© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - TARGET PHYSICS (HINGLISH)

MEASUREMENTS

Classical Thinking Introduction

1. The atomic moecular and nuclear phenomes
are the part of domian.
A. macroscopic
B. microsopic
C. megascopic
D. electroscopic

Answer: b

D Watch Video Solution
2. Nano size of gold has colour .
A. yellow
B. red

C. pink

D. orange

Answer: c

D Watch Video Solution

3. Maxwell's equal relate to

A. law of gravition
B. basic laws of electromagenetism

C. laws of electrostatics

D. nuclear model of an atom

Answer: b

D Watch Video Solution

Classical Thinking Need Of Measurements

1. _____ is needed for the experimental
veritfication of various theories .
A. unit
B. Symbol
C. Instrument
D. Measurement

Answer: d

- Watch Video Solution

Classical Thinking Units Of Measurments

1. The reference standard used for the mesaurement of physical quanitiy is called
A. standard quantity
B. dimension
C. constant
D. unit

Answer: d

D Watch Video Solution
2. Which of the following in NOT a characteristic of a good unit?
A. It is invariable
B. It is reproducible
C. It is perishable
D. It is easily available

Answer: c
(Watch Video Solution

Classical Thinking System Of Units

1. Unit are classified into \qquad
A. 2
B. 4
C. 5
D. 6

Answer: a

D Watch Video Solution
2. A set of fundamental and derived units is
known as \qquad
A. supplementary units
B. system of units
C. complementary units
D. metric units

Answer: b
(Watch Video Solution
3. The physical quantity having the same unit in all the systems of unit is \qquad
A. length
B. time
C. mass
D. foot

Answer: b

D Watch Video Solution

Classical Thinking S I Units

1.

S.I
system
of
unit
contains______supplementary unit.
A. 7
B. 2
C. 4
D. many

Answer: b

D Watch Video Solution
2. In which of following system, scientific data
can be exchanged between different parts of the world?
A. M.K.S
B. C.G.S
C. F.P.S
D. S.I

Answer: d

Classical Thinking Fundamental And Derived

Units

1. Out of the following units, which is NOT a fundamental unit?
A. newton
B. second
C. punod
D. kg

Answer: a

- Watch Video Solution

2. Temperature can be expressed as a derived quantity in terms of any of the following
A. length and mass
B. mass and time
C. length, mass and time
D. none of these

Answer: d

D Watch Video Solution

3. Which of the following is NOT a derived unit?
A. joule
B. erg
C. dyne
D. mole

Answer: d

D Watch Video Solution

4. Which of the following is the CORRECT way of writing units?
A. 25 ms length
B. 30 kg
C. 5 Newton
D. 10 N

Answer: d

D Watch Video Solution

5. Which one of the following methods is used
to measure distance of a planet or a star from
the earth?
A. echo
B. direct
C. parallax
D. paradox

- Watch Video Solution

6. The mass of the body depends only on
A. temperature
B. pressure
C. quantity of matter contained in the body.
D. location of the body from the observer.

Answer: c

- Watch Video Solution

7. Which of the following represents a unified atomic mass unit (lu)?
A. 8.333 of the mass of an atom of ${ }^{12} C$ in kg
B. 0.8333 of the mass of an atoms of ${ }^{12} C$ in
C. 8.333 of the mass of an atoms of ${ }^{12} \mathrm{C}$ in

g

D. 0.833 of the mass of an atom of ${ }^{12} C$ in kg

Answer: d

- Watch Video Solution

8. In cesium atomic clock is used.

A. cesium-122 atom
B. cesium-132 atom
C. cesium-133 atom
D. cesium-134 atom

Answer: c

D Watch Video Solution

9. A__ is the interval from one noon to the next noon.
A. mean solar day

B. solar day

C. lunar day
D. day

Answer: b

D Watch Video Solution
10. Light year is a unit of
A. distance
B. time

C. temperature

D. luminous intensity

Answer: a

D Watch Video Solution

11. Which of the following quantity is expressed as force per unit area
A. work
B. pressure

C. volume

D. density

Answer: b

- Watch Video Solution

12. The physical quantity having the unit dyne
g^{-1} is
A. velocity
B. mass

C. force

D. acceleration

Answer: d

- Watch Video Solution

13. Write the SI unit of luminous intensity and
the amount of substance.
A. watt
B. lux

C. lumen

D. candela

Answer: d

- Watch Video Solution

14. Which of the following is a supplementary unit?
A. Steradian
B. candela
C. kelvin
D. pascal

Answer: a

D Watch Video Solution

15. The pessure of 10^{3} dyne $/ \mathrm{cm}^{3}$ is equivalent to
A. $10 \mathrm{~N} / \mathrm{m}^{2}$
B. $10^{2} \mathrm{~N} / \mathrm{m}^{2}$
C. $10^{-2} \mathrm{~N} / \mathrm{m}^{2}$
D. $10^{-1} \mathrm{~N} / \mathrm{m}^{2}$

Answer: b

D Watch Video Solution

Classical Thinking Dimensional Analysis

1. $\left[L^{-1} M^{1} T^{-2}\right]$ are the dimensions of
A. joule constant

B. gravitational constant

C. pressure
D. force

Answer: c

D Watch Video Solution

2. Checking the correctness of equations using the method of dimensions is based on
A. equality of inertial frame of reference.
B. the types of system of units
C. the method of measurement
D. principal of homogeneity of dimension.

Answer: d

D Watch Video Solution

3. A unitless quantity

A. always has a non-zero dimension.
B. may have a non-zero dimension .

C. never has a zero dimension.

D. has no fimensions.

Answer: d

D Watch Video Solution

4. Which of the following in NOT a dimensionless quantity?
A. angle
B. strain

C. specific gravity

D. density

Answer: d

D Watch Video Solution

5. The unit of plane angle is radian, hence its
dimension are
A. $\left[M^{0} L^{0} T^{0}\right]$
B. $\left[M^{1} L^{-1} T^{-2}\right]$
C. $\left[M^{0} L^{1} T^{-1}\right]$
D. $\left[M^{1} L^{0} T^{-1}\right]$

Answer: a

D Watch Video Solution

6. Dimesional equation CANNOT be used

A. to check the correctness
B. to drive the relation between different
physical quantities.
C. to find out constant of proportionality

which may be pure number

D. to change from one system of units to

another system

Answer: c

D Watch Video Solution

7. If the dimensional formula for the physical quantity is $\left[M^{1} L^{2} T^{-2}\right]$ then the physical quantity is
A. torque
B. impulse
C. force
D. force per unit area

Answer: a

D Watch Video Solution

8. If the dimensions of a physical quantity are
given by $\left[L^{a}, M^{b} T^{c}\right]$,then the physical quantity will be
A. force ,if $a=-1, b=0, c=-2$
B. pressure, if $a=-1, b=1, c=-2$
C. velocity, if $a=1, b=0, c=1$
D. acceleration , if $a=1, b=1, c=2$

Answer: b

D Watch Video Solution

Classical Thinking Order Of Magnitude And

 Significant Figure1. The value of the megnitude rounded off to
the nearst integral power of 10 is called
A. significant figure
B. uncertain number
C. significant number
D. order of magnitude

Answer: d
(Watch Video Solution
2. Order of magnitude of $\left(10^{6}+10^{3}\right)$ is
A. 10^{8}
B. 10^{9}
C. 10^{6}
D. 10^{3}

Answer: c

D Watch Video Solution
3. The length of a rod is $5 \times 10^{2} \mathrm{~m}$, the order of magnitude of the length of the rod is
A. $10^{3} m$
B. $10^{2} m$
C. $10^{1} m$
D. $10^{-1} m$

Answer: b

- Watch Video Solution

4. The charge on the electron is $1.6 \times 10^{-19} \mathrm{C}$
. The order of magnitude is
A. $10^{19} C$
B. $10^{18} \mathrm{~m}$
C. $10^{-18} C$
D. $10^{-19} C$

Answer: d

D Watch Video Solution
5. Significant figures depends upon the of the measuring instrument.
A. length
B. readings
C. number
D. accuracy

Answer: d
(Watch Video Solution
6. The number of significant figures in 0.0009 is
A. 4
B. 3
C. 2
D. 1

Answer: d

- Watch Video Solution

7. The number of significant figures in 0.400 is

A. 1
B. 2
C. 3
D. 4

Answer: c

D Watch Video Solution

8. The number of significant figures 0.0500 is

A. 4
B. 3
C. 2
D. 1

Answer: b
9. State the number of significant figures in
6.032 J.
A. 4
B. 3
C. 2
D. 1

Answer: a

D Watch Video Solution

Classical Thinking Accuracy And Errors In Measurements

1. The different between the true value and measured value is called \qquad
A. mistake
B. error
C. significant figure
D. fault

Answer: b
2. If the pointer of the voltmeter is not exactly at the zero of the scale the the error is called
A. instrumental error
B. systematic error
C. personal error
D. random error
3. Zero error of an instrument introduces
A. systematic error
B. random error
C. instrumental error
D. none of these

Answer: a

D Watch Video Solution
4. Accidental error can be minimised by
A. taking only one reading
B. taking small magnitude of the quantity.
C. selecting instrument with greater least
conunt
D. selecting instrument with small least
count.

Answer: d
5. Zero error of an instrument introduces
A. faulty construction of instrument
B. wrong setting of instrument
C. lack of concentration of observer
D. worng procedure of handling the instrument.

Answer: a
6. Error due to non-removl of parallax between
pointer and its image in case of magnetic compass needle causes \qquad
A. instrumental error
B. persistant error
C. personal error
D. random error

Answer: c

D Watch Video Solution

7. Instrumental error can be minimised by

A. taking large number of readings
B. using different accurate instrument for
the same reading
C. adjusting zero of the instrument
D. mainataining the temperature of the
surrounding.

Answer: b
8. The magnitude of the difference between mean value and each individual value is called
A. absolute error
B. error in reading
C. most probable error
D. true error

Answer: a
9. The formula for percentage error is
A. Percentage error $\frac{\left|\Delta a_{m}\right|}{a_{m}} \times 100 \%$
B. Perecentage

$$
=\frac{1}{n} \sum_{i=1}^{n}\left|\Delta a_{i}\right| \times 100 \%
$$

C. Percentage error $=\frac{a_{m}}{\left|\Delta a_{m}\right|} \times 100 \%$
D. Percentage error $\frac{1}{n} \sum_{i=1}^{n} a_{i} \times 100 \%$

Answer: a

10. If $Y=a / b$, the maximum percentage error
in the measurement of Y will be
A. $\frac{\Delta a / a}{\Delta b / b}$
B. $\frac{\Delta a}{a}+\frac{\Delta b}{b}$
c. $\frac{\Delta a}{a}-\frac{\Delta b}{b}$
D. $\frac{\Delta b / b}{\Delta a / a}$

Answer: b

- Watch Video Solution

11. Given : $l_{i}=44.2 \pm=0.1$ and $l_{2}=23.1 \pm 0.1$ the uncertainty in $l_{1}+l_{2}$ is
A. 0
B. 0.1
C. 0.2
D. 0.4

Answer: c

D Watch Video Solution
12. Tow resistance $R_{1}=50 \pm 2$ ohm and
$R_{2}=60 \mathrm{pm}$ connected in series, the equivalent resistance of the series combination in
A. (110 ± 4) ohm
B. (110 ± 2) ohm
C. (110 ± 5) ohm
D. (110 ± 6) ohm

Answer: c
13. If $x=a^{n}$ then relative error is (when n is power of a).

- Watch Video Solution

14. Thickness of the paper mesaured by
micrometer screw gauge of least count 0.01
mm is 1.03 mm , the percentage error in the measurement of thickness of paper is
A. 1.1%
B. 1%
C. 0.97%
D. 0.8%

Answer: c

D Watch Video Solution

Classical Thinking Miscellaneous

1. One micron is related to centimetre as
A. 1 micron $=10^{-8} \mathrm{~cm}$
B. 1 micron $=10^{-5} \mathrm{~cm}$
C. 1 micron $=10^{-5} \mathrm{~cm}$
D. 1 micron $=10^{-4} \mathrm{~cm}$

Answer: d

- Watch Video Solution

Critical Thinking Units Of Measurements

1. If u_{1} and u_{2} are the units selected in two systems of measurement and n_{1} and n_{2} their numerical values, then
A. $n_{1} u_{1}=n_{2} u_{2}$
B. $n_{1} u_{1}+n_{2} u_{2}=0$
C. $n_{1} n_{2}=u_{1} u_{2}$
D. $\left(n_{1}+u_{3}\right)=\left(n_{2}+u_{2}\right)$

Answer: a

D Watch Video Solution

Critical Thinking System Of Units

1. Which of the following system of units is not
based on units of mass, length and time alone
A. S.I
B. M.K.S
C. F.P.S
D. C.G.S

Answer: a

D Watch Video Solution

Critical Thinking Fundamental And Derived Units

1. The physical denote by mass \times perssuer density
A. force
B. momentum
C. angular momentum
D. wrok

Answer: d

- Watch Video Solution

2. Universal time is based on
A. rotation of the earth on it axis
B. Earth's orbital motion around the sum .
C. vibration of cesium atom
D. oscillation of qartz crystal
3. 1 a.m.u is equivalent to
A. $1.6 \times 10^{-27} \mathrm{~kg}$
B. 934 Me
C. $1.6 \times 10^{-24} \mathrm{~kg}$
D. All of the above

Answer: d

4. The S.I. unit of momentum is

> A. $\frac{k g}{m}$
> B. $\frac{k g m}{s}$
> C. $\frac{k g m^{2}}{s}$
> D. $(k g \times \quad$ newton $)$

Answer: b

5. Curie is a unit of

A. energy of γ rays
B. half life
C. radioactivity
D. intensity of γ rays

Answer: c
6. $S=A\left(1-e^{B x t}\right)$, where S is speed and x is
displacement. The units of B is

> A. $m^{-1} s^{-1}$
> B. $m^{-2} s$
> C. s^{-2}
> D. s^{-1}

Answer: a

D Watch Video Solution
7. To determine the young's modulus of a wire , the formula is $Y=\frac{F}{A} \cdot \frac{L}{\Delta l}$, where $L=$ । ength , $A=$ area of cross - section of the wire ,
$\Delta L=$ change in the length of the wire when
streched with a force F. Find the conversion
factor to change it from CGS to MKS system.
A. 1
B. 10
C. 0.1
D. 0.01

Answer: c

D Watch Video Solution

8. The moon subtends an angle of 57 minutes
at the base line equal to radius of earth. What
is the distance of moon from earth. Given
radius of earth is 6400 km .
A. $11.22 \times 10^{9} \mathrm{~m}$
B. $3.86 \times 10^{8} \mathrm{~m}$
C. $3.68 \times 10^{9} \mathrm{~m}$

D. $3.68 \times 10^{8} \mathrm{~m}$

Answer: b

- Watch Video Solution

9. The angular diameter of the sun is 1920 ". If
the distance of the sun from the earth is
$1.5 \times 10^{11} \mathrm{~m}$, what is the linear diameter of the
sun ?
A. $2.6 \times 10^{9} m$
B. $0.7 \times 10^{9} \mathrm{~m}$
C. $5.2 \times 10^{9} \mathrm{~m}$
D. $1.4 \times 10^{9} \mathrm{~m}$

Answer: d

D Watch Video Solution

Critical Thinking Dimensional Analysis

1. The fundamental physical quantites quanties that have same dimension in the
dimensional formula of Torque and Angular

Momentum are

A. mass, time
B. time , length
C. mass, length
D. time,mole

Answer: c
(Watch Video Solution

2. Which one of the following represents the

 correct dimensions of the coefficient of viscosity?$$
\begin{aligned}
& \text { A. }\left[M^{1} L^{-1} T^{2}\right] \\
& \text { B. }\left[M^{1} L^{-1} T^{-1}\right] \\
& \text { C. }\left[M^{1} L^{-1} T^{-1}\right] \\
& \text { D. }\left[M^{1} L^{-2} T^{-2}\right]
\end{aligned}
$$

Answer: b

D Watch Video Solution

3. Dimensions of electrical resistence are

A. $\left[M^{1} L^{2} T^{2} I^{-1}\right]$
B. $\left[M^{1} L^{2} T^{2} I^{-1}\right]$
C. $\left[M^{1} L^{1} T^{-3} I^{-2}\right]$
D. $\left[M^{1} L^{2} T^{-3} I^{-2}\right]$

Answer: d
4. The dimensions of length in electric field, electric flux and electric dipole moment are respectively
A. L, L^{2}, L^{3}
B. L^{3}, L^{2}, L
C. L^{-1}, L^{3}, L^{3}
D. L, L^{3}, L

Answer: d

- Watch Video Solution

5. If L denotes the inductance of an inductor
through which a current i is flowing, the dimensions of $L i^{2}$ are
A. $\left[L^{2} M^{1} T^{-2}\right]$
B. Not expressible in LMT
C. $\left[L^{1} M^{1} T^{-2}\right]$
D. $\left[L^{2} M^{2} T^{-2}\right]$

Answer: a

- Watch Video Solution

6. If the magnitude of length is halved and
that of mass is double then dimension of force
is

$$
\begin{aligned}
& \text { A. }\left[M^{2} L^{-2} T^{-2}\right] \\
& \text { B. }\left[M^{2} L^{-1 / 2} T^{-2}\right] \\
& \text { C. }\left[M^{2} L^{1 / 2} T^{-2}\right] \\
& \text { D. }\left[M^{1} L^{1} T^{-2}\right]
\end{aligned}
$$

Answer: d

- Watch Video Solution

7. Out of the following pairs, which one does

NOT have identical dimensions?
A. Energy and moment of force
B. Work and torque
C. Density and surface energy
D. Pressure and stress

Answer: c

(D) Watch Video Solution
8. Which of the following equations is dimensionally correct?
A. pressure = Engery per units volume
B. pressure = Energy per units area
C. pressure $=$ Momentum \times Volume \times
time
D. pressure = Force \times area

Answer: a

D Watch Video Solution
9. The dimensional formul for impulse is same as the dimensional formula for

A. acceleration

B. force
C. momentum
D. rate of change in momentum

Answer: c

10. The dimensions of is that of
A. Velocity

B. Time

C. Capacitane
D. Distance

Answer: a

- Watch Video Solution

11. Which of the following pairs has the same dimensions?
A. Current density and charge density
B. Angualar momentum and momentum
C. Spring constant and surface energy

D. Force and torque

Answer: c

- Watch Video Solution

12. A small steel ball of mass m and radius r is
falling under gravity through a viscous liquid of coefficient of viscosity η. If g is the value of acceleration due to gravity. Then the terminal
velocity of the ball is proportional to (ignore buoyancy)
A. $v \propto \frac{m g r}{\eta}$
B. $v \propto m g \eta r$
C. $v \propto \frac{m g}{\eta r}$
D. $v \propto \frac{\eta m g}{r}$

- Watch Video Solution

13. A force F is given by $F=a t+b t^{2}$, where t is time. What are the dimensions of a and b ?
A. $\left[M^{1} L^{2} T^{-1}\right]$ and $\left[M^{1} L^{1} T^{0}\right]$
B. $\left[M^{1} L^{1} T^{-3}\right]$ and $\left[M^{1} L^{1} T^{-4}\right]$
C. $\left[M^{1} L^{1} T^{-4}\right]$ and $\left[M^{1} L^{1} T^{1}\right]$
D. $\left[M^{1} L^{-3} T^{1}\right]$ and $\left[M^{1} L^{1} T^{-4}\right]$

Answer: b

D Watch Video Solution

14. Write the dimensions of a / b in the relation
$F=a \sqrt{x}+b t^{2}$ where F is force x is distance and t is time.
A. $\left[M^{0} L^{0} T^{-2}\right]$
B. $\left[M^{0} L^{1 / 2} T^{2}\right]$
C. $\left[M^{0} L^{1 / 2} T^{2}\right]$
D. $\left[M^{0} L^{-1 / 2} T^{2}\right]$

Answer: c

D Watch Video Solution

15. For the equation $F=A^{a} v^{b} d^{c}$ where F is
force, A is area, v si velocity and d is density
with the dimensional anaysis gives the
following values for the exponents.
A. 1,2,1
B. 2,1,1
C. 1,1,2
D. $0,1,1$

Answer: a

D Watch Video Solution

16. Using the principle of homogeneity of dimensions, find which of the following relation is correct? [T is the period, a is the redius of the orbit and M is the mass of the sun.

$$
\text { А. } T^{2}=\frac{4 \pi^{2} a^{3}}{G}
$$

B. $T^{2}=\frac{4 \pi^{2} a^{3}}{G M}$
C. $T^{2}=4 \pi^{2} a^{3}$
D. $T^{2}=\frac{4 \pi^{2} a^{3}}{G M^{2}}$

Answer: b

D Watch Video Solution

17. The period T of a soap bubble under $S H M$ is given by $T=P^{a} D^{b} S^{c}$, where P is pressure,
D, is density and S is surface tension. Then the values of a, b and c are
A. $-\frac{3}{2}, \frac{1}{2}, 1$
B. $-1,-2,3$
C. $\frac{1}{2},-\frac{3}{2}-\frac{1}{2}$
D. $1,2, \frac{1}{3}$

Answer: a

D Watch Video Solution
18. The equation of a wave is given by $Y=A \sin \omega\left(\frac{x}{v}-k\right)$, where ω is the angular
velocity and v is the linear velocity. Find the dimension of k.
A. LT
B. T
C. T^{-1}
D. T^{2}

Answer: b
(Watch Video Solution
19. The dimensions of $\frac{a}{b}$ in the equation $P=\frac{a-t^{2}}{b x}$ where P is pressure, x is distance and t is time are

$$
\begin{aligned}
& \text { A. }\left[M^{1} L^{2} T^{-2}\right] \\
& \text { B. }\left[M^{1} L^{0} T^{-2}\right] \\
& \text { C. }\left[M^{-1} L^{-2} T^{2}\right] \\
& \text { D. }\left[M^{1} L^{-2} T^{2}\right]
\end{aligned}
$$

Answer: b

20. The equation of the state of some gases
can be expressed as $\left(P+\frac{a}{V^{2}}(V-b)=R T\right.$
. Here P is the pressure, V is the volume, T is
the absolute temperature and a, b, R are constants. The dimensions of $\frac{a}{b}$ are
A. $\left[M^{1} L^{2} T^{-2}\right]$
B. $\left[M L^{-1} T^{-2}\right]$
C. $\left[M^{0} L^{3} T^{0}\right]$
D. $\left[M^{0} L^{6} T^{0}\right]$
21. If the speed of light c, acceleration due to gravity (g) and pressure (p) are taken as the fundamental quantities then the dimension of gravitational constant is
A. $\left[c^{2} g^{0} p^{-2}\right]$
B. $\left[c^{0} g^{2} p^{-1}\right]$
C. $\left[c g^{3} p^{-2}\right]$
D. $\left[c^{1} g^{0} p^{-1}\right]$

Answer: b

- Watch Video Solution

22. The value of acceleration due to gravity is
$980 \mathrm{cms}^{-2}$. What will be its value if the unit of
length is kilometer and that of time is minute?
A. $980 \mathrm{~km} \mathrm{~min}{ }^{3}$
B. $98 \mathrm{~km} \mathrm{~min}^{3}$
C. $35.28 \mathrm{~km} \mathrm{~min}^{-2}$
D. $28.35 \mathrm{~km} \mathrm{~min}^{-2}$

Answer: c

D Watch Video Solution

Critical Thinking Order Of Magnitude And Significant Figure

1. The magnitude of any physical quantity can
be expressed as $A \times 10^{n}$ where n is a number
called order of magnitude and A is
A. $0.1 \leq A \leq 1$
B. $0.5 \leq A<5$
C. $5 \leq A<9$
D. $1 \leq A>9$

Answer: b

D Watch Video Solution

2. The radius of the earth is 6400 km , the order of magnitude is
A. $10^{7} \mathrm{~m}$
B. $10^{4} \mathrm{~m}$
C. $10^{3} \mathrm{~m}$
D. $10^{2} \mathrm{~m}$

Answer: a

- Watch Video Solution

3. The radius of the earth of 49 and the order of magnitude of 51
A. is same

B. differs by 1

C. is 1
D. is 2

Answer: b

- Watch Video Solution

4. Find the number of seconds in 1 year.

Express them in order magnitude.
A. $8.64 \times 10^{4} s, 10^{5} s$
B. $6.84 \times 10^{4} s, 10^{4} s$
C. $8.64 \times 10^{5} s, 10^{5} s$
D. $6.85 \times 10^{4} s, 10^{5} s$

Answer: a

D Watch Video Solution
5. Figure which is of some significance but it does not necessarily denote certainty is defined as
A. special figures
B. characteristic figures
C. unknown figures
D. siginficant figure

Answer: d

D Watch Video Solution
6. The number of significant figures in all the given numbers 25.12, 2009, 4.156 and 1.217×10^{-4} is
A. 1
B. 2
C. 3
D. 4

Answer: d

D Watch Video Solution

7. The value of $\pi / 53.2$ with due regard to

 singificant figures is,A. 13.000
B. 13.00
C. 13.0
D. 13

Answer: c

D Watch Video Solution

8. In the reading 2.614 cm of measurement with a vernier calliper, only uncertain figure is
A.
B.
C.
D.

Answer: c

- Watch Video Solution

9. The side of a rectangle are 6.01 m and 12 m

Taking the significant figures into account , the area of the rectangle is
A. $72.00 \mathrm{~cm}^{2}$
B. $72.1 \mathrm{~cm}^{2}$
C. $72 m^{2}$
D. $72.12 \mathrm{~cm}^{2}$

Answer: c

- Watch Video Solution

Critical Thinking Accuaray And Errors In
Measurements

1. Estiamte the mean absolute error from the following date .
20.17,21.23,20.79,22.07,21.78
A. 0.85
B. 0.58
C. 0.03
D. 0.01

Answer: b

D View Text Solution
2. In the expression $A=\frac{x y^{3}}{Z^{2}}$ the percentage error is given by
A. $\left(\frac{\Delta x}{x}+3 \frac{\Delta y}{y}-2 \frac{\Delta z}{z}\right) \times 100 \%$
B. $\left(\frac{\Delta x}{x}+\frac{3 \Delta y}{y}+\frac{2 \Delta z}{z}\right) \times 100 \%$
c. $\left(\frac{\Delta x}{x}-\frac{3 \Delta y}{y}-\frac{2 \Delta z}{y}\right) \times 100 \%$
D. $\left(\frac{\Delta x}{x}-3 \frac{\Delta y}{y}+2 \frac{\Delta z}{z}\right) \times 100$

Answer: b

- Watch Video Solution

3. The least count of a screw gauge is 0.005 cm
. The diameter of wire is 0.002 cm as measured by it. The perecentage error in measurement is
A. 0.25
B. 0.2
C. 0.15
D. 0.05

Answer: a

4. The error in measurement of radius of a sphere is 0.1% then error in its volume is -
A. 0.1%
B. 0.2%
C. 0.25%
D. 0.3%

Answer: d

D Watch Video Solution
5. The pressure on a square plate is measured by measuring the force on the plate and the length of the sides of the plate. If the maximum error in measurement of force and length are respectively 4% and 2%, the maximum error in the measurement of pressure is
A. 0.01
B. 0.02
C. 0.06

D. 0.08

Answer: d

D Watch Video Solution

6. The percentage error in the measurment of mass of a body is 0.75% and the percenatage error in the measurement of its speed is 1.85%.

Then the percentage error in the measurement of its kinetic energy is
A. 7.05%
B. 4.45%
C. 2.6%
D. 1.1%

Answer: b

D Watch Video Solution

7. The error in the measurement of length (L)
of time simple pendulum is 0.1% and the error
in the period (T) is 3%. The maximum possible error in the measurement of $\frac{L}{T^{2}}$ is
A. 2.9%
B. 3.1%
C. 5.9%
D. 6.1%

Answer: d

D Watch Video Solution

8. The period of oscillation of a simple pendulum is given by $T=2 \pi \sqrt{\frac{l}{g}}$ where I is
about 100 cm and is known to have 1 mm accuracy. The period is about 2 s . The time of 100 oscillation is measrued by a stop watch of least count 0.1 s . The percentage error is g is
A. 0.1%
B. 1%
C. 0.3%
D. 0.8%

Answer: c

9. The length, breadth and height of a rectangular block of wood were measured to be $l=13.12 \pm 0.02 \mathrm{~cm}, b=7.18 \pm 0.01 \mathrm{~cm}$, $h=4.16 \pm 0.02 \mathrm{~cm}$

The perecentage error in the volume of the block will be .
A. 0.07
B. 0.77%
C. 0.72%
D. 0.27%

Answer: b

D Watch Video Solution

10. The heat dissipated in a resistance can be determined form the relation : $H=\frac{I^{2} R t}{4.2} \mathrm{cal}$

If the maximum errors in the measurement of
current, resistance , and time are $2 \%, 1 \%$, and
1%, what would be the maximum error in the dissipated heat?
A. 0.05
B. 0.04

C. 0.06

D. 0.5%

Answer: c

D View Text Solution

Critical Thinking Miscellaneous

1. If momentum (p), area (A) and time (t) are taken to be fundamental quantities then energy has the dimensional formula

$$
\begin{aligned}
& \text { A. }\left[P^{1} A^{-1 / 2} T^{-1}\right] \\
& \text { B. }\left[P^{1} A^{1 / 2} T^{-1}\right] \\
& \text { C. }\left[P^{2} A^{-1} T^{-1}\right] \\
& \text { D. }\left[P^{1} A^{-1} T^{-1}\right]
\end{aligned}
$$

Answer: b

- Watch Video Solution

2. Assertion : Avogadro number is the number of atoms in one gram mole.

Reason : Avogadro number is a dimensionless constant.
A. Assertion is True ,Reason is True, Reason is a correct explanation for Assertion.
B. Assertion is True , Reason is True

Reason is not a correct explanation for

Assertion
C. Assertion is True, Reason is False

D. Assertion is False, Reason is False

Answer: c

D Watch Video Solution

3. Assertion : Avogadro number is the number of atoms in one gram mole.

Reason : Avogadro number is a dimensionless
constant.
A. Assertion is True , Reason is True

Reason is a correct explanation for

Assertion
B. Assertion in True , Reason is True ,

Reason is not a correct explanation for

Assertion

C. Assertion is True, Reason in False

D. Assertion is False, Reason in False .

Answer: a

Competitive Thinking Fundamental And Derived Units

1. S.I. Unit of surface tension is:

$$
\begin{aligned}
& \text { A. } \frac{N}{m^{2}} \\
& \text { B. } \frac{J}{m} \\
& \text { C. } J-m \\
& \text { D. } \frac{J}{m^{2}}
\end{aligned}
$$

Answer: d
2. Which of the following is not the unit of energy ?

A. watt - hour

B. electron volt
C. Nm
D. $k g m^{2} s^{-2}$

Answer: c
3. The units of constants a in van der Waals' equations is
A. $N m^{2} /$ mole
B. $N m^{2} /$ mole
C. $N^{2} m / m o l e$
D. m^{2}

Answer: d

D Watch Video Solution
4. Units of a and b in van der Waal's equation $\left(P+\frac{a n^{2}}{V^{2}}\right)(V-n b)=n R T$ are
A. m^{3} / mole
B. m^{2} / mole
C. $m /$ mole
D. m^{3}

Answer: a

D Watch Video Solution
5. The S. I units of the constant in Wein's displacement law are
A. $c m K^{-1}$
B. $m k$
C. $c m^{2} k^{-1}$
D. $c m k^{-2}$

Answer: b
(D) Watch Video Solution
6. Which of the following is the unit of specific
heat
A. kcal / gm k
B. cal/gm k
C. $\mathrm{j} / \mathrm{kg} \mathrm{k}$
D. $\mathrm{erg} / \mathrm{kg} \mathrm{k}$

Answer: c

- Watch Video Solution

7. A-s is unit of

A. capacitance
B. charge
C. energy
D. power

Answer: b

8. S.I unit of specificf resistance is

A. $\Omega c m$
B. Ωm
C. Ω / cm
D. mho-cm

Answer: b

9. The unit of permeability of vacuum $\left(\mu_{0}\right)$ is

A. $\frac{N}{A}$
B. $\frac{N}{A^{2}}$
C. NA
D. $\frac{J}{A^{2}}$

Answer: b

D Watch Video Solution
10. 1 Tesla =
A. $1 \mathrm{~Wb} / \mathrm{m}$
B. $1 \mathrm{~J} / \mathrm{AM}$
C. $1 \mathrm{~N} / \mathrm{Am}$
D. $1 \mathrm{Am} / \mathrm{N}$

Answer: c
(D) Watch Video Solution
11. Units of ' λ in rodiocativity is
A. m
B. (Unit of half life) ${ }^{-1}$
C. $(\text { year })^{-1}$
D. sec

Answer: b

D Watch Video Solution
12. If $x=a t+b t^{2}$ where x is in meter (m) and
t is in hour (hr) then unit of b will be .
A. $m^{2} / h r$
B. m
C. $m / h r$
D. $m / h r^{2}$

Answer: d

D Watch Video Solution

13. If the unit of length and force be increased
four times, then the unit of energy is
A. increased 4 times
B. increased 8 times
C. increased 16 times
D. decreased 16 times

Answer: c

- Watch Video Solution

14. The surface tension of a liquid is 10^{8} dyne cm^{-1}. It is equivalent to
A. $10^{7} \mathrm{~N} / \mathrm{m}$
B. $10^{6} \mathrm{~N} / \mathrm{m}$
C. $10^{5} \mathrm{~N} / \mathrm{m}$
D. $10^{4} \mathrm{~N} / \mathrm{m}$

Answer: c

- Watch Video Solution

Competitive Thinking Dimensional Analysis

1. If R and L represent respectively resistance
and self inductance, which of the following
combinations has the dimensions of frequency

> A. $\sqrt{\frac{L}{R}}$
> B. $\frac{L}{R}$
> C. $\sqrt{\frac{R}{L}}$
> D. $\frac{R}{L}$

Answer: b

D Watch Video Solution
2. A quantity X is given by $\epsilon_{0} L \frac{\Delta V}{\Delta t}$, where ϵ_{0} is the permittivity of free space, L is a length, ΔV is a potential difference and Δt is
a time interval. The dimensional formula for X is the same as that of -
A. Resistance
B. Charge
C. Voltage
D. Current
A. energy
B. angular momentum
C. mass
D. force

Answer: b

4. The dimensions of Planck's constant is the same as the product of
A. Force and time
B. Force, displacement and time
C. Force and velocity

D. Force and displacement

Answer: b

5. Which of the following set have different dimensions?
A. Pressure, Young's modulus, stress
B.e.m.f potential difference , electric potential
C. Heat , work done energy
D. dipole moment , electric flux, electric
field

Answer: d
6. The dimension of universal gravitational constant are
A. $\left[M L^{2} T^{-1}\right]$
B. $\left[M^{-1} L^{3} T^{-2}\right]$
C. $\left[M^{-1} L^{2} T^{-2}\right]$
D. $\left[M L^{3} T^{-2}\right]$

Answer: b

- Watch Video Solution

7. Dimensions of angular momentum is

A. $\left[M^{1} L^{2} T^{-1}\right]$
B. $\left[M^{1} L^{-2} T^{-2}\right]$
C. $\left[M^{1} L^{2} T^{-1}\right]$
D. $\left[M^{1} L^{0} T^{-1}\right]$

Answer: c

D Watch Video Solution
8. The dimensions of $\varepsilon_{0} \mu_{0}$ are
A. $\left[M^{0} L^{-2} T^{2}\right]$
B. $\left[M^{0} L^{2} T^{-2}\right]$
C. $\left[M^{0} L^{1} T^{-1}\right]$
D. $\left[M^{0} L^{-1} T^{1}\right]$

Answer: c

- Watch Video Solution

9. The surface tension is $T=\frac{F}{l}$, then the dimensions of surface tension is
A. $\left[M^{1} L^{2} T^{2}\right]$
B. $\left[M^{1} L^{0} T^{-2}\right]$
C. $\left[M^{1} L^{2} T^{-2}\right]$
D. $\left[M^{0} L^{0} T^{-2}\right]$

Answer: b

- Watch Video Solution

10. Dimension of force constant is given by

> A. $\left[M^{1} L^{1} T^{-2}\right]$
> B. $\left[M^{0} L^{1} T^{-1}\right]$
> C. $\left[M^{1} L^{0} T^{-2}\right]$
> D. $\left[M^{1} L^{0} T^{-1}\right]$

Answer: c

(D) Watch Video Solution
11. The dimensions of k in equation $F=k x$ are
A. $\left[M^{1} L^{0} T^{-2}\right]$
B. $\left[M^{0} L^{1} T^{-1}\right]$
C. $\left[M^{1} L^{1} T^{-2}\right]$
D. $\left[M^{1} L^{0} T^{-1}\right]$

Answer: a

D Watch Video Solution
12. An object is moving through the liquid. The
viscous damping force acting on it is
proportional to the velocity. Then dimensions of constant of proportionality are
A. $\left[M^{1} L^{-1} T^{-1}\right]$
B. $\left[M^{1} L^{1} T^{-1}\right]$
C. $\left[M^{0} L^{1} T^{-1}\right]$
D. $\left[M^{1} L^{0} T^{-1}\right]$

Answer: d
(Watch Video Solution
13. The dimensional formula for Reynold's number is
A. $\left[L^{0} M^{0} T^{0}\right]$
B. $\left[L^{1} M^{1} T^{1}\right]$
C. $\left[L^{-1} M^{1} T^{1}\right]$
D. $\left[L^{1} M^{1} T^{-1}\right]$

Answer: a

D Watch Video Solution
14. The unit of universal gas constant is
A. $\left[M L^{2} T^{-2} \theta^{-}\right]$
B. $\left[M L^{2} T^{-2} \theta\right]$
C. $\left[M L^{3} T^{3 / 2} T^{-2}\right]$
D. None of these

Answer: a

D Watch Video Solution
15. The relation between force F and density d
is $F=\frac{x}{\sqrt{d}}$.
The dimension of x is

$$
\begin{aligned}
& \text { A. }\left[L^{-1 / 2} M^{3 / 2} T^{-2}\right] \\
& \text { B. }\left[L^{1 / 2} M^{1 / 2} T^{-2}\right] \\
& \text { C. }\left[L^{-1} M^{1 / 2} T^{-2}\right] \\
& \text { D. }\left[L^{1} M^{1 / 2} T^{-2}\right]
\end{aligned}
$$

Answer: a
16. In the following dimensionally correct equation $F=\frac{X}{\text { Linear Density }}$, where F is the force. What is the dimensional formula for X ?

$$
\begin{aligned}
& \text { A. }\left[M^{2} L^{0} T^{-2}\right] \\
& \text { B. }\left[M^{0} L^{0} T^{-1}\right] \\
& \text { с. }\left[L^{2} T^{-2}\right] \\
& \text { D. }\left[M^{0} L^{2} T^{-2}\right]
\end{aligned}
$$

Answer: a

17. The units of constants a in van der Waal's equation is
A. $\left[M^{1} L^{-1} T^{-2} \mathrm{~mol}^{-2}\right]$
B. $\left[M^{1} L^{3} T^{-2} \mathrm{~mol}^{-2}\right]$
C. $\left[M^{1} L^{5} T^{-2} \mathrm{~mol}^{-2}\right]$
D. $\left[M^{1} L^{3} T^{-2} \mathrm{~mol}^{-1}\right]$

Answer: c

D Watch Video Solution

18. Let $\left[\epsilon_{0}\right]$ denote the dimensional formula of the permittivity of vacuum. If $M=$ mass, $\mathrm{L}=$ length, $\mathrm{T}=$ Time and $\mathrm{A}=$ electric current, then:

$$
\begin{aligned}
& \text { A. }\left[\varepsilon_{0}\right]=\left[M^{1} L^{-3} T^{2} A\right] \\
& \text { B. }\left[\varepsilon_{0}\right]=\left[M^{-1} L^{-3} T^{4} A^{2}\right] \\
& \text { C. }\left[\varepsilon_{0}\right]=\left[M^{-1} L^{-3} T^{4} A^{2}\right] \\
& \text { D. }\left[M^{0} L^{0} T^{0} A^{0}\right]
\end{aligned}
$$

Answer: b

19. The dimensional formula for electric field is

$$
\begin{aligned}
& \text { A. }\left[M^{1} L^{-2} T^{-3} A^{-2}\right] \\
& \text { B. }\left[M^{1} L^{2} T^{-3} A^{-1}\right] \\
& \text { C. }\left[M^{1} L^{1} T^{3} A^{1}\right] \\
& \text { D. }\left[M^{0} L^{0} T^{0} A^{0}\right]
\end{aligned}
$$

Answer: c

D Watch Video Solution

20. The dimensional formula of capacitance is

 ____._. Take Q as the dimension formula of chagre.$$
\begin{aligned}
& \text { A. }\left[M^{1} L^{-2} T^{-2} Q^{-2}\right] \\
& \text { B. }\left[M^{1} L^{2} T^{-2} Q^{-2}\right] \\
& \text { C. }\left[M^{1} L^{1} T^{2} Q^{1}\right] \\
& \text { D. }\left[M^{-1} L^{-2} T^{2} Q^{2}\right]
\end{aligned}
$$

Answer: d

- Watch Video Solution

21. The dimensions of $\frac{1}{2} \epsilon_{0} E^{2}$, where ϵ_{0} is
permittivity of free space and E is electric field, is :-

$$
\begin{aligned}
& \text { A. }\left[L^{-2} M^{1} T^{2}\right] \\
& \text { B. }\left[L^{1} M^{1} T^{-2}\right] \\
& \text { C. }\left[L^{2} M^{1} T^{2}\right] \\
& \text { D. }\left[L^{1} M^{1} T^{1}\right]
\end{aligned}
$$

Answer: b

- Watch Video Solution

22. Dimension of magnetic flux is

$$
\begin{aligned}
& \text { A. }\left[M^{0} L^{1} T^{0} A^{1}\right] \\
& \text { B. }\left[M^{0} L^{-3} T^{0} A^{1}\right] \\
& \text { C. }\left[M^{0} L^{1} T^{1} A^{-1}\right] \\
& \text { D. }\left[M^{0} L^{2} T^{0} A^{1}\right]
\end{aligned}
$$

Answer: a

23. Select the dimensional formula of $B^{2} / 2 \mu_{0}$

> A. $\left[M^{1} L^{1} T^{0} A^{1}\right]$
> B. $\left[M^{0} L^{-3} T^{-2} A^{-1}\right]$
> C. $\left[M^{0} L^{1} T^{1} A^{-1}\right]$
> D. $\left[M^{0} L^{2} T^{0} A^{1}\right]$

Answer: d

D View Text Solution
24. Dimensional formula of magentic flux is
A. $\left[M^{1} L^{1} T^{2}\right]$
B. $\left[M^{-1} L^{1} T^{-2}\right]$
C. $\left[M^{-1} L^{-1} T^{-1} A^{1}\right]$
D. $\left[M^{1} L^{-1} T^{-2}\right]$

Answer: b
(Watch Video Solution
25. The dimensional formula of mobility is
A. $\left[M^{-1} L^{2} T^{2} A^{1}\right]$
B. $\left[M^{1} L^{2} T^{-2} A^{-1}\right]$
C. $\left[M^{1} L^{-2} T^{2} A^{1}\right]$
D. $\left[M^{1} L^{3} T^{-2} A^{-1}\right]$

Answer: d
(Watch Video Solution
26. Dimensions of solar constant are

> A. $\left[M L T^{-2}\right]$
> B. $\left[M^{0} L^{0} T^{0}\right]$
> C. $\left[M L^{0} T^{-3}\right]$
> D. $\left[M^{0} L T^{-3}\right]$

Answer: c
(Watch Video Solution
27. The velocity v of a particle at time t is given
by $v=a t+\frac{b}{t+c}$, where a, b and c are constants. The dimensions of a, b, c are respectively :-
A. L,LT and T^{2}
B. $L T^{2}, \mathrm{~L}$ and T
C. $L^{2}, \mathrm{~T}$ and $L T^{3}$
D. $L T^{3}, L T$ and L

Answer: b

28. If $\mathrm{E}, \mathrm{M}, \mathrm{J}$ and G respectively denote energy ,

 mass angular momentum and gravitationalconstant then $\frac{E J^{2}}{M^{2} G^{2}}$ has the dimensions of.
A. length
B. angle
C. mass
D. time

29. The function f is given by
 $f=A \sin \alpha x+B \cos \beta t, \quad$ where $\quad x \quad$ is

displacement and t is the time. The dimensions of α / β is
A. velocity
B. velocity gradient
C. angualr velocity
D. angular momentum

Answer: a

D Watch Video Solution

30. $X=3 Y Z^{2}$ find dimension of Y in (MKSA)
system, if X and Z are the dimension of capacity and magnetic field respectively

$$
\text { A. }\left[M^{-3} L^{-2} T^{-4} A^{-1}\right]
$$

B. $\left[M^{1} L^{-2}\right]$
C. $\left[M^{-3} L^{-2} T^{4} A^{4}\right]$
D. $\left[M^{-3} L^{-2} T^{8} A^{4}\right]$

Answer: d

D Watch Video Solution

31. Plank 's constant (h) speed of length in
vacium (C) and newton 's gravitational
constant (G) are three fundamental constant
.Which of the following combinations of these
has the dimension of length?
A. $\sqrt{\frac{G e}{h^{\frac{1}{2}}}}$
B. $\frac{\sqrt{h G}}{c^{3 / 2}}$
C. $\frac{\sqrt{h G}}{c^{3 / 2}}$
D. $\sqrt{\frac{h c}{G}}$

Answer: b

D Watch Video Solution

32. A spherical liquid drop is placed on a horizontal plane . A small distrubance cause the volume of the drop to oscillate. The time period oscillation (T) of the liquid drop depends on radius (r) of the drop, density (ρ)
and surface tension tension (S) of the liquid.

Which amount the following will be be a possible expression for T (where k is a dimensionless constant)?

> A. $k \sqrt{\frac{\rho r}{S}}$
> B. $k \sqrt{\frac{\rho^{2} r}{S}}$
> C. $k \sqrt{\frac{\rho^{2} r}{S}}$
> D. $k \sqrt{\frac{\rho r^{2}}{S^{2}}}$

Answer: c
33. A physical energy of the dimension of length that can be formula cut of c, G and $\frac{e^{2}}{4 \pi \varepsilon_{0}}$ is [c is velocity of light G is universal constant of gravilation e is change

$$
\begin{aligned}
& \text { A. } \frac{1}{c^{2}}\left[G \frac{e^{2}}{4 \pi \epsilon_{0}}\right]^{1 / 2} \\
& \text { B. } c^{2}\left[G \frac{e^{2}}{4 \pi \epsilon_{0}}\right]^{1 / 2}
\end{aligned}
$$

C. $\frac{1}{c^{2}}\left[\frac{e^{2}}{G 4 \pi \epsilon_{0}}\right]^{1 / 2}$
D. $\frac{1}{e} G \frac{e^{2}}{4 \pi \in_{0}}$
34. In the relation, $P=\frac{\alpha}{\beta} e^{\frac{\alpha Z}{k \theta}} P$ is pressure, Z is distance, k is Boltzmann constant and θ is
the temperature. The dimensional formula of β will be-
A. $\left[M^{0} L^{2} T^{0}\right]$
B. $\left[M^{1} L^{2} T^{-1}\right]$
C. $\left[M^{1} L^{0} T^{-1}\right]$
D. $\left[M^{0} L^{2} T^{-1}\right]$

D Watch Video Solution

35. The number of significant figure in
0.002305 is
A. 6
B. 4
C. 7
D. 2

Answer: b

D Watch Video Solution

36. The respective number of signficant figures
for the
numbers
$23.023,0.0003$ and 2.1×10^{-3} are
A. $4,4,2$
B. 5,1,2
C. 5,1,5
D. 5,5,2

Answer: b

D Watch Video Solution

37. In a experiment the angle are required to
be measured using an instrument. 26 divisions
of the main scale exactly coincide with the 30
divisions of the vernier scale. If the smallest
division of the main scale is half -a-degree
$\left(=0.5^{\circ}\right)$ then the least count of the instrument is .
A. one minute
B. half minute
C. one degree
D. half degree

Answer: a

D Watch Video Solution

38. A vernier calipers has $1 m m$ marks on the main scale. It has 20 equal divisions on the

Verier scale which match with 16 main scale
divisions. For this Vernier calipers, the least count is
A. 0.02 cm
B. 0.05 cm
C. 0.1 mm
D. 0.2 mm

Answer: d
(Watch Video Solution
39. The diameter of a cylinder is measured using a Vernier callipers with no zero error. It is found that the zero of the Vernier scale lies between 5.10 cm and 5.15 cm of the main scale. The Vernier scale has 50 divisions equivalent to 2.45 cm . The $24^{\text {th }}$ division of the Vernier scale exactly coincides with one of the main scale divisions. the diameter of the cylinder is
A. 5.112 cm
B. 5.124 cm

C. 5.136 cm

D. 5.148 cm

Answer: b

D Watch Video Solution

40. A student measured the length of a rod and wrote it as 3.50 cm . Which instrument did he use to measure it ?
A. A meter scale
B. A vernier calliper where the 10 divisions
in vernier scale matches with 9 division
in main scale and main scale has 10
divisions in 1 cm
C. A screw gauge having 100 divisions in
the circular scale and pitch as 1 mm

D. A screw gauge having 50 divisions in the

circular scale and pitch as 1 mm

Answer: b

41. In a vernier callipers, one main scale division is xcm and n divisions of the vernier scale coincide with ($n-1$) divisions of the main scale. The least count (in cm) of the callipers is
A. $\left(\frac{n-1}{n}\right) \times n$
B. $\frac{n x}{(n-1)}$
C. $\frac{x}{n}$
D. $\frac{x}{(n-1)}$

Answer: c

D Watch Video Solution

42. A screw gauge gives the following reading when used to mesure the diametre of a wire.

Main scale reading : 0 mm

Circular scale reading : $52 \div$ isions

Given that $1 m m$ on main scale corresponds to

100 divisions of the circular scale. the diameter of wire from the above data is :
A. 0.52 cm
B. 0.052 cm
C. 0.026 cm
D. 0.005 cm

Answer: b

D Watch Video Solution
43. A spectrometer gives the following reading when used to measure the angle of a prism.

Main scale reading $=58.5$ degree

Vernier scale reading $=0.9$ divisions

Given that 1 divisions on main scale corresponds to 0.5 degree. Total divisions on the vernier scale is 30 and match with 29 divisions of the main scale. the angle of the prism from the above data is :
A. 58.59 degree
B. 58.77 degree
C. 58.65 degree
D. 59 degree

Competitive Thinking Accuray And Errors In

 Measurements1. Choose the INCOREET statement out of the
folloiwng .
A. Every measurement by any measuring instrument has some error.

B. Every calculated physical quantity that is

based on mesured values has some error
C. A measurement can have more accuracy
but less precision and vice versa
D. The percentage error is different form
relative error

Answer: d

D Watch Video Solution

2. Assertion: The error in the measurement of radius of sphere is 0.3%. The permissible error in its surface area is 0.6%.

Reason: The permissible error is calculated by
the formula $\frac{\Delta A}{A}=\frac{4 \Delta r}{r}$.
A. Assertion is True , Reason in True

Reason is a correct explaintion for

Assertion .
B. Assertion is True , Reason is True

Reason is not a correct explanation for

Assertion

C. Assertion is True, Reason in False
D. Assertion is False, Reason is False

Answer: c

D Watch Video Solution

3. If $Y=a-b$, the maximum percentage error in the measurement of Y will be

$$
\text { A. }\left[\frac{\Delta a}{a-b}-\frac{\Delta b}{a-b}\right] \times 100
$$

B. $\left[\frac{\Delta a}{a-b}+\frac{\Delta b}{b-a}\right] \times 100$
C. $\left[\frac{\Delta a}{a}-\frac{\Delta b}{b}\right] \times 100$
D. $\left[\frac{\Delta a}{a}-\frac{\Delta b}{b}\right] \times 100$

Answer: b

D Watch Video Solution

4. The radius of a sphere is $(5.3 \pm 0.1) \mathrm{cm}^{`}$ The perecentage error in its volume is

$$
\text { A. } 3+6.01 \times \frac{100}{5.3}
$$

B. $\frac{1}{3} \times 0.01 \times \frac{100}{5.3}$
C. $\left(\frac{3 \times 0.1}{5.3}\right) \times 100$
0.1
D. $\frac{0.1}{5.3} \times 100$

Answer: c

D Watch Video Solution

5. Resistance of a given wire is obtained by measuring the current flowing in it and the voltage difference applied across it. If the percentage errors in the measurement of the
current and the voltage difference are 3% each, then error in the value of resistance of the wire is
A. 0.06
B. Zero
C. 0.01
D. 0.03

Answer: a

D Watch Video Solution
6. In an experiment four quantities a, b, c and d are measure with percentage error $1 \%, 2 \%, 3 \%$,and 4% respectively quantity is P is calculate as follow
$P=\frac{a^{3} b^{2}}{c d} \%$ error in P is
A. 0.14
B. 0.1
C. 0.07
D. 0.04

Answer: a

D Watch Video Solution

7. Let $x=\left[\frac{a^{2} b^{2}}{c}\right]$ be the physical quantity. If the percentage error in the measurement of physical quantities a, b, and c is 2,3 and 4 per cent respectively, then percentage error in the measurement of x is
A. 0.07
B. 0.14
C. 0.21

D. 0.28

Answer: c

D Watch Video Solution

8. Two full turns of the circular scale of a screw
gauge cover a distance of 1 mm on its main
scale. The total number of divisions on the circular scale is 50 . Further more it is found
that the screw gauge has a zero error of - 0.02 mm . While measuring the diameter of a thin
wire, a student notes the main scale reading of 4 mm and the number of circular scale divisions in line with the main scale as 37 . The diameter of the wire is
A. 3.73 cm
B. 3.67 cm
C. 3.38 cm
D. 3.32 cm

Answer: c

9. A screw gauge with a pitch of 0.5 mm and a circular scale with 50 divisions is used to measure the thicknes of a thin sheet of

Aluminium. Before starting the measurement,
it is found that wen the jaws of the screw gauge are brought in cintact, the $45^{t h}$ division coincide with the main scale line and the zero of the main scale is barely visible. what is the thickness of the sheet if the main scale readind is 0.5 mm and the $25 t h$ division coincide with the main scale line?
A. 0.80 cm
B. 0.70 cm
C. 0.50 cm
D. 0.75 cm

Answer: a

D Watch Video Solution

10. A student measued the diameter of a small steel ball using a screw gauge of least count 1.001 cm . The main scale reading is 5 mm and
zero of circular scale division coincides with 25
divisions above the reference level. If screw gauge has a zero erroof -0.004 cm , the correct diameter of the ball is
A. 0.521 cm
B. 0.525 cm
C. 0.053 cm
D. 0.526 cm

Answer: d

11. The density of a solid ball is to be determined in an experiment. The diameter of
the ball is measured with a screw gauge, whose pitch is 0.5 mm and there are 50 divisions on the circular scale. The reading on
the main scale is 2.5 mm and that on circular
scale is 20 divisions. if the measured mass of
the ball has a relative error of 2%, the relative percentage error in the density is
A. 0.9%
B. 2.4%
C. 3.1%
D. 4.2%

Answer: c

D Watch Video Solution

12. A force \vec{F} applied on a square plate of length L. If the percentage error in the determination of L is 3% and in F is 4%, the
permissible error in the calculation of pressure is
A. 0.13
B. 0.1
C. 0.07
D. 0.12

Answer: b
(Watch Video Solution
13. The density of a material in the shape of a
cube is determined by measuring three sides
of the cube and its mass. If the relative errors
in measuring the mass and length are
respectively 1.5% and 1%, the maximum
error in determining the density is:
A. 4.5%
B. 6%
C. 2.5%
D. 3.5%

Answer: a

D Watch Video Solution

14. In the determination if Young's modulus $\left(\left(Y=\frac{4 M L g}{\pi l d^{2}}\right.\right.$ by using searle's method, a wire of length $L=2 m$ and diameter $d=0.5 \mathrm{~mm}$ is used. For a load $M=2.5 \mathrm{~kg}$, an
extension $l=0.25 \mathrm{~mm}$ in the length of the
wire is observed. Quantites D and l are measured using a screw gauge and a micrometer, respectively. they have the same
pitch of 0.5 mm . the number of divisions on their circular scale is 100 . the contrubution to the maximum probable error of the Y measurement
A. due to the errors in the measurements
of d and I are the same.
B. due to the error is the measurement of
d is twice that due to the error in the
measurement of l .
C. due to the error in the measurement of
is twice that due to the error in the
measurement of d .

D. due to the error in the measurement of

d is four times that due to the error in
the measurment of I.

Answer: a

D Watch Video Solution

15. If the time period of a simple pendulum is
$T=2 \pi \sqrt{l / g}$, then the fractional error in acceleration due to gravity is
A. $\frac{4 \pi^{2} \Delta l}{\Delta T^{2}}$
B. $\frac{\Delta l}{l}-2 \frac{\Delta l}{T}$
C. $\frac{\Delta l}{l}+2 \frac{\Delta T}{T}$
D. None of these

Answer: c

D Watch Video Solution
16. A student measures the value of g with the help of a simple pendulum using the formula
$g=\frac{4 \pi^{2} L}{T^{2}}$. He measures length L with a
meter scale having least count 1 mm and finds
it 98.0 cm . The time period is measured with
the help of a watch of least count 0.1 s . The time of 20 oscillations is found to be 40.4 s .

The error Δg in the measurment of g is $\left(\mathrm{in} m / s^{2}\right)$.
A. $9.68\left[\frac{0.1}{98}+0.1\right]$
B. $9.86\left[\frac{1}{98}+0.1\right]$
C. $9.68\left[\frac{0.1}{98}+\frac{0.1}{20}\right]$
D. $9.68\left[\frac{1}{98}+\frac{1}{20}\right]$

Answer: a

D Watch Video Solution

17. The period of oscillation of a simple pendulum is $T=2 \pi \sqrt{\frac{L}{g}}$. Meaured value of L is 20.0 cm know to 1 mm accuracy and time for

100 oscillation of the pendulum is found to be $90 s$ using a wrist watch of $1 s$ resolution. The accracy in the determinetion of g is :
A. 0.02
B. 0.03
C. 0.01
D. 0.05

Answer: b

D Watch Video Solution

18. The following observations were taken for dtermining the surface tension of water by capillary tube method: diameter of capillary, $D=1.25 \times 10^{-2} m$ and rise of water in
capillary $\quad, \quad h=1.45 \times 10^{-2} m . \quad$ Taking
$g=9.80 m s^{-2}$ and using the relation $T=(r g h / 2) \times 10^{3} \mathrm{Nm}^{-1}$, what is the possible error in measurement of surface tension T ?
(a) 2.4%
(b) 15%
(c) 1.6%
(d) 0.15\%
A. 0.15%
B. 1.5%
C. 2.4%
D. 10%

Competitive Thinking Miscellaneous

1. One femtometer is equivalent to
A. $10^{15} \mathrm{~m}$
B. $10^{-15} m$
C. $10^{-12} m$
D. $10^{12} \mathrm{~m}$

Answer: b

D Watch Video Solution

2. Which of the following units denotes the dimensions $M L^{2} / Q^{2}$, where Q denotes the electric charge?
A. henry (H)
B. H / m^{2}
C. weber (Wb)
D. $W b / m^{2}$

Answer: a

D Watch Video Solution

3. Which of the following physical quantities represent the dimensions of $\frac{b}{a}$ in the relations and t time ?
A. Power
B. Surface tension
C. Torsional constant
D. Force

Answer: c

- Watch Video Solution

4. If force (F), velocity (V) and time (T) are taken as fundamental units, then the dimensions of mass are
A. $\left[F V T^{-1}\right]$
B. $\left[F V T^{-2}\right]$
C. $\left[F V^{-1} T^{-1}\right]$
D. $\left[F V^{-1} T\right]$

Answer: d

D Watch Video Solution

5. If energy (E), velocity (V) and time (T) are
chosen as the fundamental quantities, the dimensions formula of surface tension will be
A. $\left[E V^{-2} T^{-1}\right]$
B. $\left[E V^{-1} T^{-2}\right]$
C. $\left[E V^{-2} T^{-2}\right]$
D. $\left[E^{-2} V^{-1} T^{-3}\right]$

Answer: c

- Watch Video Solution

6. If the velcoity of surface wave (v) depends
upon surface tension (T), coefficient of visosity
(η) and density (ρ) then the expression for v
will be .
A. $\frac{T^{2}}{\rho \eta}$
B. $\frac{T}{\eta}$
C. $\frac{\eta \rho}{T^{3}}$
D. $\frac{\rho}{\eta}$

Answer: b

D Watch Video Solution

7. The ratio of the dimension of Planck's

 constant and that of moment of inertia is the dimension ofA. angular
B. time

C. velocity

D. frequency

Answer: d

- Watch Video Solution

Evaluation Test

1. When dimensions of a given physical quantity are given,the physical quantity is unique.
A. The statement and its converse both are
true.
B. The statement is false but is converse is
true.
C. The statement is true but its converse is
true.
D. The statement is true but its convers is
false.

Answer: c

2. The quantities A and B are related by the relation $A / B=m$, where m is the linear mass density and A is the force , the dimensions of B will be
A. latent heat
B. pressure
C. work
D. momentum

- Watch Video Solution

3. The 'rad' is the correct unit used to report the measurement of :
A. the rate of decay of radioactive source
B. the ability of a beam of gamma ray photons to produce ions in a target .
C. the energy delivered by radiation to a
target
D. the biological effect of radiation .

Answer: d

D Watch Video Solution

4. The dimension of magnetic field in
M, L, T and C (coulomb) is given as
A. $\left[M^{1} L^{2} T^{-2} C^{-2}\right]$
B. $\left[L^{-2} T^{2} C^{+2}\right]$
C. $\left[M^{1} L^{-2} T^{2} C^{2}\right]$
D. $\left[M^{1} L^{-2} T^{2} C^{2}\right]$

Answer: c

- Watch Video Solution

5. Two full turns of the circular scale of a screw gauge cover a distance of 1 mn on its its main
scale . The total number of divisions on the circular scale is 50 . Further m it is found that the screw gauge has a zero error of - 0.02 mm .

While measuring the diameter of a thin wire ,
a student notes the main scale reading of 4 mm and the number of circular scale divisions
in line with the main scale as 37 . The diameter of the wire is
A. 4.37 mm
B. 4.39 mm
C. 4.74 mm
D. 4.76 mm

Answer: b
(Watch Video Solution
6. The potential energy of a particle varies with
distance x from a fixed origin as $U=\frac{A \sqrt{x}}{x^{2}+B}$
, where A and B are dimensional constants,
then find the dimensional formula for $A B$.

$$
\begin{aligned}
& \text { A. }\left[M^{1} L^{7 / 2} T^{-2}\right] \\
& \text { B. }\left[M^{1} L^{11 / 2} T^{-2}\right] \\
& \text { C. }\left[M^{1} L^{5 / 2} T^{-2}\right] \\
& \text { D. }\left[M^{1} L^{9 / 2} T^{-2}\right]
\end{aligned}
$$

Answer: b

7. Assertion : The number 37800 has three siginficant digits .

Reason : All non-zero digits are significant .
A. Assertion is True , Reason in True

Reason is a correct explantion for Assertion.

B. Assertion is True, Reason is True, Reason

is not a correct explanation for Assertion

C. Assertion is True , Reason in False .

D. Assertion is False but , Reason is False .

Answer: b

D Watch Video Solution

8. If $A=B+\frac{C}{D+E}$ the dimensions of B and C are $\left[M^{0} L T^{-1}\right]$ and $\left[M^{0} L T^{0}\right]$, respectively. Find the dimensions of A, D and E.
A. $A=\left[M^{0} L^{0} T^{-1}\right], D=[T], E=[L T]$
B. $A=\left[M L T^{0}\right], D=\left[T^{2}\right], E=\left[T^{2}\right]$
C.

$$
A=\left[M L T^{-1}\right], D=[M T], E=[M T]
$$

D. $A=\left[M^{0} L T^{-1}\right], D[T], E=[T]$

Answer: d

D Watch Video Solution

9. In the measurement of a physical quantity
$X=\frac{A^{2} B}{C^{1 / 3} D^{3}} \quad$. The percentage errors introduced in the measurement of the quantites A, B, C and D are $1 \%, 3 \%, 4 \%$ and 5% respectively. Then the minimum amount of percenatage of error in the measurment of X is contributed by
A. A
B. B
C. C
D. D

Answer: c

D Watch Video Solution

10. If $\mathrm{E}=$ energy, $\mathrm{G}=$ gravitational constant, $\mathrm{I}=$
impulse and $\mathrm{M}=$ mass the dimension $\frac{G I^{2} M}{E^{2}}$
is same as that of
A. spring constant
B. wavelenght

C. energy gradient

D. Rydberg constant

Answer: b

- Watch Video Solution

11. Choose the incorrect statement
A. A dimensionally correct equation may be correct .
B. A dimensionally correct equation may
C. A dimensionally incorrect equations

must be incorrect

D. A dimensionally incorrect equation be

correct

Answer: d

D Watch Video Solution
12. S
A. 0.11
B. 0.04
C. 0.19
D. 0.09

Answer: c

D View Text Solution

13. Number of particles is given by
$n=-D \frac{n_{2}-n_{1}}{x_{2}-x_{1}} \quad$ crossing a unit area perpendicular to X-axis in unit time, where n_{1} and n_{2} are number of particles per unit
volume for the value of x meant to x_{2} and x_{1}.

Find dimensions of D called as diffusion constant
A. $\left[M^{0} L^{1} T^{2}\right]$
B. $\left[M^{0} L^{2} T^{4}\right]$
C. $\left[M^{0} L^{1} T^{-3}\right]$
D. $\left[M^{0} L^{2} T^{-1}\right]$

Answer: d

D Watch Video Solution
14. When a screw gauge is comletely closed, zero of circular scale is 4 divisions abvoe the reference line of graduation. If L.C of screw gauge is $10^{-3} \mathrm{~cm}$, the zero error is
A. $-4 \times 10^{-3} \mathrm{~cm}$
B. $+4 \times 10^{-3} \mathrm{~cm}$
C. -0.004 mm
D. +0.004 mm

Answer: a

D Watch Video Solution
15. Which of the following is not dimensionless?
A. `Relative refractive index
B. Relative permittivity
C. Relative density
D. Relative velocity

Answer: d

16. The jaws of a vernier callipers touch the inner wall of calorimeter without any undue pressure. The position of zero of vernier scale on the main scale reads 3.48 . The $6^{\text {th }}$ of vernier scale division is coinciding with any main scale division. Vernier constant of callipers is 0.01 cm . Find actual internal diameter of calorimeter, when it is observed that the vernier scale has a zero error of -0.03 cm .
A. 3.37 cm
B. 3.57 cm

C. 3.42 cm

D. 3.54 cm

Answer: b

D Watch Video Solution

17. The thin metallic strip of vernier callipers moves downward from top to botton in such a way that it just touches the surface of beaker.

Main scale reading of calliper is 6.4 cm
whereas its vernier constant is 0.1 mm . The $4^{\text {th }}$
of vernier scale division is coinciding with main scale division. The actual depth of berker
in mm is (when zero of vernier coincides with
zero of main scale)
A. 6.64 cm
B. 6.42 cm
C. 6.44 cm
D. 6.13 cm

Answer: c

