

MATHS

BOOKS - TARGET MATHS (HINGLISH)

MODEL QUESTION PAPER-I

Mcqs

1. The equation $3x^2+2hxy+3y^2=0$ represents a pair of straight lines passing through the origin . The two lines are

A. real and distinct if $h^2>3$

B. real and distinct if $h^2>9$

C. real and coincident if $h^2>12$

D. real and coincident if $h^2>3$

Answer: A

Watch Video Solution

$2. \int \frac{e^{5\log x} - e^{4\log x}}{e^{3\log x} - e^{2\log x}} dx$

A. $e.3^{-3x} + c$

B. $e^3 \log x + c$

 $\mathsf{C.}\,\frac{x^3}{3}+c$

 $\mathsf{D.}\,\frac{x^4}{4} + c$

Answer: C

3.
$$\cos 20^{\circ}$$
 . $\cos 40^{\circ}$. $\cos 60^{\circ} \cos 80^{\circ}$ =

A.
$$\frac{1}{16}$$

$$\mathsf{B.}\;\frac{3}{16}$$

$$\mathsf{C.}\,\frac{\sqrt{3}}{16}$$

D.
$$\frac{\sqrt{3}}{32}$$

Answer: A

4. Find the equations of the diagonals of the square formed by the lines $x=o,\,y=0,\,x=1$ and y=1.

A.
$$y=x,y+x=1$$

B.
$$y=x,x+y=2$$

C. 2y=x,
$$y+x=rac{1}{3}$$

D.
$$y=2x,y+2x=1$$

Answer: A

Watch Video Solution

5. The combined equations of the pair of lines through the origin such that one is parallel to x+5y=5 and the other is

perpendicular to x-5y+15=0 is

A.
$$x^2 + 25xy + y^2 = 0$$

$$B. \, 5x^2 - 36xy + 5y^2 = 0$$

C.
$$x^2-25y^2=0$$

$$\mathsf{D.}\, 5x^2 + 26xy + 5y^2 = 0$$

Answer: D

Watch Video Solution

6. If
$$f(x) = \frac{x^2 - 4x + 3}{x^2 - 1}, \quad ...x \neq 1 \\ = 2, \qquad ...x = 1$$
 then :

A.
$$\lim_{x o l} f(x) = 2$$

B. f(x) is continuous at x=1.

C. f(x) is discontinuous at x=1.

D. $\lim_{x o l} f(x) = 2$ does not exists.

Answer: C

Watch Video Solution

7. The equation of the hyperbola whose foci are (-2, 0) and (2,0) and eccentricity is 2 is given by

A.
$$x^3 - 3y^2 = 3$$

$$\mathsf{B.}\,3x^2-y^2=3$$

$$\mathsf{C.}-x^2+3y^2=3$$

D.
$$-3x^2 + y^2 = 3$$

Answer: B

Watch Video Solution

- **8.** The statement ${ iny -}(p \leftrightarrow { iny -}q)$ is
 - A. a tautology
 - B. a contradiction
 - C. equivalent to $p \leftrightarrow q$
 - D. equivalent to ${ ilde{ ilde{}}} p \leftrightarrow q$

Answer: C

9. The relation R defined in N as $aRb\Rightarrow b$ is divisible by a is

- A. Reflexive but not symmetric
- B. Symmetric but not transitive
- C. Symmetric and transitive
- D. None of these

Answer: A

Watch Video Solution

10. If Ram secures 100 marks in maths, then he will get a mobile. The converse is

A. IF Ram gets a mobile, then he Will not secure 100 marks

B. If Ram does not get a mobile, then he will secure 100 marks.

C. IF Ram will get a mobile, then he secures 100 marks in maths.

D. If Ram does not get a mobile, then he will not score 100 marks.

Answer: C

11. Find the general solution of each of the following differential equations:

$$\cos x(1+\cos y)dx - \sin y(1+\sin x)dy = 0$$

$$\mathsf{A.}\,(1-\sin x)(1+\cos y)=c$$

$$\mathsf{B.}\,(1+\sin x)(1-\cos y)=c$$

C.
$$(1 + \sin x)(1 + \cos y) = c$$

D.
$$(1 - \sin x)(1 - \cos y) = c$$

Answer: C

12. The value of c in (0,2) satisfying the Mean Value theorem for the function $f(x)=x(x-1)^2, xarepsilon[0,2]$ is equal to

- A. $\frac{3}{4}$
- $\mathsf{B.}\;\frac{4}{3}$
- C. $\frac{1}{3}$ D. $\frac{2}{3}$

Answer: B

B.
$$\frac{1}{e}\log_5 e$$

$$\mathsf{C.}\log_5 e$$

D. $e \log_e 5$

Answer: B

14.
$$\int_0^2 \sqrt{rac{2+x}{2-x}} dx =$$

A.
$$\pi+2$$

$$\mathrm{B.}\,\pi + \frac{3}{2}$$

$$\mathsf{C}.\,\pi+1$$

D.
$$\pi-1$$

Answer: A

Watch Video Solution

- **15.** The matrix $\begin{bmatrix} \lambda & 1 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & \lambda \end{bmatrix}$ is invertible.
 - A. For all real values of λ
 - B. only when $\lambda = \pm rac{1}{\sqrt{2}}$
 - C. Only when $\lambda
 eq 0$
 - D. only when $\lambda=0$

Answer: C

16. The angle between the line $2\hat{i}+3\hat{j}+4\hat{k}$ and the plane

$$ar{r}.\left(3\hat{i}+2\hat{j}+3\hat{k}
ight)=4$$
 is

A. 45°

B. 0°

$$\mathsf{C.}\cos^{-1}\!\left(\frac{24}{\sqrt{29}\sqrt{22}}\right)$$

D. 90°

Answer: B

17. If normal the curve y=f(x) is parallel to X-axis, then correct statement is

A.
$$\frac{dx}{dy} = 0$$

B.
$$\frac{dy}{dx} = 0$$

C.
$$\frac{dx}{dy} = 1$$

D.
$$\frac{dy}{dx} = 1$$

Answer: A

Watch Video Solution

18. The position vectors of the point $A,B,C \ \mathrm{and} \ D$ are

$$3\hat{i} - 2\hat{j} - \hat{k}, 2\hat{i} + 3\hat{j} - 4\hat{k}, \; -\hat{i} + \hat{j} + 2\hat{k} \; ext{and} \; 4\hat{i} + 5\hat{j} + \lambda\hat{k}$$

, respectively. If the points A, B, C and D lie on a plane, find the value of λ .

A.
$$-\frac{146}{17}$$

B.
$$\frac{146}{17}$$

$$C. - \frac{17}{146}$$

D.
$$\frac{17}{146}$$

Answer: A

Watch Video Solution

19. IF a coin is tossed twice and X is the number of tails, then E(X)=

B. 1

C. 2

D. 3

Answer: B

20. If
$$t_n = \frac{1}{4}(n+2)(n+3)$$
 for $n=1,2,3,...$ then 1

$$rac{1}{t_1} + rac{1}{t_2} + rac{1}{t_3} + + rac{1}{t_{2003}} =$$

A.
$$\frac{4006}{3006}$$

B.
$$\frac{4003}{3007}$$

c.
$$\frac{4006}{3008}$$

D.
$$\frac{4006}{3009}$$

Answer: D

Watch Video Solution

21. The rate of change of surface area of a sphere of radius r when the radius is increasing at the rate of 2 cm/sec is proportional to

$$4. \frac{1}{r}$$

A.
$$\frac{1}{r}$$
B. $\frac{1}{r^2}$

D.
$$r^2$$

Answer: C

Watch Video Solution

- **22.** If the position vectors of the points A,B,C are ar a,ar b and 3ar a-2ar b respectively, then the position A,B,C are
 - A. Collinear
 - B. Non-collinear
 - C. Forming a right angled traingle
 - D. None of these

Answer: A

Water video Solution

23.
$$\int \frac{\sin^3 2x}{\cos^5 2x} dx =$$

A.
$$\tan^4 x + c$$

B.
$$\tan 4x + c$$

C.
$$\tan^4 2x + x + c$$

D.
$$\frac{1}{8} \tan^4 2x + c$$

Answer: D

24. IF
$$A=\left[egin{array}{cc} x & 1 \ 1 & 0 \end{array}
ight]$$
 and $A^2=I$, then A^{-1} is equal to

A.
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
B.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

C.
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

D.
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Answer: A

Watch Video Solution

25. The order of the differential equation of the family of parabolas whose axis is the X-axis is

A.
$$rac{d^2y}{dx^2}+\left(rac{dy}{dx}
ight)^2=0$$

B.
$$y \bigg(rac{d^2 y}{dx^2} \bigg) - \bigg(rac{dy}{dx} \bigg)^2 = 0$$

C.
$$yigg(rac{d^2y}{dx^2}igg)+igg(rac{dy}{dx}igg)^2=0$$
D. $y^2igg(rac{d^2y}{dx^2}igg)+igg(rac{dy}{dx}igg)^2=0$

Answer: C

Watch Video Solution

26. What are the direction cosines of the y-axis?

- - A. (1,0,0)
 - B. (0,1,0)
 - C. (0,0,1)
 - D. (0,-1,0)

Answer: B

27. IF
$$y=\cos^2\!\left(rac{3x}{2}
ight)-\sin^2\!\left(rac{3x}{2}
ight)$$
 ,then $rac{d^2y}{dx^2}$ is

A.
$$-3\sqrt{1-y^2}$$

В. 9у

C.
$$3\sqrt{1-y^2}$$

D. -9y

Answer: D

28. A fair coin is tossed n times. if the probability that head occurs 6 times is equal to the probability that head occurs 8 times, then find the value of n.

- A. 15
- B. 14
- C. 12
- D. 7

Answer: B

29. The probability that at least one of the events AandB occurs is 0.6. If AandB occur simultaneously with probability 0.2, then find P(A)+P(B).

- A. 0.4
- B. 0.8
- C. 1.2
- D. 1.4

Answer: C

30. ${\cos9^\circ+\sin9^\circ\over\cos9^\circ-sim9^\circ}=$ (a) $\tan54^\circ$ (b) $\tan36^\circ$ (d) None of these (c) $\tan18^\circ$

A. tan 54°

B. tan 36°

C. tan 18°

D. $tan9^\circ$

Answer: A

Watch Video Solution

31.
$$e^{-x} \frac{dy}{dx} = y \left(1 + \tan x + \tan^2 x\right)$$

A. $\log y = e^x \tan x + c$

$$B.\log x = e^y \tan y + c$$

$$\mathsf{C.}\tan x = \log y + c$$

$$\mathsf{D}.\tan x = \log y + c$$

Answer: A

32.
$$\int_0^{\pi/6} rac{\sin x}{\cos^3 x} dx$$
 is equal to

A.
$$\frac{2}{3}$$

B.
$$\frac{1}{6}$$

D.
$$\frac{1}{3}$$

Answer: B

Watch Video Solution

33. Prove that the lines $\frac{x}{1} = \frac{y-2}{2} = \frac{z+3}{3}$ and $\frac{x-2}{2} = \frac{y-6}{3} = \frac{z-3}{4}$ are coplanar. Also find the equation of the plane containing these lines.

- A. Parallel
- B. perpendicular
- C. coplanar
- D. non-coplanar

Answer: C

34.

In

a triangle ABC,

if a=2x, b=2y and $C=120^{\circ},$ then the area of

A. xy

the triangle is-

B. 2xy

C. $\sqrt{3}xy$

D. 3xy

Answer: C

35. IF $an^{-1}(1+x)+ an^{-1}(1-x)=rac{\pi}{2}$, then the value of x is

A. 0

B. 1

C. -1

D. π

Answer: A

be in

Watch Video Solution

36. IF an. m heta= an. n heta, then the general value of heta will

- A. A.P.
- B. G.P.
- C. H.P.
- D. None of these

Answer: A

- **37.** The minimum value of $\left(x^2 + \frac{250}{x}\right)$ is
 - A. 75
 - B. 50
 - C. 25

D. 55

Answer: A

Watch Video Solution

38. Area bounded by the curve $f(x) = \cos x$ which is bounded by the lines x=0 and $x=\pi$ is

- A. 4sq.units
- B. 1sq.units
- C. 2sq.units
- D. 3sq.units

Answer: C

39. If
$$x=t^2$$
 and $y=t^3$, find $\displaystyle \frac{d^2y}{dx^2}$.

$$\mathrm{A.}\ \frac{3}{2}$$

B.
$$\frac{3t}{2}$$

$$\mathsf{C.}\,\frac{3}{4t}$$

D.
$$\frac{3}{2t}$$

Answer: C

40. The area bounded by the parabola $y=4x-x^2$ and X-axis is

A.
$$\frac{30}{7}$$
 sq.units

B.
$$\frac{31}{7}$$
 sq.units

C.
$$\frac{32}{3}$$
 sq.units

D.
$$\frac{34}{3}$$
 sq.units

Answer: C

Watch Video Solution

41. $y = a + \frac{b}{x}$ is a solution of the differential equation

A.
$$x^2rac{d^2y}{dx^2}+rac{2dy}{dx}=0$$

$$\operatorname{B.} x \frac{d^2y}{dx^2} + \frac{2dy}{dx} = 0$$

C.
$$x^2rac{d^2y}{dx^2}-rac{2dy}{dx}=0$$
D. $xrac{d^2y}{dx^2}-rac{2dy}{dx}=0$

Answer: B

Watch Video Solution

42. The line
$$\dfrac{x-2}{3}=\dfrac{y-3}{4}=\dfrac{z-4}{0}$$
 is parallel to

A. XY-plane

B. YZ-plane

C. ZX-plane

D. X=3

Answer: A

Watch Video Solution

43.
$$\int_{-\pi/4}^{\pi/4} x^3 \sin^4 x dx =$$

- A. 0
- B. 1
- C. $\frac{\pi}{2}$ D. $\frac{\pi}{4}$

Answer: A

44. If A is an obtause angle, then

$$rac{\sin^3 A - \cos^3}{\sin A - \cos A} + rac{\sin A}{\sqrt{a + an^2 A}} - 2 an A \cot A.$$
 is

always equal to

- **A.** 1
- B. -1
- C. 2
- D. -2

Answer: B

A.
$$\frac{1}{4x^2}(2\log x - 1) + c$$

$$\mathsf{B.} - \frac{1}{4x^2}(2\log x + 1) + c$$

$$\mathsf{C.}\,\frac{1}{4x^2}(2\log x+1)+c$$

D.
$$rac{1}{4x^2}(2\log x - 1) + c$$

Answer: B

Watch Video Solution

46. IF
$$5^{th}$$
 term of a H.P . Is $\frac{1}{45}$ and 11^{th} term is $\frac{1}{69}$, then its

 16^{th} term will be

A.
$$\frac{1}{89}$$

B.
$$\frac{1}{85}$$

C.
$$\frac{1}{80}$$
D. $\frac{1}{79}$

Answer: A

Watch Video Solution

$$ar r=5\hat i-\hat j+4\hat k+\lambda\Bigl(\hat i+2\hat j+2\hat k\Bigr)$$
and $ar r=7\hat i+2\hat j+2\hat k+\mu\Bigl(3\hat i+2\hat j+6\hat k\Bigr)$ is

Cosine of the angle between

the

lines

- A. 0
- B. $\frac{1}{2}$
- c. $\frac{19}{21}$
 - D. $\frac{1}{3}$

Answer: C

Watch Video Solution

48. IF the distance between a focus and corresponding directrix of an ellipse be 8 and the eccentricity be $\frac{1}{2}$, then length of the minor axis is

- A. 3
- B. $4\sqrt{2}$
- C. 6
- D. $\frac{16\sqrt{3}}{3}$

Answer: D

Valcii Video Solution

49. Find the direction cosines of the vector $2\hat{i}+2\hat{j}-\hat{k}$

A.
$$\frac{2}{3}$$
, $\frac{1}{3}$, $\frac{1}{3}$

B.
$$\frac{1}{3}$$
, $\frac{1}{3}$, $\frac{2}{3}$

$$\mathsf{C.}\,\frac{1}{3},\,\frac{-2}{3},\,\frac{2}{3}$$

D.
$$\frac{2}{3}$$
, $\frac{2}{3}$, $\frac{-1}{3}$

Answer: D

Watch Video Solution

50. A circle $x^2+y^2+2gx+2fy+c=0$ passing through (4,-2) is concentric to the circle

$$x^2+y^2-2x+4y+20=0,\,$$
 then the value of c will be

B. 4

C. 0

D. 1

Answer: A

Watch Video Solution

51. In a ΔABC , if a b and c are in AP ,then the value of $\frac{\sin \frac{A}{2} \sin \frac{C}{2}}{\sin \frac{B}{2}}$ is

A. 1

- B. 2
- $\operatorname{C.}\frac{1}{2}$
- D.-1

Answer: C

$$rac{\cos(10\pi)}{13}+rac{\cos(8\pi)}{13}+rac{\cos(3\pi)}{13}+rac{\cos(5\pi)}{13}$$
 is equal to

- A. -1
- B. 0
- C. 1

D. None of these

Answer: B

Watch Video Solution

53. If the equation kxy+10x+6y+4=0 represents a pair of lines then : k=

A. 10

B. 15

C. -5

D. -10

Answer: B

54. What are the points on the x-axis whose perpendicular distance from the line $\frac{x}{a}+\frac{y}{b}=1$ is a

A.
$$\left[rac{a}{b}\Big(b\pm\sqrt{a^2+b^2}\Big),0
ight]$$

B.
$$\left[rac{b}{a}\Big(b\pm\sqrt{a^2+b^2}\Big),0
ight]$$

C.
$$\left[rac{a}{b}\Big(a\pm\sqrt{a^2+b^2}\Big),0
ight]$$

D. None of these

Answer: A

55. The value of
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \log(\sec \theta - \tan \theta) d\theta$$
 is

B.
$$\frac{\pi}{4}$$

D.
$$\frac{\pi}{2}$$

Answer: A

Watch Video Solution

56. Let $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, $D = \begin{bmatrix} 3 \\ 5 \\ 11 \end{bmatrix}$ and $A=egin{bmatrix} 1&-1&-2\ 2&1&1\ A&-1&-2 \end{bmatrix}$, if $X=A^{-1}D$, then X is equal to

A.
$$\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$

B. $\begin{bmatrix} \frac{8}{3} \\ -1 \\ 3 \\ 0 \end{bmatrix}$

C. $\begin{bmatrix} \frac{-8}{3} \\ 1 \\ 0 \end{bmatrix}$

D. $\begin{bmatrix} \frac{8}{3} \\ \frac{1}{3} \\ -1 \end{bmatrix}$

Answer: B

Watch Video Solution

57. IF $y= an^{-1}\Biggl(rac{\sqrt{x}-x}{(1+x)^{rac{3}{2}}}\Biggr)$ then y'(1) is

B.
$$\frac{1}{2}$$

C. -1

D.
$$-\frac{1}{4}$$

Answer: D

Watch Video Solution

58. Which of the following is not true always?

A. IF f(x) is not continuous at x=a, then it is not

differentiable at x=a

B. IF f(x) is continuous at x=a, then it is differentiable at

x=a

C. If f(x) and g(x) are differentiable at x=a, then f(x)

+g(x) is also differentiable at x=a.

D. If f(x) is continuous at x=a, then $\lim_{x o a} f(x)$ exists.

Answer: B

Watch Video Solution

59. If
$$y= an^{-1}\sqrt{x^Y(2)+y^2}+\cot^{-1}\sqrt{x^2+y^2}, an rac{dy}{dx}=$$

A. 0

B. 1

C. 2

D. -1

Answer: A

Watch Video Solution

60. A square non-singular matrix A satisfies

$$A^2 - A + 2I = 0$$
, then A^{-1} =

A. I-A

B.
$$rac{1}{2}(I-A)$$

C.
$$rac{1}{2}(I+A)$$

D. I+A

Answer: B

61.
$$\int \frac{(x+1)(x+\log x)^2}{x} dx =$$

$$A. \frac{1}{3}(x + \log x) + c$$

$$\mathsf{B.} \; \frac{1}{3}(x + \log x)^2 + c$$

C.
$$\frac{1}{3}(x + \log x)^3 + c$$

$$D. \left(x + \log x\right)^2 + c$$

Answer: C

62. Two functions $f\!:\!R o R$ and $g\!:\!R o R$ are defined as

follows:

$$f(x) = egin{cases} 0 & (x ext{rational}) \ 1 & (x ext{irrational}) \ g(x) = egin{cases} -1 & (x ext{rational}) \ 0 & (x ext{irrational}) \end{cases}$$

then (gof)(e)+(fog) (π) =

A. -1

B. O

C. 1

D. 2

Answer: A

63. In an entrance examinations there are multiple choice question. There are five possible answers to each question of which one is correct. The probability that a student knows the answer to a question is 80%. IF he gets the correct answer to the question, then the probability that he was guessing is

- A. $\frac{1}{9}$
- B. $\frac{1}{10}$
- c. $\frac{1}{21}$
- D. $\frac{1}{20}$

Answer: C

64. Find the approximate values of :

$$\cot^{-1}(1.001)$$

A.
$$\frac{\pi}{5} + 0.0005$$

B.
$$\frac{\pi}{4}+0.03$$

C.
$$\frac{\pi}{4} - 0.0005$$

D.
$$\frac{\pi}{4} - 0.003$$

Answer: C

65.
$$\int e^{x} (1 - \cot x + \cot^{2} x) dx =$$

A.
$$e^x \cot x + c$$

B.
$$e^x \cos ecx + c$$

$$\mathsf{C.} - e^x \cot x + c$$

$$D. -e^x \cos ecx + c$$

Answer: C

Watch Video Solution

66. The differential equation of all circles which passes through the origin and whose centers lie on Y-axis is

A.
$$\left(x^2-y^2\right)rac{dy}{dx}-2xy=0$$

B.
$$\left(x^2-y^2\right)rac{dy}{dx}+2xy=0$$

$$\mathsf{C.}\,\big(x^2-y^2\big)\frac{dy}{dx}-xy=0$$

D.
$$\left(x^2-y^2\right)rac{dy}{dx}+xy=0$$

Answer: A

Watch Video Solution

67. X is continuous random variable with probability density function $f(x)=rac{x^2}{8}, 0\leq x\leq 1.$ Then, the value of $P(0.2\leq X\leq 0.5)$ is

A.
$$\frac{0.117}{24}$$

B.
$$\frac{0.112}{24}$$

c.
$$\frac{0.113}{36}$$

D.
$$\frac{0.112}{36}$$

Answer: A

Watch Video Solution

68. IF
$$x=2at^2, y=at^4$$
 , then $\dfrac{d^2y}{dx^2}$ at t=2 is

- A. 4
- B. 2a
- $\mathsf{C.}\;\frac{1}{2a}$
- $\mathrm{D.}-\frac{1}{2a}$

Answer: C

69. If the function
$$f(x)=rac{\left(e^{kx}-1
ight) an kx}{4x^2},\,x
eq0$$

is continuous at x=0, then k= . . .

 $= 16 \qquad x = 0$

C.
$$\pm 2$$

Answer: C

70. General solution of
$$an heta + an \Big(rac{\pi}{2} - heta \Big) = 2$$
 is

A.
$$n\pi\pmrac{\pi}{4}$$

B.
$$n\pi + \frac{\pi}{4}$$

C.
$$2n\pi\pmrac{\pi}{4}$$

D.
$$n\pi+(\,-1)^nrac{\pi}{4}$$

Answer: B

Watch Video Solution

71. The sum of odd integeres from 1 to 3001 is

A.
$$1501^2$$

B.
$$1500^2$$

$$\mathsf{C.}\ 1502^2$$

D. 1503^3

Answer: A

Watch Video Solution

72. The tangent to the curve $y=e^{2x}$ at the point (0,1) meets X-axis at

A. (0,a)

B. (2,0)

C. $(-\frac{1}{2}, 0)$

D. (-2,0)

Answer: C

73. Let the p.m.f. of a random variable X be -

$$P(x) = \frac{3-x}{10}$$
 for $x = -1, 0, 1, 2$

= 0 otherwise

Then E(X) is

A. 0

B. 1

C. 2

D. 3

Answer: A

74. The function $f(x)=[x(x-2)]^2$ is increasing in the set

A. $(-\infty,0)\cup(2,\infty)$

B. $(-\infty, 1)$

 $\mathsf{C}.\,(0,1)\cup(2,\infty)$

D. (1,2)

Answer: C

75.

Watch Video Solution

 $A(2,3,-4), B(m,1,-1), C(3,2,2) \ ext{and} \ G(3,2,n) \ ext{is}$

If

the centroid of ΔABC , then the values of m and n respectively are

- A. -4, 1
- B. 3,4
- C. 4,3
- D. 4, -1

Answer: D

Watch Video Solution

76. The maximum value of $\frac{\log x}{x}$ d is

A. e

- B. 1
- $c.\frac{1}{e}$
- D. 2e

Answer: C

Watch Video Solution

77. In a binomial distribution the probability of getting a success is $\frac{1}{4}$ and standard deviation is 3, then its mean is

- A. 6
- B. 8
- C. 12

Answer: C

Watch Video Solution

78. IF
$$\sin \theta = \frac{1}{2} \left(a + \frac{1}{a} \right)$$
 then the value of sin 30 is

A.
$$\frac{1}{8}\left(a^3+\frac{1}{a^3}\right)$$

$$B. \frac{3}{2} \left(a + \frac{1}{a} \right)$$

$$\mathsf{C.} - \frac{1}{2} \bigg(a^3 + \frac{1}{a^3} \bigg)$$

D.
$$\frac{1}{3}\left(a^3+\frac{1}{a^3}\right)$$

Answer: C

View Text Solution

79. The vector parallel to the line of intersection of the planes \overrightarrow{r} . $\left(3\hat{i}-\hat{j}+\hat{k}\right)=1$ and \overrightarrow{r} . $\left(\hat{i}+4\hat{j}-2\hat{k}\right)=2$ is :

A.
$$-2\hat{i}\,-7\hat{j}+3\hat{k}$$

B.
$$2\hat{i} + 7\hat{j} - 3\hat{k}$$

C.
$$2\hat{i} + 7\hat{j} + 3\hat{k}$$

D.
$$-2\hat{i}+7\hat{j}+3\hat{k}$$

Answer: D

80. IF
$$\int_e^1 an^{-1} x dx = p$$
,then $\int_e^1 an^{-1} igg(rac{1-x}{1+x} igg) dx =$

$$A. \frac{1-p}{1+p}$$

В. 1-р

C.
$$\frac{\pi}{4}-p$$

D.
$$\frac{\pi}{4} + p$$

Answer: C

thenSP+S'P=

Watch Video Solution

81. IF the equation of the ellipse is $rac{x^2}{a^2} + rac{y^2}{b^2} = 1$

A. a

B. 2a

C. 2b

D.b

Answer: B

Watch Video Solution

82. The length of the perpendicular from P(1,6,3) to the line

$$\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}is$$

A. 3

B. $\sqrt{11}$

C.
$$\sqrt{13}$$

D. 5

Answer: C

Watch Video Solution

83. IF the line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z}{4}$ and origin lie on the plane 4x+4y-kz=0, then k=

A. 1

B. 3

C. 5

D. 7

Answer: C

Watch Video Solution

84. Minimum value of Z=5x+8y subject to $x,y\geq 0, x\leq 4y\geq 2$ and $x+y\geq 5$ is

A. 36

B. 31

C. 40

D. 45

Answer: B

85. In ΔABC , if the sides are a=3, b=5 and c=4, then $\sin\frac{B}{2}+\cos\frac{B}{2} \text{ is equal to}$

$$\mathsf{B.}\,\frac{\sqrt{3}-1}{2}$$

C.
$$\sqrt{2}$$

$$\text{D. } \frac{\sqrt{3}+1}{2}$$

Answer: C

86. Solution of the differential equation
$$\sin^{-1}\left(\frac{dy}{dx}\right) = x + y$$
 is

$$A. \tan(x+y) + \sec(x+y) = x+c$$

$$B. \tan(x+y) - \sec(x+y) = x+c$$

$$\mathsf{C}.\tan(x+y) + \sec(x+y) + x = c$$

$$\mathsf{D.}\tan(x+y) - \sec(x+y) + x = c$$

Answer: B

Watch Video Solution

87. Find the distance of the point (2,3,4) from the plane

$$\overrightarrow{r}.\left(3\hat{i}-6\hat{j}+2\hat{k}
ight)+11=0.$$

A. 9

B. 10

- C. 2
- D. 1

Answer: D

Watch Video Solution

88. The angle between lines represented by the equation

$$11x^2 - 24xy + 4y^2 = 0$$
 are

A.
$$\tan^{-1}\left(\frac{-3}{4}\right)$$

B.
$$\tan^{-1}\left(\frac{3}{4}\right)$$

C.
$$\tan^{-1}\left(\frac{4}{3}\right)$$

D.
$$\tan^{-1}\left(\frac{2}{3}\right)$$

Answer: C

Watch Video Solution

89. IF
$$an^{-1} 2x + an^{-1} 3x = rac{\pi}{4}$$
, then x=

- A. -1
- B. $\frac{1}{6}$
- C. $-1, \frac{1}{6}$
- D. $\frac{2}{3}$

Answer: B

90. The joint equation of pair of lines having slopes 1 and 3 and passing throught the origin is

A.
$$4x^2 - 3xy - y^2 = 0$$

B.
$$3x^2 - 4xy + y^2 = 0$$

C.
$$3x^2 - 4xy - y^2 = 0$$

D.
$$3x^2 = y^2$$

Answer: B

Watch Video Solution

91. IF tanA+cotA=5, then $an^4 A + \cot^4 A$ is equal

A. 520

- B. 521
- C. 529
- D. 527

Answer: D

Watch Video Solution

92. Three numbers whose sum is 15 are in A.P. If they are added by 1,4 and 19 respectively, they are in GP.

Thenumbers are

- A. 2,5,8
- B. 26,5,-16
- C. 2,5,8 and 26,5,-16

D. None of these

Answer: C

Watch Video Solution

- 93. The area of the region bounded by the lines y = mx, x =
- 1, x = 2 and X-axis is 6 sq units, then m is equal to
 - **A.** 3
 - B. 1
 - C. 2
 - D. 4

Answer: D

94.
$$\int_{-1}^{1} \sin^3 x \cos^2 x dx =$$

A. 0

B. 1

 $\mathsf{C.}\ \frac{1}{2}$

D. 2

Answer: A

95. The area enclosed between the curves $y=x \ {
m and} \ y=2x-x^2$ (in square units), is

A.
$$\frac{1}{2}$$

B.
$$\frac{1}{6}$$

$$\mathsf{C.}\,\frac{1}{3}$$

D.
$$\frac{1}{4}$$

Answer: B

Watch Video Solution

96. The solution of $\dfrac{dy}{dx}-y=e^x,$ y(0)=1, is

A.
$$y = (x - 1)e^x$$

$$\mathsf{B.}\, y = (x+1)e^x$$

$$\mathsf{C.}\, y = (2x-1)e^x$$

$$\mathsf{D}.\,y=(1-2x)e^x$$

Answer: B

97. For any three vectors
$$ar a, ar b$$
 and $ar c, (ar a - ar b). [(ar b + ar c) imes (ar c + ar a)]$ is equal to :

A.
$$ar{2}a.~ig(ar{b} imesar{e}ig)$$

B.
$$\left[ar{a}ar{b}ar{c}
ight]$$

C.
$$\left[ar{a}ar{b}ar{c}
ight]^2$$

D. 0

Answer: D

