

India's Number 1 Education App

MATHS

BOOKS - TARGET MATHS (HINGLISH)

VECTORS

Classical Thinking

1. If
$$\overrightarrow{a}=\hat{i}-\hat{j}$$
 and $\overrightarrow{b}=-2\hat{i}+m\hat{j}$ are two collinear vectors, then

m =

A. 4

B. 3

C. 2

D. $\frac{1}{2}$

Answer: C

2. The vectors
$$\bar{a}$$
 and \bar{b} are non-collinear The value of x for which the vectors $\overrightarrow{c}=(x-2)\overrightarrow{a}+\overrightarrow{b}$ and $\overrightarrow{d}=(2x+1)\overrightarrow{a}-\overrightarrow{b}$ are collinear, is

B.
$$\frac{1}{2}$$

C. $\frac{1}{3}$

D. 3

Answer: C

3. If
$$3i-2j+5k \ ext{and} \ -2i+pj-qk$$
 are collinear vectors, then

A.
$$p=rac{4}{3},$$
 $q=rac{-10}{3}$

B.
$$p = \frac{10}{3}, q = \frac{4}{3}$$

C.
$$p=rac{-4}{3},$$
 $q=rac{10}{3}$
D. $p=rac{4}{3},$ $q=rac{10}{3}$

Answer: D

Watch Video Solution

4. The points $A(\overline{a})$, $B(\overline{b})$, $C(\overline{c})$ will be collinear if

A.
$$ar{a}+ar{b}+ar{c}=ar{0}$$

B.
$$ar{a} imesar{b}+ar{b} imesar{c}+ar{c} imesar{a}=ar{0}$$

C.
$$ar{a}$$
. $ar{b}$ $+$ $ar{b}$. $ar{c}$ $+$ $ar{c}$. $ar{a}$ $=$ $ar{0}$

D.
$$ar{a} imes(ar{b}+ar{c})+ar{b} imes(ar{c}+ar{a})+ar{c} imes(ar{a}+ar{b})=0$$

Answer: B

5. If $ar{a}=\hat{i}+\hat{j},$ $ar{b}=2\hat{i}-\hat{j}$ and $ar{r}=2\hat{i}-4\hat{j},$ then express \overrightarrow{r} as linear combination of $ar{a}$ and $ar{b}$

A.
$$ar{r}=2ar{a}+2ar{b}$$

B.
$$ar{r}=\,-\,2ar{a}+2ar{b}$$

C.
$$ar{r}=2ar{a}-2ar{b}$$

D.
$$ar{r}=\,-\,2ar{a}-2ar{b}$$

6.

Answer: B

Watch Video Solution

$$\overline{A}=(x+4y)ar{a}+(2x+y+1)ar{b} \ ext{and} \ \overline{B}=(y-2x+2)ar{a}+(2x-3y-1)$$

, where $ar{a} \ \ {
m and} \ \ ar{b}$ are non-collinear vectors, if $3\overline{A} = 2\overline{B}, \ \ {
m then}$

Let

A.
$$x=1,\,y=2$$

B.
$$x = 2, y = 1$$

$$g - 1$$

C.
$$x = 2, y = -1$$

D.
$$x = -1, y = 2$$

Answer: C

Watch Video Solution

7. A vector coplanar with the non-collinear vectors $ar{a} \ { m and} \ ar{b}$ is

A.
$$ar{a} imes ar{b}$$

B.
$$ar{a}+ar{b}$$

C.
$$ar{a}$$
. $ar{b}$

D.
$$ar{a} imes 3ar{b}$$

Answer: B

- **8.** The vectors $ar{a},\,ar{b}\,\,{
 m and}\,\,ar{a}+ar{b}$ are
 - A. Collinear
 - B. Coplanar
 - C. Non-coplanar
 - D. Non-collinear

Answer: B

- **9.** \bar{p} and \bar{q} are position vectors of two points P and Q. The position vectors of a point which divides PQ internally in the ratio $2\colon 5$ is
- A. $rac{ar{p}+ar{q}}{7}$
 - B. $\frac{5ar{p}+2ar{q}}{7}$
 - C. $\dfrac{2p+5q}{7}$
 - D. $rac{ar p ar q}{7}$

Answer: B

Watch Video Solution

10. The co-ordinates of the points which divides line segment joining the point $A(2,3,\,-1)$ and B(3,1,4) internally in the ratio $2\colon 3$ are

A.
$$\left(\frac{-12}{5}, \frac{-11}{5}, 1\right)$$

B.
$$\left(\frac{12}{5}, \frac{11}{5}, 1\right)$$

c.
$$\left(\frac{-12}{5}, \frac{-11}{5}, \frac{1}{5}\right)$$

D.
$$\left(\frac{12}{5}, \frac{11}{5}, \frac{1}{5}\right)$$

Answer: B

Watch Video Solution

11. If O is origin and C is the mid - point of A (2, -1) and B (-4, 3). Then value of OC is

A.
$$\hat{i}+\hat{j}$$

B.
$$\hat{i}-\hat{j}$$

$$\mathsf{C.} - \hat{i} + j$$

D.
$$-\hat{i}-\hat{j}$$

Answer: C

AB

- **12.** If the position vectors of the points A and B are $\hat{i}+3\hat{j}-\hat{k}$ and
- $3\hat{i}-\hat{j}-3\hat{k},$ then what will be the position vectors of the mid point of

A.
$$\hat{i} + 2\hat{j} - \hat{k}$$

B.
$$2\hat{i}+\hat{j}-2\hat{k}$$

C.
$$\hat{i}+\hat{j}-\hat{k}$$

D.
$$\hat{i}+\hat{j}-2\hat{k}$$

Watch Video Solution

13. Position vectors of a point which divides line joining points A and B whose position vectors are $2\hat{i}+\hat{j}-\hat{k}$ and $\hat{i}-\hat{j}+2\hat{k}$ externally in the ratio $5\colon 2$ is

A.
$$rac{1}{3}\Big(\hat{i}-7\hat{j}+12\hat{k}\Big)$$

B.
$$-rac{1}{3}\Big(\hat{i}+7\hat{j}-12\hat{k}\Big)$$

C.
$$\hat{i}-7\hat{j}+12\hat{k}$$

D.
$$\hat{i} + 7\hat{j} - 12\hat{k}$$

Answer: A

14. If $P \equiv (2, -1, 4), Q \equiv (3, 2, 1)$ then the co-ordinates of the point which divides PQ externally in the ratio 2:1 are

A.
$$(4, 5, 2)$$

B.
$$(-4, 5, -2)$$

C.
$$(-4, -5, 2)$$

D.
$$(4, 5, -2)$$

Answer: D

Watch Video Solution

15. If the point A(5, a, -1), B(2, -7, k) and $P\left(\frac{17}{4}, \frac{11}{4}, 0\right)$ are collinear, then the ratio in whihc P divides AB is

A.
$$1:2$$

D. 1:3

Answer: D

Watch Video Solution

- **16.** If A(2,3,-4), B(m,1,-1), C(3,2,2) and G(3,2,n) is the centroid of ΔABC , then the values of m and n respectively are
 - A. -4, 1
 - $\mathsf{B.}\,3,\,4$
 - C. 4, 3
 - D. 4, -1

Answer: D

17. If $A(a,2,2),\,B(a,b,1)\,$ and $\,C(1,2,\,-2)\,$ are the vertices of triangle

ABC and G(2,1,c) is centroid, then values of a,b and c are

A.
$$a = \frac{1}{2}, b = 1, c = 1$$

B.
$$a=rac{5}{2}, b=-1, c=rac{1}{3}$$

C.
$$a=-1, b=1, c=rac{3}{2}$$

D.
$$a = \frac{1}{2}, b = \frac{1}{2}, c - 1$$

Answer: B

Watch Video Solution

18. If \hat{i},\hat{j},\hat{k} are the unit vectors and mutually perpendicular, then $\left[\hat{i}\hat{k}\hat{j}\right]$ is equal to

A. 0

B. -1

C. 1

Answer: B

Watch Video Solution

- **19.** The scalar triple product of the vectors $2\hat{i}$, $3\hat{j}$ and $-5\hat{k}$ is
 - A. 0
 - B. 10
 - $\mathsf{C.}-15$
 - D. 30

Answer: D

Watch Video Solution

20. The value of $\left(\hat{i}+\hat{j}
ight)$. $\left[\left(\hat{j}+\hat{k}
ight) imes\left(\hat{k}+\hat{i}
ight)
ight]$ is

B. 1

 $\mathsf{C.}-1$

D. 2

Answer: D

Watch Video Solution

21. If $\bar{a} = \hat{i} - \hat{j} + \hat{k}, \bar{b} = \hat{i} + \hat{j} - \hat{4}k, \bar{c} = -\hat{i} + \hat{j} - \hat{k}$, then

$\left[\bar{a}\bar{b}\bar{c}\right] =$

A. 2

B. 3

C. 6

D. 5

Answer: D

22. If

$$ar a=3\hat{\ i}-2\hat{\ j}+2\hat{\ k},$$
 $ar b=6\hat{\ i}+4\hat{\ j}-2\hat{\ k}$ and $ar c=3\hat{\ i}-2\hat{\ j}-4\hat{\ k},$ then $ar aar (ar b imesar c)$ is

- A. 122
- B. 144
- C. 120
- D. 120

Answer: B

to

Watch Video Solution

23. Let $ar{a},\,ar{b}\ \ {
m and}\ \ ar{c}$ three vectors, Then scalar triple product $\left[ar{a}ar{b}ar{c}
ight]$ is equal

- A. $[ar{b},ar{a},ar{c}]$
- B. $\left[ar{a},ar{c},ar{b}
 ight]$
- C. $[ar{c},ar{b},ar{a}]$
- D. $[ar{b},ar{c},ar{a}]$

Answer: D

Watch Video Solution

24. If $ar{a},\,ar{b},\,ar{c}$ are three vectors, then $\left[ar{a},\,ar{b},\,ar{c}
ight]$ is not equal to

- - A. $\left[ar{b}ar{c}ar{a}
 ight]$
 - B. $\left[ar{c}ar{a}ar{b}
 ight]$
- C. $-\lceil ar{b}ar{a}ar{c}
 ceil$
- D. $\left[ar{b}ar{a}ar{c}
 ight]$

Answer: D

25.
$$\left[\hat{i}\hat{k}\hat{j}\right] + \left[\hat{k}\hat{j}\hat{i}\right] + \left[\hat{j}\hat{k}\hat{i}\right]$$

- A. 1
- B. 3
- $\mathsf{C.}-3$
- D. -1

Answer: D

Watch Video Solution

26. The scalar triple product of vectors is zero if_____

- A. One of the vectors is zero vectors
- B. Any two vectors are non-collinear
- C. the three vectors are non-coplanar

D. All of the above

Answer: A

Watch Video Solution

- **27.** If ar a, ar b, ar c are non-coplanar vectors then ar a+2ar b ar a+ar c ar b ar b = 0
 - A. 0

B. $\left[ar{a},ar{b},ar{c}
ight]$

C. $-\left[ar{a},ar{b},ar{c}
ight]$

D. $2ig[ar{a},ar{b},ar{c}ig]$

Answer: C

28. If $\bar{a}, \bar{b}, \bar{c}$ are non-coplanar vectors, then three points with position vectors $\bar{a}-2\bar{b}+3\bar{c}, 2\bar{a}+m\bar{b}-4\bar{c}$ and $-7\bar{b}+10\bar{c}$ will be collinear if m equals

29. The vectors $\hat{i} + 2\hat{j} + 3\hat{k}$, $\hat{\lambda}i + 4\hat{j} + 7\hat{k}$ and $-3\hat{i} - 2\hat{j} - 5\hat{k}$

- A. 2
- B. 3
- C. 0
- D. -1

Answer: B

- are collinear, if λ equals
 - **A.** 3
 - B. 4

C. 5

D. 6

Answer: A

Watch Video Solution

30. If $\bar{a}, \bar{b}, \bar{c}$ are any vectors, then which of these sets of vectors are coplanar

A.
$$ar{a}+ar{b},ar{b}+ar{c},ar{c}+ar{a}$$

B.
$$ar{a} imesar{b}$$
, $ar{b} imesar{c}$, $ar{c} imesar{a}$

C.
$$\bar{a}-\bar{b}$$
, $\bar{b}-\bar{c}$, $\bar{c}-\bar{a}$

D.
$$ar{a}+2ar{b},$$
 $ar{b}+2ar{c},$ $ar{c}+2ar{a}$

Answer: C

31. If $ar{a}=\hat{i}-\hat{j}+\hat{k}, ar{b}=\hat{i}+2\hat{j}-\hat{k}$ and $ar{c}=3\hat{i}+p\hat{j}+5\hat{k}$ are coplanar then the value of p will be

$$A.-6$$

B.-2

C. 2

D. 6

Answer: A

Watch Video Solution

32. If the vectors $\hat{i} + 3\hat{j} - 2\hat{k}$, $2\hat{i} - \hat{j} + 4k$ and $3\hat{i} + 2\hat{j} + x\hat{k}$ are coplanar, then the value of x is

$$A.-2$$

B. 2

C. 1

Answer: B

Watch Video Solution

33. If vectors $\hat{i}+\hat{j}+\hat{k},\hat{j}-\hat{i},\hat{i}+2\hat{j}+a\hat{k}$ are coplanar, then a is equal to

$$\mathsf{A.}\,\frac{3}{2}$$

B. 3

 $\mathsf{C.}-3$

D. 0

Answer: A

34. For any vectors $ar{a}, \, ar{b}, \, ar{c}$ correct statement is

A.
$$ar{a}$$
. $\left(ar{b} imesar{c}
ight)=\left(ar{c} imesar{b}
ight)$. $ar{a}$

B.
$$ar{a} imes \left(ar{b} imesar{c}
ight)=ar{b} imes \left(ar{c} imesar{a}
ight)$$

C.
$$ar{a} imes \left(ar{b} imesar{c}
ight)=\left(ar{a} imesar{b}
ight) imesar{c}$$

D.
$$ar{a}$$
. $\left(ar{b} imesar{c}
ight)=ar{b}$. $\left(ar{c} imesar{a}
ight)$

Answer: D

Watch Video Solution

35. $\left[ar{a} \quad ar{b} \quad ar{a} imes ar{b}
ight]$ is equal to

A.
$$\left|ar{a} imesar{b}
ight|$$

B.
$$\left|ar{a} imesar{b}
ight|^2$$

D. None of these

Answer: B

Watch Video Solution

- **36.** If $ar{a} \ {
 m and} \ ar{b}$ be parrallel vectors, then $ar{a} \ ar{c} \ ar{b} =$
 - A. 0
 - B. 1
 - C. 2
 - D. 3

Answer: A

- **37.** If $ar{a},\,ar{b},\,ar{c}$ are any three coplanar unit vectors then
 - A. $ar{a}$. $\left(ar{b} imesar{c}
 ight)=1$

B.
$$ar{a}.\left(ar{b} imesar{c}
ight)=3$$

C.
$$(ar{a} imesar{b})$$
. $c=0$

D.
$$(ar{c} imesar{a})$$
. $b=1$

Answer: C

Watch Video Solution

38. If $\bar{a}=\frac{11}{2}\hat{i}$, $\bar{b}=12\hat{j}$ and $\bar{c}=\frac{13}{3}\hat{k}$ represents the three co-

terminus edges of a parallelopiped, then its volume is given by

A. 510

B. 145

C. 286

D. 268

Answer: C

39. Three concurrent edges OA, OB, OC of a parallelopiped are by three represented vectors $\hat{2i} + \hat{j} - \hat{k}, \hat{i} + \hat{2j} + \hat{3k}$ and $\hat{-3i} - \hat{j} + \hat{k}$ the volume of the solid so formed in cubic unit is

- A. 5
- B. 6
- C. 7
- D. 8

Answer: A

Watch Video Solution

40. If $ar{a} = -3\hat{i} + 7\hat{j} + 5\hat{k}, \, \bar{b} = -3\hat{i} + 7\hat{j} - 3\hat{k} \, \, \text{and} \, \, c = 7\hat{i} - 5\hat{j} - 3\hat{k}$ are the three coterminus edges of a parallelopiped, then its volume is

- A. 108 B. 210 C. 272 D. 308 **Answer: C** Watch Video Solution The volume of the tetrahedron whose vertices 41.
- are A(1, -1, 10), B(-1, -3, 7), C(5, -1, 1) and D(7, -4, 7) is
 - A. 26
 - B. 29

C. 32

D. None of these

Answer: B

42. The volume of the tetrahedron with vertices

$$5\hat{i} - \hat{j} + \hat{k}, 7\hat{i} - 4\hat{j} + 7\hat{k}, \hat{i} - 6\hat{j} + 10\hat{k} \text{ and } - \hat{i} - 3\hat{j} + 7\hat{k} \text{ is}$$

- A. 7
- B. 3
- C. 15
- D. 11

Answer: D

Watch Video Solution

43. The sum of the three vectors determined by the medians of triangle directed from the vertices is

A. 0

$$C. - 1$$

$$\mathsf{D.}\; \frac{1}{3}$$

Answer: A

Watch Video Solution

Critical Thinking

The points with respective position vectors 1. $60\hat{i} + 3\hat{j}, 40\hat{i} - 8\hat{j}, x\hat{i} - 52\hat{j}$ are collinear if x is equal to

A. - 40

B. 40

C. 20

D. - 20

Answer: A

Watch Video Solution

2. If the vectors $\hat{i}+\hat{2k}$, $\hat{j}+\hat{k}$ and $\hat{\lambda i}+\hat{\mu j}$ collinear, then

A.
$$\lambda=2, \mu=1$$

B.
$$\lambda=2, \mu=-1$$

$$C. \lambda = -1, \mu = 2$$

D.
$$\lambda = -1$$
, $\mu = -2$

Answer: C

then

Watch Video Solution

3. If the vectors $-\hat{i}+3\hat{j}+2\hat{k},\ -4\hat{i}+2\hat{j}-2\hat{k}$ and $5\hat{i}+\lambda\hat{j}+\mu\hat{k}$ are collinear

A.
$$\lambda=5, \mu=10$$

B.
$$\lambda=2, \mu=-1$$

C.
$$\lambda=-5, \mu=10$$

D. $\lambda=5, \mu=-10$

Answer: A

Watch Video Solution

4. If three points A,B and C have position vectors (1,x,3),(3,4,7) and (y,-2,-5),

respectively and if they are collinear, then find (x,y).

A.
$$2, -3$$

B.
$$-2, 3$$

D.
$$-2, -3$$

Answer: A

5. If the position vectors of the point A,B,C be $\hat{i}+\hat{j},\hat{i}-\hat{j}$ and $\hat{a}\hat{i}+\hat{b}\hat{j}+\hat{c}\hat{k}$ respectively then the point A,B,C are collinear if

A.
$$a = b = c = 1$$

B. $a=1,\,b \;\; \mathrm{and} \;\; c$ are arbitary scalars

C.
$$a = b = c = 0$$

D.
$$c=0,\,a=1\, ext{ and }\,b$$
 is arbitary scalar

Answer: D

6. Three points whose position vectors are ar a+ar b, ar a-ar b and ar a+kar b are collinear, then the value of k is

Α	7ero

- B. Only negative real number
- C. Only positive real number
- D. Every real number

Answer: D

- **7.** If \bar{a} , \bar{b} and \bar{c} be there non-zero vectors, no two of which are collinear. If the vectors $\bar{a}+2\bar{b}$ is collinear with \bar{c} and $\bar{b}+3\bar{c}$ is collinear with a, then $(\lambda \text{ being some non-zero scalar})\bar{a}+2\bar{b}+6\bar{c}$ is equal to
 - A. $\lambda ar{a}$
 - B. $\lambda ar{b}$
 - C. $\lambda ar{c}$
 - D. 0

Answer: D

Watch Video Solution

- **8.** If the points A,B,C and D have position vectors ar a,2ar a+ar b,4ar a+2ar b and 5ar a+4ar b respectively, then three collinear points are
 - $\mathsf{A}.\,A,\,B,\,D$
 - B.A,B,C
 - C. B, C, D
 - D.A,C,D

Answer: A

9.

If

 $ar{a}=2ar{p}+3ar{q}-ar{r},$ $ar{b}=ar{p}-2ar{q}+2ar{r}$ and $ar{c}=-2ar{p}+ar{q}-2ar{r}$ and $\overline{R}=3ar{p}$ where ar p, ar q, ar r are non-coplanar vectors, then $\overline R$ in terms of ar a, ar b, ar c is

If $ar{a}+ar{b}+ar{c}=\lambdaar{d}$ and $ar{b}+ar{c}+ar{d}=\muar{a}$ and $ar{a},ar{b},ar{c}$

A. $5\bar{a}+2\bar{b}+3\bar{c}$

C.
$$2ar{a}+5ar{b}+3ar{c}$$

 $\mathsf{B.}\,3\bar{a}+5\bar{b}+2\bar{c}$

D.
$$5ar{a}+3ar{b}+2ar{c}$$

Answer: C

Watch Video Solution

coplanar, then $ar{a}+ar{b}+ar{c}+ar{d}$ is equal to

- A. $\mu \bar{b}$
 - B. $\lambda \bar{a}$

$$\mathsf{C}.\,ar{\mathsf{0}}$$

D.
$$(\lambda \mid \mu) \bar{a}$$

Answer: C

Watch Video Solution

11. A and B are two points. The position vector of A is 6b-2a. A point P divides the line AB in the ratio 1:2. if a-b is the position vector of P, then the position vector of B is given by

A.
$$7ar{a}-15ar{b}$$

B.
$$7ar{a}+15ar{b}$$

C.
$$15ar{a}-7ar{b}$$

D.
$$15ar{a}+7ar{b}$$

Answer: A

12. If $\bar{a}, \bar{b}, \bar{c}$ are the position vectors of the points A, B, C respectively and $2\bar{a}+3\bar{b}-5\bar{c}=\bar{0}$, then find the ratio in which the point C divides line segment AB.

- A. 2:3
- $\mathsf{B.}\,3\!:2$
- C. 3:5
- D. 5:2

Answer: B

Watch Video Solution

13. If $\overline{OA} = \hat{i} + 3\hat{j} - 2\hat{k}$ and $\overline{OB} = 3\hat{i} + \hat{j} - 2\hat{k}$, then the vectors

 \overline{OC} which bisects $\angle AOB$ is equal to

A.
$$\hat{i}-\hat{j}-\hat{k}$$

$$\texttt{B.}\,2\big(\hat{}i+\hat{}j+\hat{}k\big)$$

$$\mathsf{C.-\hat{i}+\hat{j}-\hat{k}}$$

D.
$$2(\hat{i} + \hat{j} - \hat{k})$$

Answer: D

Watch Video Solution

- **14.** $\bar{a}, \, \bar{b}$ are position vectors of points A and B. If P divides AB in the ratio
- 3:1 and Q is the mid-point of AP, then position vectors of Q will be

A.
$$rac{1}{2}ig(ar{a}-ar{b}ig)$$

B.
$$rac{1}{2}ig(ar{a}+ar{b}ig)$$

C.
$$rac{1}{8}ig(5ar{a}+3ar{b}ig)$$

D.
$$rac{1}{8}ig(5ar{a}-3ar{b}ig)$$

Answer: C

15. If $2ar{a}+ar{b}=3ar{c}, ext{ then A divides BC in the ratio}$

A. 3:1 externally

 $\mathsf{B.}\,3\!:\!1$ internally

 $\mathsf{C.}\ 1:3$ externally

D. 1:3 internally

Answer: A

Watch Video Solution

16. In ΔABC , P is the mid point of BC,Q divides CA internally in the ratio

2:1 and R divides AB externally in the ratio 1:2 then

A. R divides PQ externally in the ratio 2:1

B. P,Q,R are collinear

C. P divides QR externally in the ratio 3:2

D. Q divides PR internally in the ration 3:2

Answer: B

Watch Video Solution

17. If
$$\vec{a}=\hat{i}-\hat{k}, \vec{b}=x\hat{i}+\hat{j}+(1-x)\hat{k}$$
 and $=\stackrel{c}{i}y\hat{i}+x\hat{j}+(1+x-y)\hat{k}.$ Then $\left[\vec{a},\vec{b},\vec{c}\right]$ depends on

A. only x

B. only y

C. neither x nor y

D. both x and y

Answer: C

18. If the points (1, 1, 2), (2, 1, p), (1, 0, 3) and (2, 2, 0) are co-planar then value of p is

- A. 1
- B. 2
- C. -1
- D. 0

Answer: A

19.

- If the points A, B, C and D with position vectors $\hat{i} + \hat{j} + \hat{k}, \hat{2i} + \hat{j} + \hat{k}, \hat{i} + \hat{2j} + \hat{j}k$ and $\hat{k} + \hat{j} + \hat{k}$ are coplanar then λ is equal to
 - A. 5
 - B. 7

D.
$$\frac{13}{8}$$

Answer: D

Watch Video Solution

20. If $\hat{a}i + \hat{j} + \hat{k}$, $\hat{i} - \hat{b}j + \hat{k}$, $\hat{i} + \hat{j} - \hat{c}k$ are coplanar, then

abc+2 is equal to

A.
$$a+b-c$$

B. a-b-c

 $\mathsf{C}.\,a+b+c$

D.a-b+c

Answer: B

given vectors

 $\left(\,-\,bc,\,b^2+bc,\,c^2+bc
ight)\left(a^2+ac,\,\,-\,ac,\,c^2+ac
ight)\,\,{
m and}\,\,\left(a^2+ab,\,b^2+ab,\,\,-\,ac,\,c^2+ac
ight)$ are coplanar, where none of a, b and c is zero then

A.
$$a^2 + b^2 + c^2 = 1$$

$$\operatorname{B.}bc+ca+ab=0$$

C.
$$a + b + c = 0$$

D.
$$a^2 + b^2 + c^2 = bc + ca + ab$$

Answer: B

- **22.** If $ar{a}, ar{b}, ar{c}$ are non-zero, non collinear vectors, then the vectors $ar{a}-ar{b}+ar{c}, 4ar{a}-7ar{b}-ar{c} \ \ ext{and} \ \ 3ar{a}+6ar{b}+6ar{c}$ are
 - A. collinear
 - B. Coplanar

C. both collinear and co-planar

D. neither collinear nor coplanar

Answer: D

Watch Video Solution

23. Given vectors $ar{a},ar{b},ar{c}$ such that $ar{a}.\left(ar{b} imesar{c}
ight)=\lambda
eq0$ the value of

$$ig(ar{b} imesar{c}ig).ig(ar{a}+ar{b}+ar{c}ig)/\lambda$$
 is

A. 3

B. 1

 $\mathsf{C.} - 3\lambda$

D. $\frac{3}{\lambda}$

Answer: B

24. For any three vectors $ar{a}, ar{b}$ and $ar{c}, \left(ar{a} - ar{b}\right) \left[\left(ar{b} + ar{c}\right) imes \left(ar{c} + ar{a}\right)\right]$ is equal to:

25. If $ar{a}, ar{b}$ and $ar{c}$ are three non-coplanar vectors, then :

A.
$$2ar{a}.\left(ar{b} imesar{c}
ight)$$

B.
$$\begin{bmatrix} ar{a} & ar{b} & ar{c} \end{bmatrix}$$

C.
$$\left[ar{a} \quad ar{b} \quad ar{c}
ight]^2$$

Answer: D

$$\left(\bar{a} + \bar{b} + \bar{c}\right) \cdot \left[\left(\bar{a} + \bar{b}\right) \times \left(\bar{a} + \bar{c}\right)\right] =$$

B.
$$egin{bmatrix} ar{a} & ar{b} & ar{c} \end{bmatrix}$$

C.
$$-\left[ar{a}ar{b}ar{c}
ight]$$

D.
$$2ig[ar{a},ar{b},ar{c}ig]$$

Answer: C

Watch Video Solution

26. If ar r=lig(ar b imesar cig)+m(ar c imesar a)+nig(ar a imesar big) and ig[ar aar bar cig]= 2, then l+m+n is equal to

A.
$$ig(ar{a}+ar{b}+ar{c}ig)ar{r}$$

B.
$$rac{ar{1}}{2}ig(ar{a}+ar{b}+ar{c}ig)ar{r}$$

C.
$$rac{1}{3}ig(ar{a}+ar{b}+ar{c}ig)ig(ar{a}+ar{b}+ar{c}ig)$$

D.
$$rac{2}{3}ig(ar{a}+ar{b}+ar{c}ig)ar{r}$$

Answer: B

27. The volume of parallelopiped with vector
$$ar a+2ar b-ar c$$
, $ar a-ar b$ and $ar a-ar b-ar c$ is equal to $kar aar bar c$ then $k=0$

28. If the volume of parallelopiped with coterminus edges

 $-\hat{p}i + 5k$, $\hat{i} - \hat{j} + \hat{q}k$ and $3\hat{i} - 5\hat{j}$ is 8 then

$$A. - 3$$

B. 3

C. 2

D.-2

Answer: B

- - A. 5pq + 18 = 0
 - $B.\,3pq-18=0$
 - $\mathsf{C.}\,pq+18=0$

D.
$$pq - 18 = 0$$

Answer: A

Watch Video Solution

- **29.** If the volumes of tetrahearon where vertices (1,2,0),(2,0,4),(-1,2,0) and $(-1,1,\lambda)$ is $\frac{2}{3}cu$, unit, find the value of λ
 - A. 0
 - B. 1
 - C. 4
 - $\mathsf{D.}-2$

Answer: B

30. If D is the mid -point of side AB of ΔABC , then $\overline{AB}+\overline{BC}+\overline{AC}$ =

A.
$$2ig(\overline{AD}-\overline{BD}ig)$$

B.
$$2ig(\overline{DC}-\overline{BD}ig)$$

$$\mathsf{C.}\,2ig(\overline{BD}-\overline{CA}ig)$$

D.
$$2ig(\overline{BD}-\overline{AC}ig)$$

Answer: B

31. The vector $\overline{AB}=3\hat{i}+4\hat{k}$ and $\overline{AC}=5\hat{i}-2\hat{j}+4\hat{k}$ are the sides of a triangle ABC. The length of the median through A is

A.
$$\sqrt{288}$$

$$B. \sqrt{18}$$

$$\mathsf{C.}\,\sqrt{72}$$

D.
$$\sqrt{33}$$

Answer: D

Watch Video Solution

32. If G and G' are the centroids of the triangle ABC and A'B'C', then the value of $\overline{AA'}+\overline{BB'}+\overline{CC'}$ equals

- A. \overline{GG} '
- $\operatorname{B.} 2\overline{G}\overline{G}{}'$
- C. $3\overline{G}\overline{G}$
- D. $\frac{2}{3}\overline{G}\overline{G}'$

Answer: C

Watch Video Solution

33. If S is circumcentre, O is orthocentre of ΔABC , then $\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC}$ =

A.
$$\overline{SO}$$

B. $2\overline{SO}$

 $\mathsf{C}.\,\overline{OS}$

D. 2 \overline{OS}

Answer: A

Watch Video Solution

34. If A(-3, -2, 0), B(3, -3, 1) and C(5, 0, 2) are three successive

vertices of parallelogram ABCD, then its fourth vertex D is

A. (1, 1-1)

B. (-1, 1, 1)

C. (1, -1, 1)

D. (2, -3, 5)

Answer: B

35. In a trapezium, if the vectors $\overline{BC}=\lambda(AD), \overline{P}=\overline{AC}+\overline{BD}$ is collinear with \overline{AD} and $\overline{P} = \mu \overline{AD}$, then

A.
$$\mu=\lambda+1$$

B.
$$\lambda=\mu+1$$

$$\mathsf{C.}\,\lambda + \mu = 1$$

D.
$$\mu=2+\lambda$$

Answer: A

View Text Solution

Competitive Thinking

1. If the point (1,0), (0,1) and (x,8) are collinear, then the value of x is equal to

- A. 5
 - B.-6
 - C. 6
 - D.-7

Answer: D

- **2.** The points with position vectors $20\hat{i} + p\hat{j}$, $5\hat{i} \hat{j}$ and $10\hat{i} 13\hat{j}$ are collinear. The value of p is
 - A. 7
 - B. -37
 - $\mathsf{C.}-7$
 - D. 37

3. If the points $P(\bar{a}+2\bar{b}+\bar{c})$. $Q(2\bar{a}+3\bar{b})$ and $R(\bar{b}+t\bar{c})$ are collinear, where \bar{a},\bar{b},\bar{c} are three non-coplanar vectors, then the value of t is

$$A.-2$$

$$\mathsf{B.}-\frac{1}{2}$$

c.
$$\frac{1}{2}$$

D. 2

Answer: D

Watch Video Solution

4. If the position vectors of the points A,B,C are \bar{a},\bar{b} and $3\bar{a}-2\bar{b}$ respectively, then the position A,B,C are

A. Collinear

B. Non-collinear

C. Forming a right angled triangle

D. None of these

Answer: A

Watch Video Solution

- **5.** If $ar a, \, ar b, \, ar c$ are three non-zero vectors which are pairwise non-collinear. If ar a+3ar b is collinear with ar c and ar b+2ar c is collinear with ar a, then
- $ar{a}+3ar{b}+6ar{c}$ is

A. $ar{c}$

в. $\bar{0}$

 $\mathrm{C.}\,\bar{a}+\bar{c}$

D. $ar{a}$

Answer: B

6. If the vectors
$$3\hat{i} + 2\hat{j} - \hat{k}$$
 and $6\hat{i} - 4x\hat{j} + y\hat{k}$ are parallel, then the value of x and y will be

A.
$$-1, -2$$

B.
$$1, -2$$

$$C. -1, 2$$

Answer: A

7. If the vectors
$$3\hat{i} + \hat{j} - 5\hat{k}$$
 and $a\hat{i} + b\hat{j} - 15\hat{k}$ are collinear, if

A.
$$a = 3, b = 1$$

$$\mathtt{B.}\,a=9,b=1$$

C.
$$a = 3, b = 3$$

D.
$$a = 9, b = 3$$

Answer: D

Watch Video Solution

8. If \bar{a}, \bar{b} are non-collinear vectors and x,y are scalars such that

$$xar{a}+yar{b}=ar{0}$$
, then

- A. x=0, but y is not necessarily zero
- B. y = 0, but x is nont necessary zero

$$C. x = 0, y = 0$$

D. None of these

Answer: C

9. If ar a, ar b, ar c are non-collinear vectors such that for some scalar x,y,z,xar a+yar b+zar c=0, then

A.
$$x = 0, y = 0, z = 0$$

B.
$$x
eq 0, y
eq , z = 0$$

$$\mathsf{C.}\, x = 0, y \neq 0, z \neq 0$$

D.
$$x
eq 0, y
eq 0z
eq 0$$

Answer: A

Watch Video Solution

10. \overrightarrow{a} and \overrightarrow{b} are two non collinear vectors then $x\overrightarrow{a}+y\overrightarrow{b}$ (where x and y are scalars) represents a vector which is (A) parallel to \overrightarrow{a} (C) coplanar with \overrightarrow{a} and \overrightarrow{b} (D) none of these

A. Parallel to
$$ar{b}$$

B. Parallel to
$$\bar{a}$$

C. Coplanar with
$$ar{a} \; ext{and} \; ar{b}$$

D. None of these

Answer: C

Watch Video Solution

- $ar{a}=\hat{i}+\hat{j}-\hat{j}\hat{k}, ar{b}=\hat{2}\hat{i}-\hat{j}+\hat{k}$ and $ar{c}=\hat{3}\hat{i}+\hat{k}$ and $ar{c}=mar{a}+nar{b}$

If

- B. 1
- C. 2

then m+n

A. 0

- D. -1

Answer: C

- 12. The position vectors of the point which divides internally in the ratio
- $2\!:\!3$ the join of the points $2ar{a}-3ar{b}$ and $3ar{a}-2ar{b}$, is

A.
$$\frac{12}{5}ar{a}+\frac{13}{5}ar{b}$$

B.
$$\frac{12}{5} \bar{a} - \frac{13}{5} \bar{b}$$

C.
$$rac{3}{5}ar{a}-rac{2}{5}ar{b}$$

D.
$$\frac{2}{5}ar{a}=rac{3}{5}ar{b}$$

Answer: B

Watch Video Solution

13. Let A(1, -1, 2) and B(2, 3-1) be two points. If a point P divides

AB internally in the ratio 2:3, then the position vector of P is

A.
$$\frac{1}{\sqrt{5}}(\hat{i}+\hat{j}+\hat{k})$$

B.
$$\frac{1}{\sqrt{3}} (\hat{i} + 6\hat{j} + \hat{k})$$

C.
$$rac{1}{\sqrt{3}}ig(\hat{i}+\hat{j}+\hat{k}ig)$$
D. $rac{1}{5}ig(\hat{7}\hat{i}+\hat{3}\hat{j}+\hat{4}\hat{k}ig)$

Answer: D

14. If z_1 and z_2 are z co-ordinates of the point of trisection of the segment joining the points $A(2,1,4),\,B(\,-1,3,6)$ then $z_1+z_2=$

A. 1

B. 4

C. 5

D. 10

Answer: D

15. If the position vector of a point A is $\overrightarrow{a} + 2\overrightarrow{b}$ and \overrightarrow{a} divides AB in the ratio 2: 3, then the position vector of B, is

- A. $ar{a}+ar{b}$
- B. \bar{a}
- C. $ar{a}-3ar{b}$
- D. $ar{b}$

Answer: C

Watch Video Solution

16. Assertion (A): If (-1,3,2) and (5,3,2) are respectively the orthocentre and circumcentre of a triangle, then (3,3,2) is its centroid. Reason (R): Centroid of a triangle divides the line segment joining the orthocentre and the circumcentre in the ratio 1:2,

A. A and R are true and R is correct explanation to A.

B. A and R are true but R is not the correct explanation to A.

C. A is true, R is false.

D. A is false. R is true.

Answer: C

Watch Video Solution

17. orthocentre centroid If the and of triangle are

(-3, 5, 2) and (3, 3, 4) respectively, then its circumcentre is

A.(6,2,5)

B. (6, 2, -5)

C.(6, -2, 5)

D. (6, -2, -5)

Answer: A

18. L and M are two points with position vectors $2\overrightarrow{a}-\overrightarrow{b}$ and $\overrightarrow{a}+2\overrightarrow{b}$, respectively. The position vector of the pont N which divides the line segment LM in the ratio 2:1 externally is

- A. $3 \bar{b}$
- B. $4ar{b}$
- C. $5ar{b}$
- D. $3ar{a}+4ar{b}$

Answer: C

Watch Video Solution

19. The position vector of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i} + 2\hat{j} - \hat{k}$ and $-\hat{i} + \hat{j} - \hat{k}$ respectively, in the ratio 2:1 externally is

A.
$$-3\hat{i} - \hat{k}$$

 $B. \hat{3i} + \hat{k}$

C. $\hat{2i} + \hat{j} - \hat{k}$

D. None of these

Answer: A

Watch Video Solution

20. If $3\overline{P}+2\overline{R}-5\overline{Q}=ar{0}$, then

A. P, Q, R are collinear

B. P, Q, R vertices of a Δ

C. Q divides PR externally

D. None of these

Answer: A

21. If three points A,B,C are collinear, whose position vectors are $\hat{i}-2\hat{j}-8\hat{k},5\hat{i}-2\hat{k}$ and $11\hat{i}+3\hat{j}+7\hat{k}$ respectively, then the ratio in which B divides AC is

- A. 1:2
- B. 2:3
- C. 2:1
- D. 1:1

Answer: B

Watch Video Solution

22. Let $\square PQRS$ be a quadrilateral. If M and N are the mid-points of the sides PQ and RS respectively, then PS+QR=

A. $3\overline{MN}$

$${\rm B.}\,4\overline{MN}$$

 $\mathsf{C.}\,2\overline{MN}$

D. $2\overline{NM}$

Answer: C

Watch Video Solution

23. In $\triangle ABC$, L, M, N are points on BC, CA, AB respectively, dividing

them in the ratio 1:2,2:3,3:5, if the point K divides AB in the ratio 5:3,

then
$$\dfrac{\left|\overline{AL}+\overline{BM}+\overline{CN}
ight|}{\left|\overline{CK}
ight|}=$$

A.
$$\frac{1}{15}$$

$$\mathsf{B.}\;\frac{2}{5}$$

C.
$$\frac{5}{8}$$
D. $\frac{3}{5}$

24. Let G be the centroid of a triangle ABC and O be any other point, then

$$\overline{OA} + \overline{OB} + \overline{OC}$$
 is equal to

 $A. \bar{0}$

B. \overline{OG}

 $C.3\overline{OG}$

D. None of these

Answer: C

Watch Video Solution

25. If A, B, C are the vertices of a triangle whose position vectros are

$$\overrightarrow{a}$$
 , \overrightarrow{b} , \overrightarrow{c} and G is the centroid of the ΔABC , then

$$\overline{GA} + \overline{GB} + \overline{GC} =$$

A.
$$\bar{0}$$

B.
$$ar{a}+ar{b}+ar{c}$$

C.
$$rac{ar{a}+ar{b}+ar{c}}{3}$$

D.
$$rac{ar{a}+ar{b}-ar{c}}{3}$$

Answer: A

Watch Video Solution

26. If $\bar{a} = 2\hat{i} + \hat{j} - \hat{k}$, $\bar{b} = \hat{i} + 2\hat{j} + \hat{k}$ and $\bar{c} = \hat{i} - \hat{j} + 2\hat{k}$, then

- $ar{a}.\left(ar{b} imesar{c}
 ight)=$
 - A. 6
 - B. 10
 - C. 12
 - D. 24

Answer: C

27. If
$$ar{a}=\hat{i}+\hat{j}+\hat{k},ar{b}=2\hat{i}+\lambda\hat{j}+\hat{k},ar{c}=\hat{i}-\hat{j}+4\hat{k}$$
 and $ar{a}.\left(ar{b}\timesar{c}\right)=$

, then
$$\lambda$$
 is equal to

C. 9

Answer: A

Watch Video Solution

28. If $ar{a}$ is perpendicular to $ar{b}$ and $ar{c}, |ar{a}|=2, \left|ar{b}\right|=3, |ar{c}|=4$ and the angle between $\bar{b} \ {
m and} \ \bar{c}$ is $\frac{2\pi}{3}$. then $\begin{bmatrix} \bar{a} & \bar{b} & \bar{c} \end{bmatrix}$ is equal to

A.
$$4\sqrt{3}$$

B. $6\sqrt{3}$

C. $12\sqrt{3}$

D. $18\sqrt{3}$

Answer: C

Watch Video Solution

29. If $ar{a},\,ar{b},\,ar{c}$ are mutually prependicular vectors having megnitudes $1,\,2,\,3$

respectively, then $\left[ar{a}+ar{b}+ar{c}ar{b}-ar{a}\quadar{c}
ight]=$

A. 0

B. 6

C. 12

D. 18

Answer: C

30. The value of
$$\left[ar{a} - ar{b}, \, ar{b} - ar{c}, \, ar{c} - ar{a}
ight]$$
, where

$$|ar{a}|=1, \left|ar{b}
ight|=5 \,\, ext{and} \,\, |ar{c}|=3 \, ext{is}$$

B. 1

C. 2

D. 4

Answer: A

Watch Video Solution

31. The value of
$$\left(ar{a}-ar{b}
ight)$$
. $\left[\left(ar{b}-ar{c}
ight) imes\left(ar{c}-ar{a}
ight)
ight]$ is

B. $2egin{bmatrix} ar{a} & ar{b} & ar{c} \end{bmatrix}$

C.
$$3ar{a}$$
 $ar{b}$ $ar{c}$

D. None of these

Answer: A

Watch Video Solution

32. If a vector $\overline{\alpha}$ lie in plane $\bar{\beta}$ and $\bar{\gamma}$ then which is correct

A.
$$\left[\overline{lpha}\,,ar{eta},ar{\gamma}
ight]=0$$

B.
$$[\overline{lpha}\,,ar{eta},ar{\gamma}]=1$$

C.
$$\left[\overline{lpha}\,,ar{eta},ar{\gamma}
ight]=3$$

D.
$$\left[ar{eta},ar{\gamma},\overline{lpha}\,
ight]=1$$

Answer: A

33. If
$$ar a, \, ar b, \, ar c$$
 are three coplanar vectors, then $ar [ar a + ar b \quad ar b + ar c \quad ar c + ar a] =$

34. If $ar{a}, ar{b}, ar{c}$ be any three non-coplanar vectors,

then

A.
$$\left[ar{a}ar{b}ar{c}
ight]$$

B.
$$2igl[ar{a}ar{b}ar{c}igr]$$

C.
$$3ig[ar{a}ar{b}ar{c}ig]$$

Answer: D

$$egin{bmatrix} ar{a} + ar{b} & ar{b} + ar{c} & ar{c} + ar{a} \end{bmatrix} =$$

A.
$$egin{bmatrix} ar{a} & ar{b} & ar{c} \end{bmatrix}$$

B.
$$2ig[ar{a} \quad ar{b} \quad ar{c}ig]$$

c.
$$egin{bmatrix} ar{a} & ar{b} & ar{c} \end{bmatrix}^2$$

D.
$$2egin{bmatrix} ar{a} & ar{b} & ar{c} \end{bmatrix}^2$$

Answer: B

Watch Video Solution

35. Let $\overline{A}=\hat{i}+\hat{j}+\hat{k},\overline{B}=\hat{i},\overline{C}=C_1\hat{i}+C_2\hat{j}+C_3\hat{k}$ if

 $C_2=\ -1 \ {
m and} \ C_3=$ 1, then make three vectors coplanar

A.
$$C_1 = 0$$

B.
$$C_1 = 1$$

$$\mathsf{C.}\,C_1=2$$

D. No value of C_1 can be found

Answer: D

Watch Video Solution

36. If the vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} + 2\hat{j} - 3\hat{k}$ and $3\hat{i} + \lambda\hat{j} + 5\hat{k}$ be

coplanar, then $\lambda=$

A.
$$-1$$

B.-2

 $\mathsf{C.}-3$

D.-4

Answer: D

Watch Video Solution

37. If the vectors $\hat{\lambda}i + \hat{j} + \hat{j}k$, $\hat{i} + \hat{\lambda}j - \hat{k}$ and $\hat{2}i - \hat{j} + \hat{\lambda}k$ are

coplanar if

A.
$$\lambda=-2$$

 $B.\lambda = 0$

C.
$$\lambda=2$$

D. $\lambda = 1$

Answer: A

38. If the vectors
$$4\hat{i}+11\hat{J}+m\hat{k}$$
, $7\hat{i}+2\hat{j}+6\hat{k}$ and $\hat{i}+5\hat{j}+4\hat{k}$ are coplanar, then m is equal to

$$D. -10$$

Answer: C

Watch Video Solution

39. If the vectors $2\hat{i} + 2\hat{j} + 6\hat{k}$, $2\hat{i} + \lambda\hat{j} + 6\hat{k}$, $2\hat{i} - 3\hat{j} + \hat{k}$ are coplanar, then the value of λ is

$$A. - 10$$

- B. 1
- C. 0
 - D. 2

Answer: D

Watch Video Solution

- 40. If the four points with position vectors
- $-2\hat{\;i}+\hat{\;j}+\hat{\;k},\,\hat{\;i}+\hat{\;j}+\hat{\;k},\,\hat{\;j}-\hat{\;k}$ and $\hat{\lambda}j+\hat{\;k}$ are coplanar, then $\bar{\lambda} =$
 - A. 1
 - B. 2
 - C. -1
 - D. 0

Answer: A

41. If the vectors
$$ar a=\hat i+\hat j+\hat k, ar b=\hat i-\hat j-2\hat k$$
 and $ar c=\hat x\hat i+(x-2)\hat j-\hat k$ are

coplanar, then
$$x=$$

$$D.-2$$

Answer: D

42. If the point having the position vectors
$$3\hat{i}-2\hat{j}-\hat{k},2\hat{i}+3\hat{j}-4\hat{k},-\hat{i}+\hat{j}+2\hat{k}$$
 and $4\hat{i}+5\hat{j}+\lambda\hat{j}k$ are coplanar then $\lambda=$

A.
$$-8$$

B. 8

c.
$$\frac{146}{17}$$

D.
$$\frac{-146}{17}$$

Answer: D

- **43.** If \bar{a},\bar{b} and \bar{c} are non-coplanar vectors and the four points with position vectors $2\bar{a}+3\bar{b}-\bar{c},\bar{a}-2\bar{b}+3\bar{c},3\bar{a}+4\bar{b}-2\bar{c},k\bar{a}-6\bar{b}+6\bar{c}$ are coplanar, then k

 - A. 0
 - B. 1
 - C. 2
 - D. 3

Answer: B

Watch Video Solution

44. If the vectors $\hat{a}i+\hat{j}+\hat{k},\hat{i}+\hat{b}j+\hat{k}$ and $\hat{i}+\hat{j}+\hat{c}k$ are coplanar $(a\neq b\neq c\neq 1)$, then the value of abc-(a+b+c)=

- A. 2
- B.-2
- C. 0
- D. -1

Answer: B

Watch Video Solution

45. The number of distinct real value of λ , for which the vector $-\lambda^2\hat{i} + \hat{j} + \hat{k}, \hat{i} - \lambda^2\hat{j} + \hat{k} \text{ and } \hat{i} + \hat{j} - \lambda^2\hat{k} \text{ are coplanar,is}$

- A. Zero
- B. One
- C. Two
- D. Three

Answer: C

Watch Video Solution

- **46.** The number of distinct real values of λ for which the vectors $ar{a} = \lambda^3 \hat{\ }i + \hat{\ }k, ar{b} = \hat{\ }i - \lambda^3 \hat{\ }j ext{ and } ar{c} = \hat{\ }i + (2\lambda - \sin\lambda)\hat{\ }j - \lambda\hat{\ }k$
 - A. 0

coplanar is

- B. 1
- C. 2
- D. 3

Answer: B

Watch Video Solution

47. If $\bar{a}, \bar{b}, \bar{c}$ are non coplanar vectros and λ is a real number then the vectors $\overline{+}\,2\bar{b}\,+\,3\bar{c},\,\lambda\bar{b}\,+\,4\bar{c}$ and $(2\lambda-1)\bar{c}$ are non coplanar for (A) all values of lamda (B) non value of lamda (C) all except two values of lamda (D) all except one vaue of lamda

- A. No value of λ
- B. all except one value of λ
- C. all except two values of λ
- D. all values of λ

Answer: C

48. If the origin and the point p(2, 3, 4), q(1, 2, 3)R(x, y, z) are coplanar then

A.
$$x-2y-z=0$$

$$\mathsf{B.}\,x + 2y + z = 0$$

$$\mathsf{C.}\,x-2y+z=\ -0$$

$$\mathsf{D.}\,2x-2y+z=0$$

Answer: C

49. A vector perpendicular to
$$2\hat{i} + \hat{j} + \hat{k}$$
 and coplanar $\hat{i} + 2\hat{j} + \hat{k}$ and $\hat{i} + \hat{j} + 2\hat{k}$ is

A.
$$5 (\hat{\ } j - ar{k})$$

B.
$$\hat{\ }i+7\hat{\ }j-\hat{\ }k$$

$$\mathsf{C.}\,5\big(\hat{}j+\hat{}k\big)$$

D.
$$\hat{2i} - \hat{7j} - \hat{k}$$

Answer: A

View Text Solution

50. Given three arbitary vectors $ar{a}, ar{b}, ar{c},$ then vectors

$$\overline{lpha}\,=5ar{a}+6ar{b}+7ar{c},$$
 $eta=7ar{a}-8ar{b}+9ar{c},$ $ar{y}=3ar{a}+20ar{b}+5ar{c}$ are

- A. collinear
- B. Coplanar
- C. Non-coplanar
- D. None of these

Answer: B

View Text Solution

51. If \bar{x} . $\bar{a}=0$, \bar{x} . $\bar{b}=0$ and \bar{x} . $\bar{c}=0$ for some non-zero vectors x, then

the TRUE statement is

A.
$$\left[ar{a}\quad ar{b}\quad ar{c}
ight]=0$$

B.
$$ig[ar{a} \quad ar{b} \quad ar{c}ig]
eq 0$$

C.
$$\left[ar{a} \quad ar{b} \quad ar{c}
ight] = 1$$

D. None of these

Answer: A

52. which of the following expression are meaningful?

A.
$$ar{u}$$
. $(ar{v} imes ar{w})$

B.
$$(ar{u}.\ ar{v}).\ ar{w}$$

C.
$$(ar{u}.\ ar{v}) imes ar{w}$$

D.
$$ar{u} imes(ar{v}.\,ar{w})$$

Answer: A

Watch Video Solution

53. Out of the following which one is not true?

- A. $ar{a}$. $\left(ar{b} imesar{c}
 ight)$
- B. $(ar{b} imesar{c})$. $ar{a}$
- C. $(ar{a} imesar{b})$. $ar{c}$
- D. $(ar{a}.\,ar{c}) imesar{b}$

Answer: D

Watch Video Solution

54. For three vectors \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} which of the following expressions is not eqal to any of the remaining three?

A.
$$ar{u}$$
. $(ar{v} imes ar{w})$

B. $(ar{v} imes \overline{w})$. $ar{u}$

C. \bar{v} . $(\bar{u} \times \overline{w})$

D.
$$(ar{u} imesar{v})$$
 . \overline{w}

Answer: C

Watch Video Solution

55.
$$ar{a}.\left(ar{a} imesar{b}
ight)=$$

A.
$$ar{b}$$
. $ar{b}$

в.
$$\overline{a^2}$$
. $ar{b}$

D. $ar{a}^2+ar{a}.~ar{b}$

Answer: C

56. If
$$\bar{a},\,\bar{b},\,\bar{c}$$
 are non-coplaner vectors, then

$$\frac{\bar{a}.\,\bar{b}\times\bar{c}}{\bar{c}\times\bar{a}.\,\bar{b}}+\frac{\bar{b}.\,\bar{a}\times\bar{c}}{\bar{c}.\,\bar{a}\times\bar{b}}=$$

A. 0

B. 2

 $\mathsf{C}.-2$

D. None of these

Answer: A

Watch Video Solution

57. If $ar{a}, ar{b} \ ext{and} \ ar{c}$ are non-coplanar, then the value of $ar{a}.\left\{rac{ar{b} imesar{c}}{3ar{b}.\left(ar{c} imesar{a} ight)} ight\}-ar{b}.\left\{rac{ar{c} imesar{a}}{2ar{c}\left(ar{a} imesar{b} ight)} ight\}$ is

A.
$$\frac{-1}{2}$$

$$\mathsf{B.}\,\frac{-1}{3}$$

$$\mathsf{C.}\,\frac{-1}{6}$$

$$\mathsf{D.}\,\frac{1}{6}$$

Answer: C

Watch Video Solution

58.
$$ar{a}.$$
 $\left[ar{b}+ar{c}
ight) imes\left(ar{a}+ar{b}+ar{c}
ight)
ight]$ is equal to

A.
$$\left[ar{a} \quad ar{b} \quad ar{c}
ight]$$

B.
$$2ar{a} ar{b} ar{c}$$

C.
$$3ar{a}$$
 $ar{b}$ $ar{c}$

D. 0

Answer: D

59.
$$\left(ar{a} + ar{b} \right)$$
. $\left(ar{b} + ar{c} \right) imes \left(ar{a} + ar{b} + ar{c} \right) =$

A.
$$-egin{bmatrix} ar{a} & ar{b} & ar{c} \end{bmatrix}$$

B.
$$ar{[}ar{a} \quad ar{b} \quad ar{c}ar{]}$$

D.
$$2ar{a} ar{b} ar{c}$$

Answer: B

Watch Video Solution

60. If $\bar{a} = \frac{1}{\sqrt{10}} (\hat{3}i + \hat{k}), \bar{b} = \frac{1}{7} (\hat{2}i + \hat{3}j - \hat{6k})$, then the value of

$$ig(2ar{a}-ar{b}ig).\left\{ig(ar{a} imesar{b}ig) imesig(ar{a}+2ar{b}ig)
ight\}$$
 is

A.
$$-5$$

$$B.-3$$

Answer: A

View Text Solution

- **61.** If $\bar{p}=\frac{\bar{b}\times\bar{c}}{\bar{a}\ \bar{b}\ \bar{c}}, \bar{q}=\frac{\bar{c}\times\bar{a}}{\bar{a}\ \bar{b}\ \bar{c}}, \bar{r}=\frac{\bar{a}\times\bar{b}}{\bar{a}\ \bar{b}\ \bar{c}}$, where \bar{a},\bar{b},\bar{c} are three non-coplanar vectors, then the value of $(\bar{a}+\bar{b}+\bar{c}).(\bar{p}+\bar{q}+\bar{r})$ is given by
 - A. 3
 - B. 2
 - C. 1
 - D. 0

Answer: A

62. If
$$\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}$$
 are three non-coplanar $\left(\overrightarrow{u}+\overrightarrow{v}-\overrightarrow{w}\right).\left(\overrightarrow{u}-\overrightarrow{v}\right) imes\left(\overrightarrow{v}-\overrightarrow{w}\right)$ equals

vectors,

the

B.
$$ar{u}$$
. $(ar{v} imes ar{w})$

C.
$$ar{u}$$
. $(ar{w} imes ar{v})$

D.
$$3ar{u}.~(ar{v} imesar{w})$$

Answer: B

Watch Video Solution

63. If $ar a, \, ar b, \, ar c$ are three non-coplanar vectors and $ar p, \, ar q, \, ar r$ are defined by the $ar{p}=rac{ar{b} imesar{c}}{ar{a}ar{b}ar{c}},ar{q}=rac{ar{c} imesar{a}}{ar{a}ar{b}ar{c}},ar{r}=rac{ar{a} imes b}{ar{a}ar{b}ar{c}}$ relations then

$$abc$$
 abc $(ar{a}+ar{b}).\,ar{p}+ig(ar{b}+ar{c}ig).\,ar{q}+ig(ar{c}+ar{a}).\,ar{r}=$

$$(a - b) \cdot p + (b + c) \cdot q + (c + a) \cdot r =$$

A. 0

D. 3

Answer: D

Watch Video Solution

64. If a, b and c are non-coplanar vectors and $d=\lambda a+\mu b+
u c$, then λ is equal to

A. $\frac{[dbc]}{}$

[bac]

 $\mathsf{B.}\;\frac{[bcd]}{[bca]}$

C. $\frac{[bdc]}{c}$ [abc]

Answer: B

65. If \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} are non -coplanar vectors and p,q, are real numbers then

the equality

$$\left[3\overrightarrow{u} \, p\overrightarrow{v} \, p\overrightarrow{w}
ight] - \left[p\overrightarrow{v} \, \overrightarrow{w} \, q\overrightarrow{u}
ight] - \left[2\overrightarrow{w} - q\overrightarrow{v} \, q\overrightarrow{u}
ight] = 0$$
 holds for

A. exactly one value of (p. q)

B. exactly two value of (p. q)

C. more than two but not all values of $(p.\ q)$

D. all values of (p,q)

Answer: A

Watch Video Solution

66. If $\bar{a}, \bar{b}, \bar{c}$ are non-coplanar vectors and λ is a real numbers then

$$\left[\lambdaig(ar{a}+ar{b}ig)\lambda^2ar{b}\quad\lambdaar{c}
ight]=egin{bmatrix}ar{a}&ar{b}+ar{c}&ar{b}\end{bmatrix}$$
 for

A. exactly three values of λ

B. exactly two values of λ

C. exactly one value of λ

D. no value of λ

Answer: D

Watch Video Solution

- **67.** If the vectors $2\hat{i} 3\hat{j}$, $\hat{i} + \hat{j} \hat{k}$ and $3\hat{i} \hat{k}$ form three concurrent edges of a parallelopiped, then the volume of parallelopiped is
 - A. 8
 - B. 10
 - C. 4
 - D. 14

Answer: C

68. The volumes of the parallelopiped whose edges are represented by

$$ar{a} = 2\hat{\;\;} i - 3\hat{\;\;} j + \hat{\;\;} k, ar{b} = \hat{\;\;} i - \hat{\;\;} j + 2\hat{\;\;} k, ar{c} = 2\hat{\;\;} i + \hat{\;\;} j - \hat{\;\;} k$$
 is

- A. 14 cu. Units
- B. 16 cu. Units
- C. 18 cu. Units
- D. 20 cu. Units

Answer: A

Watch Video Solution

69. If the volume of the tetrahedron formed by the coterminus edges \bar{a}, \bar{b} and \bar{c} is 4, then the volume of the parallelopiped formed by the coterminous edges $\bar{a} \times \bar{b}, \bar{b} \times \bar{c}$ and $\bar{c} \times \bar{a}$ is

A. 144

B. 16

C. 48

D. 576

Answer: D

Watch Video Solution

70. The volume of a parallelopiped whose edges are represented by $-12ar{i}+\lambdaar{k},3ar{j}-ar{k}\ ext{and}\ 2ar{i}+ar{j}-15ar{k}$ is 546 then $\lambda=_{-}$ -

- - A. 3
 - B. 2
 - $\mathsf{C.}-3$
 - D.-2

Answer: C

71. If the three co-terminous edges of a paralleloP1ped are represented by

 $ar{a}-ar{b},$ $ar{b}-ar{c},$ $ar{c}-ar{a}$, then its volume is

- A. $\left[ar{a}ar{b}ar{c}
 ight]$
- B. $2igl[ar{a}ar{b}ar{c}igr]$
- C. $\left[ar{a}ar{b}ar{c}
 ight]^2$
- D. 0

Answer: D

72.

Watch Video Solution

 $ar{a} = 2\hat{\;\;} i - 3\hat{\;\;} j + 5\hat{\;\;} k, \, ar{b} = 3\hat{\;\;} i - 4\hat{\;\;} j + 5\hat{\;\;} k \, ext{ and } \, ar{c} = 5\hat{\;\;} i - 3\hat{\;\;} j - 2\hat{\;\;} k,$

then the volume of the parallelopiped with co-terminus edges

If

$$ar{a}+ar{b},ar{b}+ar{c},ar{c}+ar{a}$$
 is

B. 5

C. 8

D. 16

Answer: D

Watch Video Solution

73. The volume of a tetrahedron (in cubic units) whose vertices are

$$\hat{4i} + \hat{5j} + \hat{k}, -\hat{j} + \hat{k}, \hat{3i} + \hat{9j} + \hat{k}$$
 and $-\hat{2i} + \hat{4j} + \hat{k}$ is

A.
$$\frac{14}{3}$$

C. 6

B. 5

D. 30

Answer: B

74. The vectors $\overline{AB}=3\hat{i}+5\hat{j}+4\hat{k}$ and $\overline{AC}=5\hat{i}-5\hat{j}+2\hat{k}$ are sides of a triangle ABC The length of the median through A is

- A. $\sqrt{13}$ units
- B. $2\sqrt{5}$ units
- C. 5 units
- D. 10 units

Answer: C

Watch Video Solution

75. A(4,3,5), B(0,-2,2) and C(3,2,1) are three points. The coordinates of the point in which the bisector of $\angle BAC$ meets the side \overline{BC} is

A.
$$\left(\frac{15}{8}, \frac{4}{8}, \frac{11}{8}\right)$$
B. $\left(\frac{12}{7}, \frac{2}{7}, \frac{10}{7}\right)$

C.
$$\left(\frac{9}{5}, \frac{2}{5}, \frac{7}{5}\right)$$
D. $\left(\frac{3}{2}, 0, \frac{3}{2}\right)$

Answer: A

76. If
$$4\overrightarrow{i} + 7\overrightarrow{j} + 8\overrightarrow{k}$$
, $2\overrightarrow{i} + 3\overrightarrow{j} + 4\overrightarrow{k}$ and $2\overrightarrow{i} + 5\overrightarrow{j} + 7\overrightarrow{j}$ are the position vectors of the vertices of A,B and C of a triangle ABC, then the position vector of the point where the bisector of $\angle A$ meets BC

A.
$$rac{1}{3}\Big(\hat{6}\hat{i}+1\hat{3}\hat{j}+1\hat{8}\hat{k}\Big)$$

B.
$$rac{3}{2}ig(\hat{6}i+1\hat{2}j-\hat{8}kig)$$

C.
$$rac{1}{3}\Big(-\hat{6i}-\hat{8j}-\hat{9k}\Big)$$

D.
$$rac{2}{3}\Big(-6\hat{\;i}-12\hat{\;j}+8\hat{\;k}\Big)$$

Answer: A

Watch Video Solution

77. consider the points A,B,C and D with position vector

$$7\overrightarrow{i}-4\overrightarrow{j}+7\overrightarrow{k},\overrightarrow{i}-6\overrightarrow{j}+10\overrightarrow{k},-\overrightarrow{i}-3\overrightarrow{j}+4\overrightarrow{k}$$

and

 $5\overrightarrow{i}-\overrightarrow{j}+\overrightarrow{k}$ respectively then ABCD is

A. parallelogram but not a rhombus

B. square

C. rhombus

D. rectangle

Answer: C

 $\overrightarrow{AB}.\overrightarrow{AC}+\overrightarrow{BC}.\overrightarrow{BA}+\overrightarrow{CA}.\overrightarrow{CB}$ is equal to:

78. In a right angled triangle ABC, the hypotenuse AB =p, then

79. Let $ar{a}=\hat{2i}+\hat{j}+\hat{k}, ar{b}=\hat{i}+\hat{2j}-\hat{k}$ and a unit vectors $ar{c}$ be

A.
$$3p^2$$

B.
$$\frac{3p^2}{2}$$

C. p^2

D. $\frac{p^2}{2}$

Answer: C

watch video Solution

coplanar. If
$$ar{c}$$
 is prependicular to $ar{a}$, then $ar{c}=$

A.
$$\frac{1}{\sqrt{2}} \left(-\hat{j} + \hat{k} \right)$$

B.
$$\dfrac{1}{\sqrt{3}}\Big(-\hat{\;\;}i-\hat{\;}j-\hat{\;\;}k\Big)$$

C.
$$\frac{1}{\sqrt{5}}(\hat{i}-2\hat{j})$$

D.
$$\frac{1}{\sqrt{3}} (\hat{i} - \hat{j} - \hat{k})$$

Answer: A

Watch Video Solution

Evaluation Test

1. Given $ar{a},\,ar{b},\,ar{c}$ are three non-zero vectors, no two of which are collinear. If the vector $\left(ar{a}+ar{b}
ight)$ is collinear with $ar{c}$ and $\left(ar{b}+ar{c}
ight)$ is collinear with $ar{a}$, then

$$:$$
 $ar{a}+ar{b}+ar{c}$ =

A. a unit vectors

B. a null vectors

C. equally inclined to $\bar{a}, \, \bar{b}, \, \bar{c}$

D. None of these

Answer: B

Dayarah walan calanta

2. If
$$ar a, ar b, ar c$$
 are three non-coplanar vectors such that $ar r_1=ar a-ar b+ar c, ar r_2=ar b+ar c-ar a, ar r_3=ar c+ar a+ar b, ar r=2ar a-3ar b+4ar c,$ if

A.
$$\lambda_1=7$$

B.
$$\lambda_1 + \lambda_3 = 3$$

$$\mathsf{C.}\,\lambda_1+\lambda_2+\lambda_3=5$$

 $\bar{r} = \lambda_1 \bar{r}_1 + \lambda_2 \bar{r}_2 + \lambda_3 \bar{r}_3$, then

D.
$$\lambda_3 + \lambda_2 = 2$$

Answer: B

Watch Video Solution

 $a\hat{i}+a\hat{j}+c\hat{k},\,\hat{i}+\hat{k}\;\; ext{and}\;\;\;c\hat{i}+c\hat{j}+b\hat{k}$ lie in a plane then c is

3. Let a,b,c be distinct non- negative numbers . If the vectors

A. The arithmetic mean of a and b

B. The geometric mean of a and b

C. The harmonic mean of a and b

D. Equal to zero

Answer: B

Watch Video Solution

- **4.** The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}sucht$ hat a.hatb=hatb
- .hatc=hatc.hata=1/2`. Then, the volume of parallelopiped is

A.
$$\frac{1}{\sqrt{2}}$$
 cubic units

B.
$$\frac{1}{2\sqrt{2}}$$
 cubic units

C.
$$\frac{\sqrt{3}}{2}$$
 cubic units

D.
$$\frac{1}{\sqrt{3}}$$
 cubic units

Answer: A

are

$$a\hat{\ }i+\hat{\ }j+\hat{\ }k,\hat{\ }i+b\hat{\ }j+\hat{\ }k \ \ ext{and} \ \ \hat{\ }i+\hat{\ }j+c\hat{\ }k(a
eq b
eq c
eq 1)$$
 coplanar, then the value of $\dfrac{1}{1-a}+\dfrac{1}{1-b}+\dfrac{1}{1-c}=$

$$A. - 1$$

$$\mathsf{B.}-\frac{1}{2}$$

c.
$$\frac{1}{2}$$

D. 1

Answer: D

- 6. The value of a so that volume of parallelopiped formed by vectors
- $\hat{i}+\hat{a}\hat{j}+\hat{k},\hat{j}+\hat{a}\hat{k},\hat{a}\hat{i}+\hat{k}$ becomes minimum is

A.
$$\sqrt{3}$$

B. 2

$$\mathsf{C.}\,\frac{1}{\sqrt{3}}$$

D. 3

Answer: C

Watch Video Solution

7. If ar a. ar b=ar b. ar c=ar c. ar a=0 then the value of ar a=ar b ar c is equal to

A. 1

B.-1

C. $|ar{a}| |ar{b}| |ar{c}|$

D. 0

Answer: C

8. Let $\bar{a}=-\hat{i}-\hat{k}, \bar{b}=-\hat{i}+\hat{j}$ and $\bar{c}=\hat{i}+2\hat{j}+3\hat{k}$ be three given vectors. If \bar{r} is a vector such that $\bar{r}\times\bar{b}=\bar{c}\times\bar{b}$ and $\bar{r}.\ \bar{a}=0$, then the value of $\bar{r}.\ \bar{b}$ is

- A. 4
- B. 8
- C. 6
- D. 9

Answer: D

Watch Video Solution

9. If $ar{a}$ and $ar{b}$ are vectors such that $|ar{a}+ar{b}|=\sqrt{29}$ and $ar{a} imes\left(\hat{2}\hat{i}+\hat{3}\hat{j}+\hat{4}\hat{k}\right)=\left(\hat{2}\hat{i}+\hat{3}\hat{j}+\hat{4}\hat{k}\right) imesar{b},$ then a possible value of $(ar{a}+ar{b})$. $\left(-\hat{7}\hat{i}+\hat{2}\hat{j}+\hat{3}\hat{k}\right)$ is

- A. 0
- B. 3
- C. 4
- D. 8

Answer: C

Watch Video Solution

10. If the vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non -coplanar and l,m,n are distinct

$$\left[\overrightarrow{la} + \overrightarrow{mb} + \overrightarrow{b} + \overrightarrow{nc} \quad \overrightarrow{lb} + \overrightarrow{mc} + \overrightarrow{na} \quad \overrightarrow{lc} + \overrightarrow{ma} + \overrightarrow{nb} \right] = 0 ext{ then}$$

A.
$$lm+mn+nl=0$$

$$\operatorname{B.}l+m+n=0$$

C.
$$l^2 + m^2 + n^2 = 0$$

D.
$$l^3 + m^3 + n^3 = 0$$

Answer: B

11. P is any point on the circumference of the circumcircle of ΔABC . H is the orthocentre, M is the midpoint of PH and D is the midpoint of BC. Then

- A. DM is parallel to AC
- B. DM is perpendicular to AP
- C. `DM is perpendicular to AB
- D. None of these

Answer: B

 $10\hat{~i} + 13\hat{~j} + 16\hat{~k}, 30\hat{~i} + 33\hat{~j} + 36\hat{~k} \text{ and } 47\hat{~i} + 50\hat{~j} + 53\hat{~k}$ are

- A. Collinear
- B. Coplanar
- C. Non-coplanar
- D. Mutually perpendicular

Answer: B

- **13.** If the volume of parallelopiped whose concurrent edges are $3\hat{i} \hat{j} + 4\hat{k}$, $2\hat{i} + \lambda\hat{j} \hat{k}$ and $-5\hat{i} + 2\hat{j} + \lambda\hat{k}$ is 110 cu. units, then the value of λ is
 - A. 3
 - B. 5

D.
$$\frac{31}{3}$$

Answer: A

Watch Video Solution

14. If the vectors $\hat{5i} - \hat{xj} + \hat{3k}$ and $-\hat{3i} + \hat{2j} - \hat{yk}$ are parallel, the value of x and y respectively are

A.
$$\frac{10}{3}, \frac{9}{5}$$

B.
$$-\frac{10}{3}$$
, $-\frac{9}{5}$

c.
$$\frac{9}{5}$$
, $\frac{10}{3}$

$${\rm D.} - \frac{9}{5}, \; - \; \frac{10}{3}$$

Answer: A

15. If the position vector of p is $3ar p+ar q\ \ {
m and}\ \ ar p$ divides PQ internally in the ratio 3: 4, the position vector of Q is

A.
$$rac{1}{3}(5ar{p}+4ar{q})$$

B.
$$\frac{1}{3}(4ar{p}+5ar{q})$$

$$\mathsf{C.}\,\frac{-1}{3}(5\bar{p}+4\bar{q})$$

D.
$$\dfrac{-1}{3}(4ar{p}+5ar{q})$$

Answer: C

Watch Video Solution

16.

 $A(\bar{a})=3\hat{\ }i+2\hat{\ }j, B\big(\bar{b}\big)=5\hat{\ }i+3\hat{\ }j+2\hat{\ }k, C(\bar{c})=-9\hat{\ }i+6\hat{\ }j-3\hat{\ }k$ are vectors of triangle ABC, if AD is the angle bisector of angle BAC, then the co-ordinates of the point D are

A.
$$\left(-\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right)$$

D. 16

Answer: D

B. 4

C. 8

A. 2

is equal to

(l,0,0),(0,m,0) and (0,0,n) respectively. Then, $\dfrac{AB^2+BC^2+CA^2}{l^2+m^2+n^2}$

B. $\left(\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right)$

 $C.\left(\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right)$

D. $\left(\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right)$

Watch Video Solution

17. In ΔABC the mid points of the sides AB, BC and CA are

Answer: C

18. Find the coordinates of the foot of the perpendicular drawn from point A(1,0,3) to the join of points B(4,7,1) and C(3,5,3).

$$\mathsf{A.}\left(\frac{5}{3},\frac{7}{3},\frac{17}{3}\right)$$

B. (5, 7, 17)

C.
$$\left(\frac{5}{7}, -\frac{7}{3}, \frac{17}{3}\right)$$

$$\mathsf{D.}\left(-\frac{5}{7},\frac{7}{3},\frac{17}{3}\right)$$

Answer: A

