

MATHS

BOOKS - TARGET MATHS (HINGLISH)

APPICATIONS OF DEFINITE INTEGRAL

Classical Thinking

1. Area bounded by the curve $y = x^3$, X-axis and

ordiantes x=1 and x=4 is

A. 64 sq. units

B. 27 sq. units

C.
$$\frac{127}{4}$$
 sq. units
D. $\frac{255}{4}$ sq. units

Answer: D

2. Area bounded by the curve xy=c, X-axis between

x=1, x=4 is

A. c log3 sq. units

B. 2logc sq. units

C. 2c log2 sq. units

D. 2c log5 sq. units

Answer: C

Watch Video Solution

3. Area under the curve $y = \sqrt{3x+4}$ between x=0

and x=4 is

A.
$$\frac{56}{9}$$
 sq. units
B. $\frac{64}{9}$ sq. units

C. 8 sq. units

D.
$$\frac{112}{9}$$
 sq. units

Answer: D

Watch Video Solution

4. The area bounded by $y=1+rac{8}{x^2}$, X-axis and

the ordinates x=2, x=4 is

A. 2

B. 4

C. log 2

D. log 4

5. The area bounded by the curve $y = \log x$, x- axis and the ordinates x = 1, x = 2 is

A. log4 sq. units

B. (log4+1) sq. units

C. (log4-1) sq. units

D. log 2 sq. units

Answer: C

6. The area of the region bounded by the curve y = sin x between the ordinates $x = 0, x = \frac{\pi}{2}$ and the X-axis is

- A. 1
- B. 2
- C. 3
- D. 4

Answer: A

فبالمصافية المتعيد

7. The area of the region bounded by the parabola $y=4x-x^2$, the X-axis, x=0 and x=2 is

Answer: B

8. The area under y=2x+sinx between y=0, x=0 and

Answer: A

9. Find the area bounded by the curve $y=xe^{x^2}$, x-

axis and the ordinates x=0 and x=h.

A.
$$rac{e^{x^2}+1}{2}$$
 sq. units
B. $rac{e^{x^2}-1}{2}$ sq. units
C. $\left(c^{a^2}+1
ight)$ sq. units
D. $\left(x^{a^2}-1
ight)$ sq. units

Answer: B

10. Area enclosed by the curve $y = \sin^2 x$, the X-

axis and the lines $x=0, x=\pi/2$ is

D.
$$\pi$$

Answer: B

11. The area in square units of the region bounded by the curve $x^2=4y$, the line x=2 and the x-axis, is

A. 1

B.
$$\frac{2}{3}$$

C. $\frac{4}{3}$
D. $\frac{8}{3}$

Answer: B

Watch Video Solution

Critical Thinking

1. The area bounded by the parabola
$$y=4x^2,\,x=0\, ext{ and }y=1,\,y=4 ext{ is }$$

A. 3 sq. units

B.
$$\frac{7}{5}$$
 sq. units
C. $\frac{7}{3}$ sq. units
D. $\frac{8}{3}$ sq. units

Answer: C

2. The area of the region bounded by $x^2 = y - 2, y = 4, y = 6$ and the Y-axis in the first quadrant is

A.
$$rac{2}{3}$$

B. $rac{2}{3}(8-\sqrt{2})$
C. $rac{2}{3}(8-2\sqrt{2})$
D. $rac{3}{2}(8-\sqrt{2})$

Answer: C

3. The area of the region bounded by $y^2 = 4x, x = 0, x = 4$ and the X-axis in the first quadrant is

A. 16

$$\mathsf{B}.\,\frac{16}{3}$$

C. 32

D.
$$\frac{32}{3}$$

Answer: D

4. The ratio of the areas between the curves $y = \cos x$ and $y = \cos 2x$ and x-axis from x = 0to $x=rac{\pi}{3}$ is A. $\sqrt{2}:1$ **B**.1:1 C.1:2 D. 2:1

Answer: D

5. The area of the region bounded by the curve xy - 3x - 2y - 10 = 0, X-axis and the lines x = 3, x = 4, is

A. 16 log 2 - 13 sq. units

B. 16 log 2 - 3 sq. units

C. 16 log 2 + 3 sq. units

D. 16 log 2 - 10 sq. units

Answer: C

6. If the area bounded by $y = 3x^2 - 4x + k$, the X-axis and x=1, x=3 is 20 sq. units, then the value of k is

A. 2

B. 3

C. 5

D. 7

Answer: C

7. Area between the curve $y = 4 + 3x - x^2$ and x-

axis in square units, is

A.
$$\frac{125}{6}$$

B. $\frac{125}{3}$
C. $\frac{125}{2}$

D. 125

Answer: A

8. The area of the region bounded by $x = y^2 - y$

and Y-axis is

A.
$$\frac{3}{2}$$
 sq. units
B. $\frac{2}{3}$ sq. units
C. $\frac{5}{3}$ sq. units
D. $\frac{1}{6}$ sq. units

Answer: D

9. The area bounded by the parabola $y=4x-x^2$

and X-axis is

A.
$$\frac{30}{7}$$
 sq. units
B. $\frac{31}{7}$ sq. units
C. $\frac{32}{3}$ sq. units
D. $\frac{34}{3}$ sq. units

Answer: C

10. The area bounded by the curve y = f(x), X-axis and ordinates x=1 and x=b is $(b-1)\sin(3b+4)$, find f(x).

A. 3(x-1)cos(3x+4)+sin(3x+4)

B. (b-1)sin(3x+4)+3cos(3x+4)

C. (b-1)cos(3x+4)+3sin(3x+4)

D. (x-1)sin(3x+4)+3cos(3x+4)

Answer: A

11. Area enclosed between the curve $y^2(2a-x)=x^3$ and line x=2a above X-axis is A. πa^2 B. $\frac{3\pi a^2}{2}$ C. $2\pi a^2$ D. $3\pi a^2$

Answer: B

12. Area bounded by the parabola $y^2=2x$ and the

ordinates x=1, x=4 is

A.
$$\frac{4\sqrt{2}}{3}$$
 sq. units
B. $\frac{28\sqrt{2}}{3}$ sq. units
C. $\frac{56}{3}$ sq. units
D. $\frac{4}{3}$ sq. units

13. The area bounded by the curve $y^2 = 8x$ and

the line x=2 is

A.
$$\frac{32}{3}$$
 sq. units
B. $\frac{23}{3}$ sq. units
C. $\frac{16}{3}$ sq. units
D. $\frac{13}{2}$ sq. units

Answer: A

14. Examples: Find the area bounded by the parabola $y^2=4ax$ and its latus rectum.

A.
$$\frac{2}{3}a^2$$
 sq. units
B. $\frac{4}{3}a^2$ sq. units
C. $\frac{8}{3}a^2$ sq. units
D. $\frac{3}{8}a^2$ sq. units

Answer: C

15. The area bounded by the curve $x=4-y^2$ and

the Y-axis is

A. 16 sq. units

B. 32 sq. units

C.
$$\frac{32}{3}$$
 sq. units
D. $\frac{16}{3}$ sq. units

Answer: C

16. The area enclosed by the parabola

$$y = x^2 - 1$$
 and $y = 1 - x^2$ is
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $\frac{4}{3}$
D. $\frac{8}{3}$

Answer: D

17. The area of the region bounded by the X-axis

and the curves defined by y=tan x,

$$\Big(-rac{\pi}{3} \leq x \leq rac{\pi}{3}\Big)$$
 is

A. $\log \sqrt{2}$

- $\mathsf{B.} \log \sqrt{2}$
- C. 2log 2

D. 0

Answer: C

18. The area of the region bounded by the curve y=cosx, X-axis and the lines x=0, x= 2π is

A. 2

B. 4

C. 0

D. 3

Answer: B

19. Find the area of the region bounded by the curve $y = \sin x$ between x = 0 and $x = 2\pi$.

A. 2 sq. units

B. 4 sq. units

C. 8 sq. units

D. 16 sq. units

Answer: B

20. The area of smaller part between the circle $x^2+y^2=4$ and the line x=1 is

Answer: B

- **21.** The area of the ellipse $\displaystyle rac{x^2}{a^2} + \displaystyle rac{y^2}{b^2} = 1$ is
 - A. πab sq. units
 - B. $\frac{1}{2}\pi ab$ sq. units C. $\frac{1}{4}\pi ab$ sq. units D. $\frac{1}{3}\pi ab$ sq. units

Answer: A

22. A tangent to the ellipse $16x^2 + 9y^2 = 144$ making equal intercepts on both the axes is

A. 8π

 $\mathrm{B.}\,80\pi$

 $\mathsf{C.}\ 20\pi$

D. 12π

Answer: D

23. Find the area bounded by the curve y = x|x|,

x-axis and ordinates x = -1 and x = 1.

A. 0

B.
$$\frac{1}{3}$$

C. $\frac{2}{3}$

Answer: C

24. Find the area bounded by the curve y = 3x + 2, x-axis and ordinate x = -1 and x = 1.

A.
$$\frac{13}{3}$$

B. $\frac{7}{3}$
C. $\frac{13}{2}$
D. $\frac{7}{2}$

Answer: A

25. Area lying in the first quadrant and bounded by the circle $x^2+y^2=4$ the line $x=\sqrt{3}y$ and x-axis , is

A. $\frac{\pi}{2}$ B. $\frac{\pi}{4}$ C. $\frac{\pi}{3}$

D. π

Answer: C
26. Area bounded by the lines y = 2 + x, y = 2 - x and x = 2 is (A) 3 (B) 4 (C) 8 (D) 16

A. 3 sq. units

B. 4 sq. units

C. 8 sq. units

D. 16 sq. units

Answer: B

27. The area of the region bounded by y=7x+1,y=5x+1 and x=3 is

A. 2 sq. units

B. 4 sq. units

C. 6 sq. units

D. 9 sq. units

Answer: C

28. For $0 \leq x \leq \pi,\,$ the area bounded by y=x

and $y = x + \sin x$, is

A. 2

B. 4

 $\mathsf{C.}\,2\pi$

D. 4π

29. The area bounded by the curves $y^2 - x = 0$ and $y - x^2 = 0$ is A. $\frac{7}{3}$ B. $\frac{1}{3}$

$$\frac{3}{5}$$
 C. $\frac{5}{3}$

Answer: B

30. Find the area included between the curves

$$x^2 = 4y$$
 and $y^2 = 4x$.

A.
$$\frac{14}{3}$$
 sq. units
B. $\frac{3}{4}$ sq. units
C. $\frac{3}{16}$ units
D. $\frac{16}{3}$ sq. units

Answer: D

31. If the area enclosed between the curves $y = ax^2 andx = ay^2(a > 0)$ is 1 square unit, then find the value of a.

Answer: B

32. Find the area bounded by the curve $4y^2 = 9x$ and $3x^2 = 16y$

A. 4 sq. units

B. 2 sq. units

C. 16 sq. units

D. 8 sq. units

33. The area common to the parabolas $y = 2x^2$ and $y = x^2 + 4$ (in square units) is (A) $\frac{2}{3}$ (B) $\frac{3}{2}$ (C) $\frac{32}{3}$ (D) $\frac{3}{32}$

A.
$$\frac{32}{3}$$

B. $\frac{26}{3}$
C. $\frac{2}{3}$
D. $\frac{3}{2}$

34.	The	area	bounded	by	the	curves
4y =	$=x^2$ as	nd $2y$	$= 6 - x^2$ is			
	4.8					
,						
E	B. 6					
(C. 4					

D. 10

35. The area of the region bounded by the parabola $y^2 = 4ax$ and the line y=mx is

A.
$$\frac{8a^2}{3m^3}$$

B. $\frac{8m^2}{3a^3}$
C. $\frac{8a^2}{3}$
D. $\frac{8a^2m^3}{3}$

36. The area bounded by the parabola $x^2 = 2y$ and the line y=3x is

A. 4 sq. units

B. 18 sq. units

C. 24 sq. units

D. 32 sq. units

Answer: B

37. Area enclosed between the curve $y = x^2$ and

the line y = x is

A.
$$\frac{1}{6}$$
 sq. units
B. $\frac{1}{3}$ sq. units
C. $\frac{1}{2}$ sq. units
D. $\frac{1}{4}$ sq. units

38. The area of the region bounded by parabola $y^2=x$ and the straight line 2y = x is A. $\frac{4}{3}$ B.1 $\mathsf{C}.\,\frac{2}{3}$ D. $\frac{1}{3}$

39. The area enclosed between the curves $y = x^3$

Answer: C

40. The area enclosed by the parabola $y = x^2 - 1$ and $y = 1 - x^2$ is A. $\frac{1}{3}$ $\mathsf{B.}\,\frac{2}{3}$ C. $\frac{4}{3}$ D. $\frac{8}{3}$ Answer: D

41. The area enclosed between the curves $y = x ext{ and } y = 2x - x^2$ (in square units), is A. $\frac{1}{2}$ $\mathsf{B.}\,\frac{1}{6}$ $\mathsf{C}.\,\frac{1}{3}$ D. $\frac{1}{4}$

Answer: B

42. Find the area bounded by the curve $x^2 = 4y$

and the straight line x = 4y - 2.

A.
$$\frac{8}{9}$$
 sq. units
B. $\frac{9}{8}$ sq. units
C. $\frac{4}{3}$ sq. units
D. $\frac{3}{4}$ sq. units

Answer: B

43. If area bounded by the curve $y^2 = 4ax$ and y = mx is $a^2/3$, then the value of m, is

A. 2

B. 1

 $\mathsf{C}.\,\frac{1}{2}$

44. What is the area bounded by the curves $y=e^x, y=e^{-x}$ and the straight line x=1 ? A. $e + \frac{1}{e}$ B. $e - \frac{1}{e}$ C. $e + \frac{1}{e} - 2$ $\mathsf{D.}\, e + \frac{1}{e} - 2$

Answer: C

45. Compute the area of the figure bounded by the straight lines =0, x=2 and the curves $y=2^x, y=2x-x^2$.

A.
$$\frac{4}{3} - \frac{1}{\log 2}$$

B.
$$\frac{3}{\log 2} + \frac{4}{3}$$

C.
$$\frac{4}{\log 2} - 1$$

D.
$$\frac{3}{\log 2} - \frac{4}{3}$$

Answer: D

46. The area bounded by the curves $y = (\log)_e x and y = ((\log)_e x)^2$ is e - 2square inits(b) 3 - esquare square (d) e - 1square inits

А. 3-е

B. e-3

C.
$$rac{1}{2}(3-e)$$

D. $rac{1}{2}(e-3)$

Answer: A

47. The area of the region bounded by y = |x - 1|and y = 1 is A. 2 B. 1

 $\mathsf{C}.\,\frac{1}{2}$

D. 3

Answer: B

48. Find the area of the smaller region bounded by

the ellipse $rac{x^2}{9}+rac{y^2}{4}=1$ and the line $rac{x}{3}+rac{y}{2}=1$

A.
$$rac{1}{2}(\pi-2)$$
 sq. units

B.
$$rac{3}{2}(\pi-2)$$
 sq. units

C.
$$rac{5}{4}(\pi-2)$$
 sq. units

D.
$$rac{2}{3}(\pi-2)$$
 sq. units

Answer: B

1. The area enclosed by y = 3x - 5, y = 0, x = 3 and x =

5 is

A. 12 sq. units

B. 13 sq. units

C.
$$13rac{1}{2}$$
 sq. units

D. 14 sq. units

Answer: D

2. The area of the region bounded by the lines y = mx, x = 1, x = 2 and X-axis is 6 sq units, then m is equal to

A. 3

B. 1

C. 2

D. 4

Answer: D

3. Area of the region bounded by rays |x|+y=1

and X-axis is

A.
$$rac{1}{4}$$

B. 2

$$\mathsf{C}.\,\frac{1}{2}$$

D. 1

Answer: D

4. The area of the region bounded by the lines

y=2x+1y=3x+1 and x=4 is

A. 16 sq. units

B.
$$\frac{121}{3}$$
 sq. units
C. $\frac{121}{6}$ sq. units

D. 8 sq. units

Answer: D

5. Find the area bounded by the line y = x, the x-

axis and the ordinates $x=\,-\,1$ and x=2

A.
$$\frac{3}{2}$$

B. $\frac{5}{2}$

C. 2

D. 3

Answer: B

6. The area of the region bounded by the curve $y=x^3$, and the lines , y=8 and x=0, is A. 16 B. 8 C. 10 D. 12

Answer: D

7. The area of the region bounded by the curve							
y= x-2 , x=1, x=3 and the X-axis is							
A. 4							
Р Э							
D. 2							
C. 3							
D. 1							
Answer: D							
Watch Video Solution							

8.	The	area	enclosed	between	the	curve
y =	$= \log_e($	x+e)	and the co	ordinate ax	es is	

A. 3 sq. units

B. 4 sq. units

C.1 sq. units

D. 2 sq. units

Answer: C

9. Find by integration the area of the region bounded by the curve $y = 2x - x^2$ and the x-axis.

A.
$$\frac{2}{3}$$
 sq. units
B. $\frac{4}{3}$ sq. units
C. $\frac{5}{3}$ sq. units
D. $\frac{8}{3}$ sq. units

Answer: B

10. The area (in sq. units) of the region bounded by

the X-axis and the curve $y=1-x-6x^2$ is

A.
$$\frac{125}{216}$$

B. $\frac{125}{512}$
C. $\frac{25}{216}$
D. $\frac{25}{512}$

Answer: A

11. The area bounded by the curves $y = -x^2 + 3$ and y = 0 is A. $\sqrt{3}+1$ B. $\sqrt{3}$ C. $4\sqrt{3}$ D. $5\sqrt{3}$ Answer: C

12. If A is the area of the region bounded by the curve $y = \sqrt{3x+4}$, x axis and the line x = -1 and x = 4 and B is that area bounded by curve $y^2 = 3x + 4$, x- axis and the lines x = -1 and x = 4 then A : B is equal to

- A. 1:1
- B. 2:1
- C. 1: 2
- D. None of these

13. The area bounded by the x-axis, the curve y = f(x), and the lines x = 1, x = b is equal to $\sqrt{b^2 + 1} - \sqrt{2}$ for all b > 1, then f(x) is $\sqrt{x - 1}$ (b) $\sqrt{x + 1} \sqrt{x^2 + 1}$ (d) $\frac{x}{\sqrt{1 + x^2}}$

A.
$$\sqrt{x-1}$$

B.
$$\sqrt{x+1}$$

C.
$$\sqrt{x^2+1}$$

D.
$$rac{x}{\sqrt{1+x^2}}$$

Answer: C

14. Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), the x-axis, and the ordinates $x = \frac{\pi}{4}andx = \beta > \frac{\pi}{4}is\beta\sin\beta + \frac{\pi}{4}\cos\beta + \sqrt{2}\beta$. Then $f'\left(\frac{\pi}{2}\right)$ is $\left(\frac{\pi}{2} - \sqrt{2} - 1\right)$ (b) $\left(\frac{\pi}{4} + \sqrt{2} - 1\right) - \frac{\pi}{2}$ (d) $\left(1 - \frac{\pi}{4} - \sqrt{2}\right)$

Answer: A

15. Find the area bounded by the x-axis, part of the curve $y = \left(1 - \frac{8}{x^2}\right)$, and the ordinates at x = 2andx = 4. If the ordinate at x = a divides the area into two equal parts, then find a.

A. 8

B. $2\sqrt{2}$

C. 2

D. $\sqrt{2}$

Answer: B

Watch Video Solution

16. If a curve $y = a\sqrt{x} + bx$ passes through the point (1,2) and the area bounded by the curve, line x = 4 and X-axis is 8 sq units, then

A. a=3, b=-1

B. a=3, b=1

C. a=-3, b=1

D. a=-3, b=-1

Answer: A

Watch Video Solution

17. Let $f:[-1,2]\overrightarrow{0,\infty}$ be a continuous function such that f(x)=f(1-x)f or $allx\in[-1,2]$. Let $R_1=\int_{-1}^2 xf(x)dx,$ and R_2 be the area of the region bounded by y=f(x), x=-1, x=2, and the $x-a\xi s$. Then $R_1=2R_2$ (b) $R_1=3R_2$ $2R_1$ (d) $3R_1=R_2$ A. R_1-2R_2

B. $R_1 = 3R_2$

 $\mathsf{C.}\,2R_1=R_2$

D. $3R_1 = R_2$

Answer: C

18. Area of the region bounded by
$$y = \cos x, x = 0, x = \pi$$
 and X-axis is . . .sq. units.

A. 1 sq. unit

B. 4 sq. units

C. 2 sq. units

D. 3 sq. units

Answer: C

19. The area bounded by the curve
$$y=\sin^2 x, 0\leq x\leq rac{\pi}{2},$$
 X axis and the line $x=rac{\pi}{2}$ is

A.
$$\frac{\pi}{2}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{8}$
D. $\frac{\pi}{16}$

Answer: B

• Watch Video Solution
20. the area included between the curve

$$xy^2 = a^2(a - x)$$
 and y-axis is -

A.
$$\pi a^2$$

B. $2\pi a^2$

C. $3\pi a^2$

D. $4\pi a^2$

Answer: A

21. The area of the region bounded by $x^2 = 4y, y = 1, y = 4$ and the Y-axis lying in the first quadrant is Square units.

A.
$$\frac{22}{3}$$

B.
$$\frac{28}{3}$$

C. 30

D. $\frac{21}{4}$

Answer: B

 $\mathsf{C}.\,\frac{5}{2}$

D. None of these

Answer: A

Watch Video Solution

23. The area (in sqaure units) of the region enclosed by the curves $y = x, x = 2, y = \frac{1}{x}$ and

the positive x-axis is

A.
$$\frac{1}{2}$$
 sq. units

B. 1 sq. unit

C.
$$\frac{3}{2}$$
 sq. units
D. $\frac{5}{2}$ sq. units

Answer: C

24. Area bounded between two latus-rectum of the
ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, $a > b$ is _____.
(where, e is eccentricity of the ellipse)
A. $2b(be + a \sin^{-1} e)$

B.
$$8big(be+a\sin^{-1}eig)$$

$$\mathsf{C}.\,b\big(be+a\sin^{-1}e\big)$$

D.
$$4b(be + a\sin^{-1}e)$$

Answer: A

View Text Solution

25. The area formed by triangular shaped region bounded by the curves $y = \sin x, y = \cos x$ and x = 0 is (A) $\sqrt{2} - 1$ (B) 1 (C) $\sqrt{2}$ (D) $1 + \sqrt{2}$

A.
$$\sqrt{2}-1$$

B. 1

C. $\sqrt{2}$

 $\mathrm{D.}\,1+\sqrt{2}$

Answer: A

Watch Video Solution

26. Find the area of the region included between

the

parabolas

$$y^2=4axandx^2=4ay, wherea>0.$$

A.
$$\frac{32}{3}a^2$$
 sq. units
B. $\frac{16}{3}$ sq. units

C.
$$\frac{32}{3}$$
 sq. units
D. $\frac{16}{3}a^2$ sq. units

Answer: D

27. The area of the region bounded by the curves $y = x^2$ and $x = y^2$ is

A.
$$\frac{-}{3}$$

B. $\frac{1}{2}$
C. $\frac{1}{4}$

D. 3

Answer: A

28. Find the area of the figure bounded by the parabolas $x=\,-\,2y^2,\,x=1-\,3y^2.$

A.
$$\frac{4}{3}$$
 sq. units
B. $\frac{2}{3}$ sq. units
C. $\frac{3}{7}$ sq. units
D. $\frac{6}{7}$ sq. units

Answer: A

29. What is the area bounded by the curve $y=x^2$ and the line y=16 ?

A.
$$\frac{32}{3}$$
 sq. units
B. $\frac{256}{3}$ sq. units
C. $\frac{64}{3}$ sq. units
D. $\frac{128}{3}$ sq. units

Answer: B

30. Find the area bounded by the parabola $y^2 = 4ax$ and the line y = 2ax.

A.
$$\frac{a^2}{3}$$
 sq. units
B. $\frac{1}{3a^2}$ sq. units
C. $\frac{1}{3a}$ sq. units
D. $\frac{2}{3a}$ sq. units

Answer: C

31. Area lying between the curves $y^2 = 2x$ and y=x

is

A.
$$\frac{1}{3}$$
 sq. units
B. $\frac{3}{4}$ sq. units
C. $\frac{2}{3}$ sq. units
D. $\frac{1}{4}$ sq. units

Answer: C

32. The area of the region bounded by the curves

$$x = y^2 - 2$$
 and x=y is
A. $rac{9}{4}$
B. 9
C. $rac{9}{2}$

D.
$$\frac{9}{7}$$

Answer: C

33. If the area enclosed between the curves $y = ax^2 andx = ay^2(a > 0)$ is 1 square unit, then find the value of a.

Answer: D

34. Find the ratio in which the area bounded by the curves $y^2 = 12xandx^2 = 12y$ is divided by the line x = 3.

A. 15:49

B. 13: 48

C. 12:37

D. None of these

Answer: A

35. The parabolas $y^2 = 4x$ and $x^2 = 4y$ divide the square region bounded by the lines x=4, y=4 and the coordinate axes. If S_1 , S_2 , S_3 are the areas of these parts numbered from top to bottom, respectively, then

A. 2:1:2

B.1:1:1

C. 1: 2: 1

D. 1:2:3

Answer: B

Walth Video Solution

36. The area bounded by the curves $y = \sqrt{x}, 2y + 3 = x,$ and x-axis in the 1st quadrant is

A. 9

B.
$$\frac{27}{4}$$

C. 36

D. 18

Answer: A

37. Let the straight line x= b divide the area enclosed by $y = (1-x)^2, y = 0$, and x = 0into two parts

 $R_1(0\leq x\leq b) ext{ and } R_2(b\leq x\leq 1) ext{ such that} \ R_1-R_2=rac{1}{4}.$ Then b equals

A.
$$\frac{3}{4}$$

B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

Answer: B

38. The area of the region bounded by the curve $y = x^3$, its tangent at (1, 1) and x-axis is

Answer: A

39. The area (in sq. units) enclosed between the curves $y = x^2$ and y = |x| is A. $\frac{2}{3}$ B. 1 $\mathsf{C}.\,\frac{1}{6}$ D. $\frac{1}{3}$ Answer: D

40. Area of the region bounded by

 $y = |x| \; ext{ and } \; y = \; - \, |x| + 2 \, ext{is}$

A. 4 sq. units

B. 3 sq. units

C. 2 sq. units

D. 1 sq. units

Answer: C

41. The area of the region bounded by the curves

 $y=|x-1| ext{ and } y=3-|x|$ is-

A. 6 sq. units

B. 2 sq. units

C. 3 sq. units

D. 4 sq. units

Answer: D

A. π

B.
$$\left(\pi - \frac{2}{3}\right)$$

C. $\left(\pi - \frac{1}{3}\right)$
D. $\left(\pi + \frac{1}{3}\right)$

Answer: B

43. Find the area included between the parabola

$$y=rac{x^2}{4a}$$
 and the curve $y=rac{8a^3}{x^2+4a^2}.$

A.
$$a^2\left(2\pi+rac{2}{3}
ight)$$

B. $a^2\left(2\pi-rac{8}{3}
ight)$
C. $a^2\left(\pi+rac{4}{3}
ight)$
D. $a^2\left(2\pi-rac{4}{3}
ight)$

Answer: D

44. The area of the region

$$\{(x, y): x^2 + y^2 \le 1 \le x + y\}$$
, is
A. $\frac{\pi^2}{5}$
B. $\frac{\pi^2}{2}$
C. $\frac{\pi^2}{3}$
D. $\frac{\pi}{4} - \frac{1}{2}$

Answer: D

45. The area (in sq. units) of the region $ig(x,y): y^2 \leq 2x ext{ and } x^2 + y^2 \leq 4x, x \geq 0, y \leq 0ig\},$ is

Answer: A

46. Area above the X-axis, bounded by the circle $x^2 + y^2 - 2ax = 0$ and the parabola $y^2 = ax$ is

A.
$$8\pi a^2$$

B.
$$a^2\left(rac{\pi}{4}-rac{2}{3}
ight)$$

C. $rac{16\pi a^2}{9}$
D. $\pi\left(rac{27}{8}+3a^2
ight)$

Answer: B

47. The area of the region described by

$$A = \{(x, y): x^2 + y^2 \le 1 \text{ and } y^2 \le 1 - x\}$$
 is :
A. $\frac{\pi}{4} - \frac{2}{3}$
B. $\frac{\pi}{2} + \frac{2}{3}$
C. $\frac{\pi}{2} + \frac{\pi}{3}$
D. $\frac{\pi}{2} - \frac{4}{3}$

Answer: C

48. The area (in sq units) of the region described by $\{(x,y): y^2 \le 2x ext{ and } y \ge 4x-1\}$ is A. $rac{7}{32}$

B.
$$\frac{5}{64}$$

C. $\frac{15}{64}$

D. $\frac{1}{32}$

Answer: D

49. The area enclosed (in square units) by the curve $y = x^4 - x^2$, the X-axis and the vertical lines passes through the two minimum points of the curve is

Answer: D
1. The area bounded by the curve y = |x|, X axis and the lines $x = -\pi$ and $x = \pi$ is

A. 2 sq. units

B.1 sq. unit

C. π^2 sq. units

D. None of these

Answer: C

2. Find the area bounded by the curve $y = \sin^{-1} x$

and the line $x=0, |y|=rac{\pi}{2}$.

A. 2 sq. units

B. 4 sq. units

C. 8 sq. units

D. 16 sq. units

Answer: A

3. Using integration find area of the region bounded by the curves $y=\sqrt{5-x^2}$ and y=|x-1|

A.
$$\left(\frac{5\pi}{4} + \frac{1}{2}\right)$$
 sq. unit
B. $\left(\frac{3\pi}{4} + \frac{1}{2}\right)$ sq. unit
C. $\left(\frac{5\pi}{4} - \frac{1}{2}\right)$ sq. unit
D. $\left(\frac{3\pi}{4} - \frac{1}{2}\right)$ sq. unit

4. The area bounded by the curves y = |x| - 1 and

 $y=\ -\left|x
ight|+1$ is equal to

A. 1

B. 2

 $\mathsf{C.}\,2\sqrt{2}$

D. 4

Answer: B

5. Find the area of the region formed by $x^2+y^2-6x-4y+12\leq 0,y\leq x$ and $x\leq rac{5}{2}.$

Watch Video Solution

D. None of these

6. The area bounded by the curve $y = 2x - x^2$ and the line y = - x is

A.
$$\frac{2}{3}$$

B. $\frac{9}{2}$
C. $\frac{1}{2}$

Answer: B

7. The area bounded by y=cosx, y=0 and |x|=1 is given by

A. sin 1 sq. unit

B. 2 sin sq. unit

C. 4 sin sq. unit

D. None of these

Answer: B

8. The area bounded by the curves y = cos x and y = sin x between the ordinates x = 0 and $x = \frac{3\pi}{2}$, is

A.
$$\left(4\sqrt{2}-1
ight)$$
 sq. unit

B. $\left(\sqrt{2}-1
ight)$ sq. unit

C. $\left(4\sqrt{2}+2
ight)$ sq. unit

D.
$$\left(4\sqrt{2}-2
ight)$$
 sq. unit

Watch Video Solution

Answer: D

9. The area of the region bounded by the parabola $y = x^2 + 2$ and the lines y = x, x = 0 and x = 3 is A. $\frac{21}{3}$ sq. unit B. $\frac{17}{2}$ sq. unit C. $\frac{27}{2}$ sq. unit

D.
$$\frac{9}{2}$$
 sq. unit

Answer: A

10. The area bounded by the curve $x=2-y-y^2$

and Y-axis is

A.
$$\frac{5}{2}$$
 sq. units
B. $\frac{7}{2}$ sq. units
C. $\frac{9}{2}$ sq. units
D. $\frac{11}{2}$ sq. units

11. The area of the region bounded by the curves

 $y^2 = 4a^2(x-1)$ and the lines x = 1 and y = 4a, is

A.
$$\frac{21a}{2}$$
 sq. units
B. $\frac{16}{3}$ sq. units
C. $\frac{17a}{3}$ sq. units

D.
$$rac{16a}{3}$$
 sq. units

Answer: D

12. Find the area of the region bounded by the curves $y^2 = x + 1$ and $y^2 = -x + 1$. A. $\frac{8}{3}$ sq. units B. $\frac{4}{3}$ sq. units

C. 2 sq. units

D.
$$\frac{16}{3}$$
 sq. units

Answer: A

13. The area of the closed figure bounded by
$$x = -1, y = 0, y = x^2 + x + 1$$
, and the tangent to the curve $y = x^2 + x + 1$ at A(1,3) is

A.
$$\frac{6}{7}$$
 sq. unit
B. $\frac{16}{17}$ sq. unit
C. $\frac{7}{6}$ sq. unit
D. $\frac{17}{16}$ sq. unit

14. The area of the region bounded by the curves $x^2 + 4y^2 = 4$ and $4y^2 = 3x$ is

A.
$$\left(\frac{2\pi}{3} + \frac{1}{2}\sqrt{3}\right)$$
 sq. unit
B. $\left(\frac{3\pi}{2} + \frac{2}{2\sqrt{3}}\right)$ sq. unit
C. $\left(\frac{2\pi}{5} + \frac{1}{2\sqrt{5}}\right)$ sq. unit

D. None of these

Answer: A

15. The slope of the tangent to a curve y = f(x)at (x, f(x)) is 2x + 1. If the curve passes through the point (1,2) then the area of the region bounded by the curve, the x-axis and the line x=1 is (A) $rac{5}{6}$ (B) $rac{6}{5}$ (C) $rac{1}{6}$ (D) 1A. $\frac{5}{6}$ sq. unit B. $\frac{6}{5}$ sq. unit C. $\frac{1}{6}$ sq. unit

D. 6 sq. unit

Answer: A

16. The area bounded by $y = \sin^{-1} x, x = \frac{1}{\sqrt{2}}$ and X-axis is

A.
$$\left(\frac{1}{\sqrt{2}}+1\right)$$
 sq. unit
B. $\left(1-\frac{1}{\sqrt{2}}\right)$ sq. unit
C. $\frac{\pi}{4\sqrt{2}}$ sq. unit
D. $\left(\frac{\pi}{4\sqrt{2}}+\frac{1}{\sqrt{2}}-1\right)$ sq. unit

Answer: D

17. The area of the region bounded by the parabola $\left(y-2
ight)^2=x-1$, the tangent to the parabola at the point (2,3) and the x-axis is

A. 4 sq. units

B. 6 sq. units

C. 9 sq. units

D. 12 sq. units

18. The area of the region bounded by the curves

$$y=\sqrt{rac{1+\sin x}{\cos x}}$$
 and $y=\sqrt{rac{1-\sin x}{\cos x}}$ bounded by the lines x=0 and $x=rac{\pi}{4}$ is

$$\begin{aligned} \mathsf{A.} & \int_{0}^{\sqrt{2}-1} \frac{t}{(1+t^2)\sqrt{1-t^2}} dt \\ \mathsf{B.} & \int_{0}^{\sqrt{2}-1} \frac{4t}{(1+t^2)\sqrt{1-t^2}} dt \\ \mathsf{C.} & \int_{0}^{\sqrt{2}+1} \frac{4t}{(1+t^2)\sqrt{1-t^2}} dt \\ \mathsf{D.} & \int_{0}^{\sqrt{2}+1} \frac{t}{(1+t^2)\sqrt{1-t^2}} dt \end{aligned}$$

Answer: B