

India's Number 1 Education App

MATHS

BOOKS - TARGET MATHS (HINGLISH)

SETS, RELATIONS AND FUNCTIONS

Classical Thinking

1. If B is the set whose elements are obtained by adding 1 to each of the even numbers, then the set builder notation of B is

$$A. B = \{x : x \text{ is even }\}$$

$$B. B = \{x : x \text{ id ood and } x > 1\}$$

$$\mathsf{C}.\,B=\{x\,{:}\,x\text{ id odd and }x\in Z\}$$

D.
$$B = \{x : x \text{ is an integer }\}$$

Answer: C

$$\mathsf{A.}\,0\in\{\}$$

$$\mathtt{B.}\,0\in\{\{0\}\}$$

$$\mathsf{C}.\,0\in\{0\}$$

D.
$$0 \subset \{0\}$$

Answer: C

3. The set of the prime numbers is

A. a finite set

B. a singleton set

C. an infinite set

D. a null set

Answer: C

Watch Video Solution

4.
$$A-B=\phi$$
 iff

A. $A\subset B$

 $\mathtt{B.}\,B\subset A$

 $\mathsf{C}.\,A=B$

D. $A\cap B=\phi$

Answer: A

Watch Video Solution

5. If $A \subseteq B$ and $B \subseteq C$, then

 $\operatorname{D\!.} A \subseteq C$ **Answer: D** Watch Video Solution **6.** $A \cup B = A$ if A. $A\subset B$ $\mathtt{B}.\,B\subset A$ $\mathsf{C}.\,A=B$ D. $A\cap B=\phi$ **Answer: B** Watch Video Solution

 $\mathsf{A}.\,B \subseteq A$

 $\mathsf{B.}\, C \subseteq A$

 $\mathsf{C}.\,C\subseteq B$

7.
$$A\cap B=A$$
 if

A.
$$A\subseteq B$$

$$\operatorname{B.}B\cup A$$

$$\mathsf{C}.A = B$$

D.
$$A\cap B=\phi$$

Answer: A

Watch Video Solution

8. Two sets A and B are disjoint iff

A.
$$A \cup B = \phi$$

$$\operatorname{B.}A\cap B=0$$

$$\operatorname{C.}A-B=\phi$$

D.
$$A\cap B=\phi$$

Answer: B

Watch Video Solution

9. If Q is the set of rational numbers and P is the set of irrational numbers, then

A.
$$P\cap Q=\phi$$

$$\operatorname{B.} P \subset Q$$

$$\mathsf{C}.\,Q\subset P$$

$$\mathrm{D.}\,P-Q=\phi$$

Answer: A

10. $(A \cup B)$ ' is equal to

A.
$$A' \cup B'$$

B.
$$A'\cap B'$$

$$\operatorname{C.} A \cap B$$

D.
$$A \cup B$$

Answer: B

11. A-B is equal to

A.
$$(A \cup B) - (A \cap B)$$

B.
$$A\cap B'$$

$$\mathsf{C}.\,A\cap B$$

D.
$$B-A$$

Answer: B

Watch Video Solution

12. $A-(B\cup C)$ is equal to

$$\mathsf{A}.\left(A-B\right)\cup\left(A-C\right)$$

B.
$$(A \cup B) - (A \cup C)$$

$$\mathsf{C.}\,(A-B)-(A-C)$$

D.
$$(A-B)\cap (A-C)$$

Answer: D

Watch Video Solution

13. If A, B, C are any three sets, then $A \cup (A \cap C)$ is equal to

A.
$$(A\cap B)\cap (A\cup C)$$

 $\mathsf{C}.\,(A\cap B)\cap (A\cap C)$

D. none of these

B. $(A \cup B) \cup (A \cup C)$

Answer: A

View Text Solution

then A'=

 $X=\{x\in N, 1\leq x\leq 8\}, A=\{1,2,3\}, B=\{2,4,6\}, C=\{1,3,5,7\},$

Let

A. $\{1, 3, 5, 7, 8\}$

B. $\{4, 5, 6, 7, 8\}$

 $C. \{2, 4, 6, 8\}$

D. $\{4, 5, 7, 8\}$

14.

15. If
$$A = \{x \mid x \text{ is natural number}\}$$
,

$$B = \{x| ext{ is an even number}\}$$
, $A \cap B =$

A.
$$\{2, 4, 6, 8\}$$

B.
$$\{1,\,3,\,5,\,7\}$$

$$\mathsf{C}.\,\{2,\,4,\,6,\,8.\dots\}$$

D.
$$\{1, 3, 5, 7....\}$$

Answer: C

Watch Video Solution

16. If $B = \{x \mid x \text{ is an even number}\}$,

$$C = \{x | ext{ x is an odd numbers} \}$$
, then $B \cap C =$

A.
$$\phi$$

B. $\{2, 4, 6, 8, \dots\}$

 $C. \{1, 3, 5, 7...\}$

 $D. \{0\}$

Answer: A

Watch Video Solution

17. If $A \equiv \{2x/x \in N\}B \equiv \{4x/x \in N\}, ext{ then } A \cup B =$

A. $\{2, 4, 6, 8, 10, 12, 14, 16, 18, 20...\}$

B. $\{4, 8, 12, 16, 20....\}$

 $C. \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\}$

D. {4, 8, 12, 16, 20}

Answer: A

View Text Solution

18. If $A = \{1, 2, 3\}, B = \{3, 4, 5\}, C = \{4, 5, 6\}, \text{ then } A \cup B \cup C = \{4, 5, 6\}, C = \{4,$

A. $\{1, 2, 3, 4, 5, 6\}$

C. {1, 2, 3, 4, 5}

D. $\{1, 3, 5\}$

B. $\{3\}$

Answer: A

Watch Video Solution

19. Let $X=\{1,2,3,4,5,6,7,8,9\}$

$$A = \{2, 4, 5, 7, 8\}, B = \{1, 3, 5, 7\},$$

 $C=\{4,6,8,9\}, ext{ then } A\cap (B\cup C)$

A.
$$A\cap (B\cap C)$$

B.
$$A \cup (B \cap C)$$

$$\mathsf{C.}\left(A\cap B
ight)\cup\left(A\cap C
ight)$$

D. $(A \cup B) \cup (A \cap C)$

Answer: C

Watch Video Solution

- **20.** Let $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- $A = \{2, 4, 5, 7, 8\}, B = \{1, 3, 5, 7\},\$

 $C=\{4,6,8,9\}, ext{ then } A\cap (B\cup C)$

- A. $A\cap (B\cap C)$
- B. $A \cup (B \cap C)$
- $\mathsf{C}.\,(A\cap B)\cup(A\cap C)$
- D. $(A \cup B) \cup (A \cup C)$

Answer: A

21. If $A=\{x|\ \mathsf{x}\ \mathsf{is}\ \mathsf{a}\ \mathsf{multiple}\ \mathsf{of}\ 2, x\in N\}$

 $B = \{x | \text{ x is a multiple of } 5, x \in N\},$ $C = \{x \mid \mathsf{x} \text{ is multiple of } 10, x \in N\}, \text{ then }$

 $(A \cap B) \cap C =$

A. $\{5, 15, 25...\}$

B. $\{10, 15, 20...\}$

 $C. \{5, 10, 15, 20...\}$

D. $\{10, 20, 30...\}$

Answer: D

Watch Video Solution

22. Let $X = \{a, b, c, p, q, r, x, y, z\},$

A. $\{a, b, c, p, q, r, x, z\}$

 $A = \{b, q, y\}, B = \{a, p, r, x, y\}$ then $(A \cap B)'$

B. $\{a, c, p, r, x, z\}$

$$\mathsf{C}.\left\{ b,c,q,z\right\}$$

D.
$$\{a,b,p,q,x,z\}$$

Answer: A

Watch Video Solution

23. If A and B are disjoint, then $n(A \cup B)$ is equal to

A. n(A)

B. n(B)

 $\mathsf{C}.\,n(A)+n(B)$

D. n(A). N(B)

Answer: C

24. If n (A) = 10, n(B) = 6 and n(C) = 5 for three disjoint sets A,B,C, then $n(A \cup B \cup C)$ equals

A. 11

B. 21

C. 1

D. 9

Answer: B

View Text Solution

- 25. Sets A and B are such that A has 25 members, B has 20 members and $A \cup B$ and has 35 members. The number of members in the set $A \cap B$ is
 - A. 10
 - B. 5
 - C. 15

Answer: A

Watch Video Solution

26. In a class of 100 students, 60 play cricket, 50 play valleyball and 29 play both. Find the number of students who play atleast one of the two games.

A. 18

B. 32

C. 110

D. 82

Answer: D

View Text Solution

27. Out of 20 members in a family, 11 like to take tea and 14 like coeffee.

Assume that each one likes at least one of the two drinks. How many like only tea and not coffe?

- A. 9
- B. 5
- C. 11

D. 6

Answer: D

- **28.** If $A = \{1, 2\}$ and $B = \{0, 1\}$, then $A \times B =$
 - A. $\{(1,0),,(1,1),(2,0),(2,1)\}$
 - B. $\{(1,0),(2,1)\}$
 - C. $\{(1, 1), (1, 2), (0, 1), (0, 2)\}$

D.
$$\{(1,0),(2,0),(0,0)\}$$

Answer: A

Watch Video Solution

29. If A and B are finite sets (non-empty), then number of elements in

$$A imes B$$
 is

- A. $n(A \cup B)$
- B. $n(A \cap B)$
- C. n(A) imes n(B)
- D. none of these

Answer: C

30. If n(A) = 3, n(B) = 4 then $n(A \times A \times B) =$

A. 12

B. 9

C. 16

D. 36

Answer: D

A.
$$(A imes B) \cup (A imes C)$$

31. If A,B,C be any three sets then $A imes (B \cap C)$ is equal to-

B.
$$(A imes B) \cap (A imes C)$$

C.
$$A imes B - A imes C$$

D.
$$A imes (B-C)$$

Answer: A

Watch Video Solution

32. If $A = \{x : x^2 - 5x + 6 = 0\}$. $B = \{2, 4\}$ and $C = \{4, 5\}$, then

$$A imes (B\cap C)$$
 is-

- A. $\{(2,4),(3,4)\}$
- B. $\{(4,2),(4,3)\}$
- C. $\{(2,4), (3,4), (4,4)\}$
- D. $\{(2,2),(3,3),(4,4),(5,5)\}$

Answer: A

Watch Video Solution

33. If $A = \{1, 2, 3\}, B = \{3, 4, 5\}, ext{ then } (A \cap B) imes A ext{ is}$

A. $(A imes B) \cup (A imes C)$

Answer: B

A. $\{(1,3),(2,3),(2,2)\}$

B. $\{(3, 1), (3, 2), (3, 3)\}$

 $C.\{(1,3),(3,1),(3,2)\}$

D. $\{(1,3),(2,4),(3,5)\}$

View Text Solution

B. $(A imes B) \cap (A imes C)$

34. If A, B and C are any three sets, then $A \times (B-C)$ is equal to

C. (A imes B) - (A imes C)

D. $(A \times B) - (A \times C)$

View Text Solution

Answer: C

 $A=\{1,2,4\}, B=\{2,4,5\}, C=\{2,5\},$ then

$$(A-B) imes (B-C) =$$

A.
$$\{(1,2),(1,5),(2,5)\}$$

D.
$$\{(1, 2), (1, 4)\}$$

Answer: B

Watch Video Solution

36. Let A and B be two sets such that $n(A)=5\ and\ n(B)=2, \quad {
m if}\quad a,\ b,\ c,\ d,\ e \quad {
m are}\quad {
m distinct}\quad {
m and}$

 $(a,2),\;(b,3),\;(c,2),\;(d,3),\;(e,2)$ are in A imes B , find A and B.

A. $A = \{a,b,c,d,e\}, B = \{2,3\}$

B. $A = \{a, b, c, d, e\}, B = \{3, 1\}$

C. $A = \{a, b, c, d, e\}, B = \{2, 2\}$

 ${\rm D.}\,A=\{a,b,c,e,d\}, B=\{3,3\}$

Answer: A

Watch Video Solution

37. If $A imes B = \{(a,1)(a,5), (a,2), (b,2), (b,5), (b,1)\}, ext{ find } B imes A$

A. $\{(a, 1), (a, 5), (a, 2), (b, 2), (b, 5), (b, 1)\}$

B. $\{(1, a), (5, a), (2, a), (2, b), (5, b), (1, b)\}$

C. $\{(1, a), (a, 5), (2, a), (2, b), (5, b), (a, b)\}$

D. does not exist

Answer: B

38. If $A = \{a, b\}$ and $B = \{1, 2, 3\}$ then $(A \times B) \cap (B \times A) =$

A. $\{(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)\}$

B. $\{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$

C. $\{(a, a,), (b, c,), (a, b), (b, a)\}$

D. ϕ

Answer: D

Watch Video Solution

39. Let $Y=(1,2,3,4,5\}, A=\{1,2\}, B=\{3,4,5\}$ and ϕ be the null st. If $A\times B$ denotes cortesian product of the sets A and B, then $(Y\times A)\cap (Y\times B)$ is equal to-

A. Y

B. A

C.B

D.	ϕ

Answer: D

Watch Video Solution

40. The domain of the relation

 $R = \{(1,3), (3,5), (2,6)\}$ is

A. 1, 3 and 2

B. $\{1, 3, 2\}$

 $C. \{3, 5, 6\}$

D. 3, 5 and 6

Answer: B

41. Let $R=\{(a,a)\}$ be a relation on a set A.Then R is

A. Symmetric

B. Antisymmetric

C. Symmetric and Antisymmetric

D. Neither Symmetric nor Anti-symmetric

Answer: C

 $R = \{(x,y) \ x,y \in A \ ext{and} \ x < y\}$. Then R is

42. In the set $A = \{1, 2, 3, 4, 5\}$, a relation R is defined

by

A. Reflexive

B. Symmetric

C. Transitive

D. An equivalence relation

Answer: C

Watch Video Solution

- **43.** If $R\subset A imes B$ and $S\subset B imes C$ be two relations, then $(SoR)^{-1}=$
 - A. $S^{-1}oR^{-1}$
 - B. $R^{-1}oS^{-1}$
 - $\mathsf{C}.\,SoR$
 - D. RoS

Answer: B

Watch Video Solution

44. If a function f(x) is given as $f(x)=x^2-3x+2$ for all $x\in R, \,$ then f(-1)=

A. 6

B. 0

C. 2

D. 8

Answer: A

f(a+h) =

Watch Video Solution

- A. $a^2 + (2a + 3)h 3a + 2 + h^2$

45. If a function f(x) is given as $f(x)=x^2-3x+2$ for all $x\in R, \,$ then

- B. $a^2 + (2a + 3)h + 3a + 2 + h^2$
- C. $a^2 + (2a 3)h + 3a + 2 + h^2$
- D. $a^2 + (2a + 3)h + 3a + 2 + h^2$

Answer: C

46. If
$$f(x) = x^2 + \frac{1}{x}, x \neq 0$$
 then $f\left(\frac{1}{x}\right) =$

A.
$$\frac{1}{x^2} + x$$

B.
$$\frac{1}{x} + x^2$$

$$\mathsf{C.}\,\frac{1}{x^2}-x$$

D.
$$rac{1}{x}-x^2$$

Answer: A

Watch Video Solution

47. If $f(x) = x^2 - 6x + 9, 0 \le x \le 4$, then f(3) =

- A. 4
 - B. 1
 - C. 0

D. does not exist

Answer: C

Watch Video Solution

- **48.** If $f(x) = x^2 6x + 5, 0 \le x \le 4$ then f(8) =
 - A. 5
 - B. 21
 - C. 11
 - D. does not exist

Answer: D

A. 6

C. 11

B. 17

D. 5

Answer: D

Watch Video Solution

50. If $f(x) = 4x - x^2$, then f(a+1) - f(a-1) =

A. 4(2-a)

B. 2(4-a)

C.4(2+a)

D. 2(4 + a)

Answer: A

51. A function f is said to be even, if

$$A. f(x) = -f(x)$$

$$B. f(-x) = f(x)$$

$$\mathsf{C.}\, f(\,-x) = \,-\, f(x)$$

D. none of these

Answer: B

Watch Video Solution

52. Which of the following is a polynomial function?

A.
$$\frac{x^2-1}{x}, x
eq 0$$

B.
$$x^2 + 3x^2 - 4x + \sqrt{2}x^{-2}$$

c.
$$\frac{3x^2 + 7x - 1}{3}$$

D.
$$2x^2 + \sqrt{x} + 1$$

Answer: C

Watch Video Solution

53. The function

$$f \colon R \to R \colon f(x) = 1 \quad \text{if} \quad x > 0$$
 $= 0 \quad \text{if} \quad x = 0$
 $= -1 \quad \text{if} \quad x < 0 isa$

A. rational function

B. modulus function

C. signum function

D. sinx function

Answer: B

54. Find [2.75], if [x] denotes greatest integer not greater than x?

A. 2

В. 3

C. 0.75

D. 1.75

Answer: A

55. Inverse of the function y=2x-3 is

A.
$$rac{x+3}{2}$$

B.
$$\frac{x-3}{2}$$

$$\mathsf{C.}\,\frac{1}{2x-3}$$

D.
$$\frac{1}{x+3}$$

Answer: A

Watch Video Solution

56. If $f(x) = x^2, g(x) = 5x - 6$, then g[f(x)] =

A.
$$26x^2 - 60x + 36$$

$$\mathsf{B.}\,5x^2+6$$

C.
$$25x^2 + 60x - 36$$

D.
$$5x^2 - 6$$

Answer: D

57. If
$$f(x)=3x-1,$$
 $g(x)=x^2+1$ then $f[g(x)]=$

A.
$$3x^2 + 2$$

B. $9x^2 - 6x + 2$

C. $3x^2 - 2$

D. $9x^2 + 6x - 2$

Answer: A

Watch Video Solution

58. If $f(x)=x^2+1, ext{ then the value of (fof) (x) is equal to$

A. $x^4 + 1$

B. $x^4 + 2x^2 + 2$

C. $x^4 + x^2 + 1$

D. none of these

Answer: B

$$f(x)=x^2 \,\,{
m and}\,\, g(x)=x^3+1,\,\,{
m then}$$
 (fog) (x)
$${
m A.}\, x^6+1$$

$${
m B.}\, x^6-1$$

$${
m C.}\, \left(x^3-1
ight)^2$$

 $f{:}R o R \,\, ext{and}\,\, g{:}R o R$

be

given

by

Answer: D

D. $(x^3 + 1)^2$

59.

Let

60. If $f(x) = 1 - \frac{1}{x}$, then $f\left(f\left(\frac{1}{x}\right)\right)$ is

B.
$$\frac{1}{1+x}$$

A. $\frac{1}{r}$

C.
$$\frac{x}{x-1}$$

D.
$$\frac{1}{x-1}$$

Answer: C

Watch Video Solution

- **61.** If $f(x) = \frac{x-1}{x+1}$, then $f\left(\frac{1}{f(x)}\right)$ equals
 - A. 0
 - B. 1
 - C. x
 - D. $\frac{1}{x}$

Answer: D

- **62.** If $f(x) = \frac{3x+4}{5x-7}$, $g(x) = \frac{7x+4}{5x-3}$ then f[g(x)] =
 - A. 41

B. x

 $\mathsf{C.}-x$

D. 41

Answer: B

Watch Video Solution

63. Let $f: \overset{\longrightarrow}{RR} \ and \ g: \overset{\longrightarrow}{RR}$ be two given functions such that f is injective and g is surjective. Then which of the following is injective? gof (b) fog (c) gog (d) none of these

A. g and f should be injective and surjective

B. g should be injective and surjective

C. f should be injective and surjective

D. None of them may be surjective and injective

Answer: A

64. Domain of function
$$f(x) = \sin^{-1} 5x$$
 is

A.
$$\left(-\frac{1}{5}, \frac{1}{5}\right)$$

B.
$$\left[-\frac{1}{5}, \frac{1}{5}\right]$$

D.
$$\left(0, \frac{1}{5}\right)$$

Answer: B

5 If
$$f(x) = 1$$
 then dom (f) =

65. If
$$f(x)=rac{1}{\sqrt{5x-7}}, ext{ then dom (f) =}$$

A.
$$R - \left\{\frac{7}{5}\right\}$$
B. $\left[\frac{7}{5}, \infty\right)$

B.
$$\left[\frac{7}{5},\infty\right)$$

$$\mathsf{C}.\left[rac{5}{7},\infty
ight)$$

D.
$$\left(\frac{7}{5},\infty\right)$$

Answer: D

Watch Video Solution

- **66.** Range of the function $f(x) = \frac{x^2 3x + 2}{x^2 + x 6}$ is
 - A. $\{x : x \in R, x \neq 3\}$
 - B. $\{x : x \in R, x \neq 2\}$
 - $\mathsf{C}.\left\{x\colon x\in R\right\}$
 - D. $\{x : x \in R, x \neq 2, x \neq -3\}$

Answer: D

Watch Video Solution

67. Domain of the function $\log \lvert x^2 - 9 \rvert$ is

A. R

B. $R-[\,-3,3]$

 $C.R - \{-3, 3\}$

D. $\{-3, 3\}$

Answer: C

Watch Video Solution

68. Domain of the function $\sqrt{\log \left\{ \left(5x-x^2\right)/6 \right\}}$ is

A.(2,3)

B. [2, 3]

C. [1, 2]

D. [1, 3]

Answer: B

View Text Solution

Critical Thinking

1. Which of the following is not true?

A.
$$0 \in \{0, \{0\}\}$$

$$\mathtt{B.}\,\{0\}\in\{0,\{0\}\}$$

$$\mathsf{C}.\,\{0\}\subset\{0,\{0\}\}$$

$$\mathsf{D}.\,0\subset\{0,\{0\}\}$$

Answer: D

Watch Video Solution

2. Which of the following is the empty set?

A. $\{x\!:\!x$ is a real number and $x^2-1=0\}$

B. $\{x\!:\!x$ is a real number and $x^2+1=0\}$

C. $\{x: x \text{ is a real number and } x^2 - 9 = 0\}$

D. $\{x \colon x \text{ is a real number and } x^2 = x + 2\}$

Answer: B

View Text Solution

3. Which of the following set is not a null set?

A.
$$P=\{x\,/\,x\in N,\,2x+1 ext{ is even}\}$$

B.
$$Q = \left\{ x \, / \, x \in I, \, x^2 \, ext{is not positive}
ight\}$$

C.
$$R=\{x\,/\,x\in N, x ext{ is odd and } x^2 ext{ is even}\}$$

D.
$$S=\left\{ x\left/x\in R,x^{2}+1=0
ight\}$$

Answer: B

4. If $A=\{1,2,3,4,5\}$, then the number of proper subsets of A is

A. 120

B. 30

D. 32

C. 31

Answer: C

5. A-B is equal to

A.
$$B-A$$

B. $A \cup B$

 $\mathsf{C}.\,A\cap B$

D. $A-(A\cap B)$

Answer: D

Watch Video Solution

- **6.** A B = A iff
 - A. $A\subset B$
 - B. $A \cup B$
 - $\mathsf{C}.\,A\cap B$
 - D. $A (A \cap B)$

Answer: D

- **7.** A B = B A if
 - A. $A\subset B$

 $B.B \subset A$

 $\mathsf{C}.\,A=B$

D. $A\cap B=\phi$

Answer: D

Watch Video Solution

- **8.** If A and B are any two sets, then $(A \cup B) (A \cap B) =$
 - A.A-B
 - B.B-A
 - $\mathsf{C.}\left(A-B
 ight)\cup\left(B-A
 ight)$
 - D. none of these

Answer: C

View Text Solution

9. Which of the following is not true?

A.
$$(A\cap B)\subset A$$

$$\operatorname{B.}A\sum A\cup B$$

$$\mathsf{C.}\left(A-B
ight)\subset A$$

D.
$$A\sum (A-B)$$

Answer: D

View Text Solution

10. If A is any set, then

A.
$$A \cup A$$
 ' $= \phi$

$$\operatorname{B.}A\cap A'=X$$

C.
$$A\cap A'=\phi$$

D. none of these

Answer: C

11.

View Text Solution

Let

 $X = \{x \, / \, x \in N, \, 1 \leq x \leq 8\}, \, A = \{1, 2, 3\}, \, B = \{2, 4, 6\}, \, C = \{1, 3, 5, 7\}$

then $(A \cup B)' =$

B. $\{1, 3, 5, 6, 7, 8\}$

A. $\{5, 7, 8\}$

 $C. \{2, 4, 6, 8\}$

D. $\{1, 3, 5, 7, 8\}$

Answer: A

View Text Solution

12. If $A \equiv \{a, e, I, o, u\}, C \equiv \{p, q, r, \ldots, z\}$ and $X \equiv \{a, b, c, \ldots, z\}$ is the universal set, then $(A \cup C)' =$

A. $A \cap C$

B. $A' \cap C'$

C. $A' \cup C'$

D. $(A \cap C)$ '

Answer: B

View Text Solution

13. $A = \{x/x^2 - 7x + 12 = 0\},$

 $B = \{x/x^2 - x - 12 = 0\}, ext{ then } A \cap B =$

A. $\{3\}$

B. {4}

 $C. \{ -3, 3, 4 \}$

D. $\{3, 4, 5\}$

Answer: B

Watch Video Solution

14.
$$B = \left[x / x^2 - x - 12 = 0 \right]$$

$$C = \left\{ x \, / \, x^2 - 8x + 15 = 0, \; \mathsf{then} \; B \cup C =
ight.$$

A. $\{3, 4, 5\}$

B. $\{3, 4\}$

 $C. \{ -3, 3, 4, 5 \}$

D. $\{-3, 4, 5\}$

Answer: C

15. If $C = \{x : x \text{ is an odd number}\}$,

$$D = \{x \colon x \text{ is a prime number}\}$$
, then $C \cap D =$

A.
$$\{2, 4, 6, 8.....\}$$

B. $\{1, 2, 3, 4, 5....\}$

 $\mathsf{C}.\,\phi$

D. $\{3, 5, 7, 11....\}$

Answer: D

16. If
$$A=\{x\,/\,x$$
 is a multiple of $2,\,x\in N\},$

$$B=\{x|{\sf x}\,{\sf is}\,{\sf a}\,{\sf multiple}\,{\sf of}\,5, x\in N\},$$

$$C = \{x \mid x \text{ is multiple of } 10, x \in N\}, \text{ then } A \cap (B \cap C) =$$

A.
$$\{10, 20, 30....\}$$

B.
$$\{5, 10, 2, \ldots\}$$

D.
$$\{2, 4, 5, 15....\}$$

Answer: A

Watch Video Solution

17. If X is the universal set and A, B are subsets of X such that

then

 $n(X) = 99, n(A') = 80, n(B') = 85 \text{ and } n(A \cap B)' = 94,$

$$n(A \cup B) =$$

A. 33

B. 14

C. 28

D. 29

Answer: C

18. Which of the following is an empty set ?

A. The set of prime numbers which are even.

B. The solution set of the equation

$$\frac{2(2x+3)}{x+1}-\frac{2}{x+1}+3=0, x\in R.$$

C. $(A imes B) \cap (B imes A)$ where A and B are disjoint.

D. The set of reals which satisfy $x^2+ix+I-1=0$

Answer: C

Watch Video Solution

19. If A and B are two sets, then $A\cap (A\cup B)$ ' is equal to -

A. A

B. B

 $\mathsf{C}.\,\phi$

 $\mathsf{D}.\,A\cap B$

Answer: C

Watch Video Solution

- **20.** If AandB are two sets, then $(A-B)\cup(B-A)\cup(A\cap B)$ is equal to $A \cup B$ (b) $A \cap B$ (c) A (d) B
 - A. $A \cup B$
 - B. $A \cap B$
 - C. A
 - D.B'

Answer: A

21. Let U be the universal set and $A \cup B \cup C = \cup$ $\{(A-B)\cup(B-C)\cup(C-A)\}$ ' is equal to

then

A.
$$A \cup B \cup C$$

B. $A \cup (B \cap C)$

 $\mathsf{C}.A\cap B\cap C$

 $\mathsf{D}.A\cap (B\cup C)$

Answer: C

22.
$$A = \{x^2 - 9x + 20 = 0\},$$

 $B = \left\{ x^2 + 13x + 42 = 0 \right\}$

 $C = \{x^2 - 3x - 70 = 0\}$ and $X = \{ -7, -6, 4, 5, 10, 12 \}$, then $A \cap (B \cap C) =$

the

universal

set

A. $\{-7, -6, 4, 5, 10\}$

$$C$$
 :

Watch Video Solution

B. $\{4, 5, 10\}$

 $D. \phi$

Answer: D

 $C. \{ -7, 4, 5, 10 \}$

$$B \equiv \left\{x/2x^2 - 5x + 3 = 0
ight\} ext{ and }$$

23. If $A \equiv \{x/6x^2 + x - 15 = 0\},$

$$C \equiv ig\{x/2x^2-x-3=0ig\}, ext{ then } a\cap B\cap C=$$

A.
$$\Big\{-rac{5}{3},rac{3}{2}\Big\}$$

$$\mathsf{B.}\left\{1,\frac{3}{2}\right\}$$

$$\mathsf{C.}\left\{-1,\frac{3}{2}\right\}$$

D.
$$\left\{\frac{3}{2}\right\}$$

Answer: D

24. In a group of 50presons, everyone takes either tea of coffee. If 35 take tea and 25 take coffee, then the number of persons who take tea only (and not coffee) is

- A. 10
- B. 25
- C. 35
- D. 30

Answer: B

Watch Video Solution

25. In a group of 100 children, 62 like pizza, 47 like burger and 36 like both.

Find the number of students who like pizza but not burger.

A. 26 B. 15 C. 36 D. 30 Answer: A Watch Video Solution 26. in a consumer -perference survey of an item, fifteen were found to use Brand A, twenty were found to use Brand B, five were found to be in the habit of using both brands A and B. Find the number of consumers using at least one of the two brands of the item. A. 30 B. 20 C. 15 D. 35

Answer: A

Watch Video Solution

27. In a battle $70\,\%$ of the combatants lost one eye, 80% an ear, 75% an arm, 85% a leg. x% lost all the four limbs. The minimum value of x is

- A. 10
- B. 12
- C. 15
- D. 9

Answer: A

Watch Video Solution

28. In a group of 20 adults, there are 8 males and 9 vegetarians. Find the number of female non vegetarians, if the group contains 5 male

vegetarians ?
A. 4
B. 8
C. 12
D. 10
Answer: B
Watch Video Solution
29. In a class of 120 students, 46 play chess, 30 lay table tennis and 40
29. In a class of 120 students, 46 play chess, 30 lay table tennis and 40 play carrom, 14 play chess and table tennis, 10 play table tennis and
play carrom, 14 play chess and table tennis, 10 play table tennis and
play carrom, 14 play chess and table tennis, 10 play table tennis and carrom, 8 play chess and carrom, and 30 students do not play any of
play carrom, 14 play chess and table tennis, 10 play table tennis and carrom, 8 play chess and carrom, and 30 students do not play any of these games. How many students play chess, table tennis and carrom?

Answer: B

Watch Video Solution

- **30.** If A= {(x,y) : y = e^x , $x \in R$ } and B = { (x,y) : y = e^{-x} , $x \in R$ } then n (A \cap
- B) is
 - A. $A\cap B=\phi$
 - B. $A\cap B
 eq \phi$
 - $\mathsf{C}.\,A\cup B=R^2$
 - D. None of these

Answer: B

31. A survey shows that 63~%~ of the Americans like cheese where as 76~%~

like apples. If x~%~ of the Americans like both cheese and apples then

A.
$$x = 39$$

$$B. x = 63$$

C.
$$39 \leq x \leq 63$$

$$\mathsf{D.}\,39 < x < 63$$

Answer: C

Watch Video Solution

32. if $X = \{8^n - 7n - 1 : n \in N\}$ and

$$Y = \{49(n-1) : n \in N\}, \text{ then }$$

$$\operatorname{A.} X \subseteq Y$$

$$\operatorname{B.} Y \subseteq X$$

$$\operatorname{C.} X = Y$$

D. None of these

Answer: A

Watch Video Solution

- **33.** If A={a,b},B={c,d},C={d,e} then {(a,c),(a,d),(a,e),(b,c),(b,d),(b,e)}=
 - A. $A\cap (B\cap C)$
 - B. $A \cup (B \cap C)$
 - C. $A imes (B\cup C)$
 - D. $A imes (B\cap C)$

Answer: C

34. If (1,3),(2,5) and (3,3) are the three elements of $A\times B$ and the total number of elements in $A\times B$ is 6 then the remaining elements of

$$A imes B$$
 are

A.
$$(1,5), (2,3), (3,5)$$

$$\mathsf{C}.\,(1,5),(2,3),(5,3)$$

D.
$$(1, 3), (2, 5), (3, 3)$$

Answer: A

35. Let A and B be two sets such that

$$A imes B = \{(a,1), (1,3), (a,3), (6,1), (a,2), (b,2) ext{ then}$$

A.
$$A = \{1, 2, 3\}$$
 and $B = \{a, b\}$

B.
$$A = \{a, b, \}$$
 and $B = \{1, 2, 3\}$

C.
$$A=\{1,2,3\}$$
 and $B\subset\{a,b\}$

D.
$$A \subset \{a, b\}$$
 and $B \subset \{1, 2, 3\}$

Answer: B

Watch Video Solution

36. Let A and B be two sets such that $A \times B$ consists of 6 elements. If three elements of $A \times B$ are: (1,4), (2,6), (3,6). Find

A.
$$A = \{1, 2\}$$
 and $B = \{3, 4, 6\}$

 $A \times B$ and $B \times A$.

B. $A = \{4, 6\}$ and $B\{1, 2, 3\}$

C.
$$A = \{1, 2, 3\}$$
 and $B = \{4, 6\}$

D.
$$A = \{1, 2, 4\}$$
 and $B = \{3, 6\}$

Answer: C

37. Let n(A) = n, then the number of all relations on A, is

- A. 2^n
- B. $2^{(n)!}$
- $\mathsf{C.}\,2^{n^2}$
- D. n^2

Answer: C

Watch Video Solution

38. Let A(1,2,3). The total number of distinct relations that can be defined over A is(

- A. 2^{9}
- B. 6
- C. 8

Answer: A

Watch Video Solution

- **39.** The Cartesian product $A \times A$ has 9 elements among which are found $(1, \quad 0) \quad and \quad (0, \quad 1)$. Find the set A and the remaining elements of $A \times A$.
 - A. $\{-1, 0, 1\}$
 - B. $\{-1, 0, 2\}$
 - C. $\{-1, 11, 10\}$
 - D. $\{-2, 0, 2\}$

Answer: A

40. If $\mathbb R$ is the set of all real numbers. What does the cartesian product

 $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$ represent?

A. set of all point in space

B. set of all points in XY plane

C. set of points, only lst Quadrant of XY plane

D. R^2

Answer: A

Watch Video Solution

41. If $A = \{a, b, c, d\}$ and $B = \{1, 2, 3\}$, then which of the following is a relation from A to B?

A.
$$R_1 = \{(a, 1), (2, b), (c, 3)\}$$

$$\mathrm{B.}\,R_2=\{(a,1),(d,3),(b,2),(b,3)\}$$

$$\mathsf{C.}\,R_3=\{(1,a),(2,b),(3,c)\}$$

D.
$$R_4 = \{(a, 1), (b, 2), (c, 3), (3, d)\}$$

Answer: B

Watch Video Solution

42. If R is a relation from a finite set A having m elements to a finite set B

having n elements then the number of relations from A to B is

- A. 2^{mn}
- B. $2_{mn}-1$
- $\mathsf{C.}\,2mm$
- D. m^n

Answer: A

43. If R ={ (x,y) : x,y $\ \in z, x^2+y^2 \le 4$ } is a relation on ZZ then domain of

R is $\{0,-1,k,-2,2\}$ find the value of k.

A.
$$\{0, 1, 2\}$$

B.
$$\{0, -1, -2\}$$

$$\mathsf{C.}\,\{\,-\,2,\,\,-\,1,\,0,\,1,\,2\}$$

D.
$$\{-2, -1, 0, 1\}$$

Answer: C

44. Prove that the relation congruence modulo m on the set ${\cal Z}$ of all integers is an equivalence relation.

A. Reflexive only

B. Transitive only

C. Symmetric only

D. An equivalence relation

Answer: D

Watch Video Solution

45. Which one of the following relations on R is an equivalence relation?

A. $aR_1b\Leftrightarrow |a|=|b|$

B. $aR_2b\Leftrightarrow a\geq b$

C. $aR_3b\Leftrightarrow a$ divides b

D. $aR_4b \Leftrightarrow a < b$

Answer: A

46. Let R be an equivalence relation on a finite set A having n elements.

Then the number of ordered pairs in R is

- A. Less than n
- B. Greater than or equal to n
- C. Less than or equal
- D. not equal to n

Answer: B

- **47.** Let R be relation on a set A such that $R=R^{-1}$ then R is
 - A. Reflexive
 - B. Symmetric
 - C. Transitive
 - D. Not symmetric

Answer: B

Watch Video Solution

- **48.** The relation R defined in N as $aRb \Rightarrow b$ is divisible by a is
 - A. Reflexive but not symmetric
 - B. Symmetric but nottransitive
 - C. Symmetric and transitive
 - D. Symmetric

Answer: A

- **49.** The relation is subset of on the power set P(A) of a set ${\sf A}$ is
 - A. Symmetic

- B. Anti-symmetric
- C. Equivlancy relation
- D. None of these

Answer: B

Watch Video Solution

50. Let $P=\left\{(x,y)\mid x^2+y^2=1, x,y\in R ight\}$. Then, R, is

- A. Reflexive
- B. Symmetric
- C. Transitive
- D. Anti-symmetric

Answer: B

51. R is a relation from {11, 12, 13} to {8, 10, 12} defined by y=x-3 . Then, R^{-1} is (a) {(8, 11), (10, 13)} (b) {(11, 8), (13, 10)} (c) {(10, 13), (8, 11), (8, 10)} (d)

none of these

A. {(8, 11), (10, 13), }

B. {(11, .18), (13, 10)}

C. {8, 11}

D. $\{10, 13\}$

Answer: A

Watch Video Solution

52. If R be a relation from $A=\{1,2,3,4\}$ to

 $B = \{1,3,5\}i.\:e.\:, (a,b) \in R \Leftrightarrow a < b, ext{ then Ro } R^{-1}$ is

A. $\{(1,3), (1,5), (2,3), (2,5), (3,5), (4,5)\}$

B. $\{(3,1), (5,1), (3,2), (5,2), (5,3), (5,4)\}$

D.
$$\{(3,3),(3,4),(4,5)\}$$

Answer: C

53. If $f(x) = x^2 - 2x + 3$, then the value of x for which

f(x) = f(x+1) is

A.
$$1/2$$

B.1/3

C. 1

D. 3

Answer: A

54. If $f(x) = ax^2 + bx + 2$ and f(1) = 3, f(4) = 42, then a and b respectively are

$$A. -3, 2$$

$$C. -2, 3$$

D.
$$3, -2$$

Answer: D

55. If
$$f(x)=x+rac{1}{x}$$
, such that $[f(x)]^3=f(x)^3+\lambda figg(rac{1}{x}igg)$, then $\lambda=$

$$\mathsf{C.}-3$$

D.
$$-1$$

Answer: B

Watch Video Solution

56. If for non-zero x,a. f(x)+b. $F\Big(rac{1}{x}\Big)=rac{1}{x}-5, \,\,$ where $a
eq b,\,\,$ then f(2)=

A.
$$\frac{2(2b+3a)}{2(a^2-b^2)}$$

$$\mathsf{B.} \; \frac{3(2b-3a)}{2(a^2-b^2)}$$

C.
$$\dfrac{3(3a-2a)}{a(a^2-b^2)}$$

D.
$$\frac{6}{a+b}$$

Answer: B

Watch Video Solution

57. If $A=\{1,2,3\}$ and $B=\{2,3,4\}$ then whilch of the following relations is a function from A to B?

A. $\{(1, 2), (1, 3), (2, 3), (3, 3)\}$ B. $\{(0,3),(2,4)\}$ $C.\{(1,3),(2,3),(3,3)\}$ D. $\{(1, 2), (2, 3), (3, 4), (3, 2)\}$ **Answer: C** Watch Video Solution 58. If in greatest integer function, the domain is a set of real numbers, then range will be set of A. Real numbers B. Rational numbers C. Imaginary numbers

Answer: D

D. Intergers

59. Which of the following is an even function?

A.
$$\sin x$$

$$\mathtt{B.}\,x^2+\sin^2x$$

$$\mathsf{C.}\sin^3 x$$

Answer: B

60. Which of the following functions is (are) even, odd or neither:

$$f(x) = \sqrt{1 + x + x^2} - \sqrt{1 - x + x^2}$$

A.
$$f(x) = \sqrt{1 + x + x^2} - \sqrt{1 - x + x^2}$$

$$\texttt{B.}\, f(x) = x \bigg(\frac{a^2+1}{a^x-1} \bigg)$$

C.
$$f(x) = \log_{10}\!\left(rac{1-x^2}{1+x^2}
ight)$$

D. f(x) = k (constant)

Answer: A

Watch Video Solution

61. Let f be a real valued function, satisfying f(x+y)=f(x)f(y) for all a,y $\in R$ Such that, $f(1_=a.\ Then,f(x)=$

A. a^x

B. ax

 $\mathsf{C}.\,x^a$

 $D. \log x$

Answer: A

62. If $f\!:\!R o R$ is defined as $f(x)=x^2-3x+4$ for all $x\in R,$ then $f^{-1}(2)$ is equal to

A.
$$\{1, 2\}$$

B.
$$(1, 2)$$

$$\mathsf{C.}\left[1,\,2\right]$$

D. none of these

Answer: A

63. If
$$f(x)=rac{1}{1-x}$$
 , then $f(f(f(x)))$ is equal to

A.
$$\frac{x-1}{x}$$

B.
$$f(x)$$

$$\mathsf{C}.\,x$$

$$D.-x$$

Answer: C

Watch Video Solution

64. If $f(x) = \frac{x+3}{4x-5}$ and $t = \frac{3+5x}{4x-1}$, then f (t) is

A.-x

B.17x

 $\mathsf{C}.\,x$

D.-17x

Answer: C

Watch Video Solution

65. If $f = \{(1, 4), (2, 5), (3, 5) \text{ and }$ $q = \{(4, 8), (5, 7), (6, 9)\},$ then gof is

 $C.\{(1,7),(2,8),(3,9)\}$

B. $\{(1,8),(2,7),(3,7)\}$

D. $\{(1, 8), (2, 5), (3, 9)\}$

Answer: B

Watch Video Solution

66. If
$$f(x) = \frac{x-1}{x+1}$$
 then $f(\alpha x) =$

A.
$$\dfrac{f(x)+lpha}{1+lpha f(x)}$$

B.
$$\dfrac{(lpha-1)f(x)+lpha+1}{(lpha+1)f(x)+(lpha-1)}$$
C. $\dfrac{(lpha+1)f(x)+lpha-1}{(lpha-1)f(x)+(lpha+1)}$

D.
$$\dfrac{f(lpha x) - 1}{f(lpha x) + 1}$$

Answer: C

67. If f be the greatest integer function and g be the moduls function,

then
$$(gof)igg(-rac{5}{2}igg)-(fog)igg(-rac{5}{3}igg)=$$

$$B. - 1$$

Answer: A

Watch Video Solution

68. If $f\!:\!R o$, then f(x)=|x| is

A. One-one but not onto

B. Onto but nt one-one

C. One-one and onto

D. Many-one

Answer: D

Watch Video Solution

- **69.** If $f\colon [0,\infty) \to [0,\infty)$ and $f(x) = \frac{x}{1+x}$, then f is
 - A. One-one and onto
 - B. One-one but not onto
 - C. Onto but not one-one
 - D. Neither one-one nor onto

Answer: B

70. Verify whether the function $f\colon A\to B$, where A = R - {3} and B = R -{1}, defined by $f(x)=rac{x-2}{x-3}$ is one-one and onto or not. Give reason.

A. one-one into

B. one-one onto

C. many-one into

D. many-one onto

Answer: B

Watch Video Solution

71. If R denotes the set of all real numbers, then the function $f\colon R o R$ defined by f(x)=[x] is

A. One-one only

B. Onto only

C. Both one-one and onto

D. Neither one-one nor onto

Answer: D

Watch Video Solution

72. Mapping $f{:}\,R o R$ which is defined as $f(x)=\cos x, x\in R$ will be

A. Neither one-one nor onto

B. One-one

C. Onto

D. 'One-one onto

Answer: A

73. If the domain of the function $f(x)=x^2-6x+7$ is $(-\infty,\infty)$, then the range of the function is

A.
$$(-\infty,\infty)$$

B.
$$[-2,\infty)$$

C.
$$(-2, 3)$$

D.
$$(-\infty, -2)$$

Answer: B

74. Domain of the function
$$f(x) = \left(\frac{x}{1+x}\right)$$
 is

A.
$$(-\infty, -1) \cup [0, \infty)$$

D.
$$(-\infty, -1)$$

Answer: C

Watch Video Solution

75. Domain of the function $\frac{\sqrt{1+x}-\sqrt{1-x}}{x}$ is

A.
$$(-1, 1)$$

B.
$$(-1, 1) - \{0\}$$

D.
$$[-1,1]-\{0\}$$

Answer: D

Watch Video Solution

76. The domain of $\sin^{-1} \left[\log_3 \left(\frac{x}{3} \right) \right]$ is

B. (-1,0)

A. [1, 9]

D.
$$[-9, -1]$$

Answer: A

Watch Video Solution

$$f(x) = \sqrt{x^2 - 5x + 6} + \sqrt{2x + 8 - x^2}$$
 , is

A.
$$[2, 3]$$

B.
$$[\,-2,4]$$

C.
$$[-2,2]\cup[3,4]$$

D. $[-2,1] \cup [2,4]$

Answer: C

78. Domain and range of
$$f(x)=\dfrac{|x-3|}{x-3}$$
 are respectively

A.
$$R, [\,-1,1]$$

B.
$$R - \{3\}, \{1, -1\}$$

$$\mathsf{C}.\,R^+,R$$

D. None of these

Answer: B

Watch Video Solution

79. Range of the function $f(x)=rac{1}{3x+2}$ is

B.
$$R - \{0\}$$

$$\mathsf{C}.\left(0,\infty
ight)$$

$$\mathsf{D.}\,R - \bigg\{ -\frac{2}{3} \bigg\}$$

Answer: B

Watch Video Solution

80. The range of the function, $f(x)=rac{1+x^2}{x^2}$ is

- A.(0,1)
 - B. [0, 1]
 - $C.(1,\infty)$
- $D. [1, \infty)$

Answer: C

Watch Video Solution

81. Find the range of the function $f(x) = \frac{x}{1+x^2}$

D.
$$R-\{\,-\,3,2\}$$

A. $R-\left\lceil rac{1}{5},1
ight
ceil$

C. $R - \{1\}$

B. R

A. $\left[0, \frac{1}{2}\right]$

 $\mathsf{B.}\left[\,-\,\frac{1}{2},\frac{1}{2}\,\right]$

 $\mathsf{C.}\left[-\frac{1}{2},0\right]$

Answer: B

D. $\left\lceil -\frac{1}{2},0 \right
ceil \cup \left(0,\frac{1}{2}
ight
ceil$

Watch Video Solution

82. Range of the function $f(x) = \frac{x^2 - 3x + 2}{x^2 + x - 6}$ is

83. Range of the function $f(x) = \sqrt{x^2 + x + 1}$ is equal to

A.
$$[0, \infty]$$

B.
$$\left[\frac{\sqrt{3}}{2},\infty\right)$$
C. $\left(\frac{-\sqrt{3}}{2},\frac{\sqrt{3}}{2}\right)$

D.(0,0)

Answer: B

Watch Video Solution

Competitve Thinking

1. in rule method the null set is resresented by

A. {}

 $\mathsf{B}.\,\phi$

 $\mathsf{C.}\left\{x\!:\!x=x\right\}$

D. $\{x: x \neq x\}$

Answer: D

Watch Video Solution

2. Which of the following is a ture statement?

 $\mathsf{A}.\left\{a\right\}\in\left\{a,b,c\right\}$

 $\mathsf{B}.\left\{a\right\}\subseteq\left\{a,b,c\right\}$

C. ϕ in {a,b,c}

D. All of these

Answer: D

3. Write the set builder form $A=\{-1,1\}$

A. $A=\{x\,:\,x ext{ is root of the equatin } x^2=1 \}$

B. $A = \{x \colon x \text{ is real number }\}$

C. $A = \{x \colon x ext{ is a root of the equation } x^2 + 1 = 0 \}$

D. $A = \{x \colon x \text{ is an integer}\}$

Answer: A

4. The set $A=\left\{x\!:\!xarepsilon R,\,x^2=16 ext{ and }2x=16
ight\}$ is equal to

 $A. \phi$

B. {14, 3, 4}

C. {3}

D. $\{4\}$

Answer: A

Watch Video Solution

5. The set $A=\{x\!:\!|2x+3|<7\}$ is equal to the set

A.
$$D = \{x \colon 0 < x + 5 < 7\}$$

$${\rm B.}\,B = \{x \colon -3 < x < 7\}$$

C.
$$E = \{x \colon -7 < x < 7\}$$

D.
$$C = \{x : -13 < 2x < 4\}$$

Answer: A

Watch Video Solution

6. Let $S=\{x\in R\colon\! x\geq 0$

and $2|\sqrt{x}-3|+\sqrt{x}ig(\sqrt{x}-6ig)+6-0ig\}$ Then S

C. contains exactly four elements. D. is an empty set. **Answer: B** Watch Video Solution **7.** The number of non-empty subsets of the set $\{1, 2, 3, 4\}$ is A. 15 B. 14 C. 16 D. 17 Answer: A Watch Video Solution

A. contains exactly one element.

B. contains exactly two elements.

8. If the set A contains 5 elements, then the number of elements in the power set P(A) is equal to

A. 32

B. 25

C. 16

D. 8

Answer: A

Watch Video Solution

9. If $A=\{x\!:\!x \text{ is a multiple of 4}\}$ and $B=\{x\!:\!x \text{ is multiple of 6}\}$ then

 $A\subset B$ consists of all multiples of

A. 16

B. 12

C. 8

D. 4

Answer: B

Watch Video Solution

10. The number of elements in the set $ig\{(a,b)\!:\!2a^2+3b^2=35.\ a.\ b\in Zig\}$

,where Z is the set of all integers, is

A. 2

B. 4

C. 8

D. 12

Answer: C

11. If S is a set with 10 elements and $A=\{(x,y)\!:\!x,y\in S,x
eq y\}$, then the number of elements in A is

- A. 100
- B. 90
- C. 80
- D. 150

Answer: B

- **12.** The total number of subset of the set $\{1, 2, ..., 10\}$ which do not contain the element 6 is
 - A. 512
 - B. 812
 - C. 1023

Answer: A

Watch Video Solution

13. Two finite sets have m and n elements. The total number of subsets of the first set is 56 more than the total number of subsets of the second set. The value of m and n is

A. 7, 6

B. 6, 3

C. 5, 1

D. 8, 7

Answer: B

14. Suppose A_1, A_2, \ldots, A_{30} are thirty sets each having 5 elements and

14. Suppose A_1, A_2, \ldots, A_{30} are unity sets each having 3 elements and

,Let

 $B_1B_2....B_n$ are n sets each having 3 elements

$$igcup_{i=1}^{30}A_1=igcup_{j=1}^nB_j=s$$

and each element of S belongs to exactly 10 of the A_1 and exactly 9 of the value of n.

- A. 15
- B. 3
- C. 45
- D. 35

Answer: C

Watch Video Solution

15. For any two sets A and B, A-(A-B) equals

A. B

B.A-B

 $\mathsf{C}.\,A\cap B$

D. $A^c \cap B^c$

Answer: C

Watch Video Solution

16. Three sets A,B and C are such that $A=B\cap C$ and $B=C\cap A$

 $A.A \cap B$

 $\mathsf{B}.\,A\supset B$

 $\mathsf{C}.\,A=B$

D. $A\subset B'$

Answer: C

17. Let A, B and C be the sets such that $A \cup B = A \cup C$ and

$$A\cap B=A\cap C$$
. show that $B=C$

$$\mathsf{A.}\,A=B$$

$$\mathtt{B}.B=C$$

$$\mathsf{C}.\,A=C$$

$$\mathsf{D}.\,A=B=C$$

Answer: B

18. Let A and B be sets. If $A\cap X=B\cap X=\phi$ and $A\cup X=B\cup X$ for

some set X then how that A=B

A.
$$A-B=A\cap B$$

$$\operatorname{B.}A=B$$

$$\mathsf{C}.\,B-A=A\cap B$$

D. None of these

Answer: B

Watch Video Solution

- **19.** If n (A) =3 ,n(3)=6 and $A\subseteq B$.Then the number of elements in $A\cup B$ is equal to
 - - B. 6

A. 3

- C. 9
- D. 18

Answer: B

20. If
$$n(A)=8$$
 and $n(A\cap B)=2$, then $n[(A\cap B)'\cap A]$ is equal to A. 2
B. 4
C. 6
D. 8

Answer: C

21. Given $A=\{x\mid x \text{ is a root of } x^2-1=0\}, B=\{x\mid x \text{ is a root of } x^2-2x+1=0\}$. Then
A. $A\cap B=A$
B. $A\cup B=\phi$
C. $A\cup B=A$
D. $A\cap B=\phi$

Answer: C

Watch Video Solution

22. If $X = \{4^n - 2n - 1 \colon n \in N\}$ and

$$Y = \{9(n-1) : n \in N\}, \text{ then } X \cap Y =$$

A. X

B. Y

 $\mathsf{C}.\,\phi$

 $\mathsf{D.}\left\{ 0\right\}$

Answer: C

A. N_7
B. N
C. N_{35}
D. N_5
Answer: C
Watch Video Solution
24. If A and B are two non-empty sets, then $(B-A)\cap (A\cup B)$ ' is equal to
A. A
B. A'
С. В
D. none of these
Answer: D

25. Given n(U) = 20, n(A) = 12, n(B) = 9, $n(A \cap B)$ = 4, where U is the universal set, A and B are subsets of U, then $n((A \cup B)')$ equals

26. n(U)=700, n(A)=200, n(B)=300 और $n(A\cap B)=100$, तब

B. 9

C. 14

Answer: D

D. 3

Watch Video Solution

$$n(A' \cap B') =$$

A. 600

B. 400

C. 300

Answer: A

Watch Video Solution

30. Which of the following are corect: 1. $A-B=A-(A\cap B)$ 2.

$$A=(A\cap B)\cup (A-B)$$
 3. $A-(B\cup C)=(A-B)\cup (A-C)$

- A. 1 and 3
- B. 2 only
- C. 2 and 3
- D. 1 and 2

Answer: D

Watch Video Solution

31. 25 people for programme A, 50 people for programme B, 10 people for both. So, number of employee employed only A is

A. 15 B. 20 C. 35 D. 40 Answer: A Watch Video Solution 32. In a class of 60 students, 25 students play cricket and 20 students play tennis and 10 students play both the games. Find the number of students who play neither. A. 45 B. 0 C. 25 D. 35

Answer: C

Watch Video Solution

33. Let X and Y be the sets of all positive divisors of 400 and 1000 respectively (including 1 and the number), Then , $n(X \cap Y) =$

- A. 4
- B. 3
- C. 8
- D. 12

Answer: D

Watch Video Solution

34. In a colleage of 300 students, every student reads 6 newspaper and every newspaper is read by 72 students. The no. of newspaper is

A. At least 30 B. At most 20 C. Exactly 25 D. Exactly 30 **Answer: C Watch Video Solution** 35. In a flight 55 people speak Hindi, 20 speak English and 15 speak both English and Hindi. The number of people who speak at least one of the two languages is A. 40 B. 50 C. 20 D. 60

Answer: D

Watch Video Solution

36. A class has 175 students. The following data shows the number of students obtaining one or more subjects: Mathematics 100, Physics 70, Chemistry 40, Mathematics and Physics 30, Mathematics and Chemistry 28, Physics and Chemistry 23, Mathematics & Physics & Chemistry 18. How many students have offered Mathematics alone?

- A. 24
- B. 48
- C. 60
- D. 100

Answer: C

37. Out of 800 boys in a school, 224 played cricket, 240 played hockey and 336 played basketball. Of the total, 64 played both basketball and hockey; 80 played cricket and basketball and 40 played cricket and hockey; 24 played all the three games. The number of boys who did not play any game is

- A. 128
- B. 216
- C. 240
- D. 160

Answer: D

Watch Video Solution

38. In a class of 30 pupils, 12 take Chemistry, 16 take Physics and 18 take History. If all the 30 students take atleast one subject and no one take all three, then the number of pupils taking 2 subjects is

A. 16	
B. 6	
C. 8	
D. 20	
Answer: A	
Watch Video Solution	

A. 10

B. 20

C. 30

Answer: A

Watch Video Solution

- 40. In a town of 10,000 families it was found that 40% family buy newspaper A, 20% buy newspaper B and 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2%families buy all the three newspapers, then find the number of families which buy A only
 - A. 3100
 - B. 3300
 - C. 2900
 - D. 1400

Answer: B

. If the sets A and B are defined are defined as

$$A = \{(x,y)\!:\! y = e^x, x \in R\}, B = \{(x,y)\!:\! y = x, x \in R\}$$
then

$$((w,y)\cdot y \quad \circ \ , w \in \mathcal{W}_{j}, \mathcal{D} \quad ((w,y)\cdot y \quad w, w \in \mathcal{W}_{j}, \mathcal{U}_{j})$$

B.
$$A\subseteq B$$

 $\mathsf{A}.\,B\subseteq A$

C.
$$A\cap BB=\phi$$

D.
$$A \cup B = A$$

Answer: C

42. Two sets A and B are as under

 $A=|(a,b)\in R imes R:|a-5|<1 ext{ and } |b-5|<1ig\}B=\Big[(a,b)\in R imes B$ (1) $B\subset A$ (2) $A\subset B$ (3) $A\cap B=\phi(anemptyset)$ (4) eq ither A sub B

 $n \,\, {
m or} \,\, {
m \sf B} \, {
m sub} \, {
m \sf A} \hat{}$

A.
$$A\subset B$$

B. $A\cap B=\phi$ (an empty set)

C. neither $A\subset B$ nor $B\subset A$

 $D.B \subset A$

Answer: A

Watch Video Solution

43. $If A = \{x, y\} : x^2 + y^2 = 25\}$ and

 $B=\left\{(x,y)\!:\!x^2+9y^2=144
ight\}, ext{ then } A\cap B ext{ contains}$

A. One point

B. Three points

C. Two points

D. Four points

Answer: D

44. A set contains 2n+1 elements. The number of subsets of this set containing more than n elements :

A.
$$2^{n-1}$$

 $B. 2^n$

 $\mathsf{C.}\ 2^{n+1}$

D. 2^{2n}

Answer: D

Watch Video Solution

45. If $X=\{4^n-3n-1\colon n\in N\}$ and $Y=\{9(n-1)\colon n\in N\}$, then

A. X

B. Y

$\boldsymbol{\mathcal{C}}$	N
┖.	1 /

D. None of these

Answer: B

Watch Video Solution

46. Let $A=\{a,b,c\}$ and $B=\{1,2,3,4\}$. Consider a relation R defined from set A to set B. Then R is a subset of set

A. A

B.B

 $\mathsf{C}.\,A imes B$

D. $B \times A$

Answer: C

47. If $A = \{a, b, c\}, B = \{b, c, d\}$ and

 $C = \{a,d,c\}, ext{ then } (A-B) imes (B\cap C) =$

A. $\{(a,c), (a,d)\}$

 $\mathtt{B.}\left\{(a,b),(c,d)\right\}$

C. $\{(c,a),(a,d)\}$

D. $\{(a,c), (a,d), (b,d)\}$

Answer: A

Watch Video Solution

48. If P, Q and R are the subsets of a set A, then prove that

$$R imes (P^c\cup Q^c)^c=(R imes P)\cap (R imes Q).$$

A.
$$(R imes P) \cap (R imes Q)$$

B.
$$(R imes Q) - (R imes P)$$

$$\mathsf{C.}\left(R\times P\right)\cup\left(P\times Q\right)$$

D.(A) and (B)

Answer: A

Watch Video Solution

- **49.** If A is the set of even natural number less than 8 and B is the set of prime numbers less then 7, then the number of relations from A to B is 2^9 (b) 9^2 (c) 3^2 (d) 2^9-1
 - A. 2^9
 - $\mathsf{B.}\,9^2$
 - **C**. 9
 - D. 2^{9-1}

Answer: A

50. If two sets A and B are having 99 elements in common, the number of elements common to each of the sets $A\times B$ and $B\times A$ are $121\lambda^2$, the value of λ is

- $\mathsf{A.}\ 2^{90}$
- B. 99^2
- C. 100
- D. 18

Answer: B

51. Let A and B be two sets containing four and two elements respectively.

Then the number of subsets of the set $A \times B$, each having at least three elements is : (1) 219 (2) 256 (3) 275 (4) 510

- A. 219
- B. 256

C. 275

D. 510

Answer: A

Watch Video Solution

52. Let $A = \{x, y, z\}$ and $B = \{a, b, c, d\}$. Which one of the following is not a relation from A to B

A. $\{(x, a), (x, c)\}$

B. $\{(y, c), (y, d)\}$

C. $\{(z, a), (z, d)\}$

D. $\{(z, b), (y, b), (a, d)\}$

Answer: D

53. $R \subseteq A imes A$ (where $A \neq 0$) is an equivalence relation if R is

A. Reflexive, symmetric but not transitive

B. Reflexive, niether symmetric nor transitive

C. Reflexive, symmetric and transitive

D. None of these

Answer: C

Watch Video Solution

54. In order that a relation R defined on a non-empty set A is an equivalence relation, it is sufficient, if R

A. Is reflexive

B. is symmetric

C. Is transitive

D. Possesses all the obove three properties

Answer: D

Watch Video Solution

55. The number of reflexive relations of a set with four elements is equal to

- A. 2^{16}
- B. 2^{12}
- $C. 2^8$
- D. 2^{4}

Answer: D

Watch Video Solution

56. If a relation R on the set N of natural numbers is defined as

 $(x,y)\Leftrightarrow x^2-4xy+3y^2=0,$ Aax, yarepsilon N. Then the relation R is

A. reflexive

B. symmetric

C. transitive

D. An equivalence relation

Answer: A

Watch Video Solution

$R = \{(2,6), (6,2), (4,6), (6,4)\}$. Then R is

57. let $A = \{2, 4, 6, 8\}$. A relation R on A is defined by

A. Anti-symmetric

B. Reflexive

C. Symmetric

D. Transitive

Answer: C

58. The relation R defined in N as $aRb\Rightarrow b$ is divisible by a is

A. Reflexive but not symmetric

B. Symmetric but not transitive

C. Symmetric and transitive

D. None of these

Answer: A

Watch Video Solution

59. Let $R = \{(3,3), (6,6), (9,9), (12,12), (6,12), (3,9), (3,12), (3,6)\}$

be relation on the set $A = \{3, 6, 9, 12\}$. The relation is-

A. An equivalence relation

B. Reflexive and symmetric only

- C. Reflexive and transitive only
- D. Reflexive only

Answer: C

Watch Video Solution

- **60.** The relation $S = \{(3,3), (4,4)\}$ on the set $A = \{2,3,4\}$ is "_____".`
 - A. an equivalance relation
 - B. reflexive only
 - C. not reflexive but symmetric and transitive
 - D. symmetric only

Answer: C

View Text Solution

61. let $S=\{1,2,3,\ldots,24\}$. Define a relation '~' on S as x~y is the product of the digits in x is same as that of the digits of y. (Note that is x is a single digit number then the product of the digits in x will be considered to be x.) Then the number of equivalence classes for this equivlence relation is

A. 9

B. 10

C. 20

D. 24

Answer: B

View Text Solution

62. Let $R=\{(1,3),(4,2),(2,4),(2,3),(3,1)\}$ be a relation on the set

 $A=\{1,2,3,4\}.$ The relation R is

A. Reflexive

B. Transitive

C. Not symmetric

D. A function

Answer: C

Watch Video Solution

63. Let R_1 be a relation defined by

 $R_1 = \{(a,b) \mid a>b, a,b \in R\}$. Then R_1 , is

A. An equivalence relation on R

B. Reflexive, transitive but not symmetric

C. Symmetric, transitive but not reflexive

D. Neither transitive nor reflexive but symmetric

Answer: B

64. Let R be the relation on the set R of all real numbers defined by a Rb

Iff $|a-b| \leq 1$. Then R is

A. Reflexive and Symmetric

B. Symmetric only

C. Transitive only

D. Anti-symmetric only

Answer: A

Watch Video Solution

65. Let R be a relation defined on the set of natural numbers N as

 $R=\{(x,\;y)\!:\!x,\;y\in N,\;2x+y=41\}$ Find the domain and range of R

. Also, verify whether ${\cal R}$ is (i) reflexive, (ii) symmetric (iii) transitive.

A. ρ is equivalence relation

B. ρ is only reflexive relation

C. $\boldsymbol{\rho}$ is only symmetric relation

D. ρ is not transitive

Answer: D

Watch Video Solution

- **66.** On the set R of real numbers, the relation p is defined by xpy, (x ,y)
 - $\in R$
 - A. If | imes y| < 2 then ho is reflexive but neither symmetric nor transitive
 - B. If x-y < 2 then ho is reflexive and symmetric but not transitive
 - C. If $|x| \geq y$ then ho is reflexive and transitive but not symmetric
 - D. If x>|y| then ho is transitive but neither reflexive nor symmertric

Answer: D

67. Let r be relation from R (set of real numbers) to R defined by $r=ig\{(a,b)\mid a,b\in R \ ext{and} \ a-b+\sqrt{3} \ ext{ isan irrational number}ig\}.$ The relation r is

A. an equivlence relation

B. reflexive only

C. symmetric only

D. transitive only

Answer: B

Watch Video Solution

68. On R, a relation p is defined by xpy if and only if x-y is zero or irrational. Then

A. ρ is equivalence relation

B. $\boldsymbol{\rho}$ is reflexive but neither symmetric nor transitive

 $\operatorname{C.}\rho$ is reflexive and symmetric but not transitive

D. ρ is symmetric and transitive but not reflexive

Answer: C

Watch Video Solution

69. On the set N of all natural numbers define the rational R by aRb iff the

G.C.D. of a and b is 2. Then R is

A. Reflexive but not symmetric

B. symmetric only

C. reflexive and transitive

D. rreflexive, symmetric and transitive

Answer: B

70. Let W denote the words in the english dicitionary define the relation R by $R\colon\{(x,y)\in W imes W$ I the words x and y have at least one letter in common }Then R is

A. reflexive, not symmetric and transitive

B. not reflexive, symmetric and transitive

C. reflexive, symmetric and not transitive

D. reflexive, symmetric and transitive

Answer: C

Watch Video Solution

71. For any two numbers heta and ϕ , we define $heta R \phi$ if and only if $\sec^2 \theta - \tan^2 \phi = 1$ the relation R is -

A. Reflexive but not transitive

B. Symmetric but not reflexive

C. Both reflexive and symmetric but not transitive

72. If the function $f\!:\!N o N$ is defined by $f(x)=\sqrt{x},$

D. At equivalence relation

Answer: D

Watch Video Solution

- $rac{f(25)}{f(16)+f(1)}$ is equal to
 - A. $\frac{5}{6}$
 - c. $\frac{5}{3}$
 - D. 1

Answer: D

73. If
$$f\colon R o R$$
 be defined by $f(x)=egin{cases} 2x\colon x>3 \ x^2\colon 1< x\le 3 \ 3x\colon x\le 1 \end{cases}$

74. Let $f\!:\!R o R$ satisfy $f(x)(2)=4,\,$ then $f\!\left(rac{1}{2}
ight)=$

Then,
$$f(-1) + f(2) + f(4)$$
 is

Answer: A

D. 1`

B. $\frac{1}{4}$

 $\mathsf{C.}\,\frac{1}{2}$

Answer: B

View Text Solution

75. If
$$f(x)=\cos(\log_e x), ext{ then } f(x)f(y)-rac{1}{2}igg[f(xy)+figg(rac{x}{y}igg)igg]$$
 has the

value-

A. -1

B. $\frac{1}{2}$

 $\mathsf{C}.-2$

D. 0

Answer: D

76. The values of bandc for which the identity of f(x+1)-f(x)=8x+3 is satisfied, where $f(x)=bx^2+cx+d$, are b=2, c=1 (b) b=4, c=-1 b=-1, c=4 (d) b=-1, c=1

A.
$$b = 2, c = 1$$

B.
$$b = 4, c = -1$$

C.
$$b = -1, c = 4$$

D.
$$b = -1, c = 1$$

Answer: B

Watch Video Solution

77. Given the function $f(x)=rac{a^x+a^{-x}}{2}, a>2,$ then f(x+y)+f(x-y)=

A.
$$2f(x)$$
. $F(y)$

B.
$$f(x)$$
. $F(y)$

C.
$$\frac{f(x)}{f(y)}$$

D.
$$\frac{1}{2}f(x)f(y)$$

Answer: A

Watch Video Solution

78. If $f(x) = \log \left(\frac{1+x}{1-x} \right)$, then $f\left(\frac{2x}{1+x^2} \right)$ is equal to

A.
$$\left[f(x)\right]^2$$

$$\mathsf{B.}\left[f(x)\right]^3$$

$$\mathsf{C.}\,2f(x)$$

D.
$$3f(x)$$

Answer: C

79. If
$$e^{f(x)} = \frac{10+x}{10-x}$$
, $x \in (-10,10)$ and $f(x) = kf\left(\frac{200x}{100+x^2}\right)$,

then k =

A.0.5

B. 0.6

C.0.7

D.0.8

Answer: A

- - **80.** If $f(x) = \cos \left[\pi^2\right] x + \cos \left[-\pi^2\right] x$, where [x] denots the greatest integer function, then the value of $f\left(\frac{\pi}{2}\right)$ is-
 - A. $f\left(\frac{\pi}{4}\right) = 2$
 - B. $f(-\pi) = 2$
 - C. $f(\pi) = 1$

$$\mathrm{D.}\,f\!\left(\frac{\pi}{2}\right) = \,-1$$

Answer: D

Watch Video Solution

81. Prove that if f(x) is periodic function with period T, then the function

f(ax + b) where a > 0, is periodic with period

A. T/b

B. aT

C. bT

D. T/a

Answer: D

then

$$A. f(x) = -f(-x)$$

82. If the graph of the function y = f(x) is symmetrical about the line x = 2,

83. Let $f\{(1,1),\,(2,4),\,(0,\,-2),\,(\,-1,\,-5)\}$ be a linear function from Z

$$\mathsf{B.}\, f(2+x) = f(2-x)$$

$$\mathsf{C.}\, f(x) = f(\,-x)$$

$$\mathsf{D.}\, f(x+2) = f(x-2)$$

Answer: B

Watch Video Solution

into Z. Then, f (x) is

A.
$$f(x)=3x-2$$

$$B. f(x) = 6x - 8$$

$$\mathsf{C.}\, f(x) = 2x - 2$$

D.
$$f(x) = 7x + 2$$

Answer: A

Watch Video Solution

84. If $f(x) = \log \frac{1+x}{1-x}$ then-

A. Even function

B.
$$f(x_1)f(x_2) = f(x_1 + x_2)$$

C.
$$f(x_1)(f(x_2) = f(x_1 - x_2)$$

D. odd function

Answer: D

85. The real valued function $f(x)=rac{a^x-1}{x^n(a^x+1)}$ is even, then the value of n can be

B. 3

C. 4

D. None Of These

Answer: B

Watch Video Solution

86. The function $f(x) = \sec \Bigl \lceil \log \Bigl(x + \sqrt{1+x^2} \Bigr) \Bigr
ceil$ is

A. Odd

B. Even

C. Neither odd nor even

D. Constant

Answer: B

Watch Video Solution

- **87.** The function $f(x) = \sin\Bigl|\log\Bigl(x+\sqrt{x^2+1}\Bigr)\Bigr|$ is-
 - A. Even function
 - B. Odd function
 - C. Neither eve nor odd
 - D. Periodic function

Answer: B

88. If
$$f(x)+2f\left(rac{1}{x}
ight)=3x, x
eq 0$$
 and

$$S=\{x\in R\!:\!f(x)=f(-x)\}, \;\; ext{then} \;\; S$$

A. contains exactly one element.

B. contains exactly two elements.

C. Contains more then two elements

D. Is an empty set

Answer: B

89. If [x] denotes the greatest integer
$$\leq x$$
, then

$$\left[\frac{2}{3}\right] + \left[\frac{2}{3} + \frac{1}{99}\right] + \left[\frac{2}{3} + \frac{2}{99}\right] + \dots + \left[\frac{2}{3} + \frac{98}{99}\right]$$
 is equal to

Answer: C

Watch Video Solution

- **90.** $f(x) = \cos^2 x + \cos^2 \left(\frac{\pi}{3} + x \right) \cos x \cdot \cos \left(x + \frac{\pi}{3} \right)$ is
 - A. 0
 - $\mathsf{B.}\;\frac{3}{4}$
 - C. 1
 - D. $\frac{4}{3}$

Answer: B

91. If
$$y=f(x)=\frac{(x+2)}{(x-1)},$$
 then $x=f(y)$ (b) $f(1)=3$ y increases with xf or $x<1$ f is a rational function of x

A.
$$f(y)$$

B.
$$(2f(y)$$

$$\mathsf{C.}\;\frac{1}{f(y)}$$

$$\mathsf{D}.-f(y)$$

Answer: A

Watch Video Solution

92. If g(y) is inverse of function $f\!:\!R o R$ given by f(x)=x+3, then

$$g(y) =$$

A.
$$y + 3$$

B.
$$y-3$$

C.
$$\frac{y}{3}$$

Answer: B

Watch Video Solution

93. If $f\!:\!R o R$ is defined by $f(x)=|x|, \,$ then

$$\mathsf{A}.\,f^{\,-1}(x)=\,-\,x$$

$$\mathtt{B.}\,f^{\,-1}(x)=\frac{1}{|x|}$$

C. The function $f^{-1}(x)$ does not exist

D.
$$f^{-1}(x)=rac{1}{x}$$

Answer: C

94. If
$$f(x)=3x-5$$
, then $f^{-1}(x)$ is given by $\frac{1}{(3x-5)}$ is given by

$$\dfrac{(x+5)}{3}$$
 does not exist because f is not one-one does not exist because

95. let $f \colon R o R$ be defined by f(x) = 2x + 6 which is a bijective

A.
$$\frac{1}{3x-5}$$

f is not onto

B. Is given by $\frac{x+5}{3}$

C. Does not exist because f is not one-one

D. Does not exist because f is not onto

Answer: B

- mapping, then $f^{\,-1}(x)$ is given by
 - $\mathsf{A.}\,2x+6$
 - B. 6x + 2

C.
$$\frac{x}{2} - 3$$

D. x - 3

Answer: C

Watch Video Solution

96. If $f\!:\!R o R$ be a mapping defined by $f(x)=x^3+5$, then f^{-1} (x) is equal to

A.
$$\frac{1}{x^2+5}$$

B.
$$(x+5)^{\frac{1}{3}}$$

$$\mathsf{C.}\,(5-x)^{\frac{1}{3}}$$

D.
$$(x-5)^{rac{1}{3}}$$

Answer: D

97. If
$$f(x)=rac{2x-1}{x+5}, x
eq -5$$
, then $f^{-1}(x)$ is equal to

A.
$$\frac{x+5}{2x-1}x
eq \frac{1}{2}$$

B.
$$\dfrac{5x+1}{2-x}x
eq 2$$

$$\mathsf{C.}\,\frac{5x-1}{2-x},x\neq 2$$

D.
$$\dfrac{x-5}{2x+1}, x
eq \dfrac{1}{2}$$

Answer: B

Watch Video Solution

inverse of f is the map $g\colon \mathsf{Range}\: f o R - \left\{ rac{5}{4}
ight\}$ given by

98. Let $f\colon R-\left\{rac{5}{4}
ight\} o R$ be a function defines $f(x)=rac{5x}{4x+5}.$ The

$$\mathsf{A.}\,g(y) = \frac{y}{5-4y}$$

$$\mathtt{B.}\,g(y) = \frac{5y}{5+4y}$$

$$\operatorname{C.}g(y) = \frac{5y}{5-4y}$$

D. None of these

Answer: C

Watch Video Solution

99. If the function $f{:}\left[1,\infty
ight) o \left[1,\infty
ight)$ is defined by $f(x)=2^{x\,(\,x\,-\,1\,)}\,,$

then $f^{-1}(x)$ is (A) $\left(\frac{1}{2}\right)^{x\,(x-1)}$ (B) $\frac{1}{2}\sqrt{1+4\log_2 x}$ (C) $\frac{1}{2}\left(1-\sqrt{1+4\log_2 x}\right)$ (D) not defined

A.
$$\left(\frac{1}{2}\right)^{x(x-1)}$$

B.
$$\frac{1}{2}\Big(1+\sqrt{1+4\log_2 x}\Big)$$

c.
$$\frac{1}{2} \left(1 - \sqrt{1 + 4 \log_2 x} \right)$$

D. Not defined

Answer: B

C.
$$\dfrac{1}{2}\mathrm{log_{10}}(2x-1)$$
D. $\dfrac{1}{4}\mathrm{log_{10}}\,\dfrac{2x}{2-x}$

A.
$$\log_{10}(2-x)$$

Answer: B

A. $\log_e\left(rac{x-2}{x-1}
ight)^{rac{1}{2}}$

B. $\log_e \left(\frac{x-1}{3-x}\right)^{\frac{1}{2}}$

 $\mathsf{C.}\log_e\left(rac{x}{2-x}
ight)^{rac{1}{2}}$

D. $\log_e \left(\frac{x-1}{x+1} \right)^{-2}$

watch video Solution

102. The inverset of the function
$$y = \frac{16^x - 16^{-x}}{16^x + 16^{-x}}$$
 is

A.
$$\log_{16}(2-x)$$

B.
$$\frac{1}{2}\log_{16}\frac{1+x}{1-x}$$

C.
$$\frac{1}{2}\log_{16}(2x-1)$$

D.
$$\frac{1}{4}\log_{16}\frac{2x}{2-x}$$

Answer: B

Watch Video Solution

103. Let R be the set of real number and the mapping $f\colon R \to R$ and $g\colon R \to R$ be defined by $f(x)=5-x^2$ and g(x)=3x-4, then the value of (fog) (-1) is

$$A. - 44$$

B. - 54

C. -32

D. - 64

Answer: A

Watch Video Solution

104. If $f\!:\!R o R$ is defined by $f(x)=rac{x}{x^2+1}, ext{ find } f(f(2))$

A. $\frac{29}{10}$

B. $\frac{1}{29}$

C. 29

 $\mathsf{D.}\;\frac{10}{29}$

Answer: D

105. If
$$x
eq 1 \,\, ext{and} \,\, f(x) = rac{x+1}{x-1}$$
 is a real function, then $f(f(f(2)))$ is

composite mapping fog

 $f\!:\!R o R, f(x)=\sin x \, ext{ and }\,g\!:\!R o R, g(x)=x^2$, is

of

the

maps

Answer: C

106.

Watch Video Solution

The

A.
$$(\sin x)^2$$

$$\mathsf{B}.\sin x^2$$

$$\mathsf{C.}\,x^2$$

D.
$$x^2(\sin x)$$

Answer: B

Watch Video Solution

107. If

 $f(x)=\sin x+\cos x, x\in (-\infty,\infty) ext{ and } g(x)=x^2, x\in (-\infty,\infty)$

then (fog)(x) is equal to

- A. 1
- B. 0
- $\mathsf{C.}\sin^2(x) + \cos\!\left(x^2\right)$
- $\mathsf{D.}\sin(x^2) + \cos(x^2)$

Answer: D

B.
$$\sec 2\theta$$

A. $\tan 2\theta$

 $\mathsf{C}.\cos 2\theta$

D. $\cot 2\theta$

Answer: C

Watch Video Solution

- **109.** If $f(x) = \left(25 x^4
 ight)^{1/4}$ for $0 < x < \sqrt{5}$ then $f\!\left(f\!\left(rac{1}{2}
 ight)
 ight) =$
 - A. 2^{-4}
 - $B.2^{-3}$
- $C. 2^{-2}$
- $D. 2^{-1}$

Answer: D

110. If
$$f(x) = \frac{x-1}{x+1}$$
, then f(2) is equal to

A.
$$rac{f(x)+1}{f(x)+3}$$

$$\mathsf{B.}\ \frac{3f(x)+1}{f(x)+3}$$

$$\mathsf{C.}\,\frac{f(x)+3}{f(x)+1}$$

D.
$$\frac{f(x) + 3}{3f(x) + 1}$$

Answer: B

Watch Video Solution

111. Let $f(x) = \frac{\alpha x}{x+1}, x \neq -1$. Then, for what value α is f[f(x)] = x?

A.
$$\sqrt{2}$$

$$\mathsf{B.}-\sqrt{2}$$

$$D. -1$$

Answer: D

Watch Video Solution

112. If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to

A.
$$f(c) = g(a)$$

$$\mathtt{B.}\, f(d) = g(b)$$

$$\mathsf{C}.\, f(a) = g(c)$$

$$\mathsf{D}.\, f(b) = g(b)$$

Answer: B

Watch Video Solution

113. If $f(x)=8x^3,$ $g(x)=x^{rac{1}{3}},$ then fog (x) is

B. $8^{3}x$

C. $(8x)^{\frac{1}{3}}$

D. $8x^{2}$

Answer: A

Watch Video Solution

114. If f(x)=2x+1 and $g(x)rac{x-1}{2}$ for all real x, then $(fog)^{-1}igg(rac{1}{x}igg)$

A. x

is equal to

 $\mathsf{B.}\;\frac{1}{x}$

 $\mathsf{C.}-x$

 $\mathsf{D.} - \frac{1}{x}$

Answer: B

115. If
$$f(x)=\sin^2x+\sin^2\Bigl(x+\frac{\pi}{3}\Bigr)+\cos x\cos\Bigl(x+\frac{\pi}{3}\Bigr)andg\Bigl(\frac{5}{4}=1, \text{ then } (gof)(x) \text{ is } ____$$

A.
$$\frac{1}{2}$$

B.0

 $\mathsf{C}.\sin x$

D. None of these

Answer: D

116. Let
$$g(x)=1+x-[x]$$
 and $f(x)=egin{cases} -1,&x<0\ 0,&x=0\ 1,&x>0 \end{cases}$ $f[g(x)]$ is equal to

B. 1

C.f(x)

D. g (x)

Answer: B

Watch Video Solution

117. Two functions $f\!:\!R o R,g\!:\!R o R$ are defined as follows :

$$\int 0$$
 (x rational)

 $f(x) = \begin{cases} 0 & (\text{x rational}) \\ 1 & (\text{x irrational}) \end{cases}, \quad g(x) = \begin{cases} -1 & (\text{x rational}) \\ 0 & (\text{x irrational}) \end{cases}$

$$(fog)(\pi) + (gof)(e) =$$

then

A.
$$-1$$

B. 0

C. 1

D. 2

Answer: A

Watch Video Solution

118. If $f\colon R o R$ and $g\colon R o R$ is given by f(x) =|x| and g(x)=[x] for each $x\in R$ then $\{x\in R\colon g(f(x))\le f(g(x))\}$

- A. $Z \cup (-\infty, 0)$
- B. $(-\infty,0)$
- $\mathsf{C}.\,Z$
- D. R

Answer: D

Watch Video Solution

119. Let the function f,g,h are defined from the set of real numbers $\mathbb R$ to

 \mathbb{R}

such

that

$$f(x)=\sin^2x+\sin^2\Bigl(x+rac{\pi}{3}\Bigr)+\cos x\cos\Bigl(x+rac{\pi}{3}\Bigr)andg\Bigl(rac{5}{4}=1, ext{ then} \ (gof)(x) ext{ is}$$

A. a polynomial fo first degree in sin x and cos x

Answer: B

ho(fog)(x) is defined by

A. $\left\{egin{array}{l} 0, x = 0 \ x^2, x > 0 \ -x^2, x < 0 \end{array}
ight.$

 $\mathsf{B.} \left\{ \begin{matrix} 0 & x = 0 \\ x^2 & x \neq 0 \end{matrix} \right.$

 $\mathsf{C.} \left\{ \begin{array}{ll} 0 & x \leq 0 \\ x^2 & x > 0 \end{array} \right.$

D. None of these

Watch Video Solution

120.

B. a constant function

 $f(x) = x^2 - 1, g(x) = \sqrt{x^2 + 1}, h(x) = egin{cases} 0 & ext{ if } & x < 0 \ x & ext{ if } & x > 0 \end{cases}.$

Then

If

C. a polynomial of second degree in sin x and cos x

D. None of these

Answer: B

Watch Video Solution

121. Let
$$f(x)=x^2andg(x)=\sin xf$$
 or $allx\in R$. Then the set of all x satisfying $(fogogof)(x)=(gogof)(x), where(fog)(x)=f(g(x)),$ is

 $\pm \sqrt{n\pi}, n \in \{1, 2, .\}$

$$rac{\pi}{2}+2n\pi, n \in \{,\; -2,\; -1,0,1,2\}\,2n\pi, n \in \{,\; -2,\; -1,0,1,2,\}$$

A.
$$\pm \sqrt{n\pi}$$
, $nion\{0, 1, 2, \ldots\}$

B.
$$\pm \sqrt{n\pi}, n \in \{1, 2, \ldots\}$$

 $\pm \sqrt{n\pi}, n \in \{0, 1, 2, .\}$

C.
$$\frac{\pi}{2} + 2n\pi, n \in \{\ldots, -2-1, 0, 1, 2\ldots\}$$

D.
$$2n\pi, n \in \{\ldots, -1-1, 0, 1, 2\ldots\}$$

Answer: A

Watch Video Solution

122. Let
$$f,g\colon \stackrel{\longrightarrow}{R^R}$$
 be a two function defined as $f(x)=|x|+xandg(x)=|x|-x$ for all $x\in R$. Then, find $fogandgof$.

A. 0

B. 4x

 $\mathsf{C.}-4x$

D. 2x

Answer: C

Watch Video Solution

123. The period of f(x) = x - [x], if it is periodic is

A. f (x) is not periodic

 $\cdot \frac{1}{2}$

C. 1

D. 2

Answer: C

then

Watch Video Solution

124. If $f: R \to R$ be defined by $f(x) = e^x$ and $g: R \to R$ be defined by $g(x) = x^2$ the mapping $gof: R \to R$ be defined by $(gof)(x) = g[f(x)] \ \forall x \in R$

A. gof is bijective but f is not injective

B. gof is injective and g is injective

C. gof is injective but g is not bijective gof is surjective and g is

surjective

D. gof is injective and g is injective

Answer: C

125. If
$$f\!:\!R o R$$
 be defined by $f(x)=rac{1}{x},\ orall x\in R.$ Then , f is

A. bijective

B. one-one

C. f is not defined

D. onto

Answer: C

Watch Video Solution

126. If $f \colon A o B$ is bijection and $g \colon B o A$ is that inverse of f, then fogis equal to

A. I_A

B. I_B

C. *f*

D. g(x)

Answer: B

Watch Video Solution

127. If $A = \{1, 2, 3, 4\}$ and $B = \{1, 2, 3, 4, 5, 6\}$ are two sets and function $f\!:\!A o B$ is defined by $f(x)=x+2,\,orall x\in A$, then the function f is

A. Bijective

B. Onto

C. One-one

D. Many-one

Answer: C

128. A is a set having 6 distinct elements. The number of distinct functions

from A to A which are not bijection is

- $\mathsf{A.}\,6!-6$
- $\mathsf{B.}\,6^6-6$
- $C.6^6 6!$
- D. 6!

Answer: C

Watch Video Solution

129. Number of bijective function from a set of 10 elements to itself is

- A. 5!
- B. 10!
- C. 15!

D	Q	١
υ.	O	·

Answer: B

Watch Video Solution

130. Set A has 3 elements and set B has 4 elements. The number of injections that can be defined from A to B is

A. 144

B. 12

C. 24

D. 64

Answer: C

131. The set A has 4 elements and thse set B has 5 elements, then the number of injective mapping that can be defined from A to B is

- A. 72
- B. 120
- C. 144
- D. 60

Answer: B

Watch Video Solution

132. Which one of the following is a bijective function on the set of real numbers ?

- A. 2x 5
- B. |x|
- $\mathsf{C.}\,x^2$

D.
$$x^2 + 1$$

Answer: A

Watch Video Solution

133. Let $f\!:\!R o R$ be defined by $f(x)=x^4,\,$ then

A. f is one-one and onto

B. f may be one-one and onto

C. f is one-one but not onto

D. f is neither one-one nor onto

Answer: D

134. Let the function $f\colon R o R$ be defined by $f(x) = 2x + \sin x$. Then, f is

A. One-to-one and onto

B. One-to-one but not onto

C. Onto but not one-to-one

D. neither one-to-one onto

Answer: A

Watch Video Solution

135. Let $f\!:\!N o N$ be defined by $f(x)=x^2+x+1, x\in N$. Then is f is

A. One-one onto

B. Many one

C. One-one but not onto

D. None of these

Answer: C

Watch Video Solution

136. The function $f\colon\! R o R$ is defined by f(x)=(x-1)(x-2)(x-3)is

137. A function f from the set of natural number to integers defined by

A. One-one but not onto

B. Onto but not one-one

C. Both one-one and onto

D. Neither one-one nor onto

Answer: B

Watch Video Solution

 $f(n) = \begin{cases} -\frac{n-1}{2} & \text{when n is odd} \\ -\frac{n}{2} & \text{when n is even} \end{cases}$

A. One-one but not onto

B. Onto but not one-one

C. One-one and onto both

D. Neither one-one nor onto

Answer: C

Watch Video Solution

138. Let $f\colon N o N$ be defined as $f(n)=rac{n+1}{2}$ if n is odd and $f(n)=rac{n}{2}$ if n is even for all $n\in N$ State whether the function f is

bijective. Justify your answer

A. onto but not one-one

B. one-one and onto

C. neither one-one nor onto

D. one-one but not onto

Watch Video Solution

139. Let N be the set of all natural numbers, Z be the set of all integers and $\sigma\!:\!N o Z$ defined by

$$\sigma(n) = \left\{ egin{array}{ll} rac{n}{2} & ext{,if n is even} \ -rac{n-1}{2} & ext{,if n is odd} \end{array}
ight.$$
 then

A. σ is one-one but not onto

B. σ is onto but not one-one

C. σ is one-one and onto

D. σ is neither one-one not onto

Answer: C

A. Onto

B. Many-one

C. One-one and into

D. Many one and onto

Answer: C

Watch Video Solution

141. $f(x) = \begin{cases} x, & \text{if x is rational} \\ 0, & \text{if x is irrational} \end{cases}$, $g(x) = \begin{cases} 0, & \text{if x is rational} \\ x, & \text{if x is irrational} \end{cases}$

Then, f-g is

A. one-one and onto

B. one-one end into

C. many one and onto

D. neither one-one nor onto

Answer: A

142. If
$$x
eq 1 \, ext{ and } \, f(x) = rac{x+1}{x-1}$$
 is a real function, then $f(f(f(2)))$ is

D. f is netither one-one nor onto in R

Answer: A

143.

$$B=\{-4,-2,0,2\}$$
 and $f,g\colon A o B$ be functions defined by $f(x)=x^2-x, x\in A$ and $g(x)=2\Big|x-\Big(rac{1}{2}\Big)\Big|-1, x\in A$. Are f and g equal? Justify your answer.

Let $A = \{-1, 0, 1, 2\}$

(Hint: One may note that two functio

A.
$$f=g$$

B. f=2g

 $\mathsf{C}.\,g=2f$

D. None of these

Answer: A

Watch Video Solution

144. If $f\!:\!R o S$, defined by $f(x)=\sin x-\sqrt{3}\cos x+1$, is onto then the interval of S, is

A. [-1, 3]

B. [1, 1]

C. [0, 1]

D. [0, -1]

Answer: A

145. The function $f\colon X o Y$ defined by $f(x)=\sin x$ is one-one butnot onto if X and Y are respectively equal to

$$A. R$$
 and R

B.
$$[0, \pi]$$
 and $[-1, 1]$

C.
$$\left[0, \frac{\pi}{2}\right]$$
 and $[-1, 1]$

D.
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
 and $[-1, 1]$

Answer: C

Watch Video Solution

146. If $f(x)=\left(x^2-\frac{10}{x^2+1}\right)$, for every real numbers. Then the minimum value of f

A. Does not exist because f is bounded

B. Is not attained even through f is bounded

C. Is equal to +1

D. Is equal to -1

Answer: D

View Text Solution

147. Domain of the function $f(x) = \sqrt{2-2x-x^2}$ is

A.
$$-\sqrt{3} \leq x \leq \sqrt{3}$$

$$\mathsf{B.} - 1 - \sqrt{3} \le x \le -1 + \sqrt{3}$$

$$\mathsf{C}.-2 \leq x \leq 2$$

D.
$$-1+\sqrt{3} \leq x \leq -2-\sqrt{3}$$

Answer: B

148. The domain of the function $\sqrt{\log(x^2-6x+6)}$ is

A.
$$(-\infty,\infty)$$

B.
$$\left(-\infty,3,\sqrt{3}\right)\cup\left(3+\sqrt{3},\infty\right)$$

C.
$$(-\infty,1]\cup[5,\infty)$$

D.
$$[0,\infty)$$

Answer: C

Watch Video Solution

149. The domain of $f(x) = \frac{9 \log(x+3)}{x^2 + 3x + 2}$ is

A.
$$R-\{-2\}$$

B.
$$(-2, +\infty)$$

C.
$$R - \{-1, -2, -3\}$$

D.
$$(-3,\infty)-\{-1,-2\}$$

Answer: D

Watch Video Solution

150. The domain of the function $y=f(x)=rac{1}{\log_{10}(1-x)}+\sqrt{x+2}$ is

A.
$$[\,-2,1)$$
, excluding 0

$${\rm B.}\:[\:-3,\:-2],\:{\rm excluding}\:-2.5$$

$$\mathsf{C}.\,[0,1],\,\,\mathsf{excluding}\,\,\mathsf{0}$$

D. none of these

Answer: A

Watch Video Solution

151. The domain of $f(x) = \log \lvert \log x
vert$ is

A.
$$(0, \infty)$$

 $B.(1,\infty)$

 $C.(0,1), \cup (1,\infty)$

D. $(-\infty, 1)$

Answer: C

Watch Video Solution

152. The domain of definition of $f(x) = \sqrt{rac{1-|x|}{2-|x|}}$ is

A.
$$(\,-\infty,\,-1)\cup(2,\infty)$$

B.
$$[\,-1,1]\cup(2,\infty)\cup(\,-\infty,\,-2)$$

C.
$$(-\infty,1)\cup(2,\infty)$$

D.
$$[-1,1] \cup (2,\infty)$$

Answer: B

153. The domain of the function
$$f(x)=\sqrt{\log\Bigl(\dfrac{1}{|\sin x|}\Bigr)}\;R-\{-\pi,\pi\}$$
 (b) $R-\{n\pi\mid n\pi Z\}\;R-\{2n\pi\mid n\in z\}$ (d) $(-\infty,\infty)$

A.
$$R-\{2n\pi, n\in I\}$$

B. $R - \{n\pi, n \in I\}$

C.
$$R-(-\pi,\pi)$$

D.
$$(-\infty, \infty)$$

Answer: B

154. The domain of the function
$$f(x)=(\log)_{3+x}\big(x^2-1\big)$$
 is $(-3,-1)\cup(1,\infty)$

$$(-3, -2) \cup (-2, -1) \cup (1, \infty)$$

$$(-3, -2) \cup (-2, -1) \cup (1, \infty)$$

A.
$$(-3,-1)\cup(1,\infty)$$

$$\mathtt{B.}\,[\,-3,\,-1)\cup[1,\infty)$$

C.
$$(-3, -2) \cup (-2, -1) \cup (1, \infty)$$

D.
$$[\,-3,\;-2)\cup (\,-2,\;-1)\cup [1,\infty)$$

Answer: C

Watch Video Solution

155. The domain of the function f(x) = ($\sqrt{5x-3-2x^2}$) is

A.
$$\left[1, \frac{-3}{2}\right]$$

$$\mathsf{B.}\left[\frac{3}{2},\infty\right]$$

C.
$$(-\infty, 1]$$

D.
$$\left[1, \frac{3}{2}\right]$$

Answer: D

156. The domain of the function $f(x) = rac{\sin^{-1}(x-3)}{\sqrt{x-x^3}}$ is

A.
$$[1, 2)$$

B.
$$[2, 3)$$

$$\mathsf{C}.\,[1,\,2]$$

D.
$$[2, 3]$$

Answer: B

Watch Video Solution

157. Domain of the function f(x)= $\sin^{-1} \left(1+3x+2x^2\right)$

A.
$$(-\infty,\infty)$$

B.
$$(-1, 1)$$

$$\mathsf{C.}\left[\left(-\frac{3}{2},0\right]\right.$$

D.
$$\left(-\infty, \frac{-1}{2}\right) \cup (2, \infty)$$

Answer: C

Watch Video Solution

158. The domain of the function $f(x) = \sqrt{\cos^{-1}\!\left(rac{1-|x|}{2}
ight)}$ is

$$A. -3, 3$$

B.
$$[-3, 3]$$

$$\mathsf{C.}\,(\,-\infty,\,-3)\cup(3,\infty)$$

D. (
$$-\infty, \ -3] \cup [3, \infty)$$

Answer: B

Watch Video Solution

159. The domain of the function $\cos^{-1} \bigl\{ \log_2 \bigl(x^2 + 5x + 8 \bigr) \bigr\}$ is

A.
$$[2, 3]$$

B. [-2, 2]

 $\mathsf{C.}\,[3,\,1]$

 ${\rm D.}\,[\,-\,3,\,\,-\,2]$

Answer: D

Watch Video Solution

160. The range of the function $f(x) = \sqrt{x-x^2}$ is

A.(0,3)

B.[0, 3]

C.(0,3]

D. [0, 3)

Answer: B

View Text Solution

161. The range of the functin $f(x)=rac{x+2}{|x+2|}$ is

A.
$$\{0, 1\}$$

$$\mathsf{B.}\left\{\,-\,1,\,1\right\}$$

D.
$$R-\{-2\}$$

Answer: B

Watch Video Solution

162. Find the range of $f(x) = rac{x^2 + 34x - 71}{x^3 + 2x - 7}$

A.
$$[5, 9]$$

B.
$$(-\infty,5]\cup[9,\infty)$$

D.
$$(-\infty,5)\cup(9,\infty)$$

Answer: B

Watch Video Solution

163. IF $f\!:\!R-\{2\} o R$ is a function defined by $f(x)=rac{x^2-4}{x-2}$, then its range is

A.R

 $\mathsf{B.}\,R-\{2\}$

C. $R - \{4\}$

D. $R-\{\,-2,2\}$

Answer: C

Watch Video Solution

164. Let $f\colon R \to R$ be defined as $f(x) = \dfrac{9x^2 - x + 4}{x^2 - x + 4}.$ Then the range of the function f (x) is

C.
$$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$

D. $\left[-\sqrt{2},\sqrt{2}\right]$

A. (-1, 1)

B. [-1, 1)

Watch Video Solution

Answer: D

 $A. \left[\frac{3}{5}, \frac{5}{3} \right]$

 $\mathsf{B.}\left(\frac{3}{5},\frac{5}{3}\right)$

D. $\left[-\frac{5}{3}, \frac{3}{5}\right]$

Answer: A

165. The range of $f(x) = \cos x - \sin x$ is

nge of
$$f(x) = \cos x - \sin x$$
 is

Watch Video Solution

$\mathsf{C.}\left(-\infty,\frac{3}{5}\right) \cup \left(\frac{5}{3},\infty\right)$

166. Equation $\cos 2x + 7 = a(2-\sin x)$ can have a real solution for

A. all values of a

B. $a \in [2,6]$

C. $a\in (-\infty,2)$

D. $a\in(0,\infty)$

Answer: B

Watch Video Solution

167. The range of the function $f(x) = \log_e \left(3x^2 + 4\right)$ is equal to

A. $[\log_e 2, \infty]$

 $\operatorname{B.}\left[\log_e 3, \infty\right]$

C. $[2\log_e 3, \infty)$

D.
$$[2\log_2 2, \infty)$$

Answer: D

Watch Video Solution

- **168.** The range of function $f(x) = \log_e \sqrt{4-x^2}$ is given by
 - A. $(0,\infty)$
 - B. $(-\infty,\infty)$
 - C. $(-\infty, \log_e 2]$
 - D. $(\log_e 2, \infty)$

Answer: C

169. If
$$f\!:\!\left[0,rac{\pi}{2}
ight) o R$$
 is defined as $f(heta)=egin{pmatrix}1& an heta&1\\- an heta&1& an heta\\-1&- an heta&1\end{pmatrix}$

Then, the range of f is

A.
$$(2, \infty)$$

B.
$$(-\infty, -2)$$

$$\mathsf{C}.\left[2,\infty
ight)$$

D.
$$(\,-\infty,2]$$

Answer: C

Watch Video Solution

170. The range of the function $f(x) = an\sqrt{rac{\pi^2}{9}-x^2}$, is

B.
$$[0, \sqrt{3}]$$

C.
$$[3, \sqrt{3}]$$

D.
$$\left[\sqrt{3},3\right]$$

Answer: B

Watch Video Solution

Evaluation Test

1. If
$$\mathsf{g}(\mathsf{x})$$
 = x^2+x-2 and $\dfrac{1}{2}g(f(x))=2x^2-5x+2$, then $\mathsf{f}(\mathsf{x})$ is

A.
$$2x + 3$$

B.
$$2x - 3$$

$$\mathsf{C.}\,2x^2+3x+1$$

D.
$$2x^2 - 3x - 1$$

Answer: B

2. If
$$f(x)$$
 and $g(x)$ are two functions with $g(x) = 1$

$$x-rac{1}{x} ext{ and } fog(x)=x^3-rac{1}{x^3}-rac{1}{x^3}$$
 then f(x) is

A.
$$3x^2+3$$

$$\mathsf{B.}\,x^2 - \frac{1}{x^2}$$

$$\mathsf{C.}\,1+\frac{1}{x^2}$$

D.
$$3x^2+rac{3}{x^4}$$

Answer: A

3. If
$$f\colon R \to R$$
 satisfies $\mathsf{f}(\mathsf{x}\mathsf{+}\mathsf{y})\mathsf{=}\mathsf{f}(\mathsf{x})\mathsf{+}\mathsf{f}(\mathsf{y}),$ for all $\mathsf{x},\,\mathsf{y} \in \mathsf{R}$ and $\mathsf{f}(\mathsf{1})\mathsf{=}\mathsf{7},$ then

$$\sum_{1}^{n}f(r)$$
 is

A.
$$\frac{7n(n+1)}{2}$$

B.
$$\frac{7n}{2}$$

$$7(n+1)$$

$$\mathsf{C.}\,\frac{7(n+1)}{2}$$

D.
$$7n(n + 1)$$

Answer: A

Watch Video Solution

- **4.** If $f\colon [-6,6] o \mathbb{R}$ is defined by $f(x)=x^2-3$ for $x\in \mathbb{R}$ then (fofof)(-1)+(fofof)(0)+(fofof)(1)=
 - A. $f(4\sqrt{2})$
 - B. $f(3\sqrt{2})$
 - C. $(f(2\sqrt{2})$
 - D. $f(\sqrt{2})$

Answer: A

5. Let [x] denote the greatest integer less than or equal to x. If $x=\left(\sqrt{3}+1\right)^5, ext{ then } [x]$ is equal to

B. 50

C. 76

D. 152

Answer: B

Watch Video Solution

a real valued function 6. is such $f(x+y)=f(x)+f(y) \ \ {
m and} \ \ f(1)=5$, then the value of f(100) is

that

- A. 200
- B. 300
- C. 356

Answer: D

Watch Video Solution

- 7. Let R be the real line. Consider the following subsets of the plane $R \times R$. $S = \{(x,y): y = x + 1 and 0 < x < 2\}, T = \{(x,y): x y \text{ is an integer }\}$. Which one of the following is true? (1) neither S nor T is an equivalence relation on R (2) both S and T are equivalence relations on R (3) S is an equivalence relation on R but T is not (4) T is an equivalence relation on R but S is not
 - A. S is an equivlence relation on R but T is not
 - B. T is an equivalence relation on R but S is not
 - C. Neither S not T is an equivalence relation on R
 - D. Both S and T are equivalence relations on R

Answer: B

8. Consider the following relations: $R = \{(x, y) \mid x, y \text{ are real numbers and } x\}$

 $S = \left\{ \left(rac{m}{n}, rac{p}{a}
ight)$ m , n , pandqa r ei n t e g e r ss u c ht h a tn ,q eq 0andq m =

. Then (1) neither R nor S is an equivalence relation (2) S is an equivalence relation but R is not an equivalence relation (3) R and S both are equivalence relations (4) R is an equivalence relation but S is not an equivalence relation

A. S is an equivalence relation but R is not an equivalence

B. R and S both are equivalence relations

C. R is an equivalence relation but S is not an equivalence relation

D. neither R not S is an equivalence relation

Answer: A

9. If $\cos \theta - \sin \theta = \sqrt{2} \sin \theta$ then $\cos \theta + \sin \theta$ is equal to

A.
$$P \subset Q \,\, {\rm and} \,\, Q - P = \phi$$

$$\mathsf{B}.\,Q\mathscr{t}P$$

$$\mathsf{C}.P\mathscr{A}Q$$

D.
$$P=Q$$

Answer: D

10. The domain of the function
$$f(x)=\sin^{-1}\!\left(rac{8(3)^{x-2}}{1-3^{2(x-1)}}
ight)$$
 is

A.
$$(-\infty,0]$$

B.
$$[2,\infty)$$

C.
$$(0\infty,0)\cup[2,\infty)$$

D.
$$(-\infty, -1) \cup [1, \infty)$$

Answer: C

Watch Video Solution

11. A ral valued functin f(x) satisfies the functional equation $f(x-y)=f(x)f(y)-f(a-x)f(x+y) \ \text{where 'a' is a given constant}$ and f(0)=1, f(2a-x) is equal to :

A.
$$f(-x)$$

$$\mathsf{B.}\ f(a) + f(a-x)$$

$$\mathsf{C}.\,f(x)$$

$$D. - f(x)$$

Answer: D

$$n(A)=4,$$
 $n(B)=5$ and $n(A\cap B)=3$

$$n(A) = 1, n(B) = 0$$
 and $n(A + B)$ $n[(A imes B) \cap (B imes A)] = 0$

D. 11

Answer: B

if $A=\left(heta\!:\!2\cos^2 heta+\sin heta\le2 ight)$ and b= {theta :(pi)/(2)le theta le (3pi)/(2), then Cap B ` is equal to

A.
$$\left\{\theta \colon \frac{\pi}{2} \leq \theta \leq \frac{3\pi}{2}\right\}$$

B.
$$\left\{ \theta \colon \frac{\pi}{2} \leq \theta \leq \frac{5\pi}{6} \right\}$$

$$\mathsf{C.}\left\{\theta\!:\!\frac{\pi}{2}\leq\theta\leq\frac{5\pi}{60}\cup\left\{\theta\!:\!\pi\leq\theta\leq\frac{3\pi}{2}\right\}\right.$$

D. none of these

Answer: C

Watch Video Solution

14. Find the domain of the function $: f(x) = (\log)_{10} \left\{ \frac{(\log)_{10} x}{2(30(\log)_{10} x)} \right\}$

A.
$$(10 - , 10^3)$$

B.
$$(10^2, 10^3)$$

C.
$$\left[10^2, 10^3\right]$$

D.
$$\left[10^2, 10^3\right]$$

Answer: C

