©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - TARGET PHYSICS (HINGLISH)

ATOMS, MOLECULES AND NUCLEI

Classical Thinking

1. Which particles were used in Geiger-Marsdon experiment?
A. β-particles
B. α-particles
C. γ-particles
D. positrons.

Answer: B

D Watch Video Solution

2. Detector used in Marsdon experiment is
A. zinc sulphide screen and microscope.

B. Iron oxide screen and telescope

C. Zinc oxide screen and telescope
D. Aluminium chloride screen and
microscope

Answer: A

D Watch Video Solution

3. α - particles deflected at more than 90° in

Marsdon experiment were
A. 1 in 1000

B. 1 in 10000

C. 1 in 100000

D. 1 in 8000

Answer: D

- Watch Video Solution

4. Accordingly to classical theory, the Rutherford atom was
A. stable

B. unstable

C. semisable
D. meta-stable

Answer: B

D Watch Video Solution
5. α-particles is scattering is a consequence of
A. nuclear force.

B. coulomb force

C. gravitational force
D. magnetic force.

Answer: B

- Watch Video Solution

6. An α-particle moving with a constant energy
is scattered by the nuclues. The scattering angle will be maximum when the α - particles.
A. approaches the nucleus head on
B. just passes the nucleus.
C. passes at large distance from the nucleus
D. is attracted by the nucleus.

Answer: A

D Watch Video Solution

7. The problem of unstability of Rutherford's
atomic model was solved by
A. Thomson's atomic model.

B. Sommerfield's atomic model.

C. Bohr's atomic model.
D. Quantum atomic model.

Answer: C

D Watch Video Solution

8. Rutherford proposed his model of the atom in order to explain the scattering of
A. cathode rays
B. X-rays
C. alpha rays
D. neutrons

Answer: C

- Watch Video Solution

9. According to the Rutherford's atomic model,
the electrons inside the atom are
A. Stationary
B. not stationary
C. centralized
D. none of these

Answer: B

D Watch Video Solution

10. The Rutherford α-particle experiment shown that most of the α-particles pass through almost unscattered while some are
scattered through large angles. What infromation does it given about the structure of the atom?
A. Atom is hollow.
B. The whole mass of the atom is
concentrated in a small center called
nucleus.
C. Nucleus is positively charged
D. All the above
11. According to Bohr's atomic model, the electrons revolve round the nucleus in
A. stationary circular orbits
B. stationary elliptic orbits
C. arbitrary circular orbits
D. radiating circular orbits.

Answer: A
12. In Bohr model of the hydrogen atom, the lowest orbit corresponds to
A. zero energy
B. minimum energy
C. maximum energy
D. infinite energy

Answer: B
13. In Bohr's atomic model, the electrons do not fall into the nucleus because
A. The space between the nucleus and the atomic boundary is filled with ether.

B. electrostatic attraction is balanced by

mechanical forces.
C. quantum rules do not permit it.
D. centripetal force is equal to gravitational
force.

Answer: C

- Watch Video Solution

14. According to Bohr's theory, discrete quantity is
A. Kinetic energy
B. Angular momentum
C. Potential energy
D. Linear momentum

Answer: B

D Watch Video Solution

15. The repulsive force between the positively
charged protons does not throw them apart because
A. Coulomb force does not act at small distances.
B. nuclear forces are stronger
C. neutrons sit in between the protons.

D. electron revolves around nucleus.

Answer: B

- Watch Video Solution

16. The orbital frequency of an electron in the
hydrogen atom is proportional to
A. n^{2}
B. n^{-3}
C. n^{2}

D. n^{-2}

Answer: B

- Watch Video Solution

17. Assertion: In outermost stationary orbit, energy of electrons is maximum

Reason: In such an orbit, electron is at minimum distance from the nucleus
A. Assertion is True, Reason is true, Reason

B. Assertion is true, Reason is True, Reason

is not a correct explnation for Assertion

C. Assertion is True, Reason is false.

D. Assertion is False, but, Reason is True

Answer: C

D Watch Video Solution

18. The radius of hydrogen atom, when it is in
its second excited state, becomes:
A. half

B. double

C. 4 times
D. nine times

Answer: D

(Watch Video Solution

19. The ratio of the radius of the first orbit to
that of the second orbit of the orbital electron
A. $4: 1$
B. 2: 1
C. $0.5: 1$
D. 1: 4

Answer: D

D Watch Video Solution
20. The linear speed of an electron in Bohr's orbit is inversely proportional to
A. principle quantum number.
B. square of principal quantum number.
C. cube of principle quantum number, D. number of electrons.

Answer: A

D Watch Video Solution

21. The ratio of the velocity of the electron in the first orbit to that in the second orbit is
A. $8: 1$
B. $4: 1$
C. 2:1
D. $1: 4$

Answer: C

D Watch Video Solution

22. The ratio between area of Bohr's first three orbits of the hydrogen atom are
A. $1: 2: 3$
B. 1:4:9
C. $1: 8: 27$
D. 1: 16:81

Answer: D

D Watch Video Solution
23. When an electron in hydrogen atom jumps
from orbit of quantum number n_{2} to orbit of
quantum number n_{1}, the shortest wavelength
is obtained for following condition.

$$
\begin{aligned}
& \text { A. } n_{2}=n_{1}+1 \\
& \text { B. } n_{2}<n_{1} \\
& \text { C. } n_{2}>n_{1} \\
& \text { D. } n_{2}=\infty
\end{aligned}
$$

Answer: D

- Watch Video Solution

24. The first member of any series in hydrogen
atom is (electron jumps from quantum no. p to
n)

$$
\begin{aligned}
& \text { A. } p=n+2 \\
& \text { B. } p=n+1 \\
& \text { C. } p=n-2 \\
& \text { D. } p=n-1
\end{aligned}
$$

Answer: B
25. Quantum condition is expressed as

$$
\begin{aligned}
& \text { A. } m v r=\frac{n h}{2 \pi} \\
& \text { B. } E_{1}-E_{r}=h v \\
& \text { C. } F=\left(\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{r^{2}}\right) \\
& \text { D. } F=\frac{m v^{2}}{r}
\end{aligned}
$$

Answer: A
26. Which particles were used in GeigerMarsdon experiment?
A. β-particles
B. α-particles
C. γ-particles
D. positrons.

Answer: B
(Watch Video Solution
27. Detector used in Marsdon experiment is
A. zinc sulphide screen and microscope.
B. Iron oxide screen and telescope
C. Zinc oxide screen and telescope
D. Aluminium chloride screen and
micrascope

Answer: A

Watch Video Solution
28. α-particles deflected at more than 90° in

Marsdon experiment were

A. 2 in 1000

B. 2 in 10000
C. 2 in 100000
D. 2 in 8000

Answer: D

- Watch Video Solution

29. Accordingly to classical theory, the Rutherford atom was
A. stable
B. unstable
C. semisable

D. meta-stable

Answer: D

- Watch Video Solution

30. α-particles is scattering is a consequence of
A. nuclear force.
B. coulomb force
C. gravitational force
D. magnetic force.

Answer: D

D Watch Video Solution
31. An α-particle moving with a constant energy is scattered by the nuclues. The scattering angle will be maximum when the α particles.
A. approaches the nucleus head on
B. just passes the nucleus.
C. passes at large distance from the nucleus
D. is attracted by the nucleus.

Answer: D
32. The problem of unstability of Rutherford's atomic model was solved by
A. Thomson's atomic model.
B. Sommerfield's atomic model.
C. Bohr's atomic model.
D. Quantum atomic model.

Answer: C
33. Rutherford proposed his model of the atom in order to explain the scattering of
A. cathode rays
B. X-rays
C. alpha rays
D. neutrons

Answer: B
34. According to the Rutherford's atomic model, the electrons inside the atom are
A. Stationary
B. not stationary
C. centralized
D. none of these

Answer: B

- Watch Video Solution

35. Which particles were used in GeigerMarsdon experiment?
A. β-particles
B. α-particles
C. γ-particles
D. positrons.

Answer: C

- Watch Video Solution

36. Detector used in Marsdon experiment is
A. zinc sulphide screen and microscope.
B. Iron oxide screen and telescope
C. Zinc oxide screen and telescope
D. Aluminium chloride screen and
micrascope

Answer: B

Watch Video Solution
37. α - particles deflected at more than 90° in

Marsdon experiment were

A. 2 in 1000

B. 2 in 10000

C. 2 in 100000
D. 2 in 8000

Answer: B

- Watch Video Solution

38. Accordingly to classical theory, the Rutherford atom was
A. stable
B. unstable
C. semisable
D. meta-stable

Answer: A

- Watch Video Solution

39. α-particles is scattering is a consequence of
A. nuclear force.
B. coulomb force
C. gravitational force
D. magnetic force.

Answer: A

O
40. An α-particle moving with a constant energy is scattered by the nuclues. The scattering angle will be maximum when the α particles.
A. approaches the nucleus head on
B. just passes the nucleus.
C. passes at large distance from the nucleus
D. is attracted by the nucleus.

Answer: D
41. The problem of unstability of Rutherford's atomic model was solved by
A. Thomson's atomic model.
B. Sommerfield's atomic model.
C. Bohr's atomic model.
D. Quantum atomic model.

Answer: C
42. Rutherford proposed his model of the atom in order to explain the scattering of
A. cathode rays
B. X-rays
C. alpha rays
D. neutrons

Answer: B
43. According to the Rutherford's atomic model, the electrons inside the atom are
A. Stationary
B. not stationary
C. centralized
D. none of these

Answer: A

- Watch Video Solution

44. The Rutherford α-particle experiment
shown that most of the α-particles pass
through almost unscattered while some are
scattered through large angles. What infromation does it given about the structure of the atom?
A. Atom is hollow.
B. The whole mass of the atom is
concentrated in a small center called
nucleus.

C. Nucleus is positively charged

D. All the above

Answer: B

- Watch Video Solution

45. According to Bohr's atomic model, the electrons revolve round the nucleus in
A. stationary circular orbits
B. stationary elliptic orbits

C. arbitrary circular orbits

D. radiating circular orbits.

Answer: D

- Watch Video Solution

46. In Bohr model of the hydrogen atom, the lowest orbit corresponds to
A. zero energy
B. minimum energy

C. maximum energy

D. infinite energy

Answer: C

- Watch Video Solution

47. In Bohr's atomic model, the electrons do not fall into the nucleus because
A. The space between the nucleus and the atomic boundary is filled with ether.

B. electrostatic attraction is balanced

mechanical forces.

C. quantum rules do not permit it.

D. centripetal force is equal to gravitational

force.

Answer: D

- View Text Solution

48. According to Bohr's postulates, which of the following quantities takes discrete values?
A. Kinetic energy
B. Angular momentum
C. Potential energy

D. Linear momentum

Answer: A
49. The repulsive force between the positively charged protons does not throw them apart because
A. Coulomb force does not act at small distances.
B. nuclear forces are stronger
C. neutrons sit in between the protons.
D. electron revolves around nucleus.

Answer: B

50. The orbital frequency of an electron in the hydrogen atom is proportional to
A. n^{2}
B. n^{-3}
C. n^{2}
D. n^{-2}

Answer: A
51. Assertion: In outermost stationary orbit, energy of electrons is maximum

Reason: In such an orbit, electron is at minimum distance from the nucleus
A. Assertion is True, Reason is true, Reason is a correct explanation for Assertion
B. Assertion is true, Reason is True, Reason
is not a correct explnation for Assertion
C. Assertion is True, Reason is false.
D. Assertion is False, but, Reason is True

D Watch Video Solution

52. When hydrogen atom is in its second excited level, then its radius becomes
A. half
B. double
C. 5 times
D. nine times

- Watch Video Solution

53. The ratio of the radius of the first orbit to
that of the second orbit of the orbital electron
is
A. $4: 1$
B. 2:1
C. $0.5: 1$
D. 1: 4

Answer: C

- Watch Video Solution

54. The linear speed of an electron in Bohr's orbit is inversely proportional to
A. principle quantum number.
B. square of principal quantum number.
C. cube of principle quantum number,
D. number of electrons.

- Watch Video Solution

55. The ratio of the velocity of the electron in the first orbit to that in the second orbit is
A. $8: 1$
B. $4: 1$
C. 2:1
D. 1: 4

D Watch Video Solution

56. The ratio between area of Bohr's first three orbits of the hydrogen atom are
A. $1: 2: 3$
B. 1:4:9
C. 1:8:27
D. 1: 16:81

Answer: C

- Watch Video Solution

57. When an electron in hydrogen atom jumps
from orbit of quantum number n_{2} to orbit of quantum number n_{1}, the shortest wavelength is obtained for following condition.
A. $n_{2}=n_{1}+1$
B. $n_{2}<n_{1}$
C. $n_{2}>n_{1}$

$$
\text { D. } n_{2}=\infty
$$

Answer: D

- Watch Video Solution

58. The first member of any series in hydrogen
atom is (electron jumps from quantum no. p to
n)
A. $p=n+2$
B. $p=n+1$

$$
\begin{aligned}
& \text { C. } p=n-2 \\
& \text { D. } p=n-1
\end{aligned}
$$

Answer: B

D Watch Video Solution

59. Quantum condition is expressed as

A. $m v r=\frac{n h}{2 \pi}$
B. $E_{1}-E_{r}=h v$
C. $F=\left(\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{r^{2}}\right)$
D. $F=\frac{m v^{2}}{r}$

Answer: A

- Watch Video Solution

60. Which particles were used in GeigerMarsdon experiment?
A. β-particles
B. α-particles
C. γ-particles

D. positrons.

Answer: B

D Watch Video Solution

61. Detector used in Marsdon experiment is
A. zinc sulphide screen and microscope.
B. Iron oxide screen and telescope
C. Zinc oxide screen and telescope

micrascope

Answer: A

D Watch Video Solution

62. α-particles deflected at more than 90° in

Marsdon experiment were
A. 3 in 1000
B. 3 in 10000

C. 3 in 100000

D. 3 in 8000

Answer: A

D Watch Video Solution

63. Accordingly to classical theory, the Rutherford atom was
A. stable
B. unstable

C. semisable

D. meta-stable

Answer: D

- Watch Video Solution

64. α-particles is scattering is a consequence of
A. nuclear force.
B. coulomb force
C. gravitational force

D. magnetic force.

Answer: C

- Watch Video Solution

65. An α-particle moving with a constant energy is scattered by the nuclues. The scattering angle will be maximum when the α particles.
A. approaches the nucleus head on
B. just passes the nucleus.
C. passes at large distance from the nucleus
D. is attracted by the nucleus.

Answer: A

- Watch Video Solution

66. The problem of unstability of Rutherford's
atomic model was solved by
A. Thomson's atomic model.
B. Sommerfield's atomic model.

C. Bohr's atomic model.

D. Quantum atomic model.

Answer: D

- Watch Video Solution

67. Rutherford proposed his model of the atom
in order to explain the scattering of
A. cathode rays
B. X-rays

C. alpha rays

D. neutrons

Answer: C

D Watch Video Solution

68. According to the Rutherford's atomic model, the electrons inside the atom are
A. Stationary
B. not stationary

C. centralized

D. none of these

Answer: A

D Watch Video Solution

69. Which particles were used in Geiger-

Marsdon experiment?
A. β-particles
B. α-particles

C. γ-particles

D. positrons.

Answer: C

D Watch Video Solution

70. Detector used in Marsdon experiment is
A. zinc sulphide screen and microscope.
B. Iron oxide screen and telescope
C. Zinc oxide screen and telescope

microscope

Answer: B

D Watch Video Solution

71. α - particles deflected at more than 90° in

Marsdon experiment were
A. 3 in 1000
B. 3 in 10000

C. 3 in 100000

D. 3 in 8000

Answer: D

D Watch Video Solution

72. Accordingly to classical theory, the Rutherford atom was
A. stable
B. unstable

C. semisable

D. meta-stable

Answer: C

D Watch Video Solution

73. α-particles is scattering is a consequence of
A. nuclear force.
B. coulomb force
C. gravitational force

D. magnetic force.

Answer: C

- Watch Video Solution

74. An α-particle moving with a constant energy is scattered by the nuclues. The scattering angle will be maximum when the α particles.
A. approaches the nucleus head on
B. just passes the nucleus.
C. passes at large distance from the nucleus
D. is attracted by the nucleus.

Answer: C

- Watch Video Solution

75. The problem of unstability of Rutherford's atomic model was solved by
A. Thomson's atomic model.
B. Sommerfield's atomic model.

C. Bohr's atomic model.

D. Quantum atomic model.

Answer: B

D Watch Video Solution

76. Rutherford proposed his model of the atom
in order to explain the scattering of
A. cathode rays
B. X-rays

C. alpha rays

D. neutrons

Answer: C

D Watch Video Solution

77. Consider an eelctron in the nth orbit of a
hydrogen atom in the Bohr model. The circumference of the orbit can be expressed in terms of the de Broglie wavelength λ o fthat electron as
A. $(0.259) n \lambda$
B. $\sqrt{n} \lambda$
C. (13.6) λ
D. $n \lambda$

Answer: D

- Watch Video Solution

78. A 200 g cricket ball is thrown with a speed of $3.0 \times 10^{3} \mathrm{~cm} \mathrm{sec}^{-1}$. What will be its de

Broglie's wavelength ?

$$
\left[h=6.6 \times 10^{-27} \mathrm{gcm}^{2} \mathrm{sec}^{-1}\right]
$$

A. $1.1 \times 10^{-22} \mathrm{~cm}$
B. $2.2 \times 10^{-32} \mathrm{~cm}$
C. $0.55 \times 10^{-32} \mathrm{~cm}$
D. $3.2 \times 10^{-32} \mathrm{~cm}$

Answer: A

- Watch Video Solution

79. The de-Broglie wavelength of a particle with mass $1 g$ and velocity $100 \mathrm{~m} / \mathrm{sec}$ is.
A. $6.63 \times 10^{-35} \mathrm{~m}$
B. $6.63 \times 10^{-34} \mathrm{~m}$
C. $6.63 \times 10^{-33} \mathrm{~m}$
D. $6.63 \times 10^{-32} \mathrm{~m}$

Answer: C
(Watch Video Solution
80. A dust particle of mass 2 mg is carried by wind with a velocity of $100 \mathrm{~cm} / \mathrm{s}$. What is the de-Broglie wavelength associated with the dust particle? $\left(h=6.63 \times 10^{-34} J-s\right)$

$$
\text { A. } 3.32 \times 10^{-31} \mathrm{~m}
$$

B. $6.64 \times 10^{-30} \mathrm{~m}$
C. $3.32 \times 10^{-34} \mathrm{~m}$
D. $3.32 \times 10^{-28} \mathrm{~m}$

Answer: D
81. The de-Broglie equation suggests that an
electron orbit in hydrogen atom is related to de-Brogile wavelength of the electron in the same orbit as

$$
\begin{aligned}
& \text { A. } 2 \pi r=n \lambda \\
& \text { B. } 2 \pi r=\frac{2 n}{\lambda} \\
& \text { C. } 2 \pi r=\frac{n \lambda}{2} \\
& \text { D. } 2 \pi r=\frac{2 \lambda}{n}
\end{aligned}
$$

Answer: C
82. The circumference of an electron orbit in hydrogen atom is related to de-Brogile wavelength of the electron in the same orbit as
A. $2 \pi r=n \lambda$
B. $2 \pi r=\frac{2 n}{\lambda}$
C. $2 \pi r=\frac{n \lambda}{2}$
D. $2 \pi r=\frac{2 \lambda}{n}$

Answer: A
83. The de-Broglie wavelength of an electron, an α-particle and a proton are $\lambda_{e}, \lambda_{\alpha}, \lambda_{p}$. Which is wrong from the following:
A. $\lambda_{e}>\lambda_{p}$
B. $\lambda_{e}<\lambda_{p}$
C. $\lambda_{p}>\lambda_{\alpha}$
D. $\lambda_{e}>\lambda_{p}>\lambda_{\alpha}$

Answer: B
84. Bragg's equation for diffraction is
A. $2 d-\lambda=n \sin \phi$
B. $2 d \sin \phi=n \lambda$
C. $\lambda=\sin \phi$
D. $2 \lambda \sin \phi=n d$

Answer: B

- Watch Video Solution

85. In Davisson-Germer experiment, which particles are scattered by the Ni-crystal?
A. neutron

B. proton

C. Electron

D. photon

Answer: C
(Watch Video Solution
86. In Davosson-Germer experiment, the
filament emits
A. photons
B. protons
C. X-rays
D. electrons

Answer: D

D Watch Video Solution
87. Select wrong statement about the Davisson

Germer experiment:
A. The inter-atomic distance in nickel crystal
is of the order of the de-Broglie
wavelength.
B. Electron of constant energy are obtained
by the electrons gun.
C. Nickel crystal acts as three dimensional
diffracting grating.

D. Davisson-Germer experiment is an

interference experiment.

Answer: D

- Watch Video Solution

88. Tungsten filament in the Germer experiment s coated with a material called
A. potassium iodide
B. silver chloride

C. barium chloride

D. barium oxide

Answer: D

D Watch Video Solution

89. Which crystal is used to scatter electrons in
the Davission and Germer experiment?
A. cobalt
B. Nickel

C. Calcite

D. Silver

Answer: B

- Watch Video Solution

90. Approximate value of wavelength of electron waves in Davission experiment at maximum diffraction is
A. $1.67 \AA$

B. $1.75 \AA$

C. $1.22 \AA$

D. $1.81 \AA$

Answer: A

(Watch Video Solution

91. In Davisson and Germer experiment,
accelerating potential is kept constant at 54 V .
As detector is rotated, the first intensity maximum is obtained at an angle of
A. 50°
B. 54°
C. 65°
D. 45°

Answer: A
(Watch Video Solution
92. The solution of Bragg's equation will not exist if

A. $\lambda>2 D$

B. $\lambda<2 D$
C. $\lambda<D$

$$
\text { D. } \lambda=D
$$

Answer: A

D Watch Video Solution

93. Figure shows the enegry levels P, Q, R, S
and G of an atom where G is the ground state.
A red line in the emission spectrum of the
atom can be obtaned by an energy level change from Q so S. A blue line can be obtained by following energy level change

A. P to Q
B. Q to R
C. R to S
D. R to G

- Watch Video Solution

94. What will be the ratio of radii of $L i^{7}$
nucleus to $F e^{56}$ nucleus?
A. $1: 3$
B. 1: 2
C. 1:8
D. 1:6

Answer: B

- Watch Video Solution

95. The minimum enegry required to excite a hydrogen atom from its ground state is
A. 13.6 eV
B. -13.6 eV
C. 3.4 eV
D. $10.2 e \mathrm{~V}$

Answer: D

- Watch Video Solution

96. The ratio of areas within the elctron orbits
for the first excited state to the ground sate
for hydrogen atom is
A. $16: 1$
B. $18: 1$
C. $4: 1$
D. $2: 1$

Answer: A

- Watch Video Solution

97. Assertion: Plutonium is a transuranic element.

Reason: The materials which can undergo fission easily are called transuranic element.
A. Assertion is True, Reason is True, Reason
is a correct explanation for Assertion.
B. Assertion is True, Reason is True, Reason is not a correct explanation for Assertion.
C. Assertion is True, Reason is false.
D. Assertion is False, but, Reason is True.

Answer: C

D Watch Video Solution

Critical Thinking

1. The product of linear momentum and angular momentum of an electron of the hydrogen atom is proportional to n^{x}, where x is
A. 0
B. 1
C. -2
D. 2

Answer: A
2. The ratio of the angular momentum of the orbital electron in the first orbit to that in the 2nd orbital is
A. $2: 1$
B. 1:1
C. 1:2
D. $2: 3$

Answer: C
3. If the radius of the innermost Bohr orbit is $0.53 \AA$, the radius of the 4 th orbit is
A. $8.48 \AA$
B. $16 \AA$
C. $81 \AA$
D. $4 \AA$

Answer: A
4. The area of the electron orbit for the ground state of hydrogen atom is A. What will be the area of the electron orbit corresponding to the second excited state?
A. 27 A
B. 9A
C. 81A
D. 3 A

Answer: C
5. Speed of electron in 1st Bohr orbit is approximately
A. $2 \times 10^{7} \mathrm{~m} / \mathrm{s}$
B. $2.25 \times 10^{6} \mathrm{~m} / \mathrm{s}$
C. $2.23 \times 10^{7} \mathrm{~m} / \mathrm{s}$
D. $2.25 \times 10^{5} \mathrm{~m} / \mathrm{s}$

Answer: B
6. In an atom, two electrons move around nucleus in circular orbits of radii (R) and (4R).

The ratio of the time taken by them to complete one revolution is :

$$
\begin{aligned}
& \text { A. } \frac{1}{64} \\
& \text { B. } \frac{1}{8} \\
& \text { C. } \frac{4}{1} \\
& \text { D. } \frac{2}{1}
\end{aligned}
$$

- Watch Video Solution

7. A particle of charge q and mass m is moving with constant speed v and perpendicular to a constant magnetic field B follows circular path.

If the angular momentum about the center of this circle is quantized so that $\mathrm{mvr}=\mathrm{n}, \frac{h}{2 \pi}$,then the allowed radii forthe particle are given by

$$
\begin{aligned}
& \text { A. } r_{s}^{2}=\frac{n h}{2 \pi q B} \\
& \text { B. } r_{n}^{2}=\frac{n h q}{2 \pi B} \\
& \text { C. } r_{s}^{2}=\frac{n h B}{2 \pi q}
\end{aligned}
$$

D. $r_{s}^{2}=\frac{2 \pi n h}{B q}$

Answer: A

- Watch Video Solution

8. The radius of hydrogen atom in its ground state is $5.3 \times 10^{-11} \mathrm{~m}$. After collision with an electron it is found to have a radius of $21.2 \times 10^{-11} \mathrm{~m}$. What is the principle quantum number of n of the final state of the atom?
A. $n=4$
B. $\mathrm{n}=5$
C. $\mathrm{n}=16$
D. $n=3$

Answer: B

- Watch Video Solution

9. When an electron in hydrogen atom is excited, from its 4th to 5the stationary orbit,
the change in angular momentum of electron
is (Planck's constant: $h=6.6 \times 10^{-34} J-s$)
A. 4.16×10^{-34}

$$
\text { B. } 3.32 \times 10^{-34}
$$

C. 1.05×10^{-34}

$$
\text { D. } 2.08 \times 10^{-34}
$$

Answer: C

D Watch Video Solution

10. A ground state hydrogen atom has an energy of -13.6 eV . If the electron is excited to
the energy state $n=3$, its energy becomes

$$
\text { A. }-12.09 \mathrm{eV}
$$

$$
\text { B. }-13.6 \mathrm{eV}
$$

C. -4.5 eV

$$
\text { D. }-1.51 \mathrm{eV}
$$

Answer: D

- Watch Video Solution

11. The orbital velocity of the electron in the ground state of hydrogen atom is v . What will
be its orbital velocity when excited to the energy state $=-0.544 e V ?$
A. $\frac{v}{9}$
B. $\frac{v}{4}$
C. $\frac{v}{5}$
D. $\frac{v}{2}$

Answer: C

- Watch Video Solution

12. Energy in a Bohr's orbit is given to be equal
to $\frac{B}{n^{2}}$ with $B=-16 \times 10^{-18} \quad \mathrm{~J}$. The wavelength of the radiation, when the electron jumps from fourth orbit to second orbit, is

$$
\left(e=3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)
$$

A. $10^{8}{ }^{j}$
B. $10^{26} \mathrm{~h}$
C. $\frac{3 \times 10^{16}}{16} \mathrm{~h}$
D. $3 \times 10^{18} \mathrm{~h}$
13. The series limit wavelength of the Lyman series for the hydrogen atom is given by

$$
\begin{aligned}
& \text { A. } \frac{1}{R} \\
& \text { B. } \frac{4}{R} \\
& \text { C. } \frac{9}{R} \\
& \text { D. } \frac{16}{R}
\end{aligned}
$$

14. The longest wavelength limit of Lyman series is
A. $\frac{4}{3 \times 109670} \mathrm{~cm}$
B. $\frac{3}{4 \times 109670} \mathrm{~cm}$
C. $\frac{4 \times 109670}{3} \mathrm{~cm}$
D. $\frac{3 \times 109670}{4} \mathrm{~cm}$

Answer: A
15. An electron jumps from the 4th orbit to the 1st orbit of hydrogen atom. Given the Rydberg's constant $R=10^{5} \mathrm{~cm}^{-1}$. The frequency in Hz of the emitted radiation will be
A. 3.2×10^{5}
B. 3.2×10^{25}
C. 2.81×10^{15}
D. 2.81×10^{25}

Answer: C
16. A monochromatic beam of light is absorbed
by a collector of ground state hydrogen atom
in such a way that six different wavelengths are
observed when hydrogen relaxes back to the
ground state. The wavelength of the incident beam is
A. 97 nm
B. 91 nm
C. 68 nm

D. 85 nm

Answer: A

- Watch Video Solution

17. The shortest wavelength in H sopecitrum of
lyman series when $R_{H}=109678 \mathrm{~cm}^{-1}$ is
A. $1002.7 \AA$
B. $1215.67 \AA$
C. $1127.30 \AA$

D. $911.7 \AA$

Answer: D

- Watch Video Solution

18. The ratio of the frequencies of the long wavelength limits of the Brackett and Pfund series of hydrogen is
A. $44: 81$
B. $4: 11$

C. 11: 4

D. $81: 44$

Answer: D

D Watch Video Solution

19. The first line of Balmer series has wvaelength 6563Å. What will be the wavelength of the ifrst member of Lyman series?
A. $1215 \AA$

B. $2500 \AA$

C. $7500 \AA$

D. $600 \AA$

Answer: A

(Watch Video Solution

20. If series limit of Balmer series is $6400 \AA$,
then series limit of Paschen series will be
A. $64000 \AA$

B. $18680 \AA$

C. $14400 \AA$

D. $2400 \AA$

Answer: C

D Watch Video Solution

21. An electron jumps from 3rd to $2 n d$ orbit of hydrogen atom. Taking the Rydberg constant as $10^{7} m^{-1}$, what will be the frequency of the radiation emitted?
A. $6 \times 10^{14} H z$
B. $4 \times 10^{14} \mathrm{~Hz}$
C. $6.75 \times 10^{12} \mathrm{~Hz}$
D. $8 \times 10^{14} \mathrm{~Hz}$

Answer: B

- Watch Video Solution

22. The wavelength of emitted radiation in terms of R (the Rydberg constant) is
$\lambda=36 / 5 R$. The electron jumps from
A. 4th orbit to 3rd orbit

B. 4th orbit to $2 n d$ orbit

C. 3rd orbit to 1st orbit
D. 3 rd orbit to $2 n d$ orbit

Answer: D

D Watch Video Solution

23. Shortest wavelength in the Lymann series is

912 Å. The longest wavelength in this series will be:
A. $3648 \AA$

B. $2100 \AA$

C. $1800 \AA$

D. $1216 \AA$

Answer: D

- Watch Video Solution

24. The wavelength of the first lime of the

Lyman series of hydrogen is 121.6 nm . The
wavelength of the second member of the Balmer series is
A. 30.4 nm
B. 60.8 nm
C. 243.2 nm

D. 486.4 nm

Answer: D

- Watch Video Solution

25. Wavelength of radiation emitted when an electron jumps from a state A to state C is $2000 \AA$ and it is $6000 \AA$ when the electron jumps from state B to State C, wavelength of the radiation emitted when an electron jumps from state A to B will be

A. $2000 \AA$

B. $3000 \AA$
C. $4000 \AA$
D. $6000 \AA$

Answer: B

D Watch Video Solution

26. Let X and Z bethe frequencies of series limit of Lyman series and Balmer series respectively.

If Y is the frequency of first line of Lyman series,
then
A. $X-Y=Z$
B. $Y-X=Z$
С. $Z=\frac{X+Y}{2}$

$$
\text { D. }(X+Y=Z)
$$

Answer: A

D Watch Video Solution

27. Assertion: The density of the nuclei of all
the atoms is same.

Reason: It is because, density of nuclei is
independent of mass number.
A. Assertion is True, Reason is True, Reason is a correct explanation for Assertion.
B. Assertion is True, Reason is True, Reason is not a correct explanation for Assertion.
C. Assertion is True, Reason is false.
D. Assertion is False but, Reason is True.

Answer: A

D Watch Video Solution

28. When a ${ }_{4} B e^{9}$ atom is bombarded with
\propto - particle, one of the product of nuclear transmutation is ${ }_{6} C^{12}$. The other is.
A. $-1 e^{0}$
B. ${ }_{1} H^{1}$
C. ${ }_{1} D^{2}$
D. ${ }_{0} n^{1}$

Answer: D

- Watch Video Solution

29. Highly energetic electrons are bombarded
on a target of an element containing 30 neutrons. The ratio of radii of nucleus to that
of Helium nucleus is $141 / 3$. The atomic number of nucleus will be.
A. 25
B. 26
C. 56
D. 30

Answer: B

D Watch Video Solution
30. The radius of a nucleus having 10 nucleons
is $3 \times 10^{-15} \mathrm{~m}$. The nuclear radius of a nucleus will nucleon number 80 is
A. $3 \times 10^{-15} \mathrm{~m}$
B. $1.5 \times 10^{-15} \mathrm{~m}$
C. $6 \times 10^{-15} \mathrm{~m}$
D. $4.5 \times 10^{-15} \mathrm{~m}$

Answer: C
31. The binding energy per nucleon of O^{16} is 7.97 MeV and that of O^{17} is 7.75 MeV . The energy (in MeV) required to remove a neutron from O^{17} is.
A. 3.52
B. 3.64
C. 4.23
D. 7.86

Answer: C
32. Atomic mass number of an element is 232
and its atomic number is 90 . The end product of this radiaoctive element is an isotope of lead (atomic mass 208 and atomic number 82.) The number of α-and β-particles emitted are.
A. $\alpha=3, \beta=3$
B. $\alpha=6, \beta=4$
C. $\alpha=6, \beta=0$

$$
\text { D. } \alpha=4, \beta=6
$$

D Watch Video Solution

33. The average life T and the decay constant λ of a radioactive nucleus are related as
А. $T \lambda=1$
B. $T=\frac{0.693}{\lambda}$
C. $\frac{T}{\lambda}=1$
D. $T=\frac{c}{\lambda}$

- Watch Video Solution

34. If T is the half-life of a radioactive material,
then the fraction that would remain after a
time $\frac{T}{2}$ is
A. $\frac{1}{2}$
B. $\frac{3}{4}$
C. $\frac{1}{\sqrt{2}}$
D. $\frac{\sqrt{2}-1}{\sqrt{2}}$

Answer: C

D Watch Video Solution

35. The half-life of a radioactive substance against α - decay is $1.2 \times 10^{7} s$. What is the decay rate for 4×10^{15} atoms of the substance ?
A. 4.6×10^{12} atoms $/ \mathrm{s}$
B. $2.3 \times 10^{11} \mathrm{~m} / \mathrm{s}$
C. $4.6 \times 10^{10} \mathrm{~m} / \mathrm{s}$

D. 2.3×10^{8} atoms $/ \mathrm{s}$

Answer: D

D Watch Video Solution

36. The life-life of $B i^{210}$ is 5 days. What time is
taken by $(7 / 8)^{t} h$ part of the sample of decay?
A. 3.4 days
B. 10 days
C. 15 days

D. 20 days

Answer: C

- Watch Video Solution

37. N atoms of a radioactive element emit n
alpha particles per second. The half-life of tge element is.
A. $\frac{n}{N} \mathrm{~s}$
B. $\frac{N}{n}$ s

$$
\begin{aligned}
& \text { C. } \frac{0.693 N}{n} \mathrm{~s} \\
& \text { D. } \frac{0.693 n}{N} \mathrm{~s}
\end{aligned}
$$

Answer: C

D Watch Video Solution

38. The half-life (T) and the disintegration
constant (λ) of a radioactive substance are related as
A. $\lambda T=1$

$$
\begin{aligned}
& \text { В. } \lambda T=0.693 \\
& \text { С. } \frac{T}{\lambda}=0.693 \\
& \text { D. } \frac{\lambda}{T}=0.693
\end{aligned}
$$

Answer: B

D Watch Video Solution

39. The activity of a radioactive sample is measured as 9750 counts per minute at $t=0$ and as 975 counts per minute at $t=5$ minutes. The decay constant is approximately
A. 0.230 per minute.
B. 0.461 minute
C. 0.691 minute
D. 0.922 per minute

Answer: B

- Watch Video Solution

40. For the de-Broglie wavelength of 10^{-17} metre, momentum of a particle will be

A. $13.25 \times 10^{-17} \mathrm{kgm} / \mathrm{s}$

B. $26.5 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
C. $6.625 \times 10^{-17} \mathrm{kgm} / \mathrm{s}$
D. $3.3125 \times 10^{-17} \mathrm{kgm} / \mathrm{s}$

Answer: C

D Watch Video Solution

41. The de-Broglie wavelength of an electron is 66 nm . The velocity of the electron is
$\left[h=6.6 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}, m=9.0 \times 10^{-31} \mathrm{~kg}\right]$

A. $1.84 \times 10^{-4} m s^{-1}$

$$
\text { B. } 1.1 \times 10^{4} \mathrm{~ms}^{-1}
$$

C. $5.4 \times 10^{3} \mathrm{~ms}^{-1}$
D. $1.1 \times 10^{3} \mathrm{~ms}^{-1}$

Answer: B

D Watch Video Solution

42. A helium atom at 300 K is moving with a
velocity of $2.40 \times 10^{2} m s^{-1}$. The de-Broglie
wavelength is about [At. Wt. of $\mathrm{He}=4.0$]

A. 0.416 nm

B. 0.83 nm
C. 803 Å
D. $8000 \AA$

Answer: A

D Watch Video Solution

43. The de-Broglie wavelength of an electron
revolving in the ground state orbit is
A. πr
B. πr^{2}
C. $2 \pi r$
D. $\sqrt{2 \pi r}$

Answer: C

- Watch Video Solution

44. A particle X moving with a certain velocity
has a debroglie wave length of $1 A^{\circ}$. If particle
Y has a mass of 25% that of X and velocity
75% that of X, debroglies wave length of Y will be :-
(a). $3 A^{\circ}$
(b). $5.33 A^{\circ}$
(c). $6.88 A^{\circ}$
(d). $48 A^{\circ}$
A. $1 \AA$
B. $5.3 \AA$
C. $3 \AA$
D. $0.2 \AA$

- Watch Video Solution

45. An electron is having a kinetic energy of 50 eV. Its de-Broglie wavelength is
A. $1.737 \AA$
B. $2.5 \AA$
C. $4.414 \AA$
D. $6.5 \AA$

Answer: A
46. An electron and a proton are accelerated through the same potential difference. The ratio of their de-Broglie wavelengths will be
A. $\left(\frac{m_{p}}{m_{e}}\right)^{1 / 2}$
B. m_{e} / m_{p}
C. m_{p} / m_{e}
D. 1

Answer: A
47. In the Bohr model of a hydrogen atom, the centripetal force is furnished by the coulomb attraction between the proton and the electron. If a_{0} is the radius of the ground state orbit, m is the mass and e is the chargeon the electron and ε_{0} is the vacuum permittivity,the speed of the electron is
A. 0
B. $\frac{e}{\sqrt{\varepsilon_{0} a_{0} m}}$

$$
\begin{aligned}
& \text { C. } \frac{e}{\sqrt{4 \pi \varepsilon_{0} a_{0} m}} \\
& \text { D. } \frac{\sqrt{4 \pi \varepsilon_{0} a_{0} m}}{e}
\end{aligned}
$$

Answer: C

- Watch Video Solution

48. The wavelength of the energy emitted when
electron come from fourth orbit to second orbit in hydrogen is 20.397 cm . The wavelength of energy for the same transition in $H e^{+}$is A. $5.099 \mathrm{~cm}^{-1}$

B. $20.497 \mathrm{~cm}^{-1}$
 C. $40.994 \mathrm{~cm}^{-1}$
 D. $81.988 \mathrm{~cm}^{-1}$

Answer: A

D Watch Video Solution

49. The time of revolution of an electron around a nucleus of charge $Z e$ in nth Bohr orbit is directly proportional to
A. n
B. $\frac{n^{3}}{Z^{2}}$
C. $\frac{n^{2}}{Z}$
D. $\frac{Z}{n}$

Answer: B

- Watch Video Solution

50. If the binding energy of the electron in a hydrogen atom is 13.6 eV the energy required
to remove the electron from the
first excited state of $L i^{++}$is
A. 122.4 eV
B. 30.6 eV
C. 13.6 eV
D. 3.4 eV

Answer: B

- Watch Video Solution

51. A difference of 2.3 eV separates two energy
levels in an atom. What is the frequency of radiation emitted when the atom transits form the upper level to the lower level.

A. $6.95 \times 10^{14} \mathrm{~Hz}$
B. $3.68 \times 10^{15} \mathrm{~Hz}$
C. $5.6 \times 10^{14} \mathrm{~Hz}$
D. $7.28 \times 10^{14} \mathrm{~Hz}$

Answer: C
52. The half-life a radioacitve substance is 40
yeard. How long will it take to reduce to one
fourth of its original amount and what is the value of decay constant?
A. 40 year, $0.9173 /$ year
B. 90 year, 9.017/ year
C. 80 year, 0.0173 year
D. None of these

- Watch Video Solution

53. The rest mass of an electron as well as that of positron is 0.51 MeV . When an electron and positron are annihilate, they produce gammarays of wavelength(s)
A. $0.012 \AA$
B. $0.024 \AA$
C. $0.012 \AA$ to ∞
D. $0.024 \AA$ to ∞

Answer: A

- Watch Video Solution

54. In Bohr's model of hydrogen atom, the period of revolution of the electron in any orbit is proportional to
A. the quantum number
B. square root of the quantum number
C. square of the quantum number.
D. cube of the quantum number.

Answer: D

D Watch Video Solution

55. Energy of the lowest level of hydrogen atom is -13.6 eV . The energy of the photon emitted in the transition from $n=3$ to $n=1$ is
A. 27 eV
B. 9 eV
C. 3 eV
D. 12.09 eV

Answer: D

D Watch Video Solution

56. Ionization potential of hydrogen atom is
13.6 V . Hydrogen atoms in the ground state are excited by monochromatic radiation of photon energy 12.1 eV . The spectral lines emitted by hydrogen atoms according to Bohr's theory will be
A. 1
B. 3
C. 3

D. 4

Answer: C

D Watch Video Solution

57. If in nature they may not be an element for
which the principle quantum number $n>4$,
then the total possible number of elements will be
A. 60
B. 32
C. 4
D. 64

Answer: A

- Watch Video Solution

58. If the binding energy per nucleon of deuterium is 1.115 MeV , its mass defect in atomic mass unit is

A. 0.0048

B. 0.0024
C. 0.0012
D. 0.0006

Answer: B

- Watch Video Solution

59. Two samples X and Y contain equal amounts of radioactive substances. If $\frac{1}{16} t h$ of a sample X and $\frac{1}{256}$ th of sample Y remain
after 8 h , then the ratio of half periods of X and Y is
A. $2: 1$
B. 1:2
C. 1: 4
D. $1: 16$

Answer: A

D Watch Video Solution
60. Assertion: Balmer series lies in visible
region of electromagnetic spectrum.
Reason: Balmer means visible, hence series lies
in visible region.
A. Assertion is True, Reason is true, Reason
is a correct explanation for Assertion
B. Assertion is True, Reason is true, Reason is not a correct explanation for Assertion.
C. Assertion is True, Reason is false.
D. Assertion is False but, Reason is True.

Answer: C

- Watch Video Solution

61. Assertion: Natural radioactive nuclei are nuclei of high mass number.

Reason: The B.E. per nucleon of heavy nuclei is large as compared to that of the stable nuclei.
A. Assertion is True, Reason is True, Reason
is a correct explanation for Assertion.
B. Assertion is True, Reason is True, Reason is not a correct explanation for Assertion.
C. Assertion is True, Reason is false.
D. Assertion is False, but, Reason is true.

Answer: C

D Watch Video Solution

62. Assertion: The density of nucleus is maximum at the center and falls to zero as we move redically ourwards.

Reason: Matter is uniformly distributed inside the nucleus.
A. Assertion is True, Reason is True, Reason is a correct explanation for Assertion.
B. Assertion is True, Reason is True, Reason is not a correct explanation for Assertion.
C. Assertion is True, Reason is false.
D. Assertion is False, but, Reason is true.

Answer: C

Competitive Thinking

1. Rutherford assumed in his atomic model that
A. the mass is concentrated at the center.
B. charge is concentrated at the center.
C. both the mass and charge are concentrated at the center.
D. electrons are positively charged particles.

- Watch Video Solution

2. Rutherford's a particle experiment showed that the atoms have
A. proton
B. nucleus
C. neutron
D. electrons

Answer: B
3. When an electron in hydrogen atom revolves in stationary orbit, it
A.does not radiate light thought its
velocity changes
B. does not radiate light and velocity
remains unchanged
C. radiates light but its velocity is
unchanged
D. radiates light with the change of energy

Answer: A

- Watch Video Solution

4. According to Bohr's theory, there can be an infinite numbner of electron orbits around the nucleus, however, only those orbits are possible for which
A. kinetic energy of electron is integral
multiple of $h / 2 \pi$
B. angular momentum is constant
C. angular momentum of electron is integral multiple of $h / 2 \pi$

D. none of these

Answer: C

(Watch Video Solution

5. In the Bohr's hydrogen atom model, the radius of the stationary orbit varies with principle quantum number as

$$
\text { A. } r \propto n^{-1}
$$

B. $r \propto n$
C. $r \propto n^{-2}$
D. $r \propto n^{2}$

Answer: D

- Watch Video Solution

6. An electron revolve round the nucleous with
the radius of the circular orbit is ' r ' . To double
the kinetic energy of the electron its orbital radius will be
A. $\frac{r}{\sqrt{2}}$
B. $\sqrt{2} r$
C. $2 r$
D. $\frac{r}{2}$

Answer: D
(Watch Video Solution
7. The radius of hydrogen atom, in its ground state, is of the order of
A. $10^{-8} \mathrm{~cm}$
B. $10^{-6} \mathrm{~cm}$
C. $10^{-5} \mathrm{~cm}$
D. $10^{-4} \mathrm{~cm}$

Answer: A

D Watch Video Solution
8. The fact that photons carry energy was established by
A. Doppler's effect.
B. Compton effect.
C. Bohr's theory
D. Diffraction of light.

Answer: C

- Watch Video Solution

9. In an atom, an electron moves in an orbit of

radius r with a speed v, the equivalent current is.

> A. $\frac{e v}{2 \pi r}$
> B. $\frac{2 \pi e v}{r}$
> C. 3 ev
> D. evr

Answer: A
10. The electron in first orbit of hydrogen with
velocity $2.18 \times 10^{6} \mathrm{~m} / \mathrm{s}$. If the radius of first orbit is $0.53 \AA$, then orbital current is
A. 0.41 mA
B. 1.04 mA
C. 1.84 mA
D. 2.4 mA

Answer: B
11. Ratio of velocity in first orbit of H_{2} to speed of light is
A. $2 e^{2} / \varepsilon_{0} h n^{2} c$
B. $2 e^{2} / \varepsilon_{0} h c$
C. $e^{2} / \varepsilon_{0} h c$
D. $e^{2} / 2 \varepsilon_{0} h c$

Answer: D
12. The period of revolution of an electron in
the ground state of hydrogen atom is T. The period of revolution of the electron in the first excited state is
A. 2 T
B. 4 T
C. $6 T$
D. $8 T$

Answer: D
13. When electron jumps from $n=4$ level to $n=1$
level,the angular momentum of electron changes by

$$
\begin{aligned}
& \text { A. } \frac{h}{2 \pi} \\
& \text { B. } \frac{2 h}{2 \pi} \\
& \text { C. } \frac{3 h}{2 \pi} \\
& \text { D. } \frac{4 h}{2 \pi}
\end{aligned}
$$

Answer: C

14. First orbit velocity of electron is $2.1 \times 10^{6} \mathrm{~m} / \mathrm{s}$ then the velocity of 3 rd orbit electron is

$$
\text { A. } 7 \times 10^{6} \mathrm{~m} / \mathrm{s}
$$

B. $6 \times 10^{6} \mathrm{~m} / \mathrm{s}$
C. $7 \times 10^{7} \mathrm{~m} / \mathrm{s}$
D. $0.7 \times 10^{6} \mathrm{~m} / \mathrm{s}$

Answer: D
15. The ionization potential of a hydrogen atom
is 13.6 eV . What will be the energy of the atom corresponding to $\mathrm{n}=2$?

$$
\begin{aligned}
& \text { A. }-6.8 \mathrm{eV} \\
& \text { B. }-3.4 \mathrm{eV} \\
& \text { C. }-27.2 \mathrm{eV} \\
& \text { D. }-4.4 \mathrm{eV}
\end{aligned}
$$

Answer: B
16. Energy E of a hydrogen atom with principle quantum number n is given by $E=\frac{-13.6}{n^{2}} \mathrm{eV}$
. The energy of a photon ejected when the electron jumps from $n=3$ state to $n=2$ state of hydrogen is approximately
A. 1.5 eV
B. 0.85 eV
C. 3.4 eV
D. 1.9 eV

- Watch Video Solution

17. For the hydrogen atom the energy of radiation emitted in the transitation from 4th excited state
to 2nd exicited state according to Bohr 's theory is
A. 0.567 eV
B. 0.667 eV
C. 0.967 eV

D. 1.267 eV

Answer: C

- Watch Video Solution

18. Energy required for the electron excitation
in $L i^{++}$from the first to the third Bohr orbit is
A. 12.1 eV
B. 36.3 eV

C. 108.8 eV

D. 122.4 eV

Answer: C

- Watch Video Solution

19. The ionisation potential of hydrogen atom
is 13.6 eV . The energy required to remove an
electron in the $n=2$ state of the hydrogen atom is
A. $27.2 e V$

B. 13.6 eV

C. 6.8 eV

D. 3.4 eV

Answer: D

(Watch Video Solution

20. An electron collides with a hydrogen atom in its ground state and excites it to $n=3$,

The energy gives to hydrogen aton n this
inclastic collision is [Neglect the recoiling of hydrogen atom]
A. 10.2 eV
B. 12.1 eV
C. 12.5 eV
D. 13.6 eV

Answer: B

- Watch Video Solution

21. The ground state energy of hydrogen atom
is -13.6 eV . What is the potential energy of
the electron in this state
A. 0 eV
B. $-27.2 e V$
C. 1 eV
D. 2 eV

Answer: B
22. The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom, is
A. 1:1
B. 1: - 1
C. 2:1
D. 1: - 2

Answer: D
23. The electron in a hydrogen atom makes a transition from an excited state to the ground state. Which of the following statements is true?
A. Its kinetic energy increases and its potential and total energies decrease.
B. Its kinetic energy decreases, potential
energy increases and its total energy
remains the same.
C. Its kinetic and total energies decreases and its potential energy increases.
D. Its kinetic, potential and total energies
decreases.

Answer: A

D Watch Video Solution

24. The values of potential energy, kinetic energy and the total energy of the electron in
the fourth orbit of hydrogen atom are respectively.

$$
\begin{aligned}
& \text { A. }-1.7 \mathrm{eV},+1.7 \mathrm{eV}, 0 \\
& \text { B. }-1.7 \mathrm{eV},-1.7 \mathrm{eV},-3.4 \mathrm{eV} \\
& \text { C. }+1.7 \mathrm{eV},+1.7 \mathrm{eV},-3.4 \mathrm{eV} \\
& \text { D. }-1.7 \mathrm{eV},+0.85 \mathrm{eV},-0.85 \mathrm{eV}
\end{aligned}
$$

Answer: D

- Watch Video Solution

25. Total energy of electron in an excited state of hydrogen atom is -3.4 eV . The kinetic and potential energy of electron in this state.

$$
\begin{aligned}
& \text { А. } K=-3.4 e V, U=-6.8 e V \\
& \text { В. } K=3.4 e V, U=-6.8 e V \\
& \text { С. } K=-6.8 e V, U=+3.4 e V \\
& \text { D. } K=+10.2 e V, U=-13.6 e V
\end{aligned}
$$

Answer: B

26. The transition of an electron from $n_{2}=5,6$ To $n_{1}=4$ gives rise to
A. Pfund series.
B. Lyman series.
C. Paschen series
D. Brackett series.

Answer: D
(Watch Video Solution
27. The lines of Lyman sereis are present in which region of the spectrum?

A. Far ultraviolet

B. visible

C. Infrared
D. Far infrared

Answer: A
(Watch Video Solution

28. Balmer series lies in which spectrum?

A. Visible
B. Ultraviolet
C. Infrared
D. Partially visible, partially infrared.

Answer: A

O
29. Which one of the series of hydrogen spectrum is in the visible region ?

A. Lyman series

B. Balmer series
C. Paschen series
D. Bracket series.

Answer: B

- Watch Video Solution

30. In Bohr's theory of hydrogen atom, the electron jumps from higher orbit n to lower orbit p. The wavelength will be minimum for the transition
A. $n=5$ to $p=4$
B. $n=4$ to $p=3$
C. $n=3$ to $p=2$
D. $n=2$ to $p=1$

Answer: D
31. If λ_{1} and λ_{2} are the wavelength of the first members of the Lyman and Paschen series, respectively, then $\lambda_{1} \lambda_{2}$ is
A. $1: 3$
B. 1: 30
C. 7: 50
D. 7:108

Answer: D
32. Given the value of Rydberg constant is $10^{7} m^{-1}$, the waves number of the lest line of the Balmer series in hydrogen spectrum will be:

$$
\begin{aligned}
& \text { A. } 0.25 \times 10^{7} \mathrm{~m}^{-1} \\
& \text { B. } 2.5 \times 10^{7} \mathrm{~m}^{-1} \\
& \text { C. } 0.025 \times 10^{4} \mathrm{~m}^{-1} \\
& \text { D. } 0.5 \times 10^{7} \mathrm{~m}^{-1}
\end{aligned}
$$

33. The least energetic wave number in the

Paschen series is

$$
\begin{aligned}
& \text { A. } \frac{5 R}{16} \\
& \text { B. } \frac{R}{4} \\
& \text { C. } \frac{R}{9} \\
& \text { D. } \frac{7 R}{144}
\end{aligned}
$$

Answer: D

- Watch Video Solution

34. Out of the following which one is not a possible energy for a photon to be emitted by hydrogen atom according to Bohr's atomic model?
A. 13.6 eV
B. 0.65 eV
C. 1.9 eV
D. 11.1 eV

Answer: D
35. The ionisation potential of H-atom is 13.6 eV . When it is excited from ground state by monochromatic radiations of $970.6 \AA$, the number of emission lines will be (according to Bohr's theory)
A. 10
B. 8
C. 6
D. 4

- Watch Video Solution

36. Hydrogen $\left({ }_{1} H^{1}\right)$, Deuterum $\left({ }_{1} H^{2}\right)$, singly ionised Hellium (.$\left._{2} H e^{4}\right)^{+}$and doubly ionised lithium $\left({ }_{\cdot 3} L i^{6}\right)^{++}$all have one electron around the nucleus. Consider an electron tranition from $n=2$ to $n=1$. If the wave lengths of emitted radiation are $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and λ_{4} respectively then approximately which one of the follwing is correct ?

$$
\begin{aligned}
& \text { A. } 4 \lambda_{1}=2 \lambda_{2}=2 \lambda_{3}=\lambda_{4} \\
& \text { B. } \lambda_{1}=2 \lambda_{2}=2 \lambda_{3}=\lambda_{4} \\
& \text { C. } \lambda_{1}=\lambda_{2}=4 \lambda_{3}=9 \lambda_{4} \\
& \text { D. } \lambda_{1}=2 \lambda_{2}=3 \lambda_{3}=4 \lambda_{4}
\end{aligned}
$$

Answer: C

D Watch Video Solution

37. An electron jumps from the $4 t h$ orbit to the

2nd orbit of hydrogen atom. Given the Rydberg's constant $R=10^{5} \mathrm{~cm}^{-1}$. The
frequency in Hz of the emitted radiation will be

$$
\begin{aligned}
& \text { A. } \frac{3}{16} \times 10^{5} \\
& \text { B. } \frac{3}{16} \times 10^{15} \\
& \text { C. } \frac{9}{16} \times 10^{15} \\
& \text { D. } \frac{3}{4} \times 10^{15}
\end{aligned}
$$

Answer: C

- Watch Video Solution

38. The ratio of the largest to shortest
wavelength in Lyman series of hydrogen
spectra is
A. $\frac{25}{9}$
B. $\frac{17}{6}$
C. $\frac{9}{5}$
D. $\frac{4}{3}$

Answer: D
39. If the wavelength of the first line of the Balmer series of hydrogen is $6561 \AA$, the wavelngth of the second line of the series should be
A. $13122 \AA$
B. $3280 \AA$
C. $4860 \AA$
D. $2187 \AA$

Answer: C
40. The first member of the paschen series in hydrogen spectrum is of wavelength $18,800 \AA$.

The short wavelength limit of Paschen series is
A. $1215 \AA$
B. $6560 \AA$
C. $8225 \AA$
D. $12850 \AA$

Answer: C

41. In the spectrum of hydrogen atom, the ratio

 of the longest wavelength in Lyman series to the longest wavelangth in the Balmer series is:$$
\begin{aligned}
& \text { A. } \frac{5}{27} \\
& \text { B. } \frac{4}{9} \\
& \text { C. } \frac{9}{4} \\
& \text { D. } \frac{27}{5}
\end{aligned}
$$

42. The ratio of wavelength of the lest line of Balmer series and the last line Lyman series is:
A. 2
B. 1
C. 4
D. 0.5

Answer: C
43. If $\lambda_{\max }$ is $6563 \AA$, then wave length of second line of Balmer series will be
A. $\lambda=\frac{16}{3 R}$
B. $\lambda=\frac{36}{5 R}$
C. $\lambda=\frac{4}{3 R}$
D. $\lambda=\frac{9}{5 R}$

Answer: A

44. $\frac{\lambda_{\alpha}}{\lambda_{\beta}}$ in Balmer series is
A. $27: 20$
B. $20: 27$
C. $5: 36$
D. 12: 64

Answer: A

D Watch Video Solution
45. The frequencies for series limit of Balmer
and Paschen series respectively are v_{1} and v_{3}. If
frequency of first line of Balmer series is v_{2}
then the relation between v_{1}, v_{2} and v_{3} is

$$
\begin{aligned}
& \text { A. } v_{1}-v_{2}=v_{3} \\
& \text { B. } v_{1}+v_{3}=v_{2} \\
& \text { C. } v_{1}+v_{2}=v_{3} \\
& \text { D. } v_{1}-v_{3}=2 v_{1}
\end{aligned}
$$

Answer: A
46. If the series limit frequency of the Lyman series is v_{L}, then the series limit frequency of the Pfund seriesis:
A. $v_{L} / 16$
B. $v_{L} / 25$
C. $25 v_{L}$
D. $16 v_{L}$

Answer: B
47. For Balmer series, wavelength of first line is
1λ and for Brackett series, wavelength of first line is 2λ then their ratio is
A. 0.081
B. 0.162
C. 0.198
D. 0.238

Answer: B
48. The ratio of the longest to shortest wavelength in Brackett series of hydrogen spectra is
A. $\frac{25}{9}$
B. $\frac{17}{6}$
C. $\frac{9}{5}$
D. $\frac{4}{3}$

Answer: A

49. The shortest wavelength for Lyman series is

912 Å. What will be the longest wavelength in

Paschen series?
A. $1216 \AA$
B. $3646 \AA$
C. $18761 \AA$
D. $8208 \AA$
50. If, an electron in hydrogen atom jumps
from an orbit of lelvel $n=3$ to an orbit of level
$\mathrm{n}=2$, emitted radiation has a freqwuency ($\mathrm{R}=$ Rydbertg's contant ,c = velocity of light)
A. $\frac{3 R c}{27}$
B. $\frac{R c}{25}$
C. $\frac{8 R c}{9}$
D. $\frac{5 R c}{36}$

Answer: D

D Watch Video Solution

51. If an electron in a hydrogen atom jumps from the $3 r d$ orbit to the $2 n d$ orbit, it emits a photon of wavelength λ. When it jumps form the $4 t h$ orbit to the $3 d r$ orbit, the corresponding wavelength of the photon will be
A. $\frac{20}{13} \lambda$

> B. $\frac{16}{25} \lambda$
> C. $\frac{9}{16} \lambda$
> D. $\frac{20}{7} \lambda$

Answer: D

D Watch Video Solution

52. An electron in an atom jumping from 3rd orbit to 2nd orbit emits radiation of
wavelength λ_{1} and when it jumps from 2nd orbit to 1st orbit emits radiation of wavelength
λ_{2}. The wavelength of radiation emitted when
it jumps from 3rd orbit to 1st orbit is
A. $\sqrt{\lambda_{1} \lambda_{2}}$
B. $\frac{\lambda_{1}+\lambda_{2}}{2}$
C. $\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}}$
D. $\left(\lambda_{1}+\lambda_{2}\right)$

Answer: C

- Watch Video Solution

53. As an electron makes a transition from an excited state to the ground state of hydrogenlike atom/ion:
A. its kinetic energy increases but potential
energy and total energy decreases
B. kinetic energy, potential energy and total
energy decreases
C. kinetic energy decreases, potential
energy increases but total energy

D. kinetic energy and total energy decreases

but potential energy increases

Answer: A

D Watch Video Solution

54. Wavelength of characteristic X-ray depends
on which property of target?
A. A
B. Z
C. Melting point

D. All of these

Answer: B

D Watch Video Solution

55. The radius of an atomic nucleus is of the
order of
A. $10^{-10} \mathrm{~cm}$
B. $10^{-15} \mathrm{~cm}$
C. $10^{-13} \mathrm{~cm}$

$$
\text { D. } 10^{-8} \mathrm{~cm}
$$

Answer: C

D Watch Video Solution

56. Binding energy of a nucleus is equivalent to
A. mass of the proton
B. mass of the neutron
C. mass of the nucleus

D. mass defect of the nucleus

Answer: D

- Watch Video Solution

57. In helium nucleus, there are.
A. one proton +1 neutron
B. one proton +2 neutrons
C. 1 proton +3 neutrons
D. 1 proton +4 neutrons

Answer: B

D Watch Video Solution

58. In nuclear reaction${ }_{.4} B e^{9}+{ }_{.2} H e^{4} \rightarrow{ }_{.6} C^{12}+X, X$ will be
A. Neutron
B. Proton
C. Positron
D. Electron

D Watch Video Solution

59. The ratio of nuclear volume to the atomic volume is
A. 10
B. 10^{-5}
C. 10^{-10}
D. 10^{-15}

Answer: D

- Watch Video Solution

60. Two nuclei have their mass numbers in the ratio of $1: 3$. The ratio of their nuclear densities
would be
A. $3^{1 / 3}: 1$
B. 1: 1
C. $1: 3$
D. $3: 1$
61. The size of atomic nucleus is
A. 10 fermi
B. 5 fermi
C. 1.2 fermi
D. 0.1 fermi
62. An element X decays into element Z by two -
steps process
$X \rightarrow Y+H e_{2}^{4}$
$Y \rightarrow Z+2 e$ then
A. X and Z are isobars.
B. X and Y are isotopes
C. X and Z are isotopes
D. X and Z are isotopes.

Answer: D

- Watch Video Solution

63. $M p$ depends the mass of a proton and $M n$
that of a neutron. A given nucleus, of binding energy B , contains Z protons and N neutrons.

The mass $M(N, Z)$ of the nucleus is given by (c is
the velocity of light)

$$
\begin{aligned}
& \text { А. } M(N, Z)=N M n+Z M p-B c^{2} \\
& \text { B. } M(N, Z)=N M n+Z M p+B c^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } M(N, Z)=N M n+Z M p-B / c^{2} \\
& \text { D. } M(N, Z)=N M n+Z M p+B / c^{2}
\end{aligned}
$$

Answer: C

- Watch Video Solution

64. The radius of nucleus is:
A. directly proportional to its mass number.
B. inversely proportional to its atomic
weight.
C. directly proportional to the cube root of its mass number.

D. none of these

Answer: C

D Watch Video Solution

65. If radius of the ${ }_{13}^{27} A l$ nucleus is taken to be $R_{A I}$, then the radius of ${ }_{\cdot 53}^{125} \mathrm{Te}$ nucleus is nearly

$$
\begin{aligned}
& \text { A. }\left(\frac{53}{13}\right)^{1 / 3} R_{A l} \\
& \text { B. } \frac{5}{3} R_{A l} \\
& \text { C. } \frac{3}{5} R_{A l} \\
& \text { D. }\left(\frac{13}{53}\right)^{\frac{1}{3}} R_{A l}
\end{aligned}
$$

Answer: B

- Watch Video Solution

66. If the nucleus of $\cdot 13 A l^{27}$ has a nuclear
radius of about 3.6 fm , then ${ }^{52} T e^{125}$ would have its radius approximately as
A. 3.6 Fermi

B. 6.0 fermi

C. 8.9 fermi
D. 16.7 fermi

Answer: B

- Watch Video Solution

67. The radius of germanium ($G e$) nuclide is measured to be twice the radius of ${ }_{-}(4)^{9} B e$.

The number of nucleons in $G e$
A. 72
B. 73
C. 74
D. 75

Answer: A

D Watch Video Solution

68. If the nuclear radius of.$^{27} A 1$ is 3.6 Fermi,
the approximate nuclear radius of $64 C u$ in
Fermi is :
A. 2.4
B. 1.2
C. 4.8
D. 3.6

Answer: C
(Watch Video Solution
69. A nucleus ruptures into two nuclear parts,
which have their velocity ratio equal to $2: 1$.

What will be the ratio of their nuclear size (nuclear radius)?
A. $2^{1 / 3}: 1$
B. $1: 2^{1 / 3}$
C. $3^{1 / 2}: 1$
D. $1: 3^{1 / 2}$

Answer: B

- Watch Video Solution

70. The average binding energy per nucleon is maximum for the nucleus
A. ${ }_{2} H e^{4}$
B. ${ }_{8} O^{16}$
C. ${ }_{26} F e^{36}$
D. ${ }_{92} U^{238}$

Answer: C

D Watch Video Solution
71. Which of the following is stable?
A. Proton
B. Positron
C. Neutron
D. Electron

Answer: C

Watch Video Solution

72. For uranium nucleus how does its mass vary

 with volume?A. $m \propto V$
B. $m \propto I / V$
C. $m \propto \sqrt{V}$
D. $m \propto V^{2}$

Answer: A
73. What is the amount of energy released, when 3 kg mass is annihilated?
A. $22 \times 10^{16} \mathrm{~J}$
B. $18 \times 10^{16} \mathrm{~J}$
C. $27 \times 10^{16} \mathrm{~J}$
D. $9 \times 10^{16} \mathrm{~J}$

Answer: C

- Watch Video Solution

74. 1.5 kg mass is annihilated. Energy liberated in this process is
A. $1.35 \times 10^{16} \mathrm{~J}$
B. $13.5 \times 10^{16} \mathrm{~J}$
C. $13.5 \times 10^{8} \mathrm{~J}$
D. 135 J

Answer: B

- Watch Video Solution

75. A certain mass of hydrogen is changes to helium by the process of fusion. The mass defect in fusion reaction is $0.02866 u$. The energy liberated per u is (given $1 u=931 M e V)$
A. 2.67 MeV
B. 26.7 MeV
C. 6.67 MeV
D. 13.3 MeV

Answer: C
76. The mass defect of $H e_{2}^{4} \mathrm{He}$ is 0.03 u . The binding energy per nucleon of helium (in MeV) is
A. 6.9825
B. 27.93
C. 2.793
D. 69.825

Answer: A
77. The masses of neutron and proton are
1.0087 a.m.u. and 1.0073 a.m.u. respectively. If
the neutrons and protons combine to form a helium nucleus (alpha particle) of mass 4.0015
a.m.u. The binding energy of the helium nucleus will be $(1 a . m . u .=931 M e V)$.
A. 28.4 MeV
B. 20.8 MeV
C. 27.3 MeV

D. 14.2 MeV

Answer: A

- Watch Video Solution

78. $1 g$ of hydrogen is converted into $0.993 g$ of helium in a thermonuclear reaction. The energy released is.
A. 63×10^{7} J
B. $63 \times 10^{10} \mathrm{~J}$

$$
\text { C. } 63 \times 10^{14} \mathrm{~J}
$$

$$
\text { D. } 63 \times 10^{20} \mathrm{~J}
$$

Answer: B

- Watch Video Solution

79. The binding energy per nucleus of ${ }_{8} O^{17}$ is
7.75 MeV. The energy required to remove one neutron from ${ }_{8} O^{17}$ is.............. MeV.
A. 3.52
B. 3.62
C. 4.23

D. 7.86

Answer: C

D Watch Video Solution

80. In the reaction $\cdot{ }_{1}^{2} H+\cdot{ }_{1}^{3} H \rightarrow \cdot{ }_{2}^{4} H e+\cdot{ }_{0}^{1} n$
, if the binding energies of $\cdot{ }_{1}^{2} H,{ }_{1}^{3} H$ and
.${ }_{2}^{4} \mathrm{He}$ are respectively a, b and c (in MeV), then
the energy (in MeV) released in this reaction is.
A. $c+a-b$
B. $c-a-b$
C. $a+b+c$
D. $a+b-c$

Answer: B

D Watch Video Solution

81. The binding energy per nucleon of $\cdot{ }_{3}^{7} L i$ and
${ }_{2}^{4} \mathrm{He}$ nuclei are 5.60 MeV and 7.06 MeV ,
respectively. In the nuclear reaction
$\cdot{ }_{3}^{7} \mathrm{Li}+\cdot{ }_{1}^{1} \mathrm{H} \rightarrow \cdot{ }_{2}^{4} \mathrm{He}+\cdot{ }_{2}^{4} \mathrm{He}+Q$, the value of energy Q released is
A. 19.6 MeV
B. -2.4 MeV
C. 8.4 MeV
D. 17.3 MeV

Answer: D

- Watch Video Solution

82. Unit of radioactivity is rutherford. Its value is
A. 3.7×10^{10} disintegrations/s.
B. 3.7×10^{6} disintegrations/s.
C. 1.0×10^{10} disintegrations/s.
D. 1.0×10^{6} disintegrations $/ \mathrm{s}$.

Answer: D
(Watch Video Solution
83. Which of the following is in the increasing order for penetrating power ?
A. α, β, γ
B. β, α, γ
C. γ, α, β
D. γ, β, α

Answer: A
(Watch Video Solution

84. A radioactive decay can form an isotope of

the original nucleus with the emission of particles
A. one α and one β
B. one α and four β
C. four α and one β
D. one α and two β

Answer: D
85. For the radioactive nuclei that undergo either α or β decay, which one of the following cannot occur?
A. Isobar of original nucleus is produced.
B. Isotope of the original nucleus is
produced.
C. Nuclei with higher atomic number than
that of the original nucleus is produced.
D. Nuclei with lower atomic number than
that of the original nucleus is produced.

Answer: B

D Watch Video Solution

86. Which of the following is emitted when ${ }_{94} P u^{239}$ decays into ${ }_{92} U^{235}$?
A. Gamma Ray
B. Neutron
C. Electron
D. Alpha particle.

Answer: D

D Watch Video Solution

87. In the nuclear decay given below :
$\underset{Z}{A} X \rightarrow \underset{Z+1}{A} Y \rightarrow \underset{z-1}{A-4} B^{\star} \rightarrow \underset{z-1}{A-4} B$
The particles emitted in the sequence are :

$$
\text { A. } \beta^{-1}, \beta^{-1}, \beta^{-1}, \alpha^{-1}
$$

B. $\beta^{-1}, \beta^{-1}, \beta^{+}, \alpha$
C. $\beta^{-}, \beta^{-1}, \alpha, \alpha$
D. $\beta^{-1}, \beta^{-1}, \alpha, \beta^{-1}$

Answer: D

- Watch Video Solution

88. Age of a tree is determined by using radioisotope of
A. carbon
B. cobalt
C. iodine
D. phosphorus

D Watch Video Solution

89. The decay constant of radio isotope is λ. If
A_{1} and A_{2} are its activities at times t_{1} and t_{2}
respectively, the number of nuclei which have decayed during the time $\left(t_{1}-t_{2}\right)$
A. $A_{1} t_{1}-A_{2} t_{2}$
B. $A_{1}-A_{2}$
C. $\left(A_{1}-A_{2}\right) / \lambda$

D. $\lambda\left(A_{1}-A_{2}\right)$

Answer: C

- Watch Video Solution

90. The half life of a radioactive substance is 20 days. If $\frac{2}{3}$ part of the substance has decayed in time t_{2} and $\frac{1}{3}$ part of it has decayed in time t_{1} then the time interval between t_{2} and t_{1} is
$\left(t_{2}-t_{1}\right)=$.
A. 5 days

B. 10 days

C. 20 days

D. 40 days

Answer: C

D Watch Video Solution

91. The half-life of a radioactive element which
has only $\frac{1}{32}$ of its original mass left after a lapse of 60 days is
A. 12 days
B. 32 days
C. 60 days
D. 64 days

Answer: A

- Watch Video Solution

92. The half-life of a radioactive isotope X is
$20 y r$. It decays to another element Y which is
stable. The two elements X and Y were found
to be in the ratio $1: 7$ in a sample of given rock.

The age of the rock is estimated to be
A. 40 years
B. 60 years
C. 80 years
D. 100 years

Answer: B

- Watch Video Solution

93. The half-life of a radioactive sample is 6.93
days. After how many days will only $\frac{1}{20}$ of the sample be left over? [Take $\log _{e}(20)=3.0$]
A. 20 days
B. 27 days
C. 30 days
D. 35 days

Answer: C

94. A radio isotope X with a half-life 1.4×10^{9}

years decays of Y which is stable. A sample of the rock from a cave was found to contain X and Y in the ratio $1: 7$. The age of the rock is.

A. 1.96×10^{9} years

B. 3.92×10^{9} years
C. 4.20×10^{9} years
D. 8.40×10^{9} years

Answer: C
95. Radioactive material 'A' has decay constant
' 8λ ' and material ' B ' has decay constant
'lamda'. Initial they have same number of nuclei.

After what time, the ratio of number of nuclei
of material 'B' to that 'A' will be $\frac{1}{e}$?
A. $\frac{1}{\lambda}$
B. $\frac{1}{7 \lambda}$
C. $\frac{1}{8 \lambda}$
D. $\frac{1}{9 \lambda}$

Answer: B

- Watch Video Solution

96. The half-life period of a radioactive substance is 5 min . The amount of substance decayed in 20 min will be
A. 6.25
B. 75
C. 25
D. 93.75

- Watch Video Solution

97. For a radioactive material, half-life is 10
minutes. If initially there are 600 number of
nuclei, the time taken (in minutes) for the disintegration of 450 nuclei is.
A. 20
B. 10
C. 30

D. 15

Answer: A

- Watch Video Solution

98. Two radioactive materials have decay constant $5 \lambda \& \lambda$. If initially they have same no. of nuclei. Find time when ratio of nuclei become $\left(\frac{1}{e}\right)^{2}$:
A. $\frac{1}{4 \lambda}$
B. 4λ
C. 2λ

$$
\text { D. } \frac{1}{2 \lambda}
$$

Answer: D

- Watch Video Solution

99. A radioactive material decays by
simulataneous emission of two particle from
the with respective half - lives 1620 and 810
year. The time, in year, after which one fourth of the material remains is
A. 1080
B. 2430
C. 3240
D. 4860

Answer: A

D Watch Video Solution
100. A radioactive nucleus can decay by two different processes. The half lives of the first and second decay processes are 5×10^{3} and 10^{5} years respectively. Then the effective half life of the nucleus is
A. 105×10^{5} years
B. 4762 years
C. 10^{4} years
D. 47.6 yrs
101. If the half-life of a radioactive sample is 10 hours its mean life is
A. 1.44
B. 6.93
C. 14.4
D. 0.693

Answer: C
102. A radioactive nucleus A with a half life T, decays into nucleus B. At $t=0$, there is no nucleus B. At somewhat t, the ratio of the number of B to that of A is 0.3 . Then, t is given by

$$
\begin{aligned}
& \text { A. } t=T \log (1.3) \\
& \text { B. } t=\frac{T}{\log 1.3} \\
& \text { C. } t=\frac{T}{2} \frac{\log 2}{\log 1.3} \\
& \text { D. } t=T \frac{\log 1.3}{\log 2}
\end{aligned}
$$

- Watch Video Solution

103. The half-life of a radioactive element is 100
minutes. The time interval between the stage
to 50% and 87.5% decay will be:
A. 25 minutes
B. 30 minutes
C. 10 minutes
D. 40 minutes

- Watch Video Solution

104. The half-life of a radioactive substance is

30 minutes, The time (in minutes) taken between 40% decay and 85% decay of the same radioactive substance is.
A. 60
B. 15
C. 30

D. 45

Answer: A

- Watch Video Solution

105. Half life of a radio-active substance is 20
minutes. The time between 20% and 80% decay will be
A. 20 minutes
B. 30 minutes

C. 40 minutes

D. 60 minutes

Answer: C

D Watch Video Solution

106. Half-life of a radioactive substance A and B
are, respectively, 20 min and 40 min . Initially,
the samples of A and B have equal number of nuclei. After 80 min , the ratio of the ramaining number of A and B nuclei is
A. $4: 1$
B. 1: 4
C. $5: 4$
D. $1: 16$

Answer: C

(Watch Video Solution

107. A sample contains 16 gm of radioactive material, the half-life of which is two days. After

32 days, the amount of radioactive material left in the sample is
A. less than 1 mg
B. $\frac{1}{4} \mathrm{~g}$
C. $\frac{1}{2} \mathrm{~g}$
D. 1 g

Answer: A

- Watch Video Solution

108. The half-life of tritium is 12.5 years. What mass of tritium of initial mass 64 mg will remain undecayed after 50 years?
A. 32 mg
B. 8 mg
C. 16 mg
D. 4 mg

Answer: D
109. A radioactive sample of half life 10 days
contains 1000X nuclei. Number of original nuclei present after 5 days is
A. 707 X
B. 750 X
C. 500 X
D. 250 X

Answer: A
110. A radioactive element has rate of disintegration 10, 000 disintegrations per minute at a particular instant. After four minutes it becomes 2500 disintegrations per minute. The decay constant per minute is
A. $0.2 \log _{e} 2$
B. $0.5 \log _{e} 2$
C. $0.6 \log _{e} 2$
D. $0.8 \log _{e} 2$

- Watch Video Solution

111. A certain radioactive element
disintegration with a decay constant of
$7.9 \times 10^{-10} \mathrm{sec}$. At a given instant of time, if the activity of the sample is equal to 55.3×10^{11} disintegration $/ \mathrm{sec}$, then number of nuclei at that instant of time.
A. 7.0×10^{21}
B. 4.27×10^{13}
C. 4.27×10^{3}

D. 6×10^{23}

Answer: A

- Watch Video Solution

112. A sample of a radioactive element has a mass of $10 g$ at an instant $t=0$. The approxiamte mass of this element in the sample after two mean lives is.
A. 2.50 g
B. 3.70 g

C. 6.30 g

D. 1.35 g

Answer: D

D Watch Video Solution

113. If the half life of a radioactive nucleus is 3
days nearly, what fractions of the initial number of nuclei will decay on the 3rd day?
(Given that $\sqrt{0.25}=0.63$)
A. 0.63
B. 0.5
C. 0.37
D. 0.13

Answer: D

(Watch Video Solution

114. In the given nuclear reaction
$A, B, C, D, E \quad$ represents
${ }_{.92} U^{238} \rightarrow^{\alpha}{ }_{\cdot B} T h^{A} \rightarrow^{\beta}{ }_{\cdot D} P a^{C} \rightarrow^{E}{ }_{.92} U^{234}$.
A.

$$
A=234, B=90, C=234, D=91, E-\beta
$$

B.

$$
A=234, B=90, C=234, D=94, E=\alpha
$$

C.

$$
A=238, B=93, C=234, D=91, E=\beta
$$

D.

$$
A=234, B=90, C=234, D=93, E=\alpha
$$

Answer: A
115. A radioactive element X disintegrates
successively
$X \xrightarrow{\beta^{-}} X_{1} \xrightarrow{\alpha} X_{2} \xrightarrow{\beta_{-}} X_{3} \xrightarrow{\alpha} X_{4}$
If atomic number and atomic mass number of X
are respectively, 72 and 180 , then what are the corresponding values for X_{4} ?
A. 69176
B. 69172
C. 71176
D. 70172

- Watch Video Solution

116. A radiaoactive nucleus (initial mass number
A and atomic number Z emits 3α - particles
and 2 positrons The ratio of number of neutrons to that of proton in the final nucleus will be

$$
\begin{aligned}
& \text { A. } \frac{A-Z-4}{Z-2} \\
& \text { B. } \frac{A-Z-8}{Z-4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { c. } \frac{A-Z-4}{Z-8} \\
& \text { D. } \frac{A-Z-12}{Z-4}
\end{aligned}
$$

Answer: C

- Watch Video Solution

117. In the decay series ${ }_{.92} U^{238}$ to $.82 P b^{206}$, how many α-paritcles and how many β^{\ominus} particles are emitted?
A. 8 and 6

B. 6 and 8

C. 12 and 6
D. 8 and 12

Answer: A

(Watch Video Solution

118. A radioactive element $\cdot 90 X^{238}$ decay into
${ }^{-83} Y^{222}$. The number of $\beta-$ particles emitted are.
A. 4
B. 6
C. 2
D. 1

Answer: D

(Watch Video Solution

119. Two radioactive substances X and Y initially contain an equal number of atoms.

Their half-lives are 1 hour and 2 hours
respectively. Then the ratio of their rates of disintergration after two hours is
A. $1: 4$
B. $1: 2$
C. $3: 4$
D. $2: 3$

Answer: A
(Watch Video Solution

120. The de Broglie wavelength λ of a particle

A. is proportional to mass.
B. is proportional to impulse.
C. is inversely proportional to impulse.
D. does not depend on impulse.

Answer: C
(Watch Video Solution

121. The de-Broglie wavelength of an electron in

4 th orbit is (where, $r=$ radius of 1st orbit)
A. $2 \pi r$
B. $4 \pi r$
C. $8 \pi r$
D. $16 \pi r$

Answer: C
(Watch Video Solution
122. A body of mass 100 g moves at the speed of 36 km/hr. The de Broglie wavelength related to it is of the order........... $\mathrm{m}\left(h=6.626 \times 10^{-34} \mathrm{Js}\right)$
A. 10^{-14}
B. 10^{-24}
C. 10^{-34}
D. 10^{-44}

Answer: C

123. The de-Broglie wavelength of a neutron at
$27^{\circ} C$ is λ. What will be its wavelength at $927^{\circ} C ?$

$$
\begin{aligned}
& \text { A. } \frac{\lambda}{2} \\
& \text { B. } \frac{\lambda}{2} \\
& \text { C. } \frac{\lambda}{4} \\
& \text { D. } \frac{3 \lambda}{2}
\end{aligned}
$$

Answer: A

- Watch Video Solution

124. A charged particle is associated from rest
through a certain potential difference. The de-
Broglie wavelength is λ_{1} when it is accelerated through V_{1} and is λ_{2} when accelerated through V_{2}. The ratio $\lambda_{1} / \lambda_{2}$ is

$$
\begin{aligned}
& \text { A. } V_{1}^{3 / 2}: V_{2}^{3 / 2} \\
& \text { B. } V_{2}^{1 / 2}: V_{1}^{1 / 2} \\
& \text { C. } V_{1}^{1 / 2}: V_{2}^{1 / 2} \\
& \text { D. } V_{1}^{2}: V_{2}^{2}
\end{aligned}
$$

Answer: B
125. The energy of an electron having deBrogilie wavelength λ is
(hwere, h=Plank's constant, $m=$ mass of electron)

$$
\begin{aligned}
& \text { A. } \frac{h}{2 m \lambda} \\
& \text { B. } \frac{h^{2}}{2 m \lambda p^{2}} \\
& \text { C. } \frac{h^{2}}{2 m^{2} \lambda^{2}} \\
& \text { D. } \frac{h^{2}}{2 m^{2} \lambda}
\end{aligned}
$$

Answer: B

- Watch Video Solution

126. The energy that should be added to an
electron to reduce its de - Broglie wavelength
from one $n m \rightarrow 0.5 \mathrm{~nm}$ is
A. four-times the initial energy
B. equal to the initial energy
C. two-times the initial energy
D. three-times the initial energy

- Watch Video Solution

127. The de-Broglie wavelength of an electron is
$0.4 \times 10^{-10} \mathrm{~m}$ when its kinetic energy is 1.0
keV . Its wavelength will be $1.0 \times 10^{-10} \mathrm{~m}$, When its kinetic energy is
A. 0.2 keV
B. 0.8 keV
C. 0.63 keV

D. 0.16 keV

Answer: D

- Watch Video Solution

128. The de-Broglie wavelength of an electron is
the same as that of a 50 ke X-ray photon. The ratio of the energy of the photon to the kinetic energy of the electron is (the energy equivalent of electron mass of 0.5 MeV)
A. 1: 50
B. $1: 20$
C. $20: 1$
D. $50: 1$

Answer: C

(Watch Video Solution

129. An electron of mass m and a photon have same energy E. The ratio of de - Broglie wavelengths associated with them is :
A. $c(2 m E)^{1 / 2}$
B. $\frac{1}{c}\left(\frac{2 m}{E}\right)^{\frac{1}{2}}$
C. $\frac{1}{c}\left(\frac{E}{2 m}\right)^{\frac{1}{2}}$
D. $\left(\frac{E}{2 m}\right)^{\frac{1}{2}}$

Answer: C

- Watch Video Solution

130. A photon sensitive metallic surface emits electrons when X-rays of wavelength λ fal on it.

The de-Broglie wavelength of the emitted electrons is (Neglect the work function of the surface, m is mass of the electron. H=Planck's constant. C= velocity of light)

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{2 m c}{h \lambda}} \\
& \text { B. } \sqrt{\frac{h \lambda}{2 m c}} \\
& \text { C. } \sqrt{\frac{m c}{h \lambda}} \\
& \text { D. } \sqrt{\frac{h \lambda}{m c}}
\end{aligned}
$$

Answer: B

131. If the kinetic energy of a free electron doubles, its de - Broglie wavelength changes by the factor
A. $\sqrt{2}$
B. $\frac{1}{\sqrt{2}}$
C. 2
D. $\frac{1}{2}$

Answer: B
132. If the kinetic energy of the particle is increased to 16 times its previous value, the percentage change in the de - Broglie wavelength of the particle is
A. 25
B. 75
C. 60
D. 50

Answer: B
133. If an electron has an energy such that its de Broglie wavelength is $5500 \AA$, then the energy value of that electron is

$$
\left(h=6.6 \times 10^{-34}\right) \mathrm{Js}, m_{c}=9.1 \times 10^{-31} \mathrm{~kg}
$$

A. $8 \times 10^{-20} \mathrm{~J}$
B. 8×10^{-10} J
C. 8 J
D. $8 \times 10^{-25} \mathrm{~J}$

- Watch Video Solution

134. If the momentum of an electron is changed by Δp, then the de - Broglie wavelength associated with it changes by
0.50%. The initial momentum of the electron
will be
A. 100 Pm
B. $\frac{P_{m}}{100}$
C. $200 P_{m}$
D. $\frac{P_{m}}{200}$

Answer: C

- Watch Video Solution

135. What is the de-Broglie wavelength
associated with an electron moving with an
electron, accelerated through a potential difference of 100 volt?
A. $12.27 \AA$
B. $1.227 \AA$

C. $0.1227 \AA$

D. $0.001227 \AA$

Answer: B

- Watch Video Solution

136. Calculate de Broglie wavelength associated
with an electron, accelerated through a potential difference of 400 V .
A. 0.03 nm

B. 0.04 nm

C. 0.12 nm
D. 0.06 nm

Answer: D

(Watch Video Solution

137. The potential difference V required for accelerating an electron to have the de-Broglie wavelength of $1 \AA$ is
A. 100 V
B. 125 V
C. 150 V
D. 200 V

Answer: C

- Watch Video Solution

138. An electron of mass m has de broglie wavelength λ when accelerated through a potential difference V. When a proton of mass
M is accelerated through a potential difference
9V, the de broglie wavelength associated with
it will be (Assume that wavelength is determined at low voltage).

$$
\begin{aligned}
& \text { A. } \frac{\lambda}{5} \sqrt{\frac{M}{n}} \\
& \text { B. } \frac{\lambda}{3} \frac{M}{m} \\
& \text { C. } \frac{\lambda}{3} \sqrt{\frac{m}{M}} \\
& \text { D. } \frac{\lambda}{3} \frac{m}{M}
\end{aligned}
$$

Answer: C
139. Find the de-Broglie wavelength of an electron with kinetic energy of 120 eV .
A. 112 pm
B. 95 pm
C. 124 pm
D. 102 pm

Answer: A

- Watch Video Solution

140. An electron accelerated through a potential of 10,000 V from rest has a de-Broglie wavelength λ. What should be the accelerating potential so that the wavelength is doubled?
A. $20,000 \mathrm{~V}$
B. $40,000 \mathrm{~V}$
C. $5,000 \mathrm{~V}$
D. $2,500 \mathrm{~V}$

Answer: D
141. A proton and an α-particle are accelerated through same potential difference. Find the ratio of their de-Brogile wavelength.

A. $\sqrt{2}$
B. $2 \sqrt{2}$
C. $\sqrt{3}$
D. $2 \sqrt{3}$

Answer: B
142. Electrons with de- Broglie wavelength λ fall on the target in an X - rays tube. The cut off wavelength of the emitted X - rays is

$$
\begin{aligned}
& \text { A. } \lambda_{0}=\lambda \\
& \text { B. } \lambda_{0}=\frac{2 m c \lambda d^{2}}{h} \\
& \text { C. } \lambda_{0}=\frac{2 h}{m c} \\
& \text { D. } \lambda_{0}=\frac{2 m^{2} c^{2} \lambda^{3}}{h^{2}}
\end{aligned}
$$

Answer: B
143. In Davisson-Germer experiment the decrease of the wavelength of the electron wave was done by
A. keeping more distance between the
anode and filament
B. keeping the same potential difference
between anode and filament.
C. decreasing the potential difference
between anode and filament.

D. increasing the potential difference

between anode and filament.

Answer: D

- Watch Video Solution

144. In experiment of Davisson-Germer, emitted electron from filament is accelerated through
voltage V then de-Broglie wavelength of that electron will be m.
A. $\frac{2 V e m}{\sqrt{h}}$
B. $\frac{\sqrt{h}}{2 V e m}$
C. $\frac{\sqrt{2 V e m}}{h}$
D. $\frac{h}{\sqrt{2 V e m}}$

Answer: D

(Watch Video Solution

145. The largest distance between the interatomic planes of crystal is $10^{-7} \mathrm{~cm}$. The upper limit for the wavelength of X - rays
which can be usefully studied with this crystal
is
A. 1 Å
B. $2 \AA$
C. $10 \AA$
D. $20 \AA$

Answer: D
(D) Watch Video Solution
146. An electron in a hydrogen atom undergoes
a transition from higher energy level to a lower energy level. The incorrect statement of the following is
A. kinetic energy of the electron increases.
B. velocity of the electron increases
C. angular momentum of the electron remains constant.
D. wavelengths of de-Broglie wave
associated with the motion of electron

Answer: C,A,B,D

- Watch Video Solution

147. Hydrogen atom excites energy level from fundamental state to $n=3$. Number of spectrum lines according to Bohr, is
A. 4
B. 3
C. 1
D. 2

Answer: B

D Watch Video Solution

148. Number of spectral lines in hydrogen atom is
A. 6
B. 8

C. 15

D. ∞

Answer: D

- Watch Video Solution

149. An electron of stationary hydrogen atom jumps from $4^{\text {th }}$ energy level to ground level.

The velocity that the photon acquired as a result of electron transition will be (h = Plank's
constant, $\mathrm{R}=$ Rydberg's constatn, $\mathrm{m}=$ mass of photon)

A. $\frac{9 R h}{16 m}$
B. $\frac{11 h R}{16 m}$
C. $\frac{13 h R}{16 m}$
D. $\frac{15 h R}{16 m}$

Answer: D

- Watch Video Solution

150. A photon of wavelength 300 nm interacts
with a stationary hydrogen atom in ground
state. During the interaction, whole energy of
the photon is transferred to the electron of the atom. State which possibility is correct, (consider, Plank's constant $=4 \times 10^{-15} \mathrm{eVs}$, velocity of light $=3 \times 10^{8} \mathrm{~ms}^{-1}$ ionisation energy of hydrogen $=13.6 \mathrm{eV}$)
A. Electron will be knocked out of the atom.
B. Electron will go to any excited state of the atom.
C. Electron will go only to first excited state of the atom.

D. Electron will keep orbitting in the ground

state of atom.

Answer: C

D Watch Video Solution

151. If the electron in hydrogen atom jumps
from second Bohr orbit to group state and difference between energies of the two state is
radiated in the form of photons. If the work function of the material of photons. If the work function of the material is 4.2 eV then stopping potential is (energy of electron is nth orbit $\left.=\frac{13.6}{n^{2}} e V\right)$
A. 2 eV
B. 4 eV
C. 6 eV
D. 8 eV

Answer: A
152. What is the wavelength of ligth for the least energetic photon emitted in the Lyman series of the hydrogen spectrum. (Take, hc
$=1240 \mathrm{eV}$-nm)
A. 122 nm
B. 82 nm
C. 150 nm
D. 102 nm

- Watch Video Solution

153. Atomic weight of boron is 10.81 and it has
two isotopes ${ }_{5} B^{10}$ and ${ }_{5} B^{11}$. Then ratio of ${ }_{5} B^{10}$ in nature would be.
A. 19: 81
B. $10: 11$
C. $15: 16$
D. $81: 19$

- Watch Video Solution

154. If a proton and anti-proton come close to each other and annihilate, how much energy will be released?
A. $1.5 \times 10^{-10} \mathrm{~J}$
B. 3×10^{-10} J
C. $4.5 \times 10^{-10} \mathrm{~J}$
D. None of these

Answer: B

- Watch Video Solution

155. A nucleus splits into two nuclear parts
having radii in the ratio $1: 2$ Their velocities are
in the ratio
A. $4: 1$
B. $8: 1$
C. 2:1
D. 6:1

Answer: B

- Watch Video Solution

156. A nucleus of mass 20 u emits a γ-photon of energy 6 MeV . If the emission assume to occur when nucleus is free and rest, then the nucleus
will have kinetic energy nearest to (take

$$
\left.1 u=1.6 \times 10^{-27} \mathrm{~kg}\right)
$$

A. 10 keV
B. 1 keV

C. 0.1 keV

D. 100 keV

Answer: B

- Watch Video Solution

157. Half-life of radioactive sample, when activity of material initially was 8 counts and after 3 hours it becomes 1 count is
A. 2 hours

B. 1 hour

C. 3 hours

D. 4 hours

Answer: B

- Watch Video Solution

158. If 20 gm of a radioactive substance due to radioactive decay reduces to 10 gm in 4 minutes, then in what time 80 gm of the same substance will reduce to 10 gm ?

A. In 8 minutes

B. In 12 minutes
C. In 16 minutes
D. In 20 minutes

Answer: D

D Watch Video Solution

159. Given a sample of radius -226 having half-
life of 4 days. Find, the probability, a nucleus disintegrates after 2 half lifes.
A. 1
B. $\frac{1}{2}$
C. 1.5
D. $\frac{3}{4}$

Answer: D
(Watch Video Solution
160. During mean life of a radioactive element,
the fraction that disintegrates is
A. e
B. $\frac{1}{e}$
C. $\frac{e-1}{e}$
D. $\frac{e}{e-1}$

Answer: C

D Watch Video Solution

161. A mixture consists of two radioactive materials A_{1} and A_{2} with half-lives of $20 s$ and $10 s$ respectively. Initially the mixture has $40 g$ of
A_{1} and $160 g$ of a_{2}. The amount the two in the mixture will become equal after
A. 60s
B. 80 s
C. 20 s
D. 40 s

Answer: D

D Watch Video Solution
162. The activity of a radioactive sample is measured as N_{0} counts per minute at $\mathrm{t}=0$ and
N_{0} / e counts per minute at $\mathrm{t}=5$ minutes. The time (in minutes) at which the activity reduces of half its value is
A. $5 \log _{e} 2$
B. $\log _{e} \frac{2}{5}$
C. $\frac{5}{\log _{e} 2}$
D. $5 \log _{10} 2$

- Watch Video Solution

163. (I): In a β^{-1} decay in a nucleus, a daughter nucleus that has discrete energy states is produced. The daughter nucleus reaches ground state from excited state by emitting γ rays.
(II)- The binding energy of hydrogen nucleus is far less than the binding energy of helium nucleus:
A. 1 False, II False

B. 1 False, II True

C. I True, II False

D. I True, II True

Answer: D

D View Text Solution

164. Half-life of a radioactive substance is 20 minutes. Difference between points of time when it is 33% disintegrated and 67% disintegrated is approximate.
A. 10 min
B. 20 min
C. 30 min

D. 40 min

Answer: B

D Watch Video Solution

165. A radioactive substance of half-life 6 minutes is placed near a Geiger counter which is found to register 1024 particles per minute.

How many particles per minute will it register after 42 minutes?
A. 8
B. 16
C. 24
D. 32

Answer: A

D Watch Video Solution
166. A particle A of mass m and initial velocity v
collides with a particle of mass $m / 2$ which is at rest. The collision is head on, and elastic. The ratio of the de-broglie wavelength λ_{A} and λ_{B} after the collision is

$$
\begin{aligned}
& \text { A. } \frac{\lambda_{A}}{\lambda_{B}}=\frac{2}{3} \\
& \text { B. } \frac{\lambda_{A}}{\lambda_{B}}=\frac{1}{2} \\
& \text { C. } \frac{\lambda_{A}}{\lambda_{B}}=\frac{1}{3} \\
& \text { D. } \frac{\lambda_{A}}{\lambda_{B}}=2
\end{aligned}
$$

- Watch Video Solution

167. In a hydrogen like atom electron make transition from an energy level with quantum number n to another with quantum number
$(n-1)$ if $n \gg 1$, the frequency of radiation emitted is proportional to :
A. $\frac{1}{n}$
B. $\frac{1}{n^{2}}$
C. $\frac{1}{n^{3 / 2}}$
D. $\frac{1}{n^{3}}$

Answer: D

- Watch Video Solution

168. Light of wavelength 500 nm is incident on a metal with work function 2.28 eV . The de Broglie wavelength of the emitted electron is
A. $\leq 2.8 \times 10^{-12} \mathrm{~m}$
B. $<2.8 \times 10^{-10} \mathrm{~m}$

$$
\begin{aligned}
& \text { C. }<2.8 \times 10^{-9} \mathrm{~m} \\
& \text { D. } \geq 2.8 \times 10^{-9} \mathrm{~m}
\end{aligned}
$$

Answer: D

- Watch Video Solution

169. The radiation corresponding to $3 \rightarrow 2$
transition of hydrogen atom falls on a metal
surface to produce photoelectrons . These electrons are made to enter circuit a magnetic field $3 \times 10^{-4} T$ if the ratio of the largest
circular path follow by these electron is ${ }^{`} 10.0$ mm , the work function of the metal is close to
A. 1.8 eV
B. 1.1 eV
C. 0.8 eV
D. 1.6 eV

Answer: B

D Watch Video Solution
170. Hydrogen atom in ground state is excited by a monochromatic radiation of $\lambda=975 \AA$.

Number of spectral lines in the resulting spectrum emitted will be
A. 3
B. 2
C. 6
D. 10

Answer: C

D Watch Video Solution
171. The ionisation energy of hydrogen is 13.6 eV . The energy of the photon released when an electron jumps from the first excited state $(n=2)$ to the ground state of hydrogen atom is
A. 3.4 eV
B. 4.53 eV
C. 10.2 eV
D. 13.6 eV

- Watch Video Solution

172. When an α - particle of mass ' m ' moving with velocity 'v' bombards on a heavy nucleus of charge 'Ze' its distance of closest approach
from the nucleus depends on m as:
A. $\frac{1}{m^{2}}$
B. m
C. $\frac{1}{m}$
D. $\frac{1}{\sqrt{m}}$

Answer: C

D Watch Video Solution

173. The de - Broglie wavelength of a neutron in
thermal equilibrium with heavy water at a temperature T (kelvin) and mass m, is
A. $\frac{h}{\sqrt{3 m k T}}$
B. $\frac{2 h}{\sqrt{3 m k T}}$
C. $\frac{2 h}{\sqrt{m k T}}$
D. $\frac{h}{\sqrt{m k T}}$

- Watch Video Solution

174. The de-Broglie wavelength of thermal neutrons at $27^{\circ} \mathrm{C}$ will be
A. $1.77 \AA$
B. 1.77 mm
C. 1.77 cm
D. 1.77 m

- Watch Video Solution

175. The energy released by the fission of one
uranium atom is 200 MeV . The number of
fission per second required to prodice 6.4 W power is
A. 10^{11}
B. 2×10^{11}
C. 10^{10}

D. 2×10^{10}

Answer: B

- Watch Video Solution

176. Assertion: Energy is released when heavy nuclei undergo fission or light nuclei undergo
fusion.

Reason: For heavy nuclei, binding energy per nucleon increases with increasing Z while for light nuclei it decreases with increasing Z.
A. Assertion is True, Reason is True, Reason is a correct explanation for Assertion. B. Assertion is True, Reason is True, Reason is not a correct explanation for Assertion.
C. Assertion is True, Reason is false.

D. Assertion is False but, Reason is True.

Answer: C

- Watch Video Solution

177. If an alpha particle and a deuteron move with velocity v and 2 v respectively, the ratio of their de-Broglie wave length will be
A. $1: \sqrt{2}$
B. 2:1
C. 1:1
D. $\sqrt{2}: 1$

Answer: C
178. A particle is droped from a height H . The de-broglie wavelength of the particle as a function of height is proportional to
A. $H^{-1 / 2}$
B. H^{0}
C. $H^{1 / 2}$
D. H

Answer: A
179. According to de-Broglie hypothesis, the wavelength associated with moving electron of mass ' m ' is λ_{e}. Using mass energy relation and Planck's quantum theory, the wavelength associated with photon is λ_{p}. If the energy (E)
of electron and photon is same then relation between λ_{e} and λ_{p} is
A. $\lambda_{p} \propto \lambda_{e}$
B. $\lambda_{p} \propto \lambda_{e}^{2}$
C. $\lambda_{p} \propto \sqrt{\lambda_{e}}$
D. $\lambda_{p} \propto \frac{1}{\lambda_{e}}$

Answer: A

D Watch Video Solution

180. the number of de broglie wavelength
contained in the second bohr orbit of hydrogen atom is
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

Evaluation Test

1. Two radioactive materials X_{1} and X_{2} have
decay constants 5λ and λ respectively. If initially they have the same number of nuclei,
then the ratio of the number of muclei of X_{1}
to that of X_{2} will be $\frac{1}{e}$ after a time
A. $\frac{1}{2 \lambda}$
B. $\frac{1}{4 \lambda}$
C. $\frac{1}{6 \lambda}$
D. $\frac{1}{8 \lambda}$

Answer: B

D Watch Video Solution

2. What amount of energy should be added to
an electron to reduce its de-Broglie wavelength
from 200 pm to 100 pm ?
A. 113 eV

B. 356 eV

C. 453 eV

D. 648 eV

Answer: A

D Watch Video Solution

3. In the process of nuclear fission of 1 g uranium, the mass lost is 0.90 milligram. The efficiency of power station run by it is 10%. To
obtain 200 megawatt power from the power station, the uranium required per hour is $\left(c=3 \times 10^{8}\right) \mathrm{m} / \mathrm{s}$.
A. 24 g
B. 49 g
C. 68 g
D. 89 g

Answer: D

4. Assertion: Lyman series lies in the visible region of electromagnetic spectrum.

Reason: This is because Balmer series also lies in visible region.
A. Assertion is True, Reason is True, Reason is a correct explanation for Assertion.
B. Assertion is True, Reason is True,

Statement-2 is not a correct explanation
for Reason.
C. Assertion is True, Reason is false.
D. Assertion is False but, Reason is True.

Answer: D

D Watch Video Solution

5. When a hydrogen atom is excited from ground state to first excited state then
A. its kinetic energy increases by 10.2 eV .
B. its kinetic energy decreases by 20.4 eV .
C. its potential energy decreases by 20.4 eV .
D. its angular momentum increases by

$$
1.05 \times 10^{-34} \mathrm{~J}-\mathrm{s}
$$

Answer: D

- Watch Video Solution

6. A stationary helium ion emits a photon corresponding to the first line of Lyman series.

That photon liberates a photoelectron form a stationary hydrogen atom in ground state.

Find the velocity of photoelectron. Take mass
of electron $=9.11 \times 10^{-31} \mathrm{~kg}$ and ionisation energy of hydrogen atom=13.6ev.
A. $1.5 \times 10^{6} \mathrm{~m} / \mathrm{s}$
B. $3.1 \times 10^{6} \mathrm{~m} / \mathrm{s}$
C. $4.5 \times 10^{6} \mathrm{~m} / \mathrm{s}$
D. $6.2 \times 10^{7} \mathrm{~m} / \mathrm{s}$

Answer: B

- Watch Video Solution

7. Average lifetime of a hydrogen atom excited to $n=2$ state is $10^{-6} s$ find the number of revolutions made by the electron on the average before it jump to the ground state

$$
\text { A. } 4.2 \times 10^{-7}
$$

B. 2.3×10^{-7}
C. 1.5×10^{-7}
D. 1.2×10^{-7}

Answer: D
8. The binding energy per nucleon for ${ }_{1} H^{2}$ and ${ }_{2} \mathrm{He}^{4}$ are 1.1 MeV and 7.1 MeV respectively. The energy released when two ${ }_{1} H^{2}$ to form ${ }_{2} \mathrm{He}^{4}$ is MeV.
A. 24 MeV
B. 42 MeV
C. 12 MeV
D. 14 MeV

- Watch Video Solution

9. Binding energy per nucleon for C^{12} is 7.68 MeV and for C^{13} is 7.74 MeV . The energy required to remove a neutron from C^{13} is .
A. 5.49 MeV
B. 4.95 MeV
C. 9.45 MeV
D. 5.94 MeV

- Watch Video Solution

10. Half-life of a substance is 10 minutes. The
time between 33% decay and 67% decay is
A. 5 min
B. 10 min
C. 20 min
D. 40 min

Answer: B
11. An hydrogen atom moves with a velocity u and makes a head on inelastic collision with another stationary H -atom. Both atoms are in ground state before collision. The minimum value of u if one of them is to be given a minimum excitation energy is

$$
\begin{aligned}
& \text { A. } 6.25 \times 10^{4} \mathrm{~ms}^{-1} \\
& \text { B. } 2.64 \times 10^{4} \mathrm{~ms}^{-1} \\
& \text { C. } 4.26 \times 10^{4} \mathrm{~ms}^{-1}
\end{aligned}
$$

$$
\text { D. } 2.46 \times 10^{-4} m s^{-1}
$$

Answer: A

- Watch Video Solution

12. Magnetic moment by virtue of the orbital
motion of an electron in an atom when orbital
angular momentum = one quantum unit is
A. $2.9 \times 10^{-20} A m^{2}$
B. $9.2 \times 10^{-20} \mathrm{Am}^{-2}$

$$
\begin{aligned}
& \text { C. } 9.2 \times 10^{-24} A m^{2} \\
& \text { D. } 2.9 \times 10^{-26} A m^{2}
\end{aligned}
$$

Answer: C

(Watch Video Solution

13. The minimum kinetic energy of a ground state hydrogen atom required to have head-on
collision with another ground state hydrogen
atom but at rest to produce a photon is given by

A. 4.20 eV

B. 20.4 eV

C. 2.04 eV

$$
\text { D. }-9.1 \mathrm{eV}
$$

Answer: B

D Watch Video Solution

14. When a deuteron of mass 2.0141 a.m.u and negligible K.E. is absorbed by a Lithium $\left({ }_{.3} L i^{6}\right)$ nucleus of mass 6.0155 a.m.u. the compound
nucleus disintegration spontaneously into two
alpha particles, each of mass 4.0026 a.m.u.
Calculate the energy carried by each α particle.
A. 1.18 MeV
B. 8.11 MeV
C. 1.1 MeV
D. 11.08 MeV

Answer: D

15. A material found within the body of an organism trapped in an ice berg had a ${ }_{6} C^{14}$ activity of about 0.144 Bg per g. ${ }_{6} \mathrm{C}^{14}$ activity of the living organism is 0.28 Bq per g and its half life 5730 years. The age of organism would be

A. 1250 yr

B. 2400 yr
C. 5500 yr
D. 7600 yr

Answer: C
16. Assertion: Ionisation energy of atomic hydrogen is greater than atomic deuterium.

Reason: Ionisation energy is proportional to reduced mass.
A. Assertion is True, Reason is True, Reason
is a correct explanation for Assertion.
B. Assertion is True, Reason is True, Reason
is not a correct explanation for Assertion.
C. Assertion is True, Reason is false.

D. Assertion is False but, Reason is True.

Answer: D

- Watch Video Solution

17. Transition between three energy energy
levels in a particular atom give rise to three

Spectral line of wevelength , in increasing magnitudes. λ_{1}, λ_{2} and λ_{3}. Which one of the following equations correctly ralates λ_{1}, λ_{2} and λ_{3} ?

$$
\text { A. } \lambda_{1}=\lambda_{2}-\lambda_{3}
$$

$$
\begin{aligned}
& \text { B. } \lambda_{1}=\lambda_{2}<\lambda_{3} \\
& \text { C. } \frac{1}{\lambda_{1}}=\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}} \\
& \text { D. } \frac{1}{\lambda_{1}}=\frac{1}{\lambda_{3}}-\frac{1}{\lambda_{2}}
\end{aligned}
$$

Answer: C

D Watch Video Solution

18. If the average life time of an excited state of hydrogen is of the order of $10^{-6} \mathrm{~s}$ estimate how may orbits an electron makes, whenit is
the state $\mathrm{n}=2$ and before it suffers a transition
to state $\mathrm{n}=1$ (Bohr radius $r_{0}=5.3 \times 10^{11} \mathrm{~m}$)
A. 3.21×10^{8}
B. 5.46×10^{8}
C. 8.22×10^{8}
D. 8.52×10^{9}

Answer: C

- Watch Video Solution

19. A beam of monochromatic light of wavelength λ ejects photoelectronic from a cesium surface $\left(W_{0}=1.9 \mathrm{eV}\right)$ which are made to collide with hydrogen atoms in ground state. The maximum value of λ for which hydrogen atoms may be ionised is
A. 0.77 nm
B. 7.7 nm
C. 77 nm
D. 770 nm

Answer: C

D Watch Video Solution

