11. Let the eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ be the reciprocal to that of the ellipse $x^{2}+4 y^{2}=4$. If the hyperbola passes through a focus of the ellipse, then the equation of the hyperbola, is
A. $\frac{x^{2}}{3}-\frac{y^{2}}{2}=1$
B. $x^{2}-3 y^{2}=3$
C. $\frac{x^{2}}{2}-\frac{y^{2}}{3}=1$
D. $3 x^{2}-y^{2}=3$

Answer: B
12. An ellipse drawn by taking a diameter of the circle $(x-1)^{2}+y^{2}=1$ as its semiminor axis and a diameter of the circle $x^{2}+(y-2)^{2}=4$ as its semi-major axis. If the centre of the ellipse is at the origin and its axes are the coordinate axes, then the equation of the ellipse is
A. $4 x^{2}+y^{2}=4$
B. $x^{2}+4 y^{2}=8$
C. $4 x^{2}+y^{2}=8$
D. $x^{2}+4 y^{2}=16$

Answer: D

13. The circle $x^{2}+y^{2}=4 x+8 y+5$ intersects the line
$3 x-4 y=m$ at two distinct points, if (a)-85 It m lt-35 (c) 15 It m It 65 (b)-35 It m It 15 (d) 35 lt m It 85
A. $-35<m<15$
B. $15<m<65$
C. $35<m<85$
D. $-85<m<-35$

Answer: A

- Watch Video Solution

14. Three distinct points A, B and C are given in the 2 dimensional coordinate plane such that the ratio of the distance of any one of them from the point $(1,0)$ to the distance from
the point $(-1,0)$ is equal to $1: 3$. Then the circumcentre of the triangle $A B C$ is at the point (1) $(0,0)$ (2) $\left(\frac{5}{4}, 0\right)$ (c) $\left(\frac{5}{2}, 0\right)$ (d) $\left(\frac{5}{3}, 0\right)$
A. $(0,0)$
B. $\left(\frac{5}{4}, 0\right)$
C. $\left(\frac{5}{2}, 0\right)$
D. $\left(\frac{5}{3}, 0\right)$

Answer: B

- Watch Video Solution

15. The ellipse $x^{2}+4 y^{2}=4$ is inscribed in a rectangle aligned with the coordinate axes, which in turn is inscribed in another ellipse that passes through the point $(4,0)$. Then the equation of
the ellipse is (1) $x^{2}+16 y^{2}=16$ (2) $x^{2}+12 y^{2}=16$
$4 x^{2}+48 y^{2}=48(4) 4 x^{2}+64 y^{2}=48$
A. $x^{2}+16 y^{2}=16$
B. $x^{2}+12 y^{2}=16$
C. $4 x^{2}+48 y^{2}=48$
D. $4 x^{2}+64 y^{2}=48$

Answer: B

- Watch Video Solution

16. The equation of the the circle having $x-y-2=0$ and $x-y+2=$ 0 as two tangents, and $\mathrm{x}+\mathrm{y}=0$ as a diameter is
A. $x^{2}+y^{2}+2 x-2 y+1=0$
B. $x^{2}+y^{2}-2 x+2 y-1=0$
C. $x^{2}+y^{2}=2$
D. $x^{2}+y^{2}=1$

Answer: C

- Watch Video Solution

17. The sum of the minimum distance and the maximum distnace from the point $(4,-3)$ to the circle
$x^{2}+y^{2}+4 x-10 y-7=0$ is
A. 20
B. 12
C. 10
D. 16

- Watch Video Solution

18. Let $f(x, y)=0$ be the equation of a circle. If $f(0, \lambda)=0$ has equal roots $\lambda=1,1$ and $f(\lambda, 0)=0$ has roots $\lambda=\frac{1}{2}, 2$, then the centre of the circle is
A. $\left(1, \frac{1}{2}\right)$
B. $\left(\frac{5}{4}, 1\right)$
C. $(5,4)$
D. $\left(\frac{1}{2}, 1\right)$

Answer: B

19. The distance between the vertex of the parabola $y=x^{2}-4 x+3$ and the centre of the circle $x^{2}=9-(y-3)^{2}$ is.
A. $2 \sqrt{3}$
B. $3 \sqrt{2}$
C. $2 \sqrt{2}$
D. $2 \sqrt{5}$

Answer: D

- Watch Video Solution

20. Let a circle touches to the directrix of a parabola $y^{2}=2 a x$ has its centre coinciding with the focus of the parabola. Then the point of intersection of the parabola and circle is
A. $(a,-a)$
B. $(a / 2, a / 2)$
C. $(a / 2, \pm a)$
D. $(\pm a / a / 2)$

Answer: C

- Watch Video Solution

21. Through the vertex 'O' of parabola $y^{2}=4 x$, chords OP and OQ are drawn at right angles to one another. Show that for all positions of $P, P Q$ cuts the axis of the parabola at a fixed point.

Also find the locus of the middle point of PQ .
A. $y^{2}=x+8$
B. $y^{2}=-2+8$
C. $y^{2}=2 x-8$
D. $y^{2}=x-8$

Answer: C

- Watch Video Solution

22. For each point (a, y) on an ellipse, the sum of the distances from (x, y) to the points $(2,0)$ and $(-2,0)$ is 8 . Then the positive value of x so that $(x, 3)$ lies on the ellipse is
A. 2
B. $2 \sqrt{2}$
C. $\frac{1}{\sqrt{3}}$
D. 4

- Watch Video Solution

23. The line passing through the extremity A of the major exis and extremity B of the minor axis of the ellipse $x^{2}+9 y^{2}=9$ meets is auxiliary circle at the point M. Then the area of the triangle with vertices at A, M, and O (the origin) is 31/10 (b) 29/10 (c) 21/10 (d) 27/10
A. $\frac{31}{10}$
B. $\frac{29}{10}$
C. $\frac{21}{10}$
D. $\frac{27}{10}$

Answer: D

24. In an ellipse, if the lines joining focus to the extremities of the minor axis form an equilateral triangle with the minor axis, then the eccentricity of the ellipse is
A. $\frac{\sqrt{3}}{2}$
B. $\frac{\sqrt{3}}{4}$
C. $\frac{1}{\sqrt{2}}$
D. $\sqrt{\frac{2}{3}}$

Answer: A

25. If the area of the auxiliary circle of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b)$ is twice the area of the ellipse, then the eccentricity of the ellipse is
A. $\frac{1}{\sqrt{2}}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{1}{2}$

Answer: B

Watch Video Solution

26. If A and B are two fixed points and P is a variable point such that $P A+P B=4$, the locus of P is
A. parabola
B. ellipse
C. hyperbola
D. None of these

Answer: B

- Watch Video Solution

27. If A and B are two fixed points and P is a variable point such that $P A+P B=4$, the locus of P is
A. hyperbola
B. circle
C. parabola
D. ellipse

- Watch Video Solution

28. If the line $y=7 x-25$ meets the circle $x^{2}+y^{2}=25$ in the points A, B then the distance between A and B is
A. $\sqrt{10}$
B. 10
C. $5 \sqrt{2}$
D. 5

Answer: C

