

MATHS

BOOKS - TARGET MATHS (HINGLISH)

PAIR OF STRAIGHT LINES

Classical Thinking

- 1. The joint equation of pair of lines having slopes 1 and
- 3 and passing through the origin is

A.
$$4x^2 - 3x - y^2 = 0$$

B.
$$3x^2 - 4xy + y^2 = 0$$

$$\mathsf{C.}\, 3x^2 - 4xy - y^2 = 0$$

D.
$$3x^2 = y^2$$

Answer: B

2. The equation of the lines passing through the origin and having slopes 3 and $\frac{1}{3}$ is

A.
$$3y^2 + 8xy - 3x^2 = 0$$

B.
$$3x^2 - 10xy + 3y^2 = 0$$

C.
$$3y^2 - 8xy + 3x^2 = 0$$

D.
$$3x^2 + 8xy + 3y^2 = 0$$

Answer: B

3. The combined equation of the lines passing through the origin and having slopes 2 and $-\frac{1}{2}$ is

A.
$$2x^2 + 3x - 2y^2 = 0$$

B. $2x^2 - 3xy + 2y^2 = 0$
C. $3x^2 - 2xy - 2y^2 = 0$

D.
$$2x^2 - 3xy - 2y^2 = 0$$

Answer: A

4. Separate equations of lines for a pair of lines whose equation is $x^2 + xy - 12y^2 = 0$ are

A. x + 4y = 0 and x + 3y = 0

B. 2x - 3y = 0 and x - 4y = 0

C. x - 6y = 0 and x - 3y = 0

D. x+4y=0 and x-3y=0

Answer: D

5. The equation $4x^2 - 24xy + 11y^2 = 0$ represents

A. two parallel lines

B. two perpendicular lines

C. two lines through the origin

D. a circle

Answer: C

6. The separate equations of the lines represented by

$$3x^2 - 10xy - 8y^2 = 0$$
 are

A.
$$3x+2y=0$$
 and $x-4y=0$

B.
$$2x + 2y = 0$$
 and $2x - y = 0$

C.
$$-2x+3y=0$$
 and $-2x-2y=0$

D.
$$-3x+2y=0$$
 and $x+2y=0$

Answer: A

7. Separate equations of lines $6x^2 - 5xy + y^2 = 0$ are

A.
$$3x - y = 0, 2x - y = 0$$

B.
$$3x+y=0, 2x-y=0$$

C. 3x-y=0, 2x+y=0

D.
$$3x+y=0, 2x+y=0$$

Answer: A

Watch Video Solution

8. Joint equation of two lines, through (x_1, y_1) , parallel

to two lines $ax^2 + 2hxy + by^2 = 0$ is

A.

$$a(y-y_1)^2+2h(x-x_1)(y-y_1)+b(x-x_1)^2=0$$

Β.

$$a{(y-y_1)}^2 - 2h(x-x_1)(y-y_1) + b(x-x_1)^2 = 0$$

$$b(y-y_1)^2+2h(x-x_1)(y-y_1)+a(x-x_1)^2=0$$

D.
$$ax_1^2 + 2hx_1y_1 + by_1^2 = 0$$

Answer: C

9. Equation of pair of lines passing through (3,4) and

parallel to lines $x^2 - y^2 = 0$

A.
$$x^2 - y^2 - 6x + 8y - 9 = 0$$

B.
$$x^2 - y^2 - 6x + 8y - 7 = 0$$

C. $x^2 - y^2 - 4x + 8y - 1 = 0$

D.
$$x^2 - y^2 - 6x + 7y - 11 = 0$$

Answer: B

Watch Video Solution

10. The combined equation of the pair of lines through the origin and perpendicular to the pair of lines given by $ax^2 + 2hxy + by^2 = 0$, is

A.
$$ax^2-2hxy+by^2=0$$

B.
$$bx^2+2hxy+ay^2=0$$

$$\mathsf{C.}\,ay^2-2hxy+bx^2=0$$

$$\mathsf{D}.\,ay^2-bx^2=0$$

Answer: C

11. Fouation of the pair of straight lines through origin and perpendicular to the pair of straight lines $5x^2 - 7xy - 3y^2 = 0$ is

A.
$$3x^2 - 7xy - 5y^2 = 0$$

B.
$$3x^2 + 7xy - 5y^2 = 0$$

C.
$$3x^2 - 7xy + 5y^2 = 0$$

D.
$$3x^2 + 7xy + 5y^2 = 0$$

Answer: A

12. The sum of the slopes of the lines represented by

$$x^2-xy-6y^2=0$$
 is

A.
$$\frac{-1}{6}$$

B. - 6

D.
$$\frac{1}{6}$$

Answer: A

13. If the slope of one line of the pair of lines represented by $ax^2 + 10xy + y^2 = 0$ is four times the slope of the other line, then a =

A. 1

B. 2

C. 4

D. 16

Answer: D

14. If the slope of one line in the pair $ax^2 + 4xy + y^2 = 0$ is three times the other, then a = A. 1 B. 2 C. 3 D. 4

Answer: C

15. If the slope of one of the lines represented by $ax^2 + (3a+1)xy + 3y^2 = 0$ be reciprocal of the slope of the other, then the slope of the lines are

A.
$$\frac{3}{2}, \frac{2}{3}$$

B. $\frac{1}{2}, \frac{2}{1}$
C. $\frac{1}{3}, 3$
D. $\frac{-1}{3}, -3$

Answer: D

16. If the lines represented by the equation $6x^2 + 41xy - 7y^2 = 0$ make angles α and β with X-axis, then $\tan \alpha$. $\tan \beta =$

$$A. -\frac{6}{7}$$
$$B. \frac{6}{7}$$
$$C. \frac{7}{6}$$
$$D. -\frac{7}{6}$$

Answer: A

17. The acute angle between the lines represented by

$$6x^2-xy-y^2=0$$
 is

A. $45^{\,\circ}$

B. 30°

 $\mathsf{C.}\, 60^\circ$

D. 90°

Answer: A

18. The angle between the lines represented by $\sqrt{3}xy-y^2=0$ is A. 30° B. 45° $\mathsf{C.}\,60^\circ$ D. 90°

Answer: C

19. The acute angle between the lines represented by the equation $11y^2 - 24xy + 4x^2 = 0$ are

A. $\tan^{-1}\frac{3}{2}$ B. $\tan^{-1}\frac{4}{3}$ C. $\tan^{-1}\frac{4}{5}$ D. $\tan^{-1}\frac{1}{3}$

Answer: B

20. Angle between the lines $2x^2 - 3xy + y^2 = 0$ is

A.
$$\tan^{-1}(\sqrt{3})$$

B. $\cot^{-1}(\sqrt{3})$
C. $\cot^{-1}(3)$
D. $\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$

Answer: C

21. If the angle heta is acute, then the acute angle between $x^2(\cos heta-\sin heta)+2xy\cos heta+y^2(\cos heta+\sin heta)=0,$ is

$$\mathsf{B.} \frac{\theta}{3}$$

C. θ

D. $\frac{\theta}{2}$

Answer: C

22. If the acute angle between the lines
$$x^2-4hxy+3y^2=0$$
 is 60° then $h=$ A. $\pm \frac{\sqrt{5}}{2}$

$$\begin{array}{l} \mathsf{B.\pm}\frac{\sqrt{10}}{2}\\ \mathsf{C.\pm}\frac{\sqrt{15}}{2} \end{array}$$

D. 1

Answer: C

Watch Video Solution

23. If
$$3x^2 + 18xy + by^2 = 0$$
 represents a pair of lines,

making an angle π with each other, then b =

A. 3

B. 9

C. 27

D. 81

Answer: C

24. The angle between the pair of straight lines $3x^2 + 10xy + 8y^2 = 0$ is $an^{-1}(p)$, where p =

Answer: C

25. The equation $3x^2 + 2hxy + 3y^2 = 0$ represents a pair of straight lines passing through the origin. The two lines are

A. real and distinct if $h^2 > 3$.

B. real and distinct if $h^2 \ge 9$.

C. real and coincident if $h^2>3$

D. real and coincident if $h^2 \ge 3$.

Answer: D

26. The straight lines represented by the equation

 $9x^2 - 12xy + 4y^2 = 0$ are

A. coincedent

B. perpendicular

C. interset at 60°

D. inclined at an angle of $45^{\,\circ}$

Answer: A

Watch Video Solution

27. Which of the following equations represents a pair

of real and coincident straight lines?

A.
$$4x^2 - 4xy + y^2 = 0$$

B. $4x^2 + 4xy - y^2 = 11$
C. $-x^2 + xy - y^2 = 1$

D.
$$3x^2 + 3y^2 = 4$$

Answer: A

28. $6x^2 + hxy + 12y^2 = 0$ represents pair of parallel straight lines, if h is

A.
$$\pm 6\sqrt{2}$$

 $\mathsf{B}.\pm\sqrt{2}$

C. $\pm 12\sqrt{2}$ D. $\pm \sqrt{6}$ Answer: C Watch Video Solution

29. If the equation $4x^2 + hxy + y^2 = 0$ represent coincident lines, then h is equal to

A. ± 2

 $\mathsf{B.}\pm 4$

 $\mathsf{C}.\pm 1$

 $\mathsf{D}.0$

Answer: B

$$x^2+xy+y^2=0$$
 are

A. coincident

B. parallel

C. mutually perpendicular

D. imaginary

Answer: D

31. The angle between the lines given by the equation $\lambda y^2 + ig(1-\lambda^2ig)xy - \lambda x^2 = 0$ is

A. $45^{\,\circ}$

B. 60°

C. 90°

D. $15^{\,\circ}$

Answer: C

32. Angle between the pair of lines xy = 0 is

A. 30°

B. 45°

C. 90°

D. 60°

Answer: C

33. Pair of straight lines perpendicular to each other are represented by

A.
$$2x^2 = 2y(2x+y)$$

B. $x^2 + y^2 + 3 = 0$
C. $2x^2 = y(2x+y)$
D. $x^2 = 2(x-y)$

Answer: A

34. The equation $x^2 - 7xy - y^2 = 0$ represents

A. circle

B. pair of parallel straight lines

C. pair of perpendicular straight lines

D. pair of non-perpendicular straight lines

Answer: C

Watch Video Solution

35. If the lines represented by $3y^2 + 9xy + kx^2 = 0$

are perpendicular to eachother then k =

A. 1

B. -2

C. -3

D. 0

Answer: C

36. If lines $a^2x^2 + bcy^2 = a(b+c)xy$ are mutually perpendicular then

A.
$$c^2+ab=0$$

$$\mathsf{B}.\,b^2 + ca = 0$$

$$\mathsf{C}.\,a^2+bc=0$$

D.
$$a^2 + b^2 + c^2 = 0$$

Answer: C

37. Which of the following represents pair of lines?

A.
$$2x^2 + 3xy - 2y^2 + 5x + 5y + 3 = 0$$

 $\mathsf{B}.\, 2x^2 - 2y^2 + 5x + 5y + 3 = 0$

C.
$$2x^2 + 5xy - 2y^2 + 5x + 5y + 3 = 0$$

D.
$$2x^2 + 3xy - 4y^2 + 5x + 5y + 3 = 0$$

Answer: A

38. For which value of 'p', $y^2 + xy + px^2 - x - 2y = 0$ represents a pair of straight lines

 $\mathsf{A.}\ 2$

B.
$$\frac{1}{3}$$

C. $\frac{1}{4}$
D. $\frac{1}{2}$

Answer: C

39. If $6x^2 + 11xy - 10y^2 + x + 31y + k = 0$

represents a pair of straight lines , then k is equal to.

 $\mathsf{A.}-15$

 $\mathsf{B.6}$

C. - 10

D.-4

Answer: A

40. The value of λ for which the equation $x^2-y^2-x-\lambda y-2=0$ represent a pair of straight line, are

A. 3,-3

- B. -3, 1
- C. 3, 1
- D. -1, 1

Answer: A

41. The value of h for which the equation $3x^2 + 2hxy - 3y^2 - 40x + 30y - 75 = 0$ represents a pair of straight lines , are

A. 4,4

B. 4,6

C. 4,-4

D. 0,4

42. The equation of the perpendiculars drawn from the origin to the lines represented by the equation $2x^2 - 10xy + 12y^2 + 5x - 16y - 3 = 0$, is

A.
$$6x^2+5xy+y^2=0$$

- B. $6y^2 + 5xy + x^2 = 0$
- $\mathsf{C.}\, 6x^2 5xy + y^2 = 0$

D.
$$6x^2 - xy - y^2 = 0$$

Answer: A

43. The point of intersection of the lines $2x^2 - 5xy + 3y^2 + 8x - 9y + 6 = 0$ is A. (-3, 4)B. (3, -5)C. (3, 4)D. (-3, -5)

Answer: C

44. The point of intersection of lines gives by the equation $3x^2 + 10xy + 3y^2 - 15x - 21y + 18 = 0$ is

$$A. \left(\frac{13}{8}, \frac{3}{8}\right)$$
$$B. \left(\frac{3}{8}, \frac{15}{8}\right)$$
$$C. \left(\frac{15}{8}, \frac{3}{8}\right)$$
$$D. \left(\frac{3}{8}, \frac{13}{8}\right)$$

Answer: C

 $6x^2-xy-12y^2-8x+29y-14=0$ represents a

pair of lines, then the angle between them is?

A.
$$\tan^{-1}\left(\frac{17}{6}\right)$$

B. $\tan^{-1}\left(\frac{3}{4}\right)$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$

46. The lines represented by the equation $x^2+2\sqrt{3}xy+3y^2-3x-3\sqrt{3}y-4=0$ are

A. Perpendicular to each other

B. Parallel

C. Inclined at $45\,^\circ$ to each other

D. Inclined at $60^{\,\circ}$ to each other

Answer: B

47. If equation $4x^2 + 2pxy + 25y^2 + 2x + 5y - 1 = 0$

represents parallel lines, then p is equal to

 $\mathsf{A.}-10$

 $B.\,10$

 $\mathsf{C.}\,5$

 $\mathsf{D.}-2$

Answer: B

48. Angle between straight lines given by $3y^2 - 8xy - 3x^2 - 29x + 3y - 18 = 0$ is A. $\frac{\pi}{2}$ B. $\frac{\pi}{3}$ C. $\frac{\pi}{4}$ D. $\frac{\pi}{6}$

49. The angle between the pair of straight lines $x^2-y^2-2y-1=0$ is A. 90°

B. 60°

C. 45°

D. 0°

50. Measure of angle between the lines 3xy - 4y = 0

is

A. $30^{\,\circ}$

B. 60°

C. 90°

D. $120^{\,\circ}$

Answer: C

51. If the equation

$$px^2 - 8xy + 3y^2 + 14x + 2y + q = 0$$
 represents a
pair of parallel lines, then
A. $p = 2, q = 3$
B. $p = -3, q = 2$
C. $p = -3, q = -8$
D. $p = 3, q = 2$

Answer: C

If $ax^2 + 6xy + 3y^2 - 10x + 10y - 6 = 0$ 52. represents a pair of perpendicular lines, then |a| =A. 1 B.4 C. 2 D. 3

Answer: B

Critical Thinking

1. The joint equation of pair of lines passing through
the origin and parallel to the lines
$$y = m_1 x + c_1$$
 and $y = m_2 x + c_2$ is
A. $m_1 m_2 x^2 - (m_1 + m_2) xy + y^2 = 0$
B. $m_1 m_2 x^2 + (m_1 + m_2) xy + y^2 = 0$
C. $m_1 m_2 y^2 - (m_1 + m_2) xy + x^2 = 0$
D. $m_1 m_2 y^2 + (m_1 + m_2) + x^2 = 0$

Answer: A

2. The combined equation of the lines which pass through the origin and eahc of which makes an angle of 30° with the line 2x - y = 0 is

A.
$$11x^2 + 16xy - y^2 = 0$$

B. $11x^2 + 16xy + y^2 = 0$
C. $11x^2 - 16xy + y^2 = 0$
D. $11x^2 - 16xy - y^2 = 0$

Answer: D

3. The equation of the lines through the origin which form two of the sides of the equilateral triangle having x=2 as the third side is

A.
$$3y^2+x^2=0$$

$$\mathsf{B}.\,y^2+3x^2=0$$

$$\mathsf{C}.\, 3y^2 - x^2 = 0$$

D.
$$y^2-3x^2=0$$

Answer: C

4. Combined equation of the two lines passing through the origin, forming an equilateral triangle with the line $x + y + \sqrt{3} = 0$ is

A.
$$x^2 + 4xy - y^2 = 0$$

B. $x^2 - 4x + y^2 = 0$
C. $x^2 - 4xy + 2y^2 = 0$

D.
$$x^2+4xy+2y^2=0$$

Answer: B

5. The equations of the lines represented by the equation $ax^2 + (a + b)xy + by^2 + x + y = 0$ are A. ax + by + 1 = 0, x + y = 0B. ax + by - 1 = 0, x + y = 0C. ax + by + 1 = 0, x - y = 0D. ay + bx + 1 = 0, x + y = 0

6. The equation of one of the lines represented by the equation $pq(x^2-y^2)+(p^2-q^2)xy=0$, is A. px - qy = 0 $\mathsf{B}.\, px + qy = 0$ C. $p^2 x + q^2 y = 0$ D. $q^2 x - p^2 y = 0$

7. One of the lines represented by the equation $x^2+6xy=0$ is

A. Parallel to x-axis

B. Paralle to Y-axis

C. X-axis

D. Y-axis

Answer: D

8. The equation
$$y^2 - x^2 + 2x - 1 = 0$$
, represents

A. hyperbola

B. an ellipse

C. a pair of straight line

D. a rectangular hyperbola

Answer: C

Watch Video Solution

9. The equation
$$(x-5)^2 + (x-5)(y-6) - 2(y-6)^2 = 0$$

represents

A. A circle

B. Two straight lines passing through origin

C. Two straight lines passing through the point (5,6)

D. An ellipse

Answer: C

10. The point of intersection of the lines represented by

equation

$$2(x+2)^2+3(x+2)(y-2)-2(y-2)^2=0$$
 is

A. (2,2)

B. (-2, -2)

C.
$$(-2, 2)$$

D. $(2, -2)$

Answer: C

View Text Solution

11.
$$a \left(x^2 - y^2
ight) + xy = 0$$
 represents a pair of straight lines for

A. a = 1 only

B. a = 1 or -1 only

 $\mathsf{C}.\,a=0\,\mathsf{only}$

D. all real values of a.

Answer: D

12. Joint equation of two lines through (2,-3) perpendicular to two lines $3x^2 + xy - 2y^2 = 0$ is

A.
$$2x^2 + xy - 3y^2 - 5x - 20y = 25 = 0$$

$$\mathsf{B}.-2x^2-xy+3y^2-5x-20y-25=0$$

C.
$$3x^2 + xy - 2y^2 - 5x - 20y - 25 = 0$$

D.
$$3x^2 - xy + 2y^2 + 5x - 20y - 25 = 0$$

Answer: A

13. The pair of straight lines passing through that point (1, 2) and perpendicular to the pair of straight lines $3x^2 - 8xy + 5y^2 = 0$, is

A.
$$(5x+3y+11)(x+y+3)=0$$

B.
$$(5x + 3y - 11)(x - y - 3) = 0$$

C.
$$(3x + 5y - 11)(x + y + 3) = 0$$

D.
$$(3x-5y+11)(x+y-3)=0$$

Answer: B

14. If one of the lines is given by $kx^2 - 5xy - 6y^2 = 0$

si 4x + 3y = 0 then value of k is

A. 1

B. 3

C. 4

D. 2

Answer: C

15. If the pairs of lines $x^2+2xy+ay^2=0$ and $ax^2+2xy+y^2=0$ have exactly one line in common,

then the joint equation of the other two lines is given
by
$$3x^2 + 8xy - 3y^2 = 0$$
 $3x^2 + 10xy + 3y^2 = 0$
 $y^2 + 2xy - 3x^2 = 0$ $x^2 + 2xy - 3y^2 = 0$
A. $3x^2 + 8xy - 3y^2 = 0$
B. $3x^2 + 10xy + 3y^2 = 0$
C. $y^2 + 2xy - 3x^2 = 0$
D. $x^2 + 2xy - 3y^2 = 0$

Answer: B

16. If one of the lines represented by the equation $ax^2+2hxy+by^2=0$ is coincident with one of the lines represented by $a'x^2+2h'xy+b'y^2=0$, then

A.
$$(ab' + a'b)^2 = 4(ah' - a'h)(hb' - h'b)$$

B. $(ab' + a'b)^2 = 4(ah' - a'h)(hb' - h'b)$
C. $(ab' - a'b)^2 = (ah' - a'h)(hb' - h'b)$
D. $(a'b' - ab)^2 = (ah - a'h')(hb - h'b')$

Answer: A

17. If the sum of the slopes of the lines represented by the equation $x^2 - 2xy an A - y^2 = 0$ be 4 then $ar{A} =$

A. 0°

B. 45°

C. 60°

D.
$$\tan^{-1}(-2)$$

Answer: D

18. If slope of one of the lines $ax^2 + 2hxy + by^2 = 0$ is

5 times the slope of the other then $5h^2=$

A. *ab*

 $B.\,2ab$

C. 7*ab*

D. 9*ab*

Answer: D

19. The condition that the gradient of one line is twice

is gradient of another line represented by the equation

$$ax^2 + 2hx + by^2 = 0$$
 is

A. $ab=rac{8b^2}{9}$

 $\mathsf{B.}\,ab=h^2$

$$\mathsf{C}.\,h^2 + ab = 0$$

$$\mathsf{D}.\,h=a+b$$

20. If the slope of one of the lines represented by the equation $ax^2+2hxy+by^2=0$, is λ that of the other , then

A.
$$4\lambda h = ab(1+\lambda)$$

B. $\lambda h = ab(1+\lambda)^2$
C. $4\lambda h^2 = ab(1+\lambda)^2$
D. $4 = abh(1+\lambda^2)$

Answer: C

21. If the slope of one of the lines represented by $ax^2 + 2hxy + by^2 = 0$ be the square of the other, then $\frac{a+b}{h} + \frac{8h^2}{ah} =$ A. $a^2b + ab^2 - 6abh + 8h^3 = 0$ B. $a^2b + ab^2 + 6abh + 8h^3 = 0$ C. $a^2b + ab^2 - 3abh + 8h^3 = 0$ D. $a^2b + ab^2 - 6abh - 8h^3 = 0$

22. If m_1, m_2 are slopes of lines represented by $2x^2 - 5xy + 3y^2 = 0$ then equation of lines passing through origin with slopes $\frac{1}{m_1}, \frac{1}{m_2}$ will be

A.
$$3x^2 - 5xy + 2y^2 = 0$$

- $\mathsf{B}.\, 3x^2 + 5xy + 2y^2 = 0$
- $\mathsf{C.}\, 2x^2 + 5xy 3y^2 = 0$

D.
$$2x^2 - 5xy - 3y^2 = 0$$

Answer: A

23. If two lines $ax^2 + 2hxy + by^2 = 0$ are equally inclined with co-ordinate axes, then A. h = 0 and ab < 0B. a = b

$$\mathsf{C}.\,a=~\pm\,b$$

$$\mathsf{D}.\,ab>0,\,h=0$$

Answer: B

24. Difference of slopes of the lines represented by the

equation

 $x^2ig(\sec^2 heta - \sin^2 hetaig) - 2xy an heta + y^2\sin^2 heta = 0$ is

- (A) 4
- (B) 3
- (C) 2
- (D) None of these
 - A. 4
 - B. 3
 - C. 2
 - D. None of these

Answer: C

25. The difference of the tangents of the angles, which

the lines

 $ig(an^2lpha+\cos^2lphaig)x^2-2xy an nlpha+\sin^2lpha y^2=0$

make with the X-axis, is

A. 1

B. 2

C. 3

D. 4

Answer: B

26. The equation of the pair of straight lines, each of which makes an angle α with the line y = x is

A.
$$x^2+2xy\sec 2lpha+y^2=0$$

B.
$$x^2+2xy\cos ec2lpha+y^2=0$$

C.
$$x^2-2xy\cos ec2lpha+y^2=0$$

D.
$$x^2-2xy\sec 2lpha+y^2=0$$

Answer: D

Watch Video Solution

27. If the line given by $ax^2 + 2hxy + by^2 = 0$ are equally inclined to the co-ordinate axes, then

A.
$$a+b=2|h|$$

 $\mathsf{B.}\,a+b=\,-\,2h$

$$\mathsf{C.}\,a-b=2|h|$$

D.
$$(a - b)^2 = 4h^2$$

Answer: B

28. One of the lines represented by the equation $ax^2 + bxy + cy^2 = 0$ bisects an angle between the coordinate axes

A. a,b,c are in AP

B. a,b,c are in G.P.

C. a,b,c are in H.P

D. a + b + c = 0

Answer: D

29. If the equation $ax^2 + 2hxy + by^2 = 0$ has one line as the bisector of angle between the co-ordinate axes then

A.
$$(a - b)^2 = h^2$$

B. $(a + b)^2 = h^2$
C. $(a - b)^2 = 4h^2$
D. $(a + b)^2 = 4h^2$

Answer: D

30. If the lines represented by the equation $2x^2 - 3xy + y^2 = 0$ make angles α and β with X-axis, then $\cot^2 \alpha + \cot^2 \beta$ is equal to

A. 0

B.
$$\frac{3}{2}$$

C. $\frac{7}{4}$
D. $\frac{5}{4}$

Answer: D

O Watch Video Solution

31. If the lines represented by the equation $ax^2 - bxy - y^2 = 0$ make angles α and β with the X-axis, then $\tan(\alpha + \beta) =$

A.
$$\frac{b}{1+a}$$

B. $\frac{-b}{1+a}$
C. $\frac{a}{1+b}$
D. $\frac{b}{1-a}$

Answer: B

Vatch Video Solution

32. If the acute angle between the lines $ax^2+2hxy+by^2=0$ is 60° , then show that $(a+3b)(3a+b)=4h^2.$

A. 30°

B. 45°

C. 60°

$$\mathsf{D}.\tan^{-1}\frac{1}{2}$$

Answer: C

O Watch Video Solution

33. Find the angle between the lines repersented by the equation $x^2 - 2pxy + y^2 = 0$

A. $\sec^{-1} p$ B. $\cos^{-1} p$ C. $\tan^{-1} p$ D. $\sin^{-1} p$

Answer: A

34. The angle between the lines represented by the equation $(x^2+y^2)\sin heta+2xy=0$ is

B.
$$rac{ heta}{2}$$

C. $rac{\pi}{2}- heta$
D. $rac{\pi}{2}-rac{ heta}{2}$

35. The angle between the lines represented by the equation $ax^2 + xy + by^2 = 0$ will be 45° if

A.
$$a=1, b=6$$

B.
$$a = 1, b = -6$$

C.
$$a = 6, b = 1$$

D.
$$a = 1, b = 1$$

Answer: B

36. If the angle between the lines represented by the equation $y^2 + kxy - x^2 \tan^2 A = 0 is 2A$, then K is equal to

A. 0

B. 1

C. 2

D. $\tan A$

Answer: A

37. If acute angle between lines $ax^2+2hxy+by^2=0$ is congruent to that between lines $2x^2-5xy+3y^2=0$ and $kig(h^2-abig)=(a+b)^2$ then k=

A. $-(10)^2$

B. $(-10)^2$

C. - 10

D. 10

Answer: B

38. If the acute angle between the pairs of lines $3x^2-7xy+4y^2=0$ and $6x^2-5xy+y^2=0$ be $heta_1$ and θ_2 respectively, then (A) $\theta_1 = \theta_2$ (B) $heta_1=2 heta_2$ (C) $2\theta_1 = \theta_2$ (D) None of these A. $heta_1= heta_2$ $\mathsf{B}.\,\theta_1=2\theta_2$

C.
$$2 heta_1= heta_2$$

D. $heta_1=rac{1}{2} heta_2^2$

Answer: A

39. The lines $a^2x^2 + bcy^2 = a(b+c)xy$ will be coincident , if

A.
$$a = 0$$
 or $b = c$

B.
$$a = b$$
 or $a = c$

C.
$$c = 0$$
 or $a = b$

$$\mathsf{D}.\,a=b+c$$

Answer: A

Watch Video Solution

40. If the lines $(p-q)x^2+2(p+q)xy+(q-p)y^2=0$ are mutually

perpendicular, then

A. p = q

 $\mathsf{B.}\,q=0$

C. p = 0

D. p and q may have any value

Answer: D

41. The two lines represented by $3ax^2 + 5xy + (a^2 - 2)y^2 = 0$ are perpendicular to each other for two values of a (b) a for one value of a (d) for no values of a

A. two values of a

B. \forall a

C. one value of a

D. no value of a

Answer: A

Watch Video Solution

42. The angle between the lines given by the equation $lpha y^2 + ig(1-lpha^2ig) xy - lpha x^2 = 0$ is same as the angle between the lines

A.
$$5x^2 + 2xy - 3y^2 = 0$$

B.
$$5x^2 + 16xy + 5y^2 = 0$$

$$\mathsf{C}.\,xy=0$$

D.
$$x^2-2xy-3y^2=0$$

43. If the equation $ax^2 + ay^2 + 2gx + 2fy + c = 0$ represents a pair of lines then

A.
$$g^2 + f^2 = rac{1}{2}$$

B. $f^2 - g^2 = 1$
C. $f^2 + g^2 = 1$
D. $g^2 - f^2 = 0$

44. If the equation $ax^2 + by^2 + cx + cy = 0$ represents a pair of straight lines , then

A.
$$a(b+c)=0$$

$$\mathsf{B}.\, b(c+a)=0$$

$$\mathsf{C.}\, c(a+b)=0$$

D.
$$a + b + c = 0$$

45. If the equation hxy + gx + fy + c = 0 represents

a pair of straight lines, then

A. fh=cgB. fg=chC. $h^2=gf$ D. fgh=c

Answer: B

46. The angle between the pair of straight lines $2x^{2} + 5xy + 2y^{2} + 3x + 3y + 1 = 0$ is (A) $\cos^{-1}\left(\frac{4}{5}\right)$ (A) $\tan^{-1}\left(\frac{4}{5}\right)$ (A) $\frac{\pi}{2}$ (D) 0

A.
$$\cos^{-1}\left(\frac{4}{5}\right)$$

B. $\tan^{-1}\left(\frac{4}{5}\right)$

D.
$$\frac{\pi}{2}$$

Answer: A

47. If the angle between the pair of straight lines represented by the equation $x^2 - 3xy + \lambda y^2 + 3x - 5y + 2 = 0$ is $\tan^{-1} 3$, where λ is a non -negative real number, then $\lambda =$

- A. 2
- B. 0
- C. 3
- D. 1

Answer: A

48. If the angle between the two lines given by $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ is $\frac{\pi}{4}$, then the contsntant a,b,h,g,f,c are related by

A.
$$a^2 + 6ab + 4b^2 = 4h^2$$

B. $abc + 2fgh - af^2 - bg^2 - ch^2 = 0$
C. $a^2 - ab + b^2 = h^2$
D. $a^2 + 6ab + b^2 = 4h^2$

Answer: D

49. The equation $x^2 - 3xy + \lambda y^2 + 3x - 5y + 2 = 0$ where λ is a real number, represents a pair of straight lines. If θ is the angle between the lines, then $\cos ec^2\theta =$

A. 3

B. 9

C. 10

D. 100

50. Lines represented by $9x^2 + y^2 + 6xy - 4 = 0$ are

A. coincident

B. parallel but not coincident

C. not parallel

D. perpendicular

Answer: B

51. The equation
$$ax^2+2hxy+by^2+2gx+2fy+c=0$$
 represents a circle if

A.
$$ag^2=bf^2$$

B. $a^2g=b^2f$
C. $bg^2=af^2$
D. $b^2f=a^2f$

Answer: C

52. Equation $x^2 + k_1 y^2 + 2k_2 y = a^2$ represents a pair

of perpendicular straight lines if

A.
$$k_1=1,\,k_2=a$$

B.
$$k_1 = 1, k_2 = -a$$

C.
$$k_1 = \ -1, k_2 = \ \pm a$$

Watch Video Solution

D.
$$k_1=1,\,k_2=\,\pm\,a$$

$$\mathsf{B.}\,(h+k)(h-k)=2a^2$$

$$\mathsf{C}.\,h^2+k^2=a^2$$

$$\mathsf{D}.\,h^2+k^2=0$$

Answer: A

Watch Video Solution

54. The equation $2x^2 + 4xy - py^2 + 4x + qy + 1 = 0$ will represent two mutually perpendicular straight lines , if

- A. p=1 and q=2 or 6
- B. p=2 and q=0 or 6

C.
$$p=2$$
 and $q=0$ or 8

D. $p=\ -2$ and $q=\ -2$ or 8

Answer: C

55. If $12x^2 + 7xy + by^2 + gx + 7y - 1 = 0$ represents

a pair of perpendicular lines then

A.
$$b = 12, g = 1$$

B.
$$b = -12, g = 1$$

C.
$$b = -12, g = -1$$

D.
$$b=~-12, g=~-rac{1}{2}$$

Watch Video Solution

56. If the equation $12x^2 + 7xy - py^2 - 18x + qy + 6 = 0$ represents a pair of perpendicular straight lines, then

A. -1, 2B. 1, -2C. $1, \frac{-23}{2}$ D. $-1, \frac{23}{2}$

Answer: C

Watch Video Solution

57. If two sides of a triangle are represented by $x^2 - 7xy + 6y^2 = 0$ and the centroid is (1, 0) then the equation of third side is

A.
$$2x+7y+3=0$$

$$\mathsf{B.}\,2x-7y+3=0$$

C.
$$2x + 7y - 3 = 0$$

D.
$$2x-7y-3=0$$

Answer: D

Watch Video Solution

58. The lines $\left(lx+my
ight) ^{2}-3(mx-ly)^{2}=0$ and lx+my+n=0 forms

A. an isosceles triangle

B. a right angled triangle

C. an equilateral triangle

D. an obtuse triangle

Answer: C

Competitive Thinking

1. The joint equation of the straight lines x+y=1

and x - y = 4, is

A.
$$x^2-y^2=\,-\,4$$

B.
$$x^2-y^2=4$$

C.
$$(x+y-1)(x-y-4) = 0$$

D.
$$(x + y + 1) = (x - y + 4) = 0$$

Answer: C

2. The joint equation of pair of lins through origin, each of which makes an angles of 60° with Y-axis is

A.
$$x^2 - 3y^2 = 0$$

B. $x^2 + 3y^2 = 0$
C. $3x^2 - y^2 = 0$

D.
$$3x^2+y^2=0$$

Answer: A

3. The joint equation of lines passing through the origin and trisecting the first quadrant is

A.
$$x^2+\sqrt{3}xy-y^2=0$$

B.
$$x^2-\sqrt{3}xy-y^2=0$$

C.
$$\sqrt{3}x^2-4xy+\sqrt{3}y^2=0$$

D.
$$3x^2 - y^2 = 0$$

Answer: C

4. The joint equation of bisectors of angles between lines x = 5 and y = 3 is

A.
$$(x-5)(y-3) = 0$$

B. $x^2 - y^2 - 10x + 6y + 16 = 0$
C. $xy = 0$

D. xy - 5x - 3y + 15 = 0

Answer: B

5. Let PQR be a right - angled isosceles triangle , right angled at P(2,1). If the equation of the line QR is 2x + y = 3, then the equation representing the pair of lines PQ and PR is

A.
$$3x^2 - 3y^2 + 8xy + 20x + 10y + 25 = 0$$

B. $3x^2 - 3y^2 + 8xy - 20x - 10y + 25 = 0$
C. $3x^2 - 3y^2 + 8xy + 10x + 15y + 20 = 0$
D. $3x^2 - 3y^2 - 8xy - 10x - 15y - 20 = 0$
Answer: B

6. The equation $x^2 - 7xy - y^2 = 0$ represents

A. Circle

B. Pair of parallel straight lines

C. pair of perpendicular straight lines

D. Pair of non-perpendicular intersecting straight

lines

Answer: D

A. Circle

- B. pair of straight lines
- C. parabola
- D. Ellipse

Answer: B

8. Joint equation of pair of lines through (3, -2) and parallel to $x^2 - 4xy + 3y^2 = 0$ is A. $x^2 - 4xy + 3y^2 - 14x + 24y + 45 = 0$ B. $x^2 - 4xy - 3y^2 - 14x - 24y - 45 = 0$ C. $3x^2 + 4xy + y^2 + 14x - 24y - 45 = 0$ D. $3x^2 + 4xy + y^2 - 14x - 24y + 45 = 0$

9. Combined equation of lines perpendicular to

$$5x^2 + 3xy - 2y^2 = 0$$
 is
A. $2x^2 + 3xy + 5y^2 = 0$
B. $2x^2 + 3xy - 5y^2 = 0$
C. $2x^2 - 3xy + 5y^2 = 0$
D. $2x^2 - 3xy - 5y^2 = 0$

Answer: B

10. The equation to the pair of straight lines passing through (2, 1) and perpendicular to the pair of lines 4xy + 2x + 6y + 3 = 0 is

A.
$$xy+x+2y-6=0$$

B.
$$xy-x+2y-2=0$$

C.
$$xy+x-2y-2=0$$

D.
$$xy-x-2y+2=0$$

Answer: D

Watch Video Solution

11. O(0,0), A(1,2), B(3,4) are the vertices of ΔOAB . The joint equation of the altitude and median drawn from O is

A.
$$x^2 + 7xy - y^2 = 0$$

B. $x^2 + 7xy + y^2 = 0$
C. $3x^2 - xy - 2y^2 = 0$
D. $3x^2 + xy - 2y^2 = 0$

Answer: D

12. The equation to a pair of opposite sides of a parallelogram are $x^2 - 5x + 6 = 0$ and $y^2 + 5 = 0$. The equations to its diagonals are x + 4y = 13, y = 4x - 7 (b) 4x + y = 13, 4y = x - 74x + y = 13, y = 4x - 7 (d) y - 4x = 13, y + 4x - 7

A. x + 4y = 13 and y = 4x - 7

B. 4x + y = 13 and 4y = 4x - 7

C. 4x + y = 13 and y = 4x - 7

D. y - 4x = 13 and y + 4x = 7

Answer: C

Watch Video Solution

13. If $2x^2 + 3xy - 2y^2 = 0$ represents two sides of a parallelgram and 3x + y + 1 = 0 is one of its diagonals then the other diagonals is

A.
$$x-3y+1=0$$

B.
$$x - 3y + 2 = 0$$

C.
$$x - 3y = 0$$

D.
$$3x - y = 0$$

Answer: C

Watch Video Solution

14. If one of the lines represented by the equation

$$ax^2 + 2hxy + by^2 = 0$$
 be $y = mx$ then
A. $bm^2 + 2hm + a = 0$
B. $bm^2 + 2hm + a = 0$
C. $am^2 + 2hm + b = 0$
D. $bm^2 - 2hm + a = 0$

15. If one of the lines given by $6x^2 - xy + 4cy^2 = 0$ is

3x + 4y = 0, then c =

A. 3

B. -1

C. 1

D. -3

Answer: D

16. If one of the lines given by $kx^2 - 5xy - 3y^2 = 0$ is perpendicular to the line x - 2y + 3 = 0, then k=

 $\mathsf{A.}\,2$

B.
$$-\frac{11}{2}$$

C. $-\frac{2}{3}$

 $\mathsf{D}.\ 3$

17. If one of the two lines $6x^2 + xy - y^2 = 0$ coincides with one of the two lines $3x^2 - axy + y^2 = 0$ ten

A.
$$\frac{1}{2}$$

B. 1

- C. 2
- D. 4

18. If the equation $ax^2 + 2hxy + by^2 = 0$ represented

two lines $y=m_1x$ and $y=m_2x$ the

A.
$$m_1+m_2=rac{-2h}{b}$$
 and $m_1m_2=rac{a}{b}$

B.
$$m_1+m_2=rac{2h}{b}$$
 and $m_1m_2=rac{-a}{b}$

C.
$$m_1+m_2=rac{2h}{b}$$
 and $m_1m_2=rac{a}{b}$

D.
$$m_1+m_2=rac{2h}{b}$$
 and $m_1m_2=\ -ab$

Answer: A

Watch Video Solution

19. The sum of the slopes of the lines given by $3x^2+5xy-2y^2=0$ is A. $rac{5}{2}$

B.
$$-\frac{3}{2}$$

C. $-\frac{5}{2}$
D. $\frac{1}{2}$

20. If the sum of slopes of the pair of lines represented by $4x^2 + 2hxy - 7y^2 = 0$ si equal to the product of the slopes, then the value of h is

 $\mathsf{A.}-6$

- $\mathsf{B.}-2$
- $\mathsf{C}.-4$
- $\mathsf{D.}\,4$

Answer: B

21. if the sum of the slopes of the lines given by $x^2 - 2cxy - 7y^2 = 0$ is four times their product then c has the value?

A. -2

B. -1

C. 2

D. 1

Answer: C

22. If the slope of one of the lines represented by $ax^2+6xy+y^2=0$ is twice the other, then a is equal to

A. 1

B. 2

C. 4

D. 8

Answer: D

23. If the gradient of one of the lines given by $x^2 + hxy + 2y^2 = 0$ is twice that of the other, then h =

A.
$$\pm 3$$

$$\mathsf{B.}\pmrac{3}{2}$$

$$\mathsf{C}.\pm 2$$

D. ± 1

24. If the slope of one of the lines given by $ax^2 + 2hxy + by^2 = 0$ is two times the other, then A. $8h^2 = 9ab$ B. $8h^2 = 9ab^2$ C. 8h = 9abD. $8h = 9ab^2$

25. If slopes of lines represented by $kx^2+5xy+y^2=0$ differ by 1, then k= A. 2 B. 3 C. 6 D. 8 Answer: C Watch Video Solution

26. If the ratio of gradients of the line given by $ax^2 + 2hxy + by^2 = 0$ is 1:3, then $h^2 : ab =$

D. 1

Answer: C

27. if $\frac{X^2}{a} + \frac{y^2}{b} + \frac{2xy}{h} = 0$ represent pair of straight lies and slope one line is twice the other line then $ab: h^2$.

A. 9:8

B. 8:9

C. 1: 2

D. 2:1

28. The angle between the straight lines $x^2-y^2-2x-1=0,$ is A. 30°

B. 45°

 $\mathrm{C.\,60}^\circ$

D. None of these

Answer: C

29. Acute angle between the lines represented by

$$ig(x^2+y^2ig)\sqrt{3}=4xy$$
 is
(A) $rac{\pi}{6}$ (B) $rac{\pi}{4}$
(C) $rac{\pi}{3}$ (D) None of these

A.
$$\frac{\pi}{6}$$

$$\mathsf{B}.\,\frac{\pi}{4}$$

C.
$$\frac{\pi}{3}$$

D. None of these

30. The angle between the pair of straight lines $x^2 + 4y^2 - 7xy = 0$ is A. $\tan^1\left(\frac{1}{3}\right)$ B. $\tan^{-1}(3)$ C. $\tan^{-1}\left(\frac{\sqrt{33}}{5}\right)$

Answer: C

 $\mathsf{D}.\tan^{-1}\left(\frac{\sqrt{33}}{10}\right)$

31. The angles between the lines represented by the equation $4x^2 - 24xy + 11y^2 = 0$ are

A.
$$\tan^{-1}\frac{3}{4}$$
, $\tan^{-1}\left(-\frac{3}{4}\right)$
B. $\tan^{-1}\frac{1}{3}$, $\tan^{-1}\left(-\frac{1}{3}\right)$
C. $\tan^{-1}\frac{4}{3}$, $\tan^{-1}\left(-\frac{4}{3}\right)$
D. $\tan^{-1}\frac{1}{2}$, $\tan^{-1}\left(-\frac{1}{2}\right)$

Answer: C

A. 2θ

 $\mathsf{B.}\, 3\theta$

 $\mathsf{C}.\,\theta$

D.
$$\frac{\theta}{2}$$

Answer: C

33. The equation x - y = 4 and $x^2 + 4xy + y^2 = 0$

represent the sides of

A. equilateral triangle

B. right angled triangle

C. isosceles triangle

- C. an equilateral triangle
- D. a scalene triangle

Answer: C

35. The nature of straight lines represented by the equation $4x^2 + 12xy + 9y^2 = 0$ is

A. Real and coincident

B. Real and different

C. Imaginary and different

D. None of the above

36. The equation $x^2 + ky^2 + 4xy = 0$ represents two coincident lines if k =

A. 0

B. 1

C. 4

D. 16

Answer: C

37. if lines represented by equation $px^2 - qy^2 = 0$ are

distinct, then

A. pq>0B. pq<0C. pq=0

$$\mathsf{D}.\, p+q=0$$

38. The angle between the pair of straight lines $y^2 \sin^2 heta - xy \sin^2 heta + x^2 (\cos^2 heta - 1) = 0$ is

A.
$$\frac{\pi}{3}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{2}$

 $\overline{}$

Answer: D

39. Which of the following equation does not represent

a pair of lines ?

A.
$$x^2-x=0$$

$$\mathsf{B.}\,xy-x=0$$

$$\mathsf{C}.\,y^2-x+1=0$$

D.
$$xy + xy + 1 = 0$$

Answer: C

40. The angle between the lines $3x^2 + 7xy + 2y^2 + 5x + 5y + 2 = 0$ is given by

A. Pair of straight line

B. Ellipse

C. Hyperbola

D. Circle

Answer: A

41. The equation $xy + a^2 = a(x + y)$ represents

A. a parabola

B. a pair of straight lines

C. an ellipse

D. two parallel straight lines

Answer: B

Watch Video Solution

42. If $ax^2 - y^2 + 4x - y = 0$ represents a pair off

lines then a =

A. -16

B. 16

C. 4

D. -4

Answer: B

43. If the equation kxy + 10x + 6y + 4 = 0represents a pair of lines then : k =

A. 0,18

B. 0,16

C. 0,15

D. 0,20
Answer: C

44. The equation $x^2 + kxy + y^2 - 5x - 7y + 6 = 0$ represents a pair of straight lines, then k is

A.
$$\frac{5}{3}$$

B. $\frac{10}{3}$
C. $\frac{3}{2}$
D. $\frac{3}{10}$

45. The point of intersection of lines represented by $x^2 - y^2 + x + 3y - 2 = 0$ is A. (1, 0) B. (0, 2) C. $\left(-\frac{1}{2}, \frac{3}{2}\right)$ D. $\left(\frac{1}{2}, \frac{1}{2}\right)$

46. If $2x^2 - 10xy + 2\lambda y^2 + 5x - 16y - 3 = 0$ represents a pair of straight lines, then point of intersection of those lines is

A.
$$(2, -3)$$

B. $(5, -16)$
C. $\left(-10, \frac{-7}{2}\right)$
D. $\left(-10, \frac{-3}{2}\right)$

47. Let L be the line joining the origin to the point of intersection of the lines represented by $2x^2 - 3xy - 2y^2 + 10x + 5y = 0$. If L is perpendicular to the line kx + y + 3 = 0 then k =

A.
$$\frac{1}{2}$$

B. $\frac{-1}{2}$
C. -1
D. $\frac{1}{3}$

48. The line 5x + y - 1 = 0 coincides with one of the lines given by $5x^2 + xy - kx - 2y + 2 = 0$, then the value of k is

 $\mathsf{A.}-11$

 $\mathsf{B.}\,31$

C. 11

D.-31

The angle between the lines 49. $3x^2 + 7xy + 2y^2 + 5x + 5y + 2 = 0$ is given by A. 0 B. $\pi/2$ C. $\pi / 4$ D. $\pi/6$ Answer: C

50. The angle between the lines in

$$x^2 - xy - 6y^2 - 7x + 31y - 18 = 0$$
 is
A. 30°
B. 45°
C. 60°
D. 90°

51. If the angle between the pair of straight lines by the equation represented $x^2-3xy+\lambda y^2+3x-5y+2=0$ is an^{-1} 3, where λ is a non -negative real number, then $\lambda =$ A. 2 B. 0 C. 3 D.1 **Answer: B**

Watch Video Solution

52. If the angle between the two lines represented by $2x^2 + 5xy + 3y^2 + 6x + 7y + 4 = 0$ is $\tan^{-1}(m)$, then m is equal to

A. $\frac{1}{5}$ B. 1 C. $\frac{7}{5}$

53. The acute angle formed between the lines joining the origin to the points of intersection of the curves $x^2+y^2-2x-1=0$ and x+y=1, is A. $an^{-1}\left(-rac{1}{2}
ight)$ B. $tan^{-1}2$ C. $\tan^{-1}\frac{1}{2}$ D. 60°

54. The straight lines joining the origin to the points of intersection of the line 2x + y = 1 and curve $3x^2 + 4xy - 4x + 1 = 0$ include an angle:

A.
$$\frac{\pi}{2}$$

B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{6}$

55. If the lines joining the origin and the point of intersection of curves $ax^2 + 2hxy + by^2 + 2gx + 0$ and $a_1x^2 + 2h_1xy + b_1y^2 + 2g_1x = 0$ are mutually perpendicular, then prove that $g(a_1 + b_1) = g_1(a + b)$.

A.
$$ag + a_1g_1 = bg + b_1g_1$$

B. $a + b = gg_1(a_1 + b_1)$
C. $g(a_1 + b_1) = g_1(a + b)$
D. $g(a + b) = g_1(a_1 + b_1)$

Answer: C

> Watch Video Solution

56. The pair of straight lines joining the origin to the points of intersection of the line $y=2\sqrt{2x}+c$ and the circle $x^2+y^2=21$ are at right angles , if

A.
$$c^2-4=0$$

B.
$$c^2 - 8 = 0$$

C.
$$c^2-9=0$$

D.
$$c^2 - 10 = 0$$

57. The orthocenter of the triangle formed by the lines

x+y=1 and $2y^2-xy-6x^2=0$ is

A.
$$\left(\frac{4}{3}, \frac{4}{3}\right)$$

B. $\left(\frac{2}{3}, \frac{2}{3}\right)$
C. $\left(\frac{2}{3}, \frac{-2}{3}\right)$
D. $\left(\frac{4}{3}, \frac{-4}{3}\right)$

58. Joint equation of the diagonals of the square formed by the pairs of lines xy + 4x - 3y - 12 = 0and xy - 3x + 4y - 12 = 0, is

A.
$$x^2 - 2xy + y^2 + x - y = 0$$

B.
$$x^2 + 2xy + y^2 + x + y + 0$$

C.
$$x^2-y^2+x-y=0$$

D.
$$x^2-y^2+x+y=0$$

Answer: C

Watch Video Solution

Evaluation Test

1. The combined equation of the line passing through origin and perpendicular to $2x^2 - 7xy - 15y^2 = 0$ is

A.
$$-15x^2 - 7xy + 2y^2 = 0$$

B.
$$15x^2 + 13xy + 2y^2 = 0$$

C.
$$15x^2 - 7xy - 2y^2 = 0$$

D.
$$15x^2 - 13xy + 2y^2 = 0$$

2. If $4ab = 3h^2$, then the ratio of the slopes of the lines represented by the equation $ax^2 + 2hxy + by^2 = 0$ will be

- (A) $\sqrt{2}$: 1
- (B) $\sqrt{3}:1$
- (C) 2:1
- (D) 1:3
 - A. $\sqrt{2}$: 1
 - B. $\sqrt{3}: 1$
 - C.2:1
 - D. 1:3

Answer: D

D.
$$g=4, f=9, c>1$$

4. The value of λ for which the equation $x^2 - y^2 - x - \lambda y - 2 = 0$ represent a pair of straight line, are

A. 3, -3

B. -3, 1

C. 3, 1

D. -1, 1

5. The acute angle between the lines represented by

$$x^2+2\sqrt{2}xy-y^2=0$$
 is

A.
$$\frac{\pi}{3}$$

B. $\frac{\pi}{6}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

6. Equation of pair of straight lines drawn through (1, 1)

and perpendicular to the pair of lines $3x^2 - 7xy + 2y^2 = 0$, is

A.
$$2x^2 + 7xy - 11x + 6 = 0$$

B. $2(x - 1)^2 + 7(x - 1)(y - 1) - 3y^2 = 0$
C. $2(x - 1)^2 + 7(x - 1)(y - 1) - 3(y - 1)^2 = 0$
D. $2(x - 1)^2 + 7(x - 1)(y - 1) + 3(y - 1)^2 = 0$

Answer: D

Watch Video Solution

7. The joint equation of the straight lines x - y = 1and 2x + y = 6 is A. $2x^2 - y^2 - xy - 4x + 7y - 6 = 0$ B. $2x^2 - y^2 - xy - 8x + 5y + 6 = 0$ C. $2x^2 - y^2 - xy + 4x - 7y - 6 = 0$ D. $2x^2 - y^2 - xy + 8x - 5y + 6 = 0$

8. If the equation $2x^2 + 2hxy + 3y^2 = 0$ has one line as bisector of angle between the co-ordinate axes, then h =

A.
$$\frac{-1}{2}$$

B. 5
C. $\frac{5}{2}$

9. If the equation $3x^2-2y^2+\lambda xy-x+5y-2=0$

represents a pair of straight lines then $\lambda=$

A.
$$\frac{-1}{2}$$

B. 5
C. $\frac{5}{2}$

10. If one of the lines given by the equation $2z^2 + axy + 3y^2 = 0$ coincide with one of those given by $2x^2 + bxy - 3y^2 = 0$ and the other lines represented by them be perpendicular, then

A.
$$a = -5, b = 1$$

B.
$$a = 5, b = -1$$

C.
$$a=5, b=1$$

D. None of these

Answer: C

Watch Video Solution

11. Acute angle between the lines represented by $3x^2 - 48xy + 23y^2 = 0$ is

A.
$$\frac{\pi}{3}$$

B. $\frac{\pi}{6}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

