© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - TARGET MATHS (HINGLISH)

STRAIGHT LINE

Classical Thinking

1. The number of lines which are equally inclined to the axes is:
A. 4
B. 2
C. 3
D. 1

Answer: B

2. Angle made by the line passsing through $(1,0)$ and $(-2, \sqrt{3})$ with x axis is
A. 60°
B. 120°
C. 150°
D. 135°

Answer: C

Watch Video Solution
3. The equation of a line passing through $(4,-6)$ and making an angle 45° with positive X -axis, is
A. $x-y-10=0$
B. $x-2 y-16=0$
C. $x-3 y-22=0$
D. $x-2 y-10=0$

Answer: A

- Watch Video Solution

4. The equation of the line through the origin and perpendiculr to the line joining $(a, 0)$ and $(-a, 0)$ is
A. $y=0$
B. $x=0$
C. $x=-a$
D. $y=-a$

Answer: B

5. If the co-ordinates of A and B are $(1,1)$ and $(5,7)$, then the Slope of the perpendicular line of the line segment $A B$ is
A. $\frac{2}{3}$
B. $-\frac{2}{3}$
C. $\frac{3}{2}$
D. $-\frac{3}{2}$

Answer: B

- Watch Video Solution

6. The equation of the line bisecting the line segment joining the points
(a, b) and $\left(a^{\prime}, b^{\prime}\right)$ at right angle, is
A. $2\left(a-a^{\prime}\right) x+2\left(b-b^{\prime}\right) y=a^{2}+b^{2}-a^{\prime 2}-b^{\prime 2}$
B. $(a 0 a) x+\left(b-b^{\prime}\right) y=a^{2}+b^{2}-a^{\prime 2}-b^{\prime 2}$
C. $2(a-b) x+2\left(b-b^{\prime}\right) y=a^{\prime 2}+b^{\prime 2}-a^{\prime 2}-b^{\prime 2}$
D. None of these

Answer: A

- Watch Video Solution

7. The equation of a line which bisects the line joining two points
$(2,-19)$ and $(6,1)$ and perpendicular to the line joining two points
$(-1,3)$, and $(5,-1)$, is
A. $3 x-2 y=30$
B. $2 x-y-3=0$
C. $2 x+3 y=20$
D. None of these

Answer: A

8. Let $P=(-1,0), Q=(0,0)$ and $R=(3,3 \sqrt{3})$ be three points. The equation of the bisector of the angle PQR
A. $\frac{\sqrt{3}}{2} x+y=0$
B. $x+\sqrt{3} y=0$
C. $\sqrt{3} x+y=0$
D. $x+\frac{\sqrt{3}}{2} y=0$

Answer: C

- Watch Video Solution

9. The equation of a line joning the origin to the point $(-4,5)$ is
A. $5 x+4 y=0$
B. $3 x+4 y=2$
C. $5 x-4 y=0$
D. $4 x-5 y=0$

Answer: A

- Watch Video Solution

10. The equation of a straight line passing through the points $(-5,-6)$ and $(3,10)$ is
A. $x-2 y=4$
B. $2 x-y+4=0$
C. $2 x+y=4$
D. $x-2 y+4=0$

Answer: B

11. The equation of a line through the intersection of lines $x=0$ and $y=0$ and through the point $(2,2)$ is
A. $y=x-1$
B. $y=-x$
C. $y=x$
D. $y=-x+2$

Answer: C

- Watch Video Solution

12. A straight line makes an angle of 135° with the X-axis and cuts Y-axis at a distance -5 from the origin. The equation of the line is
A. $2 x+y+5=0$
B. $x+2 y+3=0$
C. $x+y+5=0$
D. $x+y+3=0$

Answer: C

- Watch Video Solution

13. The equatio of the line whose slope is 3 and which cuts off an intercept 3 from the positive X-axis is
A. $y=3 x-9$
B. $y=3 x+3$
C. $y=3 x+9$
D. None of these

Answer: A

14. The equatio of the line which cutrs off an intercept 3 units on $O X$ and an intercept - 2 units on $O Y$ is
A. $\frac{x}{3}-\frac{y}{2}=1$
B. $\frac{x}{3}+\frac{y}{2}=1$
C. $\frac{x}{2}+\frac{y}{3}=1$
D. $\frac{x}{2}-\frac{y}{3}=1$

Answer: A

- Watch Video Solution

15. The equation of the line which cuts off intercepts
$2 a \sec \theta$ and $2 a \operatorname{cosec} \theta$ on X -axis and Y -axis respectively is
A. $x \sin \theta+y \cos \theta-2 a=0$
B. $x \cos \theta+y \sin \theta-2 a=0$
C. $x \sec \theta+y \operatorname{cosec} \theta-2 a=0$
D. $x \cos e c \theta+y \sec \theta-2 a=0$

Answer: B

- Watch Video Solution

16. The equation of line whose midpoint $\left(x_{1}, y_{1}\right)$ is in between the axes, is
A. $\frac{x}{x_{1}}+\frac{y}{y_{1}}=2$
B. $\frac{x}{x_{1}}+\frac{y}{y_{2}}=\frac{1}{2}$
C. $\frac{x}{x_{1}}+\frac{y}{y_{1}}=1$
D. None of these

Answer: A

- Watch Video Solution

17. If the line $\frac{x}{a}+\frac{y}{b}=1$ passes through the points a $(2,-3)$ and $(4,-5)$, then $(a, b)=$
A. $(1,1)$
B. $(-1,1)$
C. $(1,-1)$
D. $(-1,-1)$

Answer: D

- Watch Video Solution

18. The lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ are perpendicular to each other, then \qquad
A. $a_{1} b_{2}-b_{1} a_{2}=0$
B. $a_{1} a_{2}+b_{1} b_{2}=0$
C. $a_{1}^{2} b_{2}+b_{1}^{2} a_{2}=0$
D. $a_{1} b_{1}+a_{2} b_{2}=0$

Answer: B

- Watch Video Solution

19. The equation of line perpedicular to $x=c$ is
A. $y=d$
B. $x=d$
C. $x=0$
D. None of these

Answer: A

- Watch Video Solution

20. Slope of a line which cuts off intercepts of equal lengths on the axes is
A. -1
B. 0
C. 2
D. $\sqrt{3}$

Answer: A

- Watch Video Solution

21. Equation of the line passing through $(1,2)$ and parallel to the line $y=3 x-1$ is
A. $y+2=x+1$
B. $y+2=3(x+1)$
C. $y-2=3(x-1)$
D. $y-2=x-1$

Answer: C

- Watch Video Solution

22. The equation of a line passing through (c, d) and parallel to $a x+b y+c=0$ is
A. $a(x+c)+(y+d)=0$
B. $a(x+c)-b(y+d)=0$
C. $a(x-c)+b(y-d)=0$
D. $a(x-c)-b(y-d)=0$

Answer: C

- Watch Video Solution

23. The equation of a line through $(3,-4)$ and perpendicular to the line $3 x+4 y=5$ is
A. $4 x+3 y=24$
B. $y-4=x+3$
C. $3 y-4 x=24$
D. $y+4=\frac{4}{3}(x-3)$

Answer: D

- Watch Video Solution

24. The equation of a line perpendicular to line $a x+b y+c=0$ and passing through (a, b) is equal to
A. $b x-a y=0$
B. $b x+a y-2 a b=0$
C. $b x+a y=0$
D. $b x-a y+2 a b=0$

Answer: A

- Watch Video Solution

25. The equation of the line passing through the point (x^{\prime}, y^{\prime}) and perpendicular to the line $y y^{\prime}=2 a\left(x+x^{\prime}\right)^{\prime}$ is
A. $x y^{\prime}+2 a y+2 a y^{\prime}-x^{\prime} y^{\prime}=0$
B. $x y^{\prime}+2 a y-2 a y^{\prime}-x^{\prime} y^{\prime}=0$
C. $x y^{\prime}+2 a y+2 a y^{\prime}-x^{\prime} y^{\prime}=0$
D. $x y^{\prime}+2 a y-2 a y^{\prime}+x^{\prime} y^{\prime}=0$

Answer: B

- Watch Video Solution

26. The acute angle between the lines $\mathrm{y}=3$ and $y=\sqrt{3 x}+9$ is:
A. 30°
B. 60°
C. 45°
D. 90°

Answer: B

- Watch Video Solution

27. Find the angle between the lines $y=(2-\sqrt{3})(x+5)$ and $y=(2+\sqrt{3})(x-7)$.
A. 30°
B. 60°
C. 45°
D. 90°

- Watch Video Solution

28. The angle between the lines $x \cos 30^{\circ}+y \sin 30^{\circ}=3$ and $x \cos 60^{\circ}+y \sin 60^{\circ}=5$ is
A. 90°
B. 30°
C. 60°
D. 45°

Answer: B

- Watch Video Solution

29. Find the tangent of the angel between the lines whose intercepts n the axes are respectively $a,-b a d n b,-a$.
A. $\tan ^{-1} \frac{a^{2}+b^{2}}{a b}$
B. $\tan ^{-1} \frac{b^{2}-a^{2}}{2}$
C. $\tan ^{-1} \frac{b^{2}-a^{2}}{2 a b}$
D. $\tan ^{-1} \frac{b^{2}-a^{2}}{a b}$

Answer: C

- Watch Video Solution

30. To which of the following types the straight lines represented by $2 x+3 y-7=0$ and $2 x+3 y-5=0$ belong
A. Parallel to each other
B. Perpendicular to each other
C. Inclined at 45° to each other
D. Coincident pair of straight lines
31. Find the equation of the lines through the point $(3,2)$ which make an angle of 45 owith the line $x-2 y=3$.
A. $3 x-y+7=0$ and $x+3 y+9=0$
B. $3 x-y-7=0$ and $x+3 y-9=0$
C. $x+3 y-7=0$ and $x+3 y-9=0$
D. None of these

Answer: B

- Watch Video Solution

32.

The angle between the lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=o$, is
A. 'tan^(-1)"'(a _(1)b_(2)+a_(2)b_(2))/(a _(1)a_(2)-b_(1)b_(2)'
B. $\cot ^{-1} \frac{a_{1} a_{2}+b_{1} b_{2}}{a_{1} b_{2}-a_{2} b_{1}}$
C. $\cot ^{-1}, \frac{a_{1} b_{1}-a_{2} b_{2}}{a_{1} a_{2}+b_{1} b_{2}}$
D. $\tan ^{-1} \frac{a_{1} b_{1}-a_{2} b_{2}}{a_{1} b_{2}+b_{1} b_{2}}$

Answer: B

D Watch Video Solution

33. For the lines $2 x+5 y=7$ and $2 x-5 y=9$, which of the following statemetn is true ?
A. Lines are parallel
B. Lines are coincident
C. Lines are intercecting
D. Lines are perpendicular

Answer: C

34. If three lines whose equations are $y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ and $y=m_{3} x+c_{3}$ are concurrent, then show that
$m_{1}\left(c_{2}-c_{3}\right)+m_{2}\left(c_{3}-c_{1}\right)+m_{3}\left(c_{1}-c_{2}\right)=0$.
A. $m_{1}\left(c_{2}-c_{3}\right)+m_{2}\left(c_{3}-c_{1}\right)+m_{3}\left(c_{1}-c_{2}\right)=0$
B. $m_{1}\left(c_{2}-c_{2}\right)+m_{2}\left(c_{3}-c_{2}\right)+m_{3}\left(c_{1}-c_{3}\right)=0$
C. $c_{1}\left(m_{1}-m_{2}\right)+c_{2}\left(m_{2}-m_{3}\right)+c_{3}\left(m_{3}-m_{1}\right)=0$
D. $c_{1}\left(m_{1}-m_{2}\right)+c_{2}\left(m_{2}-m_{3}\right)+c_{3}\left(m_{3}-m_{1}\right)=0$

Answer: A

- Watch Video Solution

35. The value of k for which the lines
$7 x-8 y+5=0,3 x-4 y+5=0$ and $4 x+5 y+k=0 \quad$ are concurrent is given by
A. -45
B. 44
C. 54
D. -54

Answer: A

- Watch Video Solution

36. Prove that the following sets of three lines are concurrent: $15 x-18 y+1=0,12 x+10 y-3=0$ and $6 x+66 y-11=0$.
A. Parallel
B. Perpendicular
C. Concurrent
D. None of these

Answer: C

37. If $u=a_{1} x+b_{1} y+c_{1}=0, v=a_{2} x+b_{2} y+c_{2}=0, \quad$ and $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$, then the curve $u+k v=0$ is the same straight line u different straight line not a straight line none of these
A. same straight line u
B. different straight line
C. not a stratight line
D. None of these

Answer: A

- Watch Video Solution

38. The length iof perpendicular from $(3,1)$ on line $4 x+3 y+20=0$, is
A. 6
B. 7
C. 5
D. 8

Answer: B

- Watch Video Solution

39. The distance of the point $(-2,3)$ from the line $x-y=5$ is
A. $5 \sqrt{2}$
B. $2 \sqrt{5}$
C. $3 \sqrt{5}$
D. $5 \sqrt{3}$

Answer: A

40. The perpendicular distance of the stratight line $12 x+5 y=7$ from the origin is
A. $\frac{7}{13}$
B. $\frac{12}{13}$
C. $\frac{5}{13}$
D. $\frac{1}{13}$

Answer: A

Watch Video Solution

41. The length of perpendicular from the point ($a \cos \propto, a \sin \propto$) upon the striaght line $\mathrm{y}=\mathrm{x} \tan \propto+c($ where cgt 0$)$ is
A. $c \cos \alpha$
B. $c \sin ^{2} \alpha$
C. $c \sec ^{2} \alpha$
D. $c \cos ^{2} \alpha$

Answer: A

- Watch Video Solution

42. If the length of the perpendicular drawn from the origin to the line whose intercepts on the axes are a and b be p, then
(A) $a^{2}+b^{2}=p^{2}$
(B) $a^{2}+b^{2}=\frac{1}{p^{2}}$
(C) $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{2}{p^{2}}$
(D) $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}} \quad \hat{\mathrm{~A}} \hat{\mathrm{~A}} \hat{\mathrm{~A}}$
A. $a^{2}+b^{2}=p^{2}$
B. $a^{2}+b^{2}=\frac{1}{p^{2}}$
C. $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{2}{p^{2}}$
D. $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}$

(D) Watch Video Solution

43. The length of the perpendicular form the point (b,a) to the line $\frac{x}{a}-\frac{y}{b}=1$ is
A. $\left|\frac{a^{2}-a b+b^{2}}{\sqrt{a^{2}+b^{2}}}\right|$
B. $\left|\frac{b^{2}-a b+a^{2}}{\sqrt{a^{2}+b^{2}}}\right|$
C. $\left|\frac{b^{2}+a b-a^{2}}{\sqrt{a^{2}+b^{2}}}\right|$
D. $\left|\frac{a^{2}+a b+b^{2}}{\sqrt{a^{2}+b^{2}}}\right|$

Answer: B

- Watch Video Solution

44. The length of perpendicular drawn from origin on the line joining $\left(x^{\prime}, y^{\prime}\right)$ and $\left(x^{\prime}, y^{\prime}\right)$, is
A. $\left|\frac{x^{\prime} y^{\prime \prime}+x^{\prime \prime} y^{\prime}}{\sqrt{\left(x^{\prime \prime}-x^{\prime}\right)^{2}+\left(y^{\prime \prime}-y^{\prime}\right)^{2}}}\right|$
B. $\left|\frac{x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}}{\sqrt{\left(x^{\prime \prime}-x^{\prime}\right)^{2}+\left(y^{\prime}-y^{\prime}\right)^{2}}}\right|$
C. $\left|\frac{x^{\prime} y^{\prime \prime}+x^{\prime \prime} y^{\prime}}{\sqrt{\left(x^{\prime \prime}+x^{\prime}\right)^{2}+\left(y^{\prime \prime}+y^{\prime}\right)^{2}}}\right|$
D. $\left|\frac{x^{\prime} y^{\prime \prime}+x^{\prime \prime} y^{\prime}}{\sqrt{\left(x^{\prime \prime}-x^{\prime}\right)^{2}+\left(y^{\prime \prime}-y^{\prime}\right)^{2}}}\right|$

Answer: B

Watch Video Solution

45. distance between the lines $5 x+3 y-7=0$ and $15 x+9 y+14=0$
A. $\frac{35}{\sqrt{34}}$
B. $\frac{13}{\sqrt{34}}$
C. $\frac{35}{3 \sqrt{34}}$
D. $\frac{35}{2 \sqrt{34}}$

Answer: C

Critical Thinking

1. The side $A B, B C, C D$ and $D A$ of a quadrilateral are $x+2 y=3, x=1, x-3 y=4,5 x+y+12=0$ respectively. The angle between diagonas $A C$ and $B C$ is
A. 45°
B. 60°
C. 90°
D. 30°

Answer: C

- Watch Video Solution

2. If a straight line through the origin bisects the line passing through the given points $(a \cos \alpha, a \sin \alpha)$ and $(a \cos \beta, a \sin \beta)$, then the lines are perpendicular are parallel have an angle between them of $\frac{\pi}{4}$ none of these
A. Perpendicular
B. Parallel
C. Angle between them is $\frac{\pi}{4}$
D. None of these

Answer: A

- Watch Video Solution

3. The opposite vertices of a square are $(1,2)$ and $(3,8)$, then the equation of a diagonal of the square passing through the point $(1,2)$, is
A. $3 x+y-1=0$
B. $3 y-x-1=0$
C. $3 x+y+1=0$
D. None of these

Answer: A

- Watch Video Solution

4. Let $P S$ be the median of the triangle with vertices $P(2,2), Q(6,-1) \operatorname{and} R(7,3)$ Then equation of the line passing through $(1,-1)$ and parallel to $P S$ is $2 x-9 y-7=0$ $2 x-9 y-11=02 x+9 y-11=02 x+9 y+7=0$
A. $2 x-9 y-7=0$
B. $2 x-9 y 11=0$
C. $2 x+9 y-11=0$
D. $2 x+9 y+7=0$

- Watch Video Solution

5. The point $\mathrm{P}(\mathrm{a}, \mathrm{b})$ lies on the straight line $3 x+2 y=13$ and the point $Q(b, a)$ lies on the straight line $4 x-y=5$, then the equation of the line $P Q$ is
A. $x-y=5$
B. $x+y=5$
C. $x+y=-5$
D. $x-y=-5$

Answer: B

6. If a line joining two points $A(2,0)$ and $B(3,1)$ is rotated about A in anticlockwise direction 15°, then the equation of the line in the new position is
A. $\sqrt{3} x-y-2 \sqrt{3}=0$
B. $x-3 \sqrt{y}-2=0$
C. $\sqrt{3} x+y-2 \sqrt{3}=0$
D. $x+\sqrt{3} y-2=0$

Answer: A

- Watch Video Solution

7. The points $(1,3)$ and $(5,1)$ are the opposite vertices of a rectangle. The other two vartices lie on the line $y=2 x+c$, then the value of c will be
A. 4
B. -4
C. 2
D. -2

Answer: B

- Watch Video Solution

8. Equation of the hour hand at 4 O ' clock is
A. $x-\sqrt{3} y=0$
B. $\sqrt{3} x-y=0$
C. $x+\sqrt{3} y=0$
D. $\sqrt{3} x+y=0$

Answer: C

9. If the intercept of a line between the coordinate axes is divided by the point $(-5,4)$ in the ratio $1: 2$, then find the equation of the line.
A. $5 x+8 y+60=0$
B. $8 x-5 y+60=0$
C. $2 x-5 y+30=0$
D. None of these

Answer: B

- Watch Video Solution

10. The intercept cut off from Y-axis is twice that from X-axis by the line and line passes through $(1,2)$, then its equation is
A. $2 x+y=4$
B. $2 x+y+4=0$
C. $2 x-y=4$
D. $2 x-y+4=0$

Answer: A

- Watch Video Solution

11. A straight line moves so that the sum of the reciprocals of its intercepts on two perpendicular lines is constant then the line passes through-
A. A fixed point
B. A variable point
C. Origin
D. None of these

Answer: A

- Watch Video Solution

12. A line passes through the point $(3,4)$ and cuts off intercepts from the co-ordinates axes such that their sum is 14 . The equation of the line is
A. $4 x-3 y=14$
B. $4 x+3 y=24$
C. $3 x-4 y=24$
D. $3 x+4 y=24$

Answer: B

- Watch Video Solution

13. A straight line through $P(1,2)$ is such that its intercept between the axes is bisected at P its equation :
A. $x+2 y=5$
B. $x-y+1=0$
C. $x+y-3=0$
D. $2 x+y-4=0$

Answer: D

- Watch Video Solution

14. A straight line L is perpendicular to the line $5 x-y=1$. The area of the triangle formed by the line L and the coordinate axes is 5squareunits. Find the equation of the line L.
A. $x+5 y=5$
B. $x+5 y= \pm 5 \sqrt{2}$
C. $x-5 y=5$
D. $x-5 y=5 \sqrt{2}$

Answer: B

- Watch Video Solution

15. If we reduce $3 x+3 y+7=0$ to the form $x \cos \alpha+y \sin \alpha=p$, then the value of p is $\frac{7}{2 \sqrt{3}}$ (b) $\frac{7}{3}$ (c) $\frac{3 \sqrt{7}}{2}$ (d) $\frac{7}{3 \sqrt{2}}$
A. $\frac{7}{2 \sqrt{30}}$
B. $\frac{7}{3}$
C. $\frac{3 \sqrt{7}}{2}$
D. $\frac{7}{3 \sqrt{2}}$

Answer: D

- Watch Video Solution

16. The equation of lines on which the perpendiculars from the origin make 30° angle with the x-axis and which form a triangle of area $\frac{50}{\sqrt{3}}$ with the axes are $\sqrt{3} x+y-10=0 \sqrt{3} x+y+10=0 x+\sqrt{3} y-10=0$
(d) $x-\sqrt{3} y-10=0$

$$
\text { A. } x+\sqrt{3} y \pm 10=0
$$

B. $\sqrt{3} x+y \pm 10=0$
C. $x \pm \sqrt{3} y-10=0$
D. None of these

Answer: B

- Watch Video Solution

17. A line through $A(-5,-4)$ meets the lines $x+3 y+2=0,2 x+y+4=0 a n d x-y-5=0 \quad$ at \quad the points $B, C a n d D$ rspectively, if $\left(\frac{15}{A B}\right)^{2}+\left(\frac{10}{A C}\right)^{2}=\left(\frac{6}{A D}\right)^{2}$ find the equation of the line.
A. $2 x+3 y+22=0$
B. $5 x-4 y+7=0$
C. $3 x-2 y+3=0$
D. None of these

- Watch Video Solution

18. Angle made with the x-axis by a straight line drawn through $(1,2)$ so that it intersects $x+y=4$ at a distance $\frac{\sqrt{6}}{3}$ from (1,2) is 105^{0} (b) 75^{0} (c) 60^{0} (d) 15^{0}
A. 30°
B. 45°
C. 60°
D. 75°

Answer: D

- Watch Video Solution

19. distance of the lines $2 x-3 y-4=0$ from the point $(1,1)$ measured paralel to the line $x+y=1$ is
A. $\sqrt{2}$
B. $\frac{5}{\sqrt{2}}$
C. $\frac{1}{\sqrt{2}}$
D. 6

Answer: A

- Watch Video Solution

20. Consider the equation $y-y_{1}=m\left(x-x_{1}\right)$. If m and different lines ar drawn for different values of y_{1}, then :
A. The lines will pass through a single point
B. There wil be a set of parallel lines
C. There will be one line only
D. None of these

Answer: C

- Watch Video Solution

21. If the lines $2 x+3 a y-1=0$ and $3 x+4 y+1=0$ are matually perpendicular, then the value of a will be
A. $\frac{1}{2}$
B. 2
C. $-\frac{1}{2}$
D. -2

Answer: C

22. The equation to the straight line passing through the point $\left(a \cos ^{3} \theta, a \sin ^{3} \theta\right)$ and perpendicular to the line $x \sec \theta+y \operatorname{cosec} \theta=a$ is
A. $x \cos \theta-y \sin \theta=a \cos 2 \theta$
B. $x \cos \theta+y \sin \theta=a \cos 2 \theta$
C. $x \sin \theta+y \cos \theta=a \cos 2 \theta$
D. None of these

Answer: A

- Watch Video Solution

23. The equation of the line parallel to the line $2 x-3 y=1$ and passing through the middle point of the line segment joining the points $(1,3)$ and (1,-7),' is

$$
\text { A. } 2 x-3 y+8=0
$$

B. $2 x-3 y=8$
C. $2 x-3 y+8=0$
D. $2 x-3 y=4$

Answer: B

- Watch Video Solution

24. A line $A B$ makes zero intercepts on X-axis and Y-axis and it is perpendicular to another line $C D, 3 x+4 y+6=0$. The equation of line $A B$ is
A. $y=4$
B. $4 x-3 y+8=0$
C. $4 x-3 y=0$
D. $4 x-3 y+6=0$

Answer: C

25. The equations of the perpendicular bisectors of the sides $A B$ and $A C$ of triangle $A B C$ are $x-y+5=0$ and $x+2 y=0$, respectively. If the point A is $(1,-2)$, then find the equation of the line $B C$.
A. $23 x+14 y-40=0$
B. $14 x-23+40=0$
C. $23 x-14+40=0$
D. $14 x+23 y-40=0$

Answer: D

- Watch Video Solution

26. The number of lines that are parallel to $2 x+6 y-7=0$ and have an intercept 10 between the coordinate axes is
A. 1
B. 2
C. 4
D. Infinitely many

Answer: B

D Watch Video Solution

27. The angle between the lines $x \cos \alpha_{1}+y \sin \alpha_{1}=p_{1}$ and $x \cos \alpha_{2}+y \sin \alpha_{2}=p_{2}$ is
(A) $\left|\alpha_{1}+\alpha_{2}\right|$
(B) $\left|\alpha_{1}-\alpha_{2}\right|$
(C) $\left|2 \alpha_{1}\right|$
(D) $\left|2 \alpha_{2}\right|$
A. $\alpha_{1}+\alpha_{2}$
B. $\alpha_{1}-\alpha_{2}$
C. $2 \alpha_{1}$
D. $2 \alpha_{2}$

Answer: B

28. If the co-ordinates of the vertices A, B, C of the triangle $A B C$ are $(-4,2),(12,-2)$ and $(8,6)$ respectively, then $\angle B=$
A. $\tan ^{-1}\left(-\frac{6}{7}\right)$
B. $\tan ^{-1}\left(\frac{6}{7}\right)$
C. $\tan ^{-1}\left(-\frac{7}{6}\right)$
D. $\tan ^{-1}\left(\frac{7}{6}\right)$

Answer: D

- Watch Video Solution

29. If the lines $y=(2+\sqrt{3}) x+4$ and $y=k x+6$ are inclined at an angle 60° to each, other, then the value of k will be
A. 1
B. 2
C. -1
D. -2

Answer: C

D Watch Video Solution

30. If the lines $y=3 x+1$ and $2 y=x+3$ are equally inclined to the line $y=m x+4,\left(\frac{1}{2}<m<3\right)$ then find the values m
A. $\frac{1+3 \sqrt{2}}{7}$
B. $\frac{1-3 \sqrt{2}}{7}$
C. $\frac{1 \pm 2 \sqrt{2}}{7}$
D. $\frac{1 \pm 5 \sqrt{2}}{7}$

Answer: D

31. Two equal sides of an isosceles triangle are given by $7 x-y+3=0$ and $x+y=3$, and its third side passes through the point $(1,-10)$. Find the equation of the third side.
A. $3 x-y-31=0$ or $x+y+7=0$
B. $3 x-y+7=0$ or $x+3 y-31=0$
C. $3 x+y+7=0$ or $3 y-31=0$
D. Neither $3 x+y+7 n$ or $x-3 y-31=0$

Answer: C

- Watch Video Solution

32. If vertices of a parallelogram are respectively $(0,0),(1,0),(2,2)$ and (1, 2) then angle between diagonals is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $\frac{3 \pi}{2}$
D. $\frac{\pi}{4}$

Answer: B

- Watch Video Solution

33. The point of intersection of the lines $\frac{x}{a} \frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$ lines on the line
A. $x-y=0$
B. $(x+y)(a+b)=2 a b$
C. $(l x+m y)(a+b)=(l+m) a b$
D. All of these

Answer: D

34. Show that the straight lines given by $(2+k) x+(1+k) y=5+7 k$ for different values of k pass through a fixed point. Also, find that point.
A. Lines are parallel
B. Lines pass through the point ($-2,9$)
C. Line pass through thr point $(2,-9)$
D. None of these

Answer: B

- Watch Video Solution

35. The opposite angular points of a square are $(3,4) a)$ and $(1,-1)$. Then the co-ordinates of other two points are() $b x+$ (a) $D 1,9$ (a) $D(1) B(63) 2$ 2) th 1 9152 2) 22 (c) D(394(,) 2' 2 (d) none of these
A. $D\left(\frac{1}{2}, \frac{9}{2}\right), B\left(-\frac{1}{2}, \frac{5}{2}\right)$
B. $D\left(\frac{1}{2}, \frac{9}{2}\right), B\left(\frac{1}{2}, \frac{5}{2}\right)$
C. $D\left(\frac{9}{2}, \frac{1}{2}\right), B\left(-\frac{1}{2}, \frac{5}{2}\right)$
D. None of these

Answer: C

- Watch Video Solution

36.

The
lines
$(p-q) x+(q-r) y+(r-p)=0(q-r) x+(r-p) y+(p-q)=0,(x$
A. parallel
B. perpendicular
C. concurrent
D. None of these

Answer: C

37. The value of λ for which the lines $3 x+4 y=5,5 x+4 y=4$ and $\lambda x+4 y=6$ meet at a point is 2 b. 3 c. 1
d. 4
A. 2
B. 1
C. 4
D. 3

Answer: B

- Watch Video Solution

38. If the lines $a x+y+1=0, x+b y+1=0$ and $x+y+c=0,(a, b, c$ being distinct and different from 1) are concurrent, then $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=$
(A) 0
(B) 1
(C) $\frac{1}{a+b+c}$
(D) None of these
A. 0
B. 1
C. $\frac{1}{a+b+c}$
D. $3 a b c$

Answer: B

- Watch Video Solution

39. The straight line passing through the point of intersection of the straight line $x+2 y-10=0$ and $2 x+y+5=0$ is
A. $5 x-4 y=0$
B. $5 x+4 y=0$
C. $4 x-5 y=0$
D. $4 x+5 y=0$

Answer: B

40. Which of the following lines is concurrent with the lines $3 x+4 y+6=0$ and $6 x+5 y+9=0 ?$
A. $2 x+3 y+5=0$
B. $3 x+3 y+5=0$
C. $7 x+9 y+3=0$
D. $3 x-3 y+5=0$

Answer: B

- Watch Video Solution

41. The straight lines $x+2 y-9=0,3 x+5 y-5=0$, and $a x+b y-1=0$ are concurrent, if the straight line $35 x-22 y+1=0$ passes through the point $(a, b)(b)(b, a)(-a,-b)$ (d) none of these
A. (a, b)
B. (b, a)
C. $(a,-b)$
D. $(a,-b)$

Answer: A

- Watch Video Solution

42. If $a+b+c=0$ and $p \neq 0$ then lines
$a x+(b+c) y=p, b x+(c+a) y=p$ and $c x+(a+b) y=p$
A. do not intersect
B. intersect
C. are concurrent
D. perpendicular
43. The equation of a line passing through the point if intersection of the lines
$4 x-3 y-1=0$ and $5 x-2 y-3=0$ and parallel to the line
$2 y-3 x+2=0$ is
A. $x-3 y=1$
B. $3 x-2 y=1$
C. $2 x-3 y=1$
D. $2 x-y=1$

Answer: B

- Watch Video Solution

44. Find the equation of the straight line passing through the intersection of the lines $x-2 y=1$ and $x+3 y=2$ and parallel to
$3 x+4 y=0$.
A. $3 x+4 y+5=0$
B. $3 x+4 y-10=0$
C. $3 x+4 y-5=0$
D. $3 x+4 y+6=0$

Answer: C

- Watch Video Solution

45. Find the equation of the straight line passing through the point of intersection of the lines $5 x-6 y-1=0 \operatorname{and} 3 x+2 y+5=0$ and perpendicular to the line $3 x-5 y+11=0$.
A. $5 x+3 y+8=0$
B. $3 x-5 y+8=0$
C. $5 x+3 y+11=0$
D. $3 x-5 y+11=0$

Answer: A

- Watch Video Solution

46. The equation of a line passing through the point of intersection of lines $x+2 y+3=0$ and $3 x+4 y+7=0$ and perpendicular to the line $x-y+9=0$ is
A. $x+y+2=0$
B. $x-y-2=0$
C. $x+y-5=0$
D. $x+2 y-5=0$

Answer: A

- Watch Video Solution

47. Find the equation of a line passing through point of intersection of lines $x+2 y+5=0$ and $3 x+4 y+1=0$ and also passing through point $(3,2)$?
A. $2 x+3 y-5=0$
B. $3 x+2 y-13=0$
C. $x+3 y+13=0$
D. $3 x-2 y-7=0$

Answer: B

- Watch Video Solution

48. The equation of a line passing through the point of intersection of line $2 x+3 y+1=0$ and $3 x-5 y-5=0$ and making an angle of 45° with positive X -axis is
A. $2 x-19 y+23=0$
B. $19 x-23 y+15=0$
C. $19 x-19 y-23=0$
D. $20 x-19 y+23=0$

Answer: C

- Watch Video Solution

49. The equation of straight line passing through the point of intersection of the straight line $3 x-y+2=0$ and $5 x-2 y+7=0$ and having infinite slope is
A. $x=2$
B. $x+y=3$
C. $x=3$
D. $x=4$

Answer: C

50. Three sides of a triangle are represented by the equation $x+y-6=0,2 x+y-4=0$ and $x+2 y-5=0$. The co-ordinate of its orthocentre of
A. $(10,11)$
B. $(2,3)$
C. $(-2,-3)$
D. $(-11,-10)$

Answer: D

- View Text Solution

51. A point equidistant from the line $4 x+3 y+10=0,5 x-12 y+26=0$ and $7 x+24 y-50=0$ is
A. $(1,-1)$
B. $(1,1)$
C. $(0,0)$
D. $(0,1)$

Answer: C

- Watch Video Solution

52. The product of the perpendiculars drawn from the points $\pm \sqrt{a^{2}-b^{2}, 0}$ on the line $\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$, is
A. a^{2}
B. b^{2}
C. $a^{2}+b^{2}$
D. $a^{2}-b^{2}$

Answer: B

53. If $p \& q$ are lengths of perpendicular from the origin $x \sin \alpha+y \cos \alpha=a \sin \alpha \cos \alpha$ and $x \cos \alpha-y \sin \alpha=a \cos 2 \alpha$, then $4 p^{2}+q^{2}$
A. k
B. $2 k$
C. k^{2}
D. $2 k^{2}$

Answer: C

Watch Video Solution

54. The points on $x+y=4$ that lie at a unit distance from the line
$4 x+3 y-10=$ are
A. $(3,1),(-7,11)$
B. $(3,1),(7,11)$
C. $(-3,1),(-7,11)$
D. $(1,3),(-7,11)$

Answer: A

- Watch Video Solution

55. The vertex of an equilateral triangle is $(2,-1)$ and the equation of its base is $x+2 y=1$. The length of its sides is
A. $\frac{4}{\sqrt{15}}$
B. $\frac{2}{\sqrt{15}}$
C. $\frac{4}{3 \sqrt{3}}$
D. $\frac{1}{\sqrt{5}}$

Answer: B

56. Find the equation of a straight line, which passes through the point ($\mathrm{a}, 0$) and whose line L has intercepts a and b on the coordinate axis when the distance from the point $(2 a, 2 a)$ is a.
A. $y-a=0$ and $4 x-3 y-3 a=0$
B. $y-a=0$ and $3 x-4 y+3 a=0$
C. $y-a=0$ and $4 x-3 y+3 a=0$
D. None of these

Answer: C

- Watch Video Solution

57. The equations of the lines passing through the point $(1,0)$ and at a distance $\frac{\sqrt{3}}{2}$ from the origin, are
A. $\sqrt{3},+y-\sqrt{3}=0, \sqrt{3} x-y-\sqrt{4}=0$
B. $\sqrt{3} x+y+\sqrt{3}=0, \sqrt{3} x-y+\sqrt{3}=0$
C. $x+\sqrt{3} y-\sqrt{3}=0, x-\sqrt{3} y-\sqrt{3}=0$
D. None of these

Answer: A

- View Text Solution

58. Find the equations of the lines through the point of intersection of the lines $x-y+1=0$ and $2 x-3 y+5=0$ whose distance from the point $(3,2)$ is $\frac{7}{5}$
A. $3 x-4 y-6=0$ and $4 x+3 y+1=0$
B. $3 x-4 y+6=0$ and $4 x-3 y-1=0$
C. $3 x-4 y+6=0$ and $4 x-3 y+1=0$
D. None of these

Answer: C

59. a Find equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis.
A. $x \sqrt{3}+y+8=0$
B. $x \sqrt{3}-y=-8$
C. $x \sqrt{3}-y=8$
D. $x-\sqrt{3} y+8=0$

Answer: A

- Watch Video Solution

60. The distance between two parallel lines
$3 x+4 y-8=0$ and $3 x+4 y-3=0$, is given by
A. 4
B. 5
C. 3
D. 1

Answer: D

- Watch Video Solution

61. if the equations $y=m x+c$ and $x \cos \alpha+y \sin \alpha=p$ represent the same straight line then:
A. $p=c \sqrt{1+m^{2}}$
B. $c=p \sqrt{1+m^{2}}$
C. $c p=\sqrt{1+m^{2}}$
D. $p^{2}+c^{2}+m^{2}=1$
62. The ratio in which the line $3 x+4 y+2=0$ divides the distance between $3 x+4 y+5=0$ and $3 x+4 y-5=0$ is?
A. $5: 3$
B. 3:7
C. 2: 3
D. None of these

Answer: B

- Watch Video Solution

63. The diagonals of the parallelogram whose sides are $l x+m y+n=0$
$, l x+m y+n^{\prime},=0, m x+l y+n=0, m x+l y+n^{\prime}=0$ include an angle
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $\tan ^{-1}\left(\frac{l^{2}-m^{2}}{l^{2}+m^{2}}\right)$
D. $\tan ^{-1}\left(\frac{2 l m}{l^{2}+m^{2}}\right)$

Answer: B

- Watch Video Solution

64. The ends of the base of an isosceles triangle are at $(2 a, 0)$ and $(0, a)$. The equation of one side is $x=2 a$. The equation of the other side, is
A. $x+2 y-a=0$
B. $x+2 y=2 a$
C. $3 x+4 y-4 a=0$
D. $3 x-4 y+4 a=0$

Answer: D

- Watch Video Solution

65. Equation of the line passing through the point $(-4,3)$ and the portion of the line intercepted between the axes which is divided internally in the ratio $5: 3$ by this point, is
A. $9 x+20 y+96=0$
B. $20 x+9 y+96=0$
C. $9 x-20 y+96=0$
D. None of these

Answer: C

66. If the lines $a x+2 y+1=0, b x+3 y+1=0 a n d c x+4 y+1=0$ are concurrent, then a, b, c are in a. A.P. b. G.P. c. H.P. d. none of these
A. A.P.
B. G.P.
C. H.P.
D. None of these

Answer: A

- Watch Video Solution

67. The equation $(b-c) x+(c-a) y+(a-b)=0 \quad$ and $\left(b^{3}-c^{3}\right) x+\left(c^{3}-a^{3}\right) y+a^{3}-b^{3}=0$ will represent the same line if
A. $b=c$
B. $c=a$
C. $a=b$
D. $c=a$

Answer: D

- Watch Video Solution

68. If $2 p$ is the length of perpendicular from the origin to the lines
$\frac{x}{a}+\frac{y}{b}=1$, then $a^{2}, 8 p^{2}, b^{2}$ are in
A. A.P.
B. G.P.
C. H.P.
D. None of these

Answer: C

- Watch Video Solution

Competitive Thinking

1. The slope of a line that makes an angle of measure 30° with Y -axis is
A. $\sqrt{3}$
B. $-\sqrt{3}$
C. $\pm \sqrt{3}$
D. $\pm \frac{1}{\sqrt{3}}$

Answer: C

- Watch Video Solution

2. The slope of astraight line which does not intersect X-axis is equal to
A. $\frac{1}{2}$
B. $\frac{1}{\sqrt{2}}$
C. $\sqrt{3}$
D. 0

Answer: D

D Watch Video Solution

3. The line passing through the points $(3,-4)$ and $(-2,6)$ and a line passing through $(-3,6)$ and $(9,-18)$
A. are perpendicular
B. are parallel
C. make an angle 60° with each other
D. none of these

Answer: B

- Watch Video Solution

4. The inclination of the straight line passing through the point $(-3,6)$ and the midpoint of the line joining the points,
$(4,-5)$ and $(-2,9)$ is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{3}$
D. $\frac{3 \pi}{4}$

Answer: D

- View Text Solution

5. Thet equatio of the line passing through (a, b) and parallel to the line $\frac{x}{a}+\frac{y}{b}=1$ is
A. $\frac{x}{a}+\frac{y}{b}=3$
B. $\frac{x}{a}+\frac{y}{b}=2$
c. $\frac{x}{a}+\frac{y}{b}=0$
D. $\frac{x}{a}+\frac{y}{b}+2=0$

Answer: B

D Watch Video Solution

6. find equation of the line parallel to the line $3 x-4 y+2=0$ and passing through the point $(-2,3)$.
A. $3 x-4 y+18=0$
B. $3 x-4 y-18=0$
C. $3 x+4 y+18=0$
D. $3 x+4 y-18=0$

Answer: A

- Watch Video Solution

7. The equation of the line passing through $(-3,5)$ and perpendicular to the line through the points $(1,0)$ and $(-4,1)$ is
A. $5 x+y+10=0$
B. $3 x-y+20=0$
C. $5 x-y-10=0$
D. $5 x+y+20=0$

Answer: B

- Watch Video Solution

8. The equation of the line bisecting perpendicularly the semgent joining the points $(-4,6)$ and $(8,8)$ is
A. $6 x+y-19=0$
B. $y=7$
C. $6 x+2 y-19=0$
D. $x+2 y-7=0$
9. The equation of the perpendicular bisector of the line segment joining $A(-2,3)$ and $B(6,5)$ is
A. $x-y=-1$
B. $4 x+y=12$
C. $x+y=3$
D. $x+y=1$

Answer: B

- Watch Video Solution

10. The points $A 91,3)$ and $C(5,1)$ are the opposite vertices of a rectange. The equation of line passing through other two vertices and of gradient 2 , is
A. $2 x+y-8=0$
B. $2 x-y-4=0$
C. $x+3 y+4=0$
D. $x+2 y-1=0$

Answer: B

- View Text Solution

11. $A(-1,1), B(5,3)$ are opposite vertices of a square.The equation of the other diagonal (not passing through A, B of the square is
A. $x-3 y+4=0$
B. $2 x-y+3=0$
C. $y+3 x-8=0$
D. $x+2 y-1=0$

Answer: C

12. Find the equations of the diagonals of the square formed by the lines $x=o, y=0, x=1 a n d y=1$.
A. $y=x, y+x=1$
B. $y=x, x+y=2$
C. $2 y=x, y+x=\frac{1}{3}$
D. $y=2 x, y+2 x=1$

Answer: A

- Watch Video Solution

13. The equation of the diagonal through origin of the quadrilateral formed by the lines $x=0, y=0, x+y-1=0$ and $6 x+y-3=0$, is

$$
\text { A. } 3 x-2 y=0
$$

B. $2 x-3 y=0$
C. $3 x+2 y=0$
D. None of these

Answer: A

- Watch Video Solution

14. If the three points $A(1,6), B(3,-4)$ and $C(x, y)$ are collinear, then the equation satisfying by $\mathrm{x} \& \mathrm{y}$ is
A. $5 x+y-11=0$
B. $5 x+13 y+5=0$
C. $5 x-13 y+5=0$
D. $13 x-y+5=0$

Answer: A

15. Two consecutive sides of a parallelogram are $4 x+5 y=0$ and $7 x+2 y=0$. If the equation of one diagonal is $11 x=7 y=9$, find the equation of the other diagonal.
A. $x+2 y=0$
B. $2 x+y=0$
C. $x-y=0$
D. None of these

Answer: C

- Watch Video Solution

16. Two sides of a rhombus are along the lines, $x-y+1=0$ and $7 x-y-5=0$. If its diagnols intersect at ($-1,-2$), then which one of the following is a vertex of a rhombus? a. $(-3,-9)$ b. $(-3,-8)$ c. $\left(\frac{1}{3},-\frac{8}{3}\right)$ d. $\left(-\frac{10}{3},-\frac{7}{3}\right)$
A. $(-3,-9)$
B. $(-3,-8)$
C. $\left(\frac{1}{3},-\frac{8}{3}\right)$
D. $\left(-\frac{10}{3},-\frac{7}{3}\right)$

Answer: C

- Watch Video Solution

17. If a striaght line passes through the points $\left(-\frac{1}{2}, 1\right)$ and $(1,2)$ then its x-intercept is
A. -2
B. -1
C. 2
D. 1
18. Find the equation of a line which passes through $(-3,2)$ and makes intercepts equal in magnitude but opposite in sign on X and Y-axis.
A. $x-y+5=0$
B. $x+y-5=0$
C. $x-y-5=0$
D. $x+y+5=0$

Answer: A

- Watch Video Solution

19. Equation of the straight line making equal intercepts on the axes and passing through the point $(2,4)$ is
A. $4 x-y-4=0$
B. $2 x+y-8=0$
C. $x+y-6=0$
D. $x+2 y-10=0$

Answer: C

- Watch Video Solution

20. The equation of the straight line passing through the point (4.3) and making intercepts on the co ordinate axes whose sum is -1 , is
A. $\frac{x}{2}-\frac{y}{3}=1$ and $\frac{x}{-2}+\frac{y}{1}=1$
B. $\frac{x}{2}-\frac{y}{3}=-1$ and $\frac{x}{-2}+\frac{y}{1}=-1$
C. $\frac{x}{2}-\frac{y}{3}=1$ and $\frac{x}{2}+\frac{y}{1}=1$
D. $\frac{x}{2}+\frac{y}{1}=1$ and $\frac{x}{-2}+\frac{y}{1}=-1$

Answer: A

21. The straight line through a fixed point $(2,3)$ intersects the coordinate axes at distinct point P and Q. If O is the origin and the rectangle $O P R Q$ is completed then the locus of R is
A. $2 x+3 y=x y$
B. $3 x+2 y=x y$
C. $3 x+2 y=6 x y$
D. $3 x+2 y=6$

Answer: B

- Watch Video Solution

22. The equation to the line bisecting the join of $(3,-4)$ and $(5,2)$ and having intercepts on the x-axis and y-axis in the ratio of 2:1 is:
A. $x+y-3=0$
B. $2 x-y=9$
C. $x+2 y=2$
D. $2 x+y=7$

Answer: C

- Watch Video Solution

23. If $\left(\frac{3}{2}, \frac{5}{2}\right)$ is the midpoint of line segment intercepted by a line between axes, the equation of the line is
A. $5 x+3 y+15=0$
B. $3 x+5 y+15=0$
C. $5 x+3 y-15=0$
D. $3 x+5 y-15=0$

Answer: C

24. A straight line through the point $A(3,4)$ is such that its intercept between the axes is bisected at A . Its equation is :
A. $x+y=7$
B. $3 x-4 y+7=0$
C. $4 x+3 y=24$
D. $3 x+4 y=25$

Answer: C

- Watch Video Solution

25. Equation of the line through (α, β) which is the midpoint of the line intercepted between the coordinate axes is
A. $\frac{x}{\alpha}+\frac{y}{\beta}=1$
B. $\frac{x}{\alpha}+\frac{y}{\beta}=2$
C. $\frac{x}{\alpha}-y \beta=-1$
D. $\frac{x}{\alpha}-\frac{y}{\beta}=-2$

Answer: B

- Watch Video Solution

26. The equation of the line which is such that the portion of line segment intercepted between the coordinate axes is bisected at $(4,-3)$, is
A. $3 x+4 y=24$
B. $3 x-4 y=12$
C. $3 x-4 y=24$
D. $4 x-3 y=24$

Answer: C

- Watch Video Solution

27. An equation of a line whose segment between the coordinate axis is divided by the point $\left(\frac{1}{2}, \frac{1}{3}\right)$ in the ratio $2: 3$ is
A. $6 x+9 y=5$
B. $9 x+6 y=5$
C. $4 x+9 y=5$
D. $9 x+4 y=5$

Answer: C

- View Text Solution

28. If the portion of a line intercepted between the coordinate axes is divided by the point (2, -10 in the ratio $3: 2$. then the equation of that line is

$$
\text { A. } 5 x-2 y-20=0
$$

B. $2 x-y-5=0$
C. $3 x-y-7=0$
D. $x-3 y-5=9$

Answer: D

- View Text Solution

29. If the line $p x-q y=r$ intersects the coordinate axes at $(a, 0)$ and $(0, b)$, then the value of $a+b$ is equal to
A. $r\left(\frac{p+q}{p q}\right)$
B. $r\left(\frac{p-q}{p q}\right)$
C. $r\left(\frac{p-q}{p q}\right)$
D. $r\left(\frac{p+q}{p-q}\right)$

Answer: B

- Watch Video Solution

30. A line is such that its segment between the straight lines $5 x-y-4=0$ and $3 x+4 y-4=0$ is bisected at the point $(1,5)$, then its equation is
A. $83-35 y+92=0$
B. $35 x-83 y+92=0$
C. $35 x+35 y+92=0$
D. None of these

Answer: A

- View Text Solution

31. The lines $y=2 x$ and $x=-2 y$ are
A. parallel
B. perpendicular
C. equally inclined to axes
D. coincident

Answer: B

- Watch Video Solution

32. Two line represented by equations $x+y=1$ and $x+k y=0$ are mutually orthogonal if k is
A. 1
B. -1
C. 0
D. None of these

Answer: B

33. If the straight lines $2 x+3 y-3=0$ and $x+k y+7=0$ are perpendicular, then the value of k is
A. $\frac{3}{2}$
B. $\frac{-3}{2}$
C. $\frac{2}{3}$
D. $\frac{-2}{3}$

Answer: D

- Watch Video Solution

34. If the line passing through $(4,3) \operatorname{and}(2, k)$ is parallel to the line $y=2 x+3$, then find the value of k.
A. -1
B. 1
C. -4
D. 4

Answer: D

- Watch Video Solution

35. The medians $B E$ and $A D$ of a triangle with vertices $A(0, b), B(0,0)$ and $C(a, 0)$ are perpendicular to each other, if.
A. $a=\sqrt{2} b$
B. $a=-\sqrt{2} b$
C. Both (A) and (B)
D. None of these

Answer: C

- Watch Video Solution

36. If $(-4,5)$ is a vertex of a square and one of its diagonal is $7 x-y+8-0$. Find the equation of other diagonal
A. $7 x-y+23=0$
B. $7 y+x=30$
C. $7 y+x=31$
D. $x-7 y=30$

Answer: C

- Watch Video Solution

37. For what values of $a a n d b$ the intercepts cut off n the coordinate axes by the line $a x+b y+8=0$ are equal in length but opposite in signs to those cut off by the line $2 x-3 y+6=0$ on the axes.
A. $a=\frac{8}{3}, b=-4$
В. $a=-\frac{8}{3}, b=-4$
C. $a=\frac{8}{3}, b=4$
D. $a=-\frac{8}{3}, b=4$

Answer: D

- Watch Video Solution

38. The equation of the straight line passing through the point $(3,2)$ and perpendicular to the line $y=x$ is
A. $x-y=5$
B. $x+y=5$
C. $x+y=1$
D. $x-y=1$

Answer: B

39. The equation of the line passing through the point $(1,2)$ and perpendicular to the line $x+y+1=0$ is
A. $y-x+1=0$
B. $y-x-1=0$
C. $y-x+2=0$
D. $y-x-2=0$

Answer: B

- Watch Video Solution

40. Equation of line passing through the point $(1,2)$ and perpendicular to the line $y=3 x-1$ is
A. $x+3 y-7=0$
B. $x+3 y+7=0$
C. $x+3 y=0$
D. $x-3 y=0$

Answer: A

- Watch Video Solution

41. Equatin of the line passing through $(-1,1)$ and perpendicular to the line $2 x+3 y+4=0$ is
A. $2(y-1)=3(x+1)$
B. $3(y-1)=-2(x+1)$
C. $y-1=2(x+1)$
D. $3(y-1)=x+1$

Answer: A

42. Find the equation of the straight line passing through the point of intersection of the lines $5 x-6 y-1=0 \operatorname{and} 3 x+2 y+5=0$ and perpendicular to the line $3 x-5 y+11=0$.
A. $5 x+3 y+18=0$
B. $-5 x-3 y+18=0$
C. $5 x+3 y+8=0$
D. $5 x+3 y-8=0$

Answer: C

- Watch Video Solution

43. Find the equation of the line perpendicular to the line $\frac{x}{a}-\frac{y}{b}=1$ and passing through a point at which it cuts the x-axis.
A. $\frac{x}{a}+\frac{y}{b}+\frac{a}{b}=0$
B. $\frac{x}{b}+\frac{y}{a}=\frac{b}{a}$
C. $\frac{x}{b}+\frac{y}{a}=0$
D. $\frac{x}{b}+\frac{y}{a}=\frac{a}{b}$

Answer: D

- Watch Video Solution

44. A line passes through the point $(2,2)$ and is perpendicular to the line $3 x+y=3$, then its y-intercept is
A. $\frac{4}{3}$
B. $\frac{1}{3}$
C. 1
D. $\frac{2}{3}$

Answer: A

45. The equation of the line joining the centroid with the orthocentre of the triangle formed by the points $(-2,3)(2,-1),(4,0)$ is
A. $x+y-2=0$
B. $11 x-y-14=0$
C. $x-11 y+6=0$
D. $2 x-y-2=0$

Answer: B

- Watch Video Solution

46. The equation of the straight line in the normal form which is parallel to the lines $x+2 y+3=0$ and $x+2 y+8=0$ and dividing the distance between these two lines in the ratio $1: 2$ internally is
47. The angle between the lines $x \cos \alpha+y \sin \alpha=a$ and $x \sin \beta-y \cos \beta=a$
$(i) \beta-\alpha(i i) \pi-\alpha+\beta(i i i) \frac{\pi}{2}+\beta+\alpha(i v) \frac{\pi}{2}-\beta+\alpha$
A. $\beta-\alpha$
B. $\pi+\beta-\alpha$
C. $\frac{\pi}{2}+\beta+\alpha$
D. $\frac{\pi}{2}-\beta+\alpha$

Answer: D

- Watch Video Solution

48. The angle between the lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{a}-\frac{y}{b}=1$ will be:
A. $2 \tan ^{-1} \frac{b}{a}$
B. $\tan ^{-1} \frac{2 a b}{a^{2}+b^{2}}$
C. $\tan ^{-1} \frac{a^{2}-b^{2}}{a^{2}+b^{2}}$
D. None of these

Answer: A

- Watch Video Solution

49. Angle between $x=2$ and $x-3 y=6$ is
A. ∞
B. $\tan ^{-1}(30$
C. $\tan ^{-1}\left(\frac{1}{3}\right)$
D. None of these

Answer: B

- Watch Video Solution

50. The paralelism condition for two straight lines one of which is speciified by the equation $a x+b y+c=0$, the other being represented parmetrically by $x=\alpha t+\beta, y=\gamma t+\delta$ is given by
A. $\alpha \gamma-b \alpha=0, \beta=\partial a t=c=0$
B. $a \alpha-b \gamma=0, \beta=\delta=0$
C. $a \alpha+b \gamma=0$
D. $a \gamma=b \alpha=0$

Answer: C

- Watch Video Solution

51. The angle between the two lines $y-2 x=9$ and $x+2 y=-7$, is
A. 60°
B. 30°
C. 90°
D. 45°

Answer: C

- Watch Video Solution

52. The angle between the straight lines
$2 x-y+3=0$ and $x+2 y+3=0$ is-
A. 90°
B. 60°
C. 45°
D. 30°

Answer: A

53. if $\frac{1}{a b^{\prime}}+\frac{1}{b a^{\prime}}=0$, then lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b^{\prime}}+\frac{y}{a^{\prime}}=1$ are
A. Parallel
B. Inclined at 60° to each other
C. Perpendicular to each other
D. Inclined at 30° to each other

Answer: C

- Watch Video Solution

54. A straight line L through the point $(3,-2)$ is inclined at an angle 60° to the line $\sqrt{3} x+y=1$ If L also intersects the x -axis then the equation of L is
A. $y+2=0, \sqrt{3} x-y-2-3 \sqrt{3}=0$
B. $x-2=0, \sqrt{3} x-y+2+3 \sqrt{3}=0$
C. $\sqrt{3} x-y-2-3 \sqrt{3}=0$
D. $x-\sqrt{3} t+2+3 \sqrt{3}=0$

Answer: A

- Watch Video Solution

55. The lines $x=3, y=4$ and $4 x-3 y+a=0$ are concurrent for a equal to
A. 0
B. -1
C. 2
D. 3

Answer: A

56. If the lines $3 y+4 x=1, y=x+5$ and $5 y+b x=3$ are concurrent the $\mathrm{n} b=$
A. 1
B. 3
C. 6
D. 0

Answer: C

- Watch Video Solution

57. The number of values of a for which the lines $2 x+y-1=0$, $a x+3 y-3=0$, and $3 x+2 y-2=0$ are concurrent is 0 (b) 1 (c) 2 (d) infinite
A. All a
B. $a=4$ only
C. $-1 \leq a \leq 3$
D. $a>0$ only

Answer: A

- Watch Video Solution

58. If the lines $a x+b y+c=0, b x+c y+a=0$ and $c x+a y+b=0$ be concurrent, then:
A. $a^{3}+b^{3}+c^{3}+3 a b c=0$
B. $a^{3}+b^{3}+c^{3}-a b c=0$
C. $a^{3}+b^{3}+c^{2}-3 a b c=0$
D. None of these

Answer: C

59. The lines $a x+b y+c=0$, where $3 a+2 b+4 c=0$, are concurrent at the point 31132 '4
A. $(1 / 2,3 / 4)$
B. $(1,3)$
C. $(3,1)$
D. $(3 / 4,1 / 2)$

Answer: D

- Watch Video Solution

60. If the lines $x+3 y-9=0,4 x+b y-2=0$, and $2 x-4=0$ are concurrent, then the equation of the lines passing through the point (b,0) and concurrent with the given lines, is
A. $2 x+y+10=0$
B. $4 x-7 y+20=0$
C. $x-y+5=0$
D. $x-4 y+5=0$

Answer: D

- Watch Video Solution

61. The line passing through the point of intersection of $x+y=2, x-y=0$ and is parallel to $x+2 y=5$, is
A. $x+2 y=1$
B. $x+2 y=2$
C. $x+2 y=4$
D. $x+2 y=3$

Answer: D

62. A line passes through the point of intersection of $2 x+y=5$ and $x+3 y+8=0$ and paralled to the $3 x+4 y=7$ is
A. $3 x+4 y+3=0$
B. $3 x+4 y=0$
C. $4 x-3 y+3=0$
D. $4 x-3 y=3$

Answer: A

- Watch Video Solution

63. The line parallel to the X-axis and passing through the point of intersection of the lin $a x+2 b y+3 b=0$ and $b x-2 a y-3 a=0$ where $(a, b) \neq(0,0)$ is
A. above the X-axis at a distance of $3 / 2$ from it
B. above the X-axis at a distance of $2 / 3$ from it
C. below the X-axis at a distance of $3 / 2$ from it
D. below the X-axis at a distance of $2 / 3$ from it

Answer: C

- Watch Video Solution

64. Find the equation of the line passing through the point of intersection of the lines
(b) perpendicular to the line $7 x+2 y-5=0$
A. $2 x-7 y-20=0$
B. $2 x+7 y-20=0$
C. $-2 x+7 y-20=0$
D. $2 x+7 y+20=0$

Answer: A

65. Equations of line which passes through the point of intersection of the $4 x-3 y-1=0$ and $2 x-5 y+3=0$ and are equally inclined to the axes are:
A. $y \pm x=0$
B. $y-1= \pm 1(x-1)$
C. $x-1= \pm 2(y-1)$
D. $y \pm x=2$

Answer: B

- Watch Video Solution

66. A line passes through the point of intersection of the line $3 x+y+1=0$ and $2 x-y+3=0$ and makes equal intercepts with axes. Then, equation of the line is

$$
\text { A. } 5 x+5 y-3=0
$$

B. $x+5 y-3=0$
C. $5 x-y-3=0$
D. $5 x+5 y+3=0$

Answer: A

- Watch Video Solution

67. 12. If a and b are two arbitrary constants, then the straight line
$(a-2 b) x+(a+3 b) y+3 a+4 b=0$ will pass through (A) $(-1,-2)$ (B) $(1,2)$
(C) $(-2,-3)(\mathrm{D})(2,3)$
A. $(-1,-2)$
B. $(1,2)$
C. $(-2,-3)$
D. $(2,3)$
1. Find the distance of the point $(3, \quad 5)$ from the line $3 x \quad 4 y \quad 26=0$.
A. $\frac{3}{7}$
B. $\frac{2}{5}$
C. $\frac{7}{5}$
D. $\frac{3}{5}$

Answer: D

- Watch Video Solution

69. Let $a \neq 0, b \neq 0$, cbe three real numbers and
$L(p, q)=\frac{a p+b q+c}{\sqrt{a^{2}+b^{2}}, \forall p, q \in R .}$
$L\left(\frac{2}{3}, \frac{1}{3}\right)+L\left(\frac{1}{3}, \frac{2}{3}\right)+L(2,2)=0$, then the line $a x+b y+c=0$ always passes through the fixed point.
A. $(0,1)$
B. $(1,1)$
C. $(2,2)$
D. $(-1,-1)$

Answer: B

- Watch Video Solution

70. The length of the perpendicular drawn from orgin upon the straight line $\frac{x}{3}-\frac{y}{4}=1$ is
A. $2 \frac{2}{5}$
B. $3 \frac{1}{5}$
C. $4 \frac{2}{5}$
D. $3 \frac{2}{5}$
71. The length of the perpendicular from the origin on the line $\frac{x \sin \alpha}{b}-\frac{y \cos \alpha}{a}-1=0$ is
A. $\frac{|a b|}{\sqrt{a^{2} \cos ^{2} \alpha-\beta \sin ^{2} \alpha}}$
B. $\frac{|a b|}{\sqrt{a^{2} \cos ^{2} \alpha+\beta \sin ^{2} \alpha}}$
C. $\frac{|a b|}{\sqrt{a^{2} \sin ^{2} \alpha-\beta \cos ^{2} \alpha}}$
D. $\frac{|a b|}{\sqrt{a^{2} \sin ^{2} \alpha+\beta \cos ^{2} \alpha}}$

Answer: D

- Watch Video Solution

72. A straight line passes through the points $(5,0)$ and $(0,3)$. The length of perpendicular from the point $(4,4)$ on the line is
A. $\frac{15}{\sqrt{34}}$
B. $\frac{\sqrt{17}}{2}$
C. $\frac{17}{2}$
D. $\sqrt{\frac{17}{2}}$

Answer: D

- Watch Video Solution

73. If the perpendicular distance between the point $(1,1)$ and the line $3 x+4 y+c=0$ is 7 , then the possible values of c are
A. $-35,42$
B. 35,28
C. $42,-28$
D. $28,-42$
74. What are the points on the x-axis whose perpendicular distance from the line $\frac{x}{a}+\frac{y}{b}=1$ is a
A. $\left[\frac{a}{b}\left(b \pm \sqrt{a^{2}+b^{2}}\right), 0\right]$
B. $\left[\frac{b}{a}\left(b \pm \sqrt{a^{2}+b^{2}}\right), 0\right]$
C. $\left[\frac{a}{b}\left(a \pm \sqrt{a^{2}+b^{2}}\right), 0\right]$
D. None of these

Answer: A

- Watch Video Solution

75. Two points A and B have coordinates $(1,1)$ and $(3,-2)$ respectively. The co-ordinates of a point distant $\sqrt{85}$ from B on the line through B perpendicular to $A B$ are
A. $(4,7)$
B. $(7,4)$
C. $(5,7)$
D. $(-5,-3)$

Answer: C

- Watch Video Solution

76. The vertices of a triangle are $(2,1),(5,2)$ and $(4,4)$ The lengths of the perpendicular from these vertices on the opposite sides are
A. $\frac{7}{\sqrt{5}}, \frac{7}{\sqrt{13}}, \frac{7}{\sqrt{6}}$
B. $\frac{7}{\sqrt{6}}, \frac{7}{\sqrt{8}}, \frac{7}{\sqrt{10}}$
C. $\frac{7}{\sqrt{5}}, \frac{7}{\sqrt{8}}, \frac{7}{\sqrt{15}}$
D. $\frac{7}{\sqrt{5}}, \frac{7}{\sqrt{13}}, \frac{7}{\sqrt{10}}$
77. the equation of line of the base of the equilateral triangle is $x+y=2$ and vertix $(2,-1)$ then length of the side is:
A. $\sqrt{3 / 2}$
B. $\sqrt{2}$
C. $\sqrt{2 / 3}$
D. None of these

Answer: C

- Watch Video Solution

78. If the equation of the base of an equilateral triangle is $2 x-y=1$ and the vertex is $(-1,2)$, then the length of a side of the triangle is-
A. $\sqrt{\frac{20}{3}}$
B. $\frac{2}{\sqrt{15}}$
C. $\sqrt{\frac{8}{15}}$
D. $\sqrt{\frac{15}{2}}$

Answer: A

- Watch Video Solution

79. P is a point on the line $y+2 x=1$, and $\operatorname{Qand} R$ two points on the line $3 y+6 x=6$ such that triangle $P Q R$ is an equilateral triangle. The length of the side of the triangle is $\frac{2}{\sqrt{5}}$ (b) $\frac{3}{\sqrt{5}}$ (c) $\frac{4}{\sqrt{5}}$ (d) none of these
A. $\frac{1}{\sqrt{15}}$
B. $\frac{2}{\sqrt{15}}$
C. $\frac{2}{\sqrt{5}}$
D. $\frac{4}{\sqrt{5}}$

Answer: B

80. The equation of the line passing through the point of intersection of the lines $2 x+y-4=0, x-3 y+5=0$ and lying at a distance of $\sqrt{5}$ units from the origin, is
A. $x-2 y-5=0$
B. $x+2 y-5=0$
C. $x+2 y+5=0$
D. $x-2 y+5=0$

Answer: B

- Watch Video Solution

81. A straight line makes an intercept on the Y-axis twice as along as that on X -axis and is at a unit distance from the origin. Then the line is represented by the equations
A. $2 x+3 y= \pm \sqrt{5}$
B. $x+y \pm 2$
C. $x-y= \pm 2$
D. $2 x+y= \pm \sqrt{5}$

Answer: D

- Watch Video Solution

82. The vertices of a $\triangle O B C$ are $O(0,0), B(-3,-1), C(-1,-3)$.

Find the equation of the line parallel to $B C$ and intersecting the sides $O B$ and OC and whose perpendicular distance from the origin is $\frac{1}{2}$.
A. $2 x+2 y+\sqrt{2}=0$
B. $2 x-2 y-\sqrt{2}=0$
C. $2 x-2 y+\sqrt{2}=0$
D. None of these

D Watch Video Solution

83. The equation of one of the line parallel to $4 x-3 y=5$ and at a unit distance from the point $(-1,-4)$ is
A. $3 x+4 y-3=0$
B. $3 x+4 y+3=0$
C. $4 x-3 y+3=0$
D. $4 x-3 y-3=0$

Answer: D

- Watch Video Solution

84. The vertices of a triangle are $A(-1,-7), B(5,1)$, and $C(1,4)$. The equation of the bisector of $\angle A B C$ is
A. $x=7 y+2$
B. $7 y=x+2$
C. $y=7 x+2$
D. $7 x=y+2$

Answer: B

- Watch Video Solution

85. Number of points having distance $\sqrt{5}$ from the straight line $x-2 y+1=$ 0 and a distance $\sqrt{13}$ from the line $2 x+3 y-1=0$ is _
A. 1
B. 2
C. 4
D. 5

Answer: C

86. On the portion of the straight Straight Line from line $x+y=2$ which is intercepted between the axes, a square is constructed away from the origin with this portion as on of its side. If p denotes the perpendicular distance of a side of this square from the origin, then the maximum value of p is A) $\sqrt{2}$ (B) $2 \sqrt{2}$ C) $3 \sqrt{2}$ D) $4 \sqrt{2}$
A. $3 \sqrt{2}$
B. $2 \sqrt{3}$
C. $\frac{2}{\sqrt{3}}$
D. $\frac{3}{\sqrt{2}}$

Answer: A

- Watch Video Solution

87. The equation of straight line equally inclined to the axes and equidistant from the point $(1,-2)$ and $(3,4)$ is:
A. $a-1, b=1, c=1$
B. $a=1, b=-1, c=-1$
C. $a=1, b=1, c=2$
D. None of these

Answer: B

- Watch Video Solution

88. The distance between the line $3 x+4 y=9$ and $6 x+8 y=15$ is
A. $\frac{3}{2}$
B. $\frac{3}{10}$
C. 6
D. None of these

- Watch Video Solution

89. The distance between the parallel lines $y=x+a, y=x+b$ is
A. $\frac{|a-b|}{\sqrt{2}}$
B. $|a-b|$
C. $|a+b|$
D. $\frac{|a+b|}{\sqrt{2}}$

Answer: A

Watch Video Solution

90. The line L given by $\frac{x}{5}+\frac{y}{b}=1$ passes through the point $(13,32)$.the line K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1$ then the distance between L and K is
A. $\frac{23}{\sqrt{15}}$
B. $\sqrt{17}$
C. $\frac{17}{\sqrt{15}}$
D. $\frac{23}{\sqrt{17}}$

Answer: D

- Watch Video Solution

91. Let α be the distance between lines $-x+y=2$ and $x-y=2$ and β be the distance between the lines $4 x-3 y=5$ and $6 y-8 x=1$, then
A. $20 \sqrt{2} \beta=11 \alpha$
B. $20 \sqrt{2} \alpha=11 \beta$
C. $11 \sqrt{2} \beta=20 \alpha$
D. None of these
92. The line $(k+1) x+k y-2 k^{2}-2=0$ passes through a point regardless of the value k. Which of the following is the line with slope 2 passing through the point?
A. $y=2 x+8$
B. $y=2 x-4$
C. $y=2 x-51$
D. $y=2 x-8$

Answer: D

Watch Video Solution

93. If the line $a x+b y+c=0$ always passes through the fixed point $(1,-2)$ then :
$\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in
A. A.P.
B. H.P.
C. G.P.
D. None of these

Answer: A

- Watch Video Solution

94. If $\mathrm{I}, \mathrm{m}, \mathrm{n}$ are in AP, then the line $\mathrm{Ix}+\mathrm{my}+\mathrm{n}=\mathrm{O}^{\text {© }}$ will always pass through the point
A. $(-1,2)$
B. $(1,-2)$
C. $(1,2)$
D. $(2,1)$

Answer: B

95. If a, b, c are in harmonic progression, then the straight line $\left(\left(\frac{x}{a}\right)\right)_{\frac{y}{b}}+\left(\frac{l}{c}\right)=0$ always passes through a fixed point. Find that point.
A. $(-1,-2)$
B. ($-1,2$)
C. $(1,-2)$
D. $1,-1 / 2)$

Answer: C

- Watch Video Solution

96. The incentre of the triangle formed by the straight line having 3 as X intercept and 4 as Y-intercept, together with the coordinate axes, is
A. $(2,2)$
B. $\left(\frac{3}{2}, \frac{3}{2}\right)$
C. $(1,2)$
D. $(1,1)$

Answer: D

- Watch Video Solution

97. The equations of the sides of a triangle are $x-3 y=0,4 x+3 y=5,3 x+y=0$. The line $3 x-4 y=0$ passes through (A) Incentre (B) Centroid (C) Orthocentre (D) Circumcentre
A. The incentre
B. The centroid
C. The circumcentre
D. The orthocentre of the triangle

Answer: D

D Watch Video Solution

98. The straight lines $x+y-4=0,3 x+y-4=0 \quad$ and $x+3 y-4=0$ form a triangle, which is
A. isosceles
B. equilateral
C. right-angled
D. none of these

Answer: A

- Watch Video Solution

99. The straight lines $x+y=0,5 x+y=4$ and $x+5 y=4$ form (A) an isosceles triangle (B) an equilateral triangle (C) a scalene triangle (D) a

right angled triangle

A. an isosceles triangle
B. an equilateral triangle
C. a scalene triangle
D. a right angled triangle

Answer: A

- Watch Video Solution

Evaluation Test

1. If $f(\alpha)=x \cos \alpha+y \sin \alpha-p(\alpha)$, then the lines
$f(\alpha)=0$ and $f(\beta)=0$ ar perpendicular to each other, if
A. $\alpha=\beta$
B. $\alpha+\beta=\frac{\pi}{2}$
C. $|\alpha-\beta|=\frac{\pi}{2}$
D. none of these

Answer: C

- Watch Video Solution

2. The locus of the orthocentre of the triangle formed by the lines
$(1+p) x-p y+p(1+p)=0,(1+q) x-q y+q(1+q)=0$ and $\mathrm{y}=0$,
where $p \neq \cdot q$, is (A) a hyperbola (B) a parabola (C) an ellipse (D) a straight line
A. a hyperbola
B. a parabola
C. an ellipse
D. a straight line
3. If the straight line $a x+b y+c=0$ make a triangle of constant area with coordinate axes, then
A. a,b,c, are in G.P.
B. a,c,b are in G.P.
C. c,a,b, are in G.P.
D. none of these

Answer: B

- Watch Video Solution

4. Let $0<\alpha<\frac{\pi}{2}$ be a fixed angle . If $p=(\cos \theta, \sin \theta)$ and $Q(\cos (\alpha-\theta))$, then Q is obtained from P by
A. clockwise rotation around origin through an angle α
B. anti-clockwose rotation aroung origin through an angle α
C. reflection in the line through origin with slope $\tan \alpha$
D. reflection in the line through origin with slope $\tan \frac{\alpha}{2}$

Answer: D

- Watch Video Solution

5. Let $P=(-1,0), Q=(0,0)$ and $R=(3,3 \sqrt{3})$ be three points. The equation of the bisector of the angle PQR
A. $\frac{\sqrt{3}}{2} x+y=0$
B. $x+\sqrt{3} y=0$
C. $\sqrt{3} x+y=0$
D. $x+\frac{\sqrt{3}}{2} y=0$

Answer: C

6. A square of side 'a' lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle α ($0<\alpha^{\prime}<$ $\mathrm{pi} / 4)$ with the positive direction of x -axis. Find the equation of diagonal not passing through the origin ?
A. $y(\cos \alpha+\sin \alpha)+x(\cos \alpha-\sin \alpha)=a$
B. $y(\cos \alpha-\sin \alpha)-x(\sin \alpha-\cos \alpha)=a$
C. $y(\cos \alpha+\sin \alpha 0+x(\sin \alpha-\cos \alpha)=a$
D. $y(\cos \alpha+\sin \alpha)+x(\sin \alpha+\cos \alpha)=a$

Answer: A

- Watch Video Solution

7. A line L passeds through the points $(1,1)$ and $(2,0)$ and another line L' passes through $\left(\frac{1}{2}, 0\right)$ and perpendicular to L. Then the area of the triangle formed by the lines L, L and Y -axis is
A. $\frac{15}{8}$
B. $\frac{25}{4}$
C. $\frac{25}{8}$
D. $\frac{25}{16}$

Answer: D

- Watch Video Solution

8. The number of integral values of m for which the x-coordinate of the point of intersection of the lines $3 x+4 y=9$ and $y=m x+1$ is also an integer is 2 (b) 0 (c) 4 (d) 1
A. 2
B. 0
C. 4
D. 1

- Watch Video Solution

9. If the lines $a x+b y+p=0, x \cos \alpha+y \sin \alpha-p=0(p \neq 0)$ and $x \sin \alpha-y \cos \alpha=0$ are concurrent and the first two lines include an angle $\frac{\pi}{4}$, then $a^{2}+b^{2}$ is equal to
A. 1
B. 2
C. 3
D. 4

Answer: B

10. A line $4 x+y=1$ passes through the point $\mathrm{A}(2,7)$ and meets line BC at B whose equation is $3 x-4 y+1=0$, the equation of line AC such that $A B=A C$ is (a) $52 \mathrm{x}+89 \mathrm{y}+519=0$ (b) $52 \mathrm{x}+89 \mathrm{y}-519=0$ c) 82 x $+52 y+519=0$ (d) $89 x+52 y-519=0$
A. $52 x+89 y+519=0$
B. $52 x+89 y-519=0$
C. $89 x+52 y+519=0$
D. $89 x+52 y-519=0$

Answer: A

- Watch Video Solution

