©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - TARGET PHYSICS (HINGLISH)

INTERFERENCE AND DIFFRACTION

Classical Thinking

1. To deminstrate the phenimenon of
interference, we require two sources which
emit radiation
A. of the same frequency.
B. of nearly the same frequency.
C. of the same wavelength.
D. of different wavelength

Answer: A

D Watch Video Solution
2. Which of the following is conserved when light waves interfere
A. Amplitude
B. Energy
C. Phase
D. Intensity

Answer: B

- Watch Video Solution

3. Two identical light sources S_{1} and S_{2} emit light of same wavelength λ. These light rays
A. phase differences remain constant.
B. phases are distributed randomly
C. ligh intensities remain constant.
D. light intensities change radomly.

Answer: A

D Watch Video Solution
4. Intensity of light depends upon
A. velocity
B. wavelength
C. amplitude
D. frequency

Answer: C

D Watch Video Solution

5. The coherent sources of light produce
constructive interference when phase
difference between them is
A. π
B. $\frac{\pi}{2}$
C. $\frac{3 \pi}{2}$
D. 2π

Answer: D

D Watch Video Solution

6. What is the path difference of destructive interference
A. $n \lambda$
B. $n(\lambda+1)$
C. $\frac{(n+1) \lambda}{2}$
D. $\frac{(2 n-1) \lambda}{2}$

Answer: D

D Watch Video Solution
7. The destructive interference at a certain point is produced when two coherent light
waves superpose at that point with a phase

difference of

A. zero
B. $\frac{\pi}{2}$
C. π
D. 2π

Answer: C
(Watch Video Solution
8. Two coherent sources produce a dark fringe,
when the phase difference between the intefering beams is
A. zero
B. 2π
C. $n \pi$
D. $(2 n-1) \pi$

Answer: D

D Watch Video Solution

9. The centre of inteference pattern

A. is always bright
B. is always dark
C. may be bright or dark

D. is changed continously

Answer: A
10. To produce destructive interference at a point, the path difference between two waves meeting at that point should be
A. $\Delta x=\lambda, 3 \lambda, 5 \lambda \ldots$.
B. $\Delta x=0, \lambda, 2 \lambda, 3 \lambda \ldots n \lambda$
C. $\Delta=\frac{\lambda}{2}, \frac{3 \lambda}{2}, \frac{5 \lambda}{2}$.
D. $\Delta x=\frac{\lambda}{2}, \frac{3 \lambda}{4}, \frac{5 \lambda}{4} \ldots \ldots$.

Answer: C

D Watch Video Solution
11. What is the condition of phase difference for destructive interference?
A. $0,2 \pi, 4 \pi, 6 \pi$
B. $\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \frac{7 \pi}{2} \ldots .$.
C. $\pi, 3 \pi, 5 \pi, 7 \pi$...
D. $\frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi$

Answer: C

D Watch Video Solution

12. In the Young's double slit experiment, if the phase difference between the two waves interfering at a point is ϕ, the intensity at that point can be expressed by the expression

$$
\begin{aligned}
& \text { A. } I=\sqrt{A^{2}+B^{2} \cos \phi} \\
& \text { B. } I=\frac{A}{B} \cos \phi \\
& \text { C. } I=A+B \cos \frac{\phi}{2} \\
& \text { D. } I=A+B \cos \phi
\end{aligned}
$$

Answer: D

13. If path difference between two interfering waves arriving at a point is zero, then the point will
A. be a dark point
B. be a bright point
C. remains as it is
D. be eigher a dary or a bright point.

Answer: B
14. If the amplitude of two interfering light waves are not equal, then the intensity in the dark region formed in the interference pattern will be
A. more
B. less
C. same
D. zero
15. In Young's double slit experiment, a minimum is obtained when the phase difference of super imposing waves is
A. $(n+1) \pi$
B. $n \pi$
C. $(2 n-1) \pi$
D. 0
16. Which of the following pairs denotes coherent sources?
A. Two close points on a sodium lamp
B. Two sodium lamps operating at same
voltage.
C. Two Argon ion lasers.
D. Argon ion and helium neon laser.

Answer: C

- Watch Video Solution

17. Two inependent monochromatic sources of light are
A. coherent
B. incoherent
C. coherent of incoherent depeding upon
the nature of source.

D. chromatic.

Answer: B

D Watch Video Solution

18. To obtain steady or sustained interference
pattern, two sources of light should be
A. away from each other.
B. coherent and monochromatic
C. emitting light waves of different wavelengths.
D. emitting light waves of different amplitudes.

Answer: B

D Watch Video Solution

19. For steady interference of light, the two sources of light must be
A. narrow and away from each other.
B. broad and away from each other.
C. narrow and close to each other.
D. broad and close to each other.

Answer: C

- Watch Video Solution

20. For interference experiment, the sources should lie quite close to each other, otherwise
A. will not be formed
B. will be formed too much apart.
C. will have very small intensity.
D. would be quite crowded.

Answer: D

D Watch Video Solution
21. Which scientist performed the double slit experiment to observe the interference of light?
A. Frensel
B. Foucault
C. Becquerel
D. Thomas Young

Answer: D

D Watch Video Solution
22. Young's experiment establishes that
A. light consists of particles
B. light consists of particles.
C. light is both particle and wave.
D. light is longitudinal wave.

Answer: B

D Watch Video Solution

23. In Young's double slit experiment, if one of the slit is closed fully, then in the interference pattern
A. a bright slit will be observed, no interference pattern will exist.
B.the bright fringes will become more bright.
C. the bright fringes will become fainter.
D. bright fringes become dark.

Answer: A

D Watch Video Solution

24. In double slits experiment, for light of which colour the fringe width will be minimum
A. Violet
B. Red
C. Green
D. Yellow

Answer: A
(D) Watch Video Solution
25. The fringe width in Young's double slit experiment can be increased by decreasing
A. separationk between two slits.
B. width of the slit.
C. wavelength of light
D. distance between slit and the screen.

Answer: A

D Watch Video Solution
26. If yellow light in the Young's double slit experiement is replaced by red light, the fringe width will
A. decrease
B. remain unaffected
C. increase
D. first increase and then decrease

Answer: C

D Watch Video Solution
27. In Young's experiment one slit is covered
with a blue filter and the other (slit) with a
yellow filter then the interference pattern
A. will be blue
B. will be yellow
C. will be green
D. will not be formed.

Answer: D

D Watch Video Solution
28. A thin transparent sheet is placed in front
of a slit in Young's double slit experiment. The
fringe width will
A. increase
B. decrease
C. remain same
D. becomes non-uniform

Answer: C

D Watch Video Solution
29. In Young's experiment if the dark bands are to be perfectly dark, then
A. wavelength of the two waves must be exactly equal.
B. the amplitudes of the waves must be exactly equal.
C. frequencies of the waves must be exactly
equal.
D. phases of the two waves must be equal.

Answer: B

D Watch Video Solution

30. In Young's double slit experement if the two sources of light are very wide, then
A. the interference frinces are very wide
B. the interference fringes are very narrow.
C. Uniform illumination is obtained instead
of alternate bright and dark fringes.

D. interference docs not occur.

Answer: C

D Watch Video Solution

31. A double-slit interference experiment is set
up in a chamber that can be completely evacuted. With monochromatic light, an interference pattern is observed when the container is open to air. As the container is
evacuated, a careful observer will note that the interference fringes
A. moves slightly closer together.
B. do not change at all.
C. move slightly further apart.
D. none of these.

Answer: C

- Watch Video Solution

32. In Young's double slit experiment, for which colour is the fringe width maximum?
A. Red
B. Green
C. Blue
D. Yellow

Answer: A

D Watch Video Solution
33. If a torch is used in place of monochromatic light in Young's experiment what will happen?
A. No fringe will appear.
B. Only bright fringe wil appear.
C. Fringes will occur in the same way as
from monochromatic source.
D. Fringe will appear for a moment and
then it will disppear.

- Watch Video Solution

34. In Young's double slit experiment, 62 fringes are seen in visible region for sodium light of wavelength $5893 \AA$. If violet light of wavelength $4358 \AA$, is used in place of sodium
light, then number of fringes seen will be
A. 54
B. 64
C. 74
D. 84

Answer: D

D Watch Video Solution

35. The path difference between two waves is
A. $\frac{x D}{d}$
B. $\frac{x d}{D}$
C. $\frac{x D}{\lambda}$
D. $\frac{x \lambda}{d}$

Answer: B

- Watch Video Solution

36. Distance between two adjacent bright bands or dark bands is called
A. band length
B. band order
C. band gap
D. band width

Answer: D

- Watch Video Solution

37. In interference of light, bright bands occur on the screen at

$$
\begin{aligned}
& \text { A. } X=0, \frac{\lambda}{d}, \frac{2 \lambda D}{d} \ldots \ldots \ldots \\
& \text { B. } X=\frac{\lambda D}{2 d}, \frac{\lambda D}{3 d}, \frac{\lambda D}{4 d} \ldots \\
& \text { С. } X=\frac{\lambda D}{2 d}, \frac{3 \lambda D}{2 d}, \frac{5 \lambda D}{2 d} . \\
& \text { D. } X=\frac{\lambda D}{3 d}, \frac{\lambda D}{6 d}, \frac{\lambda D}{9 d} \ldots \ldots .
\end{aligned}
$$

D Watch Video Solution

38. The distance of nth bright band from centre band is given by

$$
\text { A. } \frac{(2 n-1) \lambda D}{d}
$$

B. $\frac{n \lambda D}{d}$
C. $\frac{n \lambda d}{D}$
D. $\frac{(2 n) \lambda D}{d}$

Answer: B

D Watch Video Solution

39. If a thin transparent plate is introduced, in
the path of interfering waves, then entire fringe
A. shifts to left
B. shifts to right
C. remains same
D. shifts upwards.

Answer: D

D Watch Video Solution

40. In biprism experiment, clear and sharp
interference pattern is seen, when
A. biprism is close to slit.
B. refracting edge of the briprims is perpendicular to the slit.
C. biprism is close to eye piece.

D. refracting edge of biprism is exactly

 parallel slit.
Answer: D

D Watch Video Solution

41. In Fresnel's biprism experiment, when the distance between the slit aperture and eye is increased, then distance between the fringes
A. increases
B. decreases
C. remains unchanged.
D. increases in the beginning but decreases
when it reaches maximum.

Answer: A

D Watch Video Solution
42. The vertex angle fo a biprism is of the order
A. 179°
B. 170°
C. 1°
D. zero

Answer: C

D Watch Video Solution

43. In a biprism experiment, to determine the distance between coherent sources, the
A. between the slit and the screen
B. between the slit and the biprims
C. between eye piece and the biprism
D. behind the eye piece

Answer: C

D Watch Video Solution

44. If the wavelength of light is kept constant and the biprism is moved towards the screen, then the fringe width
A. decreases
B. increases
C. remains unchanged.
D. cannot be determined.

Answer: A

D Watch Video Solution

45. In Fresnel's bipriam, the shape of interference fringes formed will be
A. bright and dark linear fringes of equal width.
B. successive bright and dark linear fringes
of different width.
C. successive bright and dark circular
fringes of same width.
D. successive bright and dark circular fringes of different width.

Answer: A

46. In Fresnel's biprism experiment, on increasing the prism angle, the fringe width will
A. increase
B. decrease
C. remain unchanged
D. depend on the position of the object.

Answer: B

D Watch Video Solution
47. In a double slit experiment to find the separation between slits by displacement method, the separations of images of slits were found to be 16 mm and 9 mm respectively. The actual separation between slits will be
A. $d=d_{1} d_{2}$
B. $d=\frac{d_{1}}{d_{2}}$
C. $d=\sqrt{d_{1} d_{2}}$
D. $d=\sqrt{\frac{d_{1}}{d_{2}}}$

Answer: C

- Watch Video Solution

48. The phenomenon of diffraction of light was discovered by-
A. Huygens
B. Newton
C. Fresnel
D. Grimaldi

Answer: D

D Watch Video Solution

49. If we observe the single slit Fraunhofer diffraction with wavelength λ and slit width d , the width of the central maxima is 2θ. On decreasing the slit width for the same λ
A. θ increases
B. θ remains unchanged
C. θ decreases

D. θ increases or decreases depending on

 the intensity of light.
Answer: A

D Watch Video Solution

50. The diffraction fringes obtained by a single
slit are of
A. unequal width
B. equal width

C. equal width and equal intensity.

D. unequal width and unequal intensity.

Answer: D

D Watch Video Solution

51. The phenomenon of diffraction can be treated as interference phenomenon if the number of coherent sources is
A. one
B. two
C. zero
D. infinity

Answer: D

- Watch Video Solution

52. What is necessary for eash occurrence of

Fresnel's diffraction?
A. Obstacle should be of the order of wavelength.
B. Narrow opening should be of the order of wavelength.
C. Source and screen shoud be at finite
distance from the obstacle.
D. All of these.

Answer: D
53. Diffraction pattern is obtained using red
light. What will happen if it is replaced by violet light?
A. Bands will disappear.
B. Bands will become narrow
C. Bands will get spaced apart
D. Bands will remain unchanged.

Answer: B
54. Select the CORRECT statement from the following.
A. Diffraction is not based on the principle
of superposition.
B. Interference and diffraction both are
based on the principle of superposition,
C. In diffraction all the fringes have equal
width

D. Diffraction shows that light is a

 transverse wave.Answer: B

D Watch Video Solution

55. In a diffraction pattern, width of a fringe
A. does not depend on slit, width
B. varies directly as slit width
C. varies inversely as slit width

D. is directly proportional to the square of

fringe width.

Answer: C

D Watch Video Solution

56. When light is incident on a diffraction grating, the zero order principal maximum will be
A. one of the component colours
B. absent
C. spectrum of the colours
D. white

Answer: D

D Watch Video Solution

57. The condition for observing Fraunhofer diffraction from a single slit is that the light wavefront incident on the slit should be
A. spherical

B. cylindrical

C. plane

D. elliptical

Answer: C

D Watch Video Solution

58. The main difference in diffraction and interference is that
A. in diffraction, the fringe width of
different fringes are not equal whereas
in in interference the fringe widths are
equal.
B. it cannot be observed with white light.
C. unlike diffraction, the interference
fringes are of varying intensity.
D. none of these.

Answer: A

59. To observe the diffraction phenomenon, the minimum sizer of the hole is needed for which of the following waves
A. Microwaves
B. Radio waves
C. Sound waves
D. Visible light

Answer: D

D Watch Video Solution
60. In a single slit diffraction pattern, which of the following is incorrect for fringe pattern?
A. Width of the central maximum is twice
the width of the secondary maxima or minima.
B. Intensities of the secondary maxima are
much less than the intensity of the
central maxima.
C. All secondary maxima and minima are of
the same width.
D. For a given wavelength, the width of the
diffraction pattern
is
directly
proportional to the slit width.

Answer: D

- Watch Video Solution

61. When separation between the central maxima of the two objects is less than the separation between central maximum of first object and the first minima of the second object, then the objects are said to be
A. just resolved
B. well resolved
C. not resolved
D. resolving

Answer: C
62. Which colour will give maximum resolving power for a telescope?
A. red light
B. yellow light
C. green light
D. ultraviolet light

Answer: D
63. The resolving power of a telescope is given
by
A. $R=\frac{a}{\lambda}$
B. $R=\frac{\lambda}{a}$
C. $R=\frac{2 a}{\lambda}$
D. $R=\frac{\lambda}{2 a}$

Answer: A

- Watch Video Solution

64. If the aperture of the objective of a telescope is decreased, then its resolving power
A. decreases
B. increases
C. does not change
D. becomes infinity

Answer: A

- Watch Video Solution

65. The energy in the phenomenon of interference-
A. is conserved and gets redistributed.
B. is equal at every point.
C. is destroyed in regions of dard fringes.
D. is created at the place of bright fringes.

Answer: A
66. If two independent waves are $y_{1}=a_{1} \sin \omega_{1}$ and $y_{2}=a_{2} \sin \omega_{2} t$ then
A. they will not produce interference.
B. they will produce interference
C. they may or may not produce
interference.
D. it is difficult to comment about the result.

- Watch Video Solution

67. Select the correct statement
A. In a biprism experiment, fringe width of
blue colour light is less than that of light of red colour.
B. In Fresnel's biprism experiment, using
white light, blue fringes appear near the
central fringe and red fringe appear later.

C. Phenomenon of interference establishes

the wave nature of light.
D. In a soap film, colour appears due to the dispersion of light.

Answer: D

D Watch Video Solution

68. Which of the following phenomena distinguishes diffraction ad interference?
A. In diffraction all the maxima are of
decreaasing intensity whereas in
interference, all the maxima are of equal
intensity.
B. In diffraction, all the maxima are of equal
intensity whereas in interference all the
maxima are of decreasing intensity.
C. In diffraction, all the maxima sre of
decreasing intensity whereas in
interference all the maxima are of
increasing intensity.
D. In diffraction, all the maxima are of inreasing intensity whereas in
interference, all the maxima are of decreasing intensity.

Answer: A

D Watch Video Solution

69. Assertion : Ultra-violet light is used to achieve high resolving power.

Reason: Resolving power of microscope increases with the decrease of wavelength of light used.
A. Assertion is True, Reason is True, Reason
is a correct explanation for Assertion
B. Assertion is True, Reason is True, Reason
is not a correct explanation for Assertion
C. Assertion is True Reason is False.

D. Assertion is False, Reason is True.

Answer: A

D Watch Video Solution

70. Assertion: The colour of the oil film on the surface of water continuously changes.

Reason: The colour of the light reflected by the oil film depends upon its thickness.
A. Assertion is True, Reason is True, Reason
is a correct explanation for Assertion
B. Assertion is True, Reason is True, Reason
is not a correct explanation for Assertion
C. Assertion is True Reason is False.
D. Assertion is False, Reason is True.

Answer: B

D Watch Video Solution

Critical Thinking

1. The two waves represented by
$y_{1}=a \sin (\omega t)$ and $y_{2}=b \cos (\omega t)$ have a phase difference of
A. 0
B. $\frac{\pi}{2}$
C. π
D. $\frac{\pi}{4}$

- Watch Video Solution

2. The light waves from two independent monochromatic light sources are given by, $y_{1}=2 \sin \omega t$ and $y_{2}=3 \cos \omega t$. Then the correct statement is
A. both the wave are coherent
B. both the waves are incoherent
C. both the waves are in the same phase.
D. both the waves have same time period.

Answer: B

- Watch Video Solution

3. Select the INCORRECT statement. For stable interference to occur between two sets of waves
A. the two sets must have a constant phase difference
B. the two sets must have the same
C. the waves must be transverse.
D. the waves must have similar amplitudes.

Answer: C

D Watch Video Solution

4. Which of the following condition of path difference represent destructive interference?
A. 37λ
B. 12.5λ
C. 26λ
D. 19λ

Answer: B
(D) Watch Video Solution
5. If the path difference between two waves at
a point is 29λ, then the point will be
A. bright
B. dark

C. neigther bright nor dark

D. invisible

Answer: A

D Watch Video Solution

6. The optical path difference between two
light waves arriving at a point simultaneously
is $260 \frac{\lambda}{4}$. The point is
A. dark
B. bright
C. may be dark or bright
D. data insufficient

Answer: B

D Watch Video Solution

7. The optical path difference between to light waves arriving at a point simultaneously is $130 \frac{\lambda}{2}$, if the path difference is $650 \times 10^{-5} \mathrm{~cm}$, then the wavelength of light will be
A. $5000 \AA$
B. $13000 \AA$
C. $6500 \AA$
D. $1000 \AA$

Answer: D

D Watch Video Solution

8. If two waves represented by $y_{1}=4 \sin \omega t$ and $y_{2}=3 \sin \left(\omega t+\frac{\pi}{3}\right)$ interfere at a point,
the amplitude of the resulting wave will be about
A. 7
B. 6
C. 5
D. 3.5

Answer: B
(Watch Video Solution
9. Two coherent waves of intensities I and $4 I$
interfere at a point. If the resultant intensity is
31 , then the phase difference between te two waves at the point is
A. zero
B. 60°
C. 120°
D. 90°

Answer: C

10. In a movie hall, the distance between the projector and the screen is increased by 1%
illumination on the screen is
A. increased by 1%
B. decreased by 1%
C. increased by 2%
D. decreased by 2\%

Answer: D
11. In a double slit experiment, instead of taking slits of equal widths, one slit is made twice as wide as the other. Then, in the interference pattern
A. the intensities of both the maxima and the minima increase.
B. the intensity of maxima increases and
the minima has zero intensity
C. the intensity of maxima decreases and that of the minima increases
D. the intensity of maxima decreases and
the minima has zero intensity.

Answer: A

D Watch Video Solution

12. To increse fringe width, by keeping distance between slit and screen constant, we need to ensure that
A. d increases and λ remain constant.
B. d increases and λ decreases
C. d decreses and λ decreases
D. d decreases and λ increases.

Answer: D

D Watch Video Solution

13. In Young's double slit experiment, a third slit is made in between the double sits. Then
A. fringes of unequal width are formed.
B. constrast between bright and dark fringes is reduced.
C. intensity of fringes totally disappears.
D. only bright light is observed on the
screen.

Answer: B
(Watch Video Solution
14. Two coherent light sources S_{1} and
$S_{2}(\lambda=6000 \AA)$ are 1 mm apart from each other. The screen is placed at a distance of

25 cm from the sources. The width of the fringes on the screen should be
A. 0.015 cm
B. 0.025 cm
C. 0.010 cm
D. 0.030 cm

Answer: A

- Watch Video Solution

15. In a certain double slit experimental arrangement interference fringes of width 1.0 mm each are observed when light of wavelength $5000 \AA$ is used. Keeping the set up unaltered, if the source is replaced by another source of wavelength $6000 \AA$, the fringe width will be
A. 0.5 mm
B. 1.0 mm

C. 1.2 mm

D. 1.5 mm

Answer: C

- Watch Video Solution

16. In a Young's double slit experiment, the
fringe width is found to be 0.4 mm . If the whole apparatus is immersed in water of refractive index $4 / 3$ without disturbing the
geometrical arrangement, the new fringe width will be
A. 0.30 mm
B. 0.40 mm
C. 0.53 mm
D. 450 micron

Answer: A
(Watch Video Solution
17. In Young's double slit experiement, if L is
the distance between the slits and the screen
upon which interference pattern is observed, x
is the average distance between the adjacent
fringes and d being the slit separation. The
wavelength of light if given by

> A. $\frac{X d}{L}$
> B. $\frac{X L}{d}$
> C. $\frac{L d}{X}$
> D. $\frac{1}{L D X}$

Answer: A

- Watch Video Solution

18. In Young's double slit experiment, wavelength $\lambda=5000 \AA$ the distance between,
the slits is 0.2 mm and the screen is at 200 cm
from the slits. The central maximum is at $x=0$ The third maximum (Taking the central maximum as zeroth maximum) will be at x equal to
A. 1.67 cm
B. 1.5 cm
C. 0.5 cm
D. 5.0 cm

Answer: B

D Watch Video Solution
19. In a double slit experiment, with monochromatic light, finges are obtained on a screen placed at some distance from the slits.

If the screen is moed by $4 \times 10^{-2} \mathrm{~m}$ towards
the slits, the changes in fringe width is
$2 \times 10^{-5} \mathrm{~m}$. If the separation between the
slits is $10^{-3} \mathrm{~m}$ then wavelength of light used is
A. $3500 \AA$
B. $5000 \AA$
C. $4500 \AA$
D. $3200 \AA$

Answer: B
20. In a double slit interference experiment, the distance between the slits is 0.05 cm and screen is $2 m$ away from the slits. The wavelength of light is $8.0 \times 10^{-5} \mathrm{~cm}$. The distance between successive fringes is
A. 0.24 cm
B. 3.2 cm
C. 1.28 cm
D. 0.32 cm

Answer: D

- Watch Video Solution

21. In a double-slit experiment, the slits are separated by a distance d and the screen is at
a distance D from the slits. If a maximum is
formed just opposite to each slit, then what is
the order or the fringe so formed?
A. $\frac{d^{2}}{2 \lambda D}$
B. $\frac{2 d^{2}}{\lambda D}$
C. $\frac{d^{2}}{\lambda D}$
D. $\frac{d^{2}}{4 \lambda}$

Answer: A

D Watch Video Solution

22. S is the size of the slit, d is the separation
between the slits and D is the distance of slits
from a plane where Young's double slit interference pattern is being observed. If λ be
the wavelength of light, then for sharp fringes,
the essential conditional is

$$
\begin{aligned}
& \text { A. } \frac{S}{D}<\frac{\lambda}{d} \\
& \text { B. } \frac{S}{D}>\frac{\lambda}{d} \\
& \text { C. } S \lambda<d D \\
& \text { D. } S D>\lambda d
\end{aligned}
$$

Answer: A

D Watch Video Solution

23. In Young's double slit experiment, the 8th
maximum with wavelength λ_{1} is at a distance
d_{1} from the central maximum and the 6th maximum with a wavelength λ_{2} is at a distance d_{2}. Then $\left(d_{1} / d_{2}\right)$ is equal to

$$
\begin{aligned}
& \text { A. } \frac{4}{3} \frac{\lambda_{2}}{\lambda_{1}} \\
& \text { B. } \frac{4}{3} \frac{\lambda_{1}}{\lambda_{2}} \\
& \text { C. } \frac{3}{4} \frac{\lambda_{2}}{\lambda_{1}} \\
& \text { D. } \frac{3}{4} \frac{\lambda_{1}}{\lambda_{2}}
\end{aligned}
$$

Answer: B
24. In Young's double slit experiment, the wavelength of the light used is doubled and distance between two slits is half of initial distance, the resultant fringe width becomes
A. 2 times
B. 3 times
C. 4 times
D. $1 / 2$ times

Answer: C

D Watch Video Solution

25. Two sources of light of wavelengths $2500 \AA$
and $3500 \AA$ are used in Young's double slit expt. simultaneously. Which orders of fringes of two wavelength patterns coincide?
A. 3 rd orderof 1st source and 5 th of 2 nd
B. 7 th order of 1st and 5th order of 2 nd
source
C. 5 th order of 1 st and 3 rd order of 2 nd
source
D. 5th order of 1st and 7th order of 2 nd
source

Answer: B
(Watch Video Solution
26. In the Young's double slit experiment with sodium light, the slits are $0.589 m$ apart. The angular separation of the third maximum from
the central maximum will be (given
$\lambda=589 \mathrm{~mm})$

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(0.33 \times 10^{8}\right) \\
& \text { B. } \sin ^{-1}\left(0.33 \times 10^{-6}\right) \\
& \text { C. } \sin ^{-1}\left(3 \times 10^{-8}\right) \\
& \text { D. } \sin ^{-1}\left(3 \times 10^{-6}\right)
\end{aligned}
$$

- Watch Video Solution

27. In Young's double-slit experiment the angular width of a fringe formed on a distant screen is 1°. The wavelength of light used is $6000 \AA$. What is the spacing between the slits?
A. 1 mm
B. 0.05 mm
C. 0.03 mm
D. 0.01 mm

Answer: C

D Watch Video Solution

28. Two wavelengths of light λ_{1} and λ_{2} are sent through Young's double-slit apparatus
simultaneously. If the third-order bright fringe
coincides with the fourth-order bright fringe,
then
A. $\frac{3}{4}$
B. 7

C. $\frac{1}{7}$
 D. $\frac{4}{3}$

Answer: D

D Watch Video Solution

29. Two slits separated by a distance of 0.5 mm are illuminated by light of wavelength 5000 Å.

The interference fringes are obtained on a screen at a distance of 1.m. what is the phase
difference between two interfering waves at a point 3 mm from the central bbright fringe?
A. 6π radian
B. 3π radian
C. 5π radian
D. 4π radian

Answer: C

- Watch Video Solution

30. In the double-slit experiment, the distance of the second dark fringe from the central line are 3 mm . The distance of the fourth bright fringe from the central line is
A. 6 mm
B. 8 mm
C. 12 mm
D. 4 mm

Answer: B
31. Two slits separated by a distance of 1 mm are illuminated with red light of wavelength
$6.5 \times 10^{-7} \mathrm{~m}$. The interference firnges are observed on a screen placed 1 m form the slits.

The distance between third bright firnge and the fifth dark fringe on the same side is equal to
A. 9.75 mm
B. 0.975 mm
C. $9.75 \mu m$
D. 19.5 mm

Answer: B

D Watch Video Solution

32. In Young's double slit experiment, an interference pattern is obtained on a screen by a light of wavelength $6000 \AA$, coming from the coherent sources S_{1} and S_{2}. At certain point P on the screen third dark fringe is
formed. Then the path difference $S_{1} P-S_{2} P$
in microns is
A. 0.75
B. 1.5
C. 3
D. 4.5

Answer: B
(Watch Video Solution
33. The maximum intensity in Young's double
slit experiment is I_{0}. Distance between the slits is $d=2 \lambda$, where λ is the wavelength of monochromatic light used in experiment.

What will be the intensity of light in front of one of the slits on a screen at a distance $D=6 d ?$
A. $\frac{I_{0}}{2}$
B. $\frac{3}{4} I_{0}$
C. I_{0}
D. $\frac{I_{0}}{4}$

Answer: B

D Watch Video Solution

34. In a biprism experiment, when a convex
lens was placed between the biprism and eyepiece at a distance of 30 cm from the slit, the virtual images of the slits are found to be separated by 7 mm . If the distance between the slit and biprism is 10 cm and between the
biprism and eyepiece is 80 cm , find the linear magnification of the image.
A. 0.2 mm
B. 0.25 mm
C. 0.30 mm
D. 0.45 mm

Answer: A

- Watch Video Solution

35. In the biprism experiment, if the images produced by the convex lens in the two positions between the biprism annd the eye piece are 4.5 mm and 2 mm apart, then the distance (d) between the two virtual sources is
A. 2.4 mm
B. 2.2 mm
C. 3.2 mm
D. 2.8 mm

- Watch Video Solution

36. In a biprism experiment, eyepiece is placed at a distance $D=1 m$ from the source. The separation (D) between the images of the two coherent sources produced by the biprism is 1 mm . A convex lens of focal length 20 cm is placed at a distance 40 cm from eye piece to obtain diminished images of the two coherent sources in the focal plane of the eye piece. The separation $\left(d_{1}\right)$ between these two images will be
A. 0.57 mm
B. 1.5 mm
C. 0.67 mm
D. 0.4 mm

Answer: C

D View Text Solution

37. In a biprism experiment, the wavelenght of monochromatic light is $6000 \AA$. The distance between two virtual images is 6 mm . The
number of fringes formed per mm on a screen
placed at a distance of 1 m is
A. 5
B. 10
C. 15
D. 20

Answer: B
(Watch Video Solution
38. In a biprism experimentn the distance between slite and epepiece is 1 m . If the convex
lens is interposed at a distance of 30 cm from the slit, then the size of the magnified image is
0.7 mm . The distance between the two virtual images of the slits will be
A. 1 mm
B. 2 mm
C. 3 mm
D. 4 mm

Answer: C

D Watch Video Solution

39. In a biprism experiment, the distance between the sit and the eyepiece is 1 m and distance between the two coherent sources is
0.5 mm . If the wavelength of light used I $6000 \AA$, then distance of the 10 th bright and
from the central bright band is
A. 1.2 mm
B. 1.2 cm
C. 0.12 m
D. 0.6 cm

Answer: B

D Watch Video Solution

40. In a biprism experiment, a slit is
illuminated by a light of wavelength 4800 . The
distance between the slit and biprism is and
the distance between the biprism is 15 cm and
the distance between the biprism and eyepiece is 85 cm . If the distance between virtual sources is $3 m m$, determine the distance between $4 t h$ bright band on one side and $4 t h$ dark band on the other side of the central bright band.

> A. $9424 \times 10^{-5} \mathrm{~m}$
> B. $9424 \times 10^{-5} \mathrm{~cm}$
> C. $9424 \times 10^{-5} \mathrm{~m}$
> D. $9424 \times 10^{-5} \mathrm{~km}$
41. In a biprism experiment, the distance of the 20th bright band from the centre of the interference pattern is 8 mm . The distance of the 30th bright band from the centre is
A. 12 mm
B. 10 mm
C. 11 mm
D. 15 mm

Answer: A

D Watch Video Solution

42. In a biprism experiment, the slit is
illuminated with light of wavelength $5000 \AA$.

The number of bright fringes passing on a screen, if the path difference is changed by
0.005 cm will be
A. 60 fringes
B. 80 fringes

C. 100 fringes

D. 120 fringes

Answer: C

D Watch Video Solution

43. The distance between the first and seventh
bright fringes formed in a biprims experiment

$$
\text { is }(\lambda=6000 \AA, D=1.0 m, d=1.2 \mathrm{~mm})
$$

A. $0.003 m$
B. 0.03 m
C. $3 \times 10^{-4} m$
D. $0.3 m$

Answer: A

D Watch Video Solution

44. In a biprims experiment, the distance between the 3rd and 12th bright bands when light of wavelength $6000 \AA$ is used is the same as the distance between 4th and 14 th bright
bands of light of wavelength λ. The value of λ
is

A. $5800 \AA$

B. $5600 \AA$
C. $5400 \AA$
D. $4800 \AA$

Answer: C
(D) Watch Video Solution
45. In a biprism experimentn is performed yellow light of wavelength $5600 \AA$. The yellow light was then replaced by red light of wavelengts $6400 \AA$. Find the value of n for which $(n+1)^{\text {th }}$ yellow bright band consider with the $n^{t h}$ red bright band for the same setting.

$$
\begin{aligned}
& \text { A. } n=6 \\
& \text { B. } n=4 \\
& \text { C. } n=2
\end{aligned}
$$

$$
\text { D. } n=5
$$

Answer: B

D Watch Video Solution

46. The fringe width in a biprims experiment is
0.32 mm , when red light of waelength $6400 \AA$
is used. If source of blue light of wavelength
$4000 \AA$ is used with the same setting, then the
fringe width will
A. decrease by 64\%
B. decrease by 40%
C. decrease by 75\%
D. decrease by 37.5%

Answer: D

- Watch Video Solution

47. A diffraction is obtained by using a bean of yellow light. What will happen if the yellow light is replaced by the red light?
A. Bands will become narrower and crowded together.
B. Bands become broader and further apart.
C. No change will take place.
D. Bands disappear.

Answer: B
(Watch Video Solution
48. Assertion: Diffraction limits the resolving power of an optical instrument.

Reason: In diffraction, the fringes of minimum intensity are perfectly dark.
A. Assertion is True, Reason is True, Reason
is a correct explanation for Assertion
B. Assertion is True, Reason is True, Reason
is not a correct explanation for Assertion
C. Assertion is True Reason is False.
D. Assertion is False, Reason is True.

Answer: C

D Watch Video Solution

49. Condition for diffraction is

$$
\begin{aligned}
& \text { A. } \frac{a}{\lambda}=1 \\
& \text { B. } \frac{a}{\lambda} \gg 1 \\
& \text { C. } \frac{a}{\lambda} \ll 1 \\
& \text { D. } \frac{\lambda}{a}>1
\end{aligned}
$$

50. First secondary minima in case of diffraction due to single slit is obtained at a distance x from central maximum position, then

$$
\begin{aligned}
& \text { А. } x=\frac{\lambda a}{D} \\
& \text { B. } \frac{x}{a}=\frac{D}{\lambda} \\
& \text { С. } x=\lambda D a \\
& \text { D. } x=\frac{\lambda D}{a}
\end{aligned}
$$

Answer: D

- Watch Video Solution

51. What will be the angle of diffracting for the
first minimum due to Fraunhofer diffraction
with sources of light of wavelength 550 nm and slit of width 0.55 mm ?
A. 0.001 rad
B. 0.01 rad
C. 1 rad

D. 0.1 rad

Answer: A

D Watch Video Solution

52. In the far field diffraction pattern of a single slit under polychromatic illumination, the first minimum with the wavelength λ_{1} is
found to be coincident with third maximum at
λ_{2}. So

$$
\text { A. } 3 \lambda_{1}=0.3 \lambda_{2}
$$

B. $3 \lambda_{1}=\lambda_{2}$
C. $\lambda_{1}=3.5 \lambda_{2}$
D. $0.3 \lambda_{1}=3 \lambda_{2}$

Answer: C

D Watch Video Solution

53. Light of wavelength $\lambda=5000 \AA$ falls normally on a narrow slit. A screen is placed at a distance of $1 m$ from the slit and perpendicular to the direction of light. The
first minima of the diffraction pattern is
situated at 5 mm from the centre of central maximum. The width of the slit is
A. 0.1 mm
B. 1.0 mn
C. 0.5 mm
D. 0.2 mm

Answer: A

D Watch Video Solution
54. Yellow light is used in single slit diffraction experiment with slit width 0.6 mm . If yellow light is replaced by X -rays then the pattern will reveal
A. that the central maxima is narrower.
B. no diffraction pattern.
C. more number of fringes
D. less number of fringes

Answer: B

- Watch Video Solution

55. A plane wavefront $\left(\lambda=6 \times 10^{-7} \mathrm{~m}\right)$ falls on a slit $0.4 m$ wide. A convex lens of focal length $0.8 m$ placed behind the slit focuses the
light on a screen. What is the linear diameter of second maximum?
A. 5 mm
B. 6 mm
C. 9 mm
D. 12 mm

Answer: A

D Watch Video Solution

56. Angular width of central maxima in the

Fraunhofer diffraction pattern of a slit is measured. The slit is illuminated by light of wavelength $6000 \AA$. When the slit is
illuminated by light of another wavelength, the angular width decreases by 30%. The wavelength of this light will be
A. $6000 \AA$
B. $4200 \AA$
C. $3000 \AA$
D. $1800 \AA$

Answer: B

D Watch Video Solution
57. In a single slit diffraction experiment, first minimum for red light (589nm) coincides with
first maximum of some other wavelength λ^{\prime}.

The value of λ^{\prime} is
A. $4400 \AA$
B. $6642 \AA$
C. $3926 \AA$
D. $3500 \AA$

Answer: C
(Watch Video Solution
58. microscope will have maximum resolving power.
A. simple
B. ultraviolet
C. electron
D. compound

Answer: C
(Watch Video Solution
59. Assertion: Oil immersion objective microscope are used to achieve high resolving
power.

Reason: Resolving power of microscope increases with the increase of refractive index.
A. Assertion is True, Reason is True, Reason
is a correct explanation for Assertion
B. Assertion is True, Reason is True, Reason
is not a correct explanation for Assertion
C. Assertion is True Reason is False.
D. Assertion is False, Reason is True.

Answer: A

D Watch Video Solution

60. Two points separated by a distance of 0.1
mm can just be resolved in a microscope when
a light of wavelength $6000 \AA$ is used. If the light of wavelength $4800 \AA$ is used this limit of resolution becomes :-
A. 0.08 mm
B. 0.10 mm
C. 0.12 mm
D. 0.06 mm

Answer: A

D Watch Video Solution

61. Calculate the resolving power of a
microscope if its numerical aperture is 0.12
and wavelength of light used is $6000 \AA$.
A. 305 m
B. $30.5 \times 10^{-7} \mathrm{~m}$
C. $30.5 m$
D. 305 mm

Answer: B

D Watch Video Solution

62. Two points sources distance 0.1 m are viewed by a telescope. The objective is covered by ascreen having a hole of 1 mm widht. If the wavelenghts of light used is $5000 \AA$, the the

are seen just resolved, will be

A. 125.0 m

B. 141 m
C. 131 m
D. 163.9 m

Answer: D

D Watch Video Solution
63. What should be the size of the aperture of
the objective of telescope which can just resolve the two stars of angular width of 10^{3} degree by light of wavelength $5000 \AA$?
A. 3.5 cm
B. 3.5 mm
C. 3.5 m
D. 3.5 km

Answer: A
64. The aperrture of the largest telescope in
the world is about 5 m . if the separation
between the moon and the earth is
$4 \times 10^{3} \mathrm{~km}$ and the wavelength of visible light
is $5000 \AA$, then the minimum separation between the objects on the surface of the moon which can be just resolved is approximately equal to
A. 200 m
B. 100 m

C. 50 m

D. 25 m

Answer: C

D Watch Video Solution

65. Assertion: An excessively thin film appear black in reflected light.

Reason: The film absorbs all the radiations
falling on it.
A. Assertion is True, Reason is True, Reason
is a correct explanation for Assertion
B. Assertion is True, Reason is True, Reason
is not a correct explanation for Assertion
C. Assertion is True Reason is False.
D. Assertion is False, Reason is True.

Answer: C

D Watch Video Solution

66. Assertion: The fringe visibility will be maximum when amplitude of light waves from two coherent sources is exactly equal.

Reason: Fringe visibiltgiy $V=\frac{I_{\text {max }}}{I_{\text {min }}}$

A. Assertion is True, Reason is True, Reason

is a correct explanation for Assertion
B. Assertion is True, Reason is True, Reason
is not a correct explanation for Assertion
C. Assertion is True Reason is False.
D. Assertion is False, Reason is True.

Answer: C

D Watch Video Solution

67. In Young's experiment, the fringe width is 3
mm for a light of wavelength $6000 \AA$. If the entire apparatus is dipped in water of R.I. $\frac{3}{2}$, then what is the change in fringe width?
A. 2 mm
B. 1.5 mm
C. 1mm

D. 3 mm

Answer: C

D Watch Video Solution

68. In double slit experiment fringes are obtained using light of wavelength $4800 \AA$ One
slit is covered with a thin glass film of refractive index. 1.4 and another slit is covered
by a film of same thickness but refractive index
1.7. By doing so, the central fringe is shifted to
fifth bright fringe in the original pattern. The thickness of glass film is
A. $2 \times 10^{-3} \mathrm{~mm}$
B. $4 \times 10^{-3} \mathrm{~mm}$
C. $6 \times 10^{-3} \mathrm{~mm}$
D. $8 \times 10^{-3} \mathrm{~mm}$

Answer: D
(Watch Video Solution
69. Monichromatic lightof wavelenght 600 nm
is used ina Young's double slilt experient. One of the slits is covered by a transparent sheet of thicknes $1.8 \times 10^{-5} \mathrm{~m}$ made of a material of refractive index 1.6 . How many fringe will shift due to the introduction of the sheet?
A. 18
B. 10
C. 20
D. 8

Answer: A

D Watch Video Solution

70. The distance between the first and the
sixth minima in the diffraction pattern of a
single slit is 0.5 mm . The screen is 0.5 m away
from the slit. If the wavelength of light used is
5000 Å. Then the slit width will be
A. 5 mm
B. 2.5 mm

C. 1.25 mm

D. 1.0 mm

Answer: B

D Watch Video Solution

71. In Young's double slit experiment, 5th dark fringe is obtained at a point. If a thin transparent film is placed in the path of one of waves, then 7th bright is obtained at the same
point. The thickness of the film in terms of wavelength λ and refractive index μ will be

$$
\begin{aligned}
& \text { A. } \frac{1.5 \lambda}{(\mu-1)} \\
& \text { B. } 1.5(\mu-1) \lambda \\
& \text { C. } 2.5(\mu-1) \lambda \\
& \text { D. } \frac{2.5 \lambda}{(\mu-1)}
\end{aligned}
$$

Answer: D
72. In a double slit pattern $(\lambda=6000 \AA)$, the first order and tenth order maxima fall at 12.50 mm and 14.55 mm from a particular reference point. If λ is changed to $5500 \AA$, find the position of zero order and tenth order fringes, other arrangements remaining the same.
A. 1.25 mm and 2.55 mm
B. 1.25 mm and 2.65 mm
C. 2.50 mm and 3.10 mm
D. 0.50 mm and 1.89 mm

Answer: A

- Watch Video Solution

Competitive Thinking

1. Interference was observed in interference
chamber, when air was present. Now the chamber is evacuated, and if the same light is
used, a careful observer will see
A. no interference
B. interference with brigh bands
C. interference with dark bands
D. interference in which width of the fringe
will be slightly increased.

Answer: D

D Watch Video Solution

2. On a rainy day a small oil film on water shows brilliant colours. This is due to
A. dispersion of light.
B. interference of light.
C. absorption of light
D. scattering of light

Answer: B

D Watch Video Solution

3. For constructive interference to take place between two monochromatic light waves of wavelength λ, the path difference should be
A. $(2 n-1) \frac{\lambda}{4}$
B. $(2 n-1) \frac{\lambda}{2}$
C. $n \lambda$
D. $(2 n+1) \frac{\lambda}{2}$

Answer: C

D Watch Video Solution

4. If the ratio of intensities of two waves is 1 :

25 , then the ratio of their amplitudes will be
A. $1: 25$
B. 5:1
C. 26: 24
D. 1:5

Answer: D

D Watch Video Solution

5. Two coherent sources of light of intensity
ratio n are employed in an interference experiment. The ratio of the intensities of the
maxima and minima in the interference
pattern is
A. $\left(\frac{n+1}{n-1}\right)$
B. $\left(\frac{n+1}{n-1}\right)^{2}$
C. $\left(\frac{\sqrt{n}+1}{\sqrt{n}-1}\right)$
D. $\left(\frac{\sqrt{n}+1}{\sqrt{n}-1}\right)^{2}$

Answer: D

D Watch Video Solution

6. If the ratio of amplitude of two waves is $4: 3$,
then the ratio of maximum and minimum intensity is
A. $16: 9$
B. 9:16
C. 1:49
D. $49: 1$

Answer: D

- Watch Video Solution

7. Intensity of two waves whicch produce interference are 100:1. The ratio of maximum and minimum intensities is
A. $121: 81$
B. $100: 1$
C. 101:99
D. 100:99

Answer: A

D Watch Video Solution
8. In young double slit experiment the ratio of intentsities of bright and dark bands is 16 which means
A. the ratio of their amplitudes is 5
B. intensities of idnividual sources are 25
and 9 units respectively
C. the ratio of their amplitudes is 4
D. antensities of individual sources are 4
and 3 units respectively

Answer: B

- Watch Video Solution

9. Two coherent sources of intensities I_{1} and
I_{2} produce an interference pattern. The maximum intensity in the interference pattern will be
A. $I_{1}+I_{2}$
B. $I_{1}^{2}+I_{2}^{2}$
C. $\left(I_{1}+I_{2}\right)^{2}$

$$
\text { D. }\left(\sqrt{I}_{1}+\sqrt{I_{2}}\right)^{2}
$$

Answer: D

D Watch Video Solution

10. In Young's double slit experiment, if the
widths of the slits are in the ratio $4: 9$, the ratio of the intensity at maxima to the intensity at minima will be
A. $169: 25$
B. $81: 16$
C. 25: 1
D. 9: 4

Answer: C

- Watch Video Solution

11. Two slits in Young's experiment have width
in the ratio $1: 25$. The ratio of intensity at the maxima and minima in the interference
pattern $\frac{I_{\max }}{I_{\min }}$ is :
A. $\frac{4}{9}$
B. $\frac{9}{4}$
C. $\frac{121}{49}$
D. $\frac{49}{121}$

Answer: B

D Watch Video Solution

12. A parallel beam of light of intensity I is incident on a glass plate. 25% of light is reflected in any reflection by upper surface
and 50% of light is reflected by any reflection
from lower surface. Rest is refracted The ratio
of maximum to minimum intensity in interference region of reflected rays is

Air

$$
\begin{aligned}
& \text { A. }\left(\frac{\frac{1}{2}+\sqrt{\frac{3}{8}}}{\frac{1}{2}-\sqrt{\frac{3}{8}}}\right)^{2} \\
& \text { B. }\left(\frac{\frac{1}{4}+\sqrt{\frac{3}{8}}}{\frac{1}{2}-\sqrt{\frac{3}{8}}}\right)^{2}
\end{aligned}
$$

C. $\frac{5}{8}$
D. $\frac{8}{5}$

Answer: A

D Watch Video Solution

13. In Young's double-sit experiment, if the superimposing waves have amplitude a_{0} and intensity I_{0}, then the average intensity of the light in te fringe pattern formed on a screen will be
A. $6 I_{0}$
B. $4 I_{0}$
C. $2 I_{0}$
D. $I_{0} / 2$

Answer: C

D Watch Video Solution

14. Two periodic waves of intensities I_{1} and I_{2} pass through a region at the same time in the
same direction. The sum of the maximum and minimum intensities is:
A. $\left(I_{1}+I_{2}\right)$
B. $2\left(I_{1}+I_{2}\right)$
C. $\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)$
D. $\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)$

Answer: B

D Watch Video Solution
15. Interference fringes are produced on a screen by using two light sources of intensities / and 9/. The phase difference between the beams $\frac{\pi}{2}$ is at point P and π at point Q on the screen. The difference between the resultant intensities at point P and Q is
A. 21
B. 41
C. 61
D. 81

Answer: C

D Watch Video Solution

16. Two coherent monochromatic light beams
of intensities 4/ and 9/ are superimosed the
maxmum and minimum possible intenties in
the resulting beam are
A. 31 and 21
B. 9l and 5I
C. 161 and 31

D. 25 I and I

Answer: D

D Watch Video Solution

17. Two coherent monochromatic light beams
of intensities I and $4 I$ are superposed. The maximum and minimum possible intensities in
the resulting beam are
A. 51 and I
B. 5I and 3I
C. 91 and I
D. 91 and 31

Answer: C

D Watch Video Solution

18. The intensity ratio of two waves is $9: 1$. If
they produce interference, the ratio of maximum to minimum intensity will be
A. 10: 8
B. $9: 1$
C. $4: 1$
D. $2: 1$

Answer: C

D Watch Video Solution

19. If the amplitude ratio of two sources
producing interference is $3: 5$, the ratio of intensities at maxima and minima is
A. $25: 16$
B. 5: 3
C. 16: 1
D. $25: 9$

Answer: C

D Watch Video Solution

20. Monichromatic lightof wavelenght 600 nm is used ina Young's double slilt experient. One of the slits is covered by a transparent sheet
of thicknes $1.8 \times 10^{-5} \mathrm{~m}$ made of a material
of refractive index 1.6 . How many fringe will
shift due to the introduction of the sheet?
A. $\cos ^{2} \phi$
B. $\cos ^{2} \frac{\phi}{2}$
C. $\cos ^{2} \frac{\phi}{2}$
D. $\cos ^{2} \frac{\phi}{4}$

Answer: B

D Watch Video Solution
21. The interference pattern is obtained with
two coherent light sources of intensity ration
n. In the interference pattern, the ratio
$\frac{I_{\text {max }}-I_{\text {min }}}{I_{\max }+I_{\min }}$ will be
A. $\frac{\sqrt{n}}{(n+1)^{2}}$
B. $\frac{\sqrt{n}}{n+1}$
C. $\frac{2 \sqrt{n}}{n+1}$
D. $\frac{\sqrt{n}}{(n+1)^{2}}$

Answer: C

22. Two sources of waves are called coherent if
A. both have the same amplitude of
vibrations
B. both produce waves of the same
wavelength.
C. both produce waves of the same
wavelength having constnat phase
different

D. both produce waves having the same

 velocity
Answer: C

- Watch Video Solution

23. The necessary condition for phenomenon of interference NOT to occur is
A. there should be two coherent sources
B. the frequency and amplitude of both the waves should be same
C. the propagation of waves should be simultaneously and in same direction. D. sources should be wide.

Answer: D

D Watch Video Solution

24. If two sources are not coherent, then we obtain
A. steady interference
B. no interference
C. diffused interference
D. diminished interference

Answer: B
(Watch Video Solution
25. If Young's double slit experiment is done with light, which of the following statements will be true?
A. All the bright fringes will be coloured.
B. All the bright fringes will be white.
C. The central fringe will be white.
D. No stable inerference pattern will be
visible

Answer: C

26. In Young's double slit experiment the source is white light. One slit is covered with red filter and the other with blhe filter. There shal be
A. Alternate red and blue fringes
B. Alternae dark and pink fringes
C. Alternate dark and yellow fringes
D. No interference
27. Young's experiment is performed in air and
then performed in water, the fringe width:
A. will remain same
B. will decrease
C. will increase
D. will be infinite

Answer: B
28. Yong's double-slit experiment is carried out by using green, red and blue light, one color at a time. The fringe widths recorded are β_{G}, β_{R} and β_{B}, respectively. Then
A. $\beta_{G}>\beta_{B}>\beta_{R}$
B. $\beta_{B}>\beta_{G}>\beta_{R}$
C. $\beta_{R}>\beta_{B}>\beta_{G}$
D. $\beta_{R}>\beta_{G}>\beta_{B}$

Answer: D

D Watch Video Solution

29. In Young's double slit experiment if wavelength of light is doubled without changing other conditions, the fringe width will
A. be doubled
B. be halved
C. be quadrupled

D. remain unchanged

Answer: A

D Watch Video Solution

30. In young's double slit experiment with a source of light of wavelength $6320 \AA$, the first maxima will occur when
A. paht difference is $9480 \AA$
B. phase difference is 2π radian

C. path difference is $6320 \AA$

D. phase difference is π radian

Answer: C

D Watch Video Solution

31. Band with for red light of wavelength $6400 \AA$ us 0.32 mm . If red lilght is replaced by blue light of wavelength $4800 \AA$, then the change in bandwidth will be
A. $8 \times 10^{-6} m$
B. $8 \times 10^{-5} m$
C. $4 \times 10^{-6} m$
D. $4 \times 10^{-5} m$

Answer: B

D Watch Video Solution
32. In Young's double slit experiement when wavelength used is $6000 \AA$ and the screen is

40 cm from the slits, the fringes are 0.012 cm wide. What is the distance between the slits?
A. 0.024 m
B. 2.4 cm
C. 0.24 cm
D. 0.2 cm

Answer: D
(Watch Video Solution
33. In a double experiment, the distance between the slit is 1 mm and screen is 25 cm away from the slits. The wavelength of light is $6000 \AA$. The width of the fringe on the screen is
A. 0.15 mm
B. 0.24 mm
C. 0.30 mm
D. 0.12 mm

- Watch Video Solution

34. A monochromatic light beam of wavelength $5896 \AA$ is used in double slit experiment to get interference patter on a screen. 9th bright fringe is seen at a particular position on the screen. At the same point on the screen. If 11th bright fringe is to be seen, the wave length of the light that is needed is (nearly)

$$
\text { A. } 3525 \AA
$$

B. $7014 \AA$

C. $4824 \AA$
D. $6780 \AA$

Answer: C

D Watch Video Solution

35. The path difference at a point on the screen in Young's experiment is 5λ. If the distance of that point from the central bright hand is 0.5 mm , then the band width is
A. 2.5 mm
B. 1 mm
C. 0.1 mm
D. 10 mm

Answer: C

D Watch Video Solution

36. In Young's double slit experiment, the sepcaration between the slits is halved and
the distance between the slits and the screen
is doubled. The fringe width is
A. will not change
B. will become half
C. will be doubled

D. will become four times

Answer: D

D Watch Video Solution

37. The Young's experiment is performed with
the lights of blue $(\lambda=4360 \AA)$ and green colour $(\lambda=5460 \AA)$. If the distance of the 4 th fringe from the centre is x, then
A. x (Blue) $=x$ (Green)
B. x (Blue) $>x$ (Green)
C. x (Blue) $<x$ (Green)
D. $\frac{x(\text { Blue })}{x(\text { Green })}=\frac{5460}{4360}$

Answer: C

38. Distance between screen and source is
decreased by 25%. Then the percentage
change in fringe width is
A. 5
B. 31
C. 75
D. 25
39. In Young's double slit interference experiment, the slit separation is made 3 fold.

The fringe width becomes
A. $\frac{1}{3}$ times
B. $\frac{1}{9}$ times
C. 3 times
D. 9 times

- Watch Video Solution

40. In Young's double experiment, in air interference pattern second minimum is observed exactly in front of one slit. The distance beween the two coherent source is 'd' and the distance between source and screen
'D'. The wavelength of light source used is
A. $\frac{d^{2}}{D}$
B. $\frac{d^{2}}{2 D}$
C. $\frac{d^{2}}{3 D}$
D. $\frac{d^{2}}{4 D}$

Answer: C

D Watch Video Solution

41. In Young's double slit experiment, if the width of 4 th bright firnge is $2 \times 10^{-2} \mathrm{~cm}$ then the width of 6 th bright fringe will be cm

$$
\text { A. } 10^{-2}
$$

$$
\text { B. } 3 \times 10^{-2}
$$

C. 2×10^{-2}

$$
\text { D. } 1.5 \times 10^{-2}
$$

Answer: C

D Watch Video Solution

42. In a two slit experiment with monochromatic light fringes are obtained on a screen placed at some distance from the sits. If the screen is moved by $\mathrm{m} 5 \times 10^{-2} \mathrm{~m}$ towards the slits, the change in fringe width is
$\mathrm{m} 3 \times 10^{-5} \mathrm{~m}$. If separation between the slits
is $10^{-3} m$, the wavelength of light used is
A. $6000 \AA$
B. $5000 \AA$
C. $3000 \AA$
D. $45000 \AA$

Answer: A
(D) Watch Video Solution
43. In Young's double slit experiment using sodium light ($\lambda=5898 \AA$) 92 fringes are seen if given colour $(\lambda=5461 \AA)$ is used how many fringes will be seen
A. 62
B. 67
C. 85
D. 99

Answer: D

44. A wavelength of light $5600 \AA$ produces 60 fringes. What will be the number of fringes produced at same distance if wavelength of light used is $4800 \AA$?
A. 51
B. 70
C. 60
D. 45

Answer: B

- Watch Video Solution

45. Then nth bright band of red light of wavelength $6750 \AA$ is coincide with $(n+1)^{\text {th }}$ bright band of green light of wavelength $5400 \AA$. Find the value of n.
A. 5
B. 4
C. 3
D. 6

Answer: B

- Watch Video Solution

46. In Young's double slit experiment, red light of wavelength of $6000 \AA$ is used and the $n^{\text {th }}$ bright fringe is obtained at a ponit P on the screen. Keeping the same setting, the source of light is replaced by green light of wavelength $5000 \AA$ and now $(n+1)^{\text {th }}$ bright
fringe is obtained at the point P on the screen.

The value of n is
A. 4
B. 5
C. 6
D. 3

Answer: B
(Watch Video Solution
47. In Young's double slit experiment, if the distance between two slits is equal to the wavelength of used light. Then the maximum number of bright firnges obtained on the screen will be
A. Infinite
B. 3
C. 4
D. 5

Answer: B

- Watch Video Solution

48. A micture of light, consisting of wavelength 590nm and an unknown wavelength, illuminates Young's double slit and gives rise to two overlapping interference patterns on the scree. The central maximum of both lights coincide. Further, it is obseved that the third bright fringe of known light coincides with the 4th bright fringe of the unknown light. From this data, the wavelength of the unknown light is:
A. 393.4 nm
B. 885.0 nm
C. 442.5 nm
D. 776.8 nm

Answer: C

D Watch Video Solution

49. Monochromatic green light of wavelength
$5 \times 10^{-7} m$ illuminates a pair of slits 1 mm
apart. The separation of bright lines on the
interference pattern formed on a screen 2 m away is
A. 0.25 mm
B. 0.1 mm
C. 1.0 mm
D. 0.01 mm

Answer: C
(Watch Video Solution
50. Two coherent sources P and Q produce interference at point A on the screen where there is a dark band which is formed between

4th bright band and 5th bright band.
Wavelength of light used is 6000 A. The path difference between PA and QA is
A. $1.4 \times 10^{-4} \mathrm{~cm}$
B. $2.7 \times 10^{-4} \mathrm{~cm}$
C. $4.5 \times 10^{-4} \mathrm{~cm}$
D. $6.2 \times 10^{-4} \mathrm{~cm}$

Answer: B

- Watch Video Solution

51. A beam of light of $\lambda=600 \mathrm{~nm}$ from a distance source falls on a single slit 1 mm wide and the resulting diffraction pattern is observed on a screen $2 m$ away. The distance between first dark fringes on either side of the central bright fringe is
A. 1.2 cm

B. 1.2 mm

C. 2.4 cm
D. 2.4 mm

Answer: D

D Watch Video Solution

52. A fringe width of a certain interference pattern is $\beta=0.002 \mathrm{~cm}$ What is the distance of 5th dark fringe centre?
A. $1 \times 10^{-2} \mathrm{~cm}$
B. $11 \times 10^{-2} \mathrm{~cm}$
C. $1.1 \times 10^{-2} \mathrm{~cm}$
D. $9 \times 10^{-3} \mathrm{~cm}$

Answer: D

- Watch Video Solution

53. Two slits at a distance of 1 mm are
illuminated by a light of wavelength
$6.5 \times 10^{-7} \mathrm{~m}$. The interference fringes are
observed on a screen placed at a distance of
$1 m$. The distance between third dark fringe and fifth bright fringe will be
A. 0.6 mm
B. 1 mm
C. 2 mm
D. 0.4 mm

Answer: B

D Watch Video Solution
54. In Young's double slit experiment slits are separated by 2 mm and the screen is placed at a distance of 1.2 m from the slits. Light consisting of two wavelengths $6500 \AA$ and $5200 \AA$ are used to obtain interference fringes.

The the separation between the fourth bright fringes the two wavelength is
A. 0.312 mm
B. 0.123 mm
C. 0.213 mm
D. 0.412 mm

Answer: A

D Watch Video Solution

55. In a Young's double slit experiment the intensity at a point where tha path difference is $\frac{\lambda}{6}$ (λ being the wavelength of light used) is
I. If I_{0} denotes the maximum intensity, $\frac{I}{I_{0}}$ is equal to

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{2}} \\
& \text { B. } \frac{\sqrt{3}}{2}
\end{aligned}
$$

C. $\frac{1}{2}$
D. $\frac{3}{4}$

Answer: D

D Watch Video Solution

56. If a transparent medium of refractive index $\mu=1.5$ and thickness $t=2.5 \times 10^{-5} m$ is inserted in front of one of the slits of Young's Double Slit experiment, how much will be the shift in the interference patten? The distance
between the slits is 0.5 mm and that between

slits and screen is 100 cm

A. 5 cm
B. 2.5 cm
C. 0.25 cm
D. 0.1 cm

Answer: B

D Watch Video Solution
57. Young's double slit experiment is first performed in air and then in a medium other than air. It is found than 8th bright fringe in the medium lies where 5th dark fringe lies in air. The refractive index of the medium is nearly
A. 1.25
B. 1.59
C. 1.69
D. 1.78

Answer: D

D Watch Video Solution

58. In a Young's experiment, two coherent sources are placed 0.90 mm apart and the fringes are observed one metre away. If is produces the second dark fringe at a distance of 1 mm from the central fringe, the wavelength of monochromatic light used would be
A. $60 \times 10^{-4} \mathrm{~cm}$
B. $10 \times 10^{-4} \mathrm{~cm}$
C. $10 \times 10^{-5} \mathrm{~cm}$
D. $6 \times 10^{-5} \mathrm{~cm}$

Answer: D

- Watch Video Solution

59. In double slit experiment, the angular width of the fringes is 0.20° for the sodium light $(\lambda=5890 \AA)$. In order to increase the
angular width of the fringes by 10%, the necessary change in the wavelength is
A. increase of $589 \AA$
B. decrease of $589 \AA \AA$
C. increase of $6479 \AA$
D. zero

Answer: A

D Watch Video Solution

60. The two slits are 1 mm apart from each other and illuminated with a light of wavelength $5 \times 10^{-7} \mathrm{~m}$. If the distance of the screen is 1 m from the slits, then the distance between third dark fringe and fifth bright fringe is
A. 1.5 mm
B. 0.75 mm
C. 1.25 mm
D. 0.625 mm

Answer: C

D Watch Video Solution

61. In a Young's double slit experiment, slits are separated by 0.5 mm and the screen is placed 150 cm away. A beam of light consisting of two wavelengths, 650 nm and 520 nm , is used to obtain interference fringes on the screen. The least distance from the commom central maximum to the point where the
bright fringes fue to both the wavelengths

coincide is

A. 9.75 mm
B. 15.6 mm
C. 1.56 mm
D. 7.8 mm

Answer: D
(Watch Video Solution
62. In Young's double-slit experiment, the slits
are $2 m m$ apart and are illuminated by photons of two wavelengths $\lambda_{1}=12000 \AA$
and $\lambda_{2}=10000 \AA$. At what minimum distance
from the common central bright fringe on the
screen $2 m$ from the slit will a bright fringe
from one interference pattern coincide with a bright fringe from the other?
A. 8 mm
B. 6 mm
C. 4 mm

D. 3 mmm

Answer: B

D Watch Video Solution

63. In Young's double slit experiment, two
wavelength $\lambda_{1}=780 \mathrm{~nm}$ and $\lambda_{2}=520 \mathrm{~nm}$ are used to obtain interference fringes. If the nth bright band due to λ_{1} coincides with $(n+1)^{t h}$ bright band due to λ_{2} then the value of n is
A. 4
B. 3
C. 2
D. 6

Answer: C

D Watch Video Solution

64. The optical path difference between the two identical waves arriving at a point is 0.05 cm . If wavelength of light uses is $5000 \AA$, then
the number of dark fringes passing through that point will be
A. 10
B. 1000
C. 100
D. 10000

Answer: B

D Watch Video Solution
65. Two interfering waves are arriving at a point on a screen with a path difference of 120λ. The path difference is $72 \mu m$. The wavelength of light is \qquad dark or bright?
A. $6000 \AA$, bright
B. $8640 \AA$, bright
C. $8640 \AA$, dark
D. $6000 \AA$, dark

- Watch Video Solution

66. A thin mica sheet of thickness $2 \times 10^{-6} \mathrm{~m}$ and refractive index $(\mu=1.5)$ is introduced in the path of the first wave. The wavelength of the wave used is $5000 \AA$. The central bright maximum will shift
A. 2 fringes upward
B. 2 fringes downward
C. 10 fringes upward

D. none of these.

Answer: A

D Watch Video Solution

67. A thin plastic of refractive index 1.6 is used
to cover one of the slits of a double slit arrangement. The central point omn the screen is now occupied by what would have been the 7th bright fringe before the plastic
was used. If the wavelength of light is 600 nm , what is the thickness (in $\mu \mathrm{m}$) of the plastic?
A. 7
B. 4
C. 8
D. 6

Answer: A
(Watch Video Solution
68. In Fresnel's experiment, the width of the fringe depends upon the distance
A. between the prism and the slit aperture
B. of the prism from the screen.
C. of screen from the imaginary light
sources
D. of the screen from the prism and the
distance from the imaginary sources

Answer: D

Watch Video Solution

69. Fringes are produced with monochromatic light of wave-length $5.45 \times 10^{-5} \mathrm{~cm}$. A thin glass plate of refractive index 1.5 is then placed normally in the path of one of the interference beams and the central bright band of the fringe system is found to move into the position previously occupied by the third bright band from the system. Find the thickness of the glass plate.
A. $32.7 \times 10^{-4} \mathrm{~cm}$
B. $32.7 \times 10^{-5} \mathrm{~cm}$
C. $16.7 \times 10^{-5} \mathrm{~cm}$
D. $12.5 \times 10^{-5} \mathrm{~cm}$

Answer: B

D Watch Video Solution

70. Biprism experiment is conducted with a wavelength of $5000 \AA$. The distance between
the virtual sources is 0.2 mm and the
micrometer eyepiece is at a distance of 100 cm
from the slits. The distance between the consecutive bright and dark between the consecutive bright and dark band is
A. 1.25 mm
B. 2.5 mm
C. 3.5 mm
D. 0.25 mm

Answer: A

71. The distances of a point on the screen from two slits in biprism experiment is 1.8×10^{-5} m and $1.23 \times 10^{-5} \mathrm{~m}$ if wavelength of light used is $6000 \AA$ then fringe formed at that point is
A. 10 th bright
B. 10 th dark
C. 9 th bright
D. 9 dark

Answer: B

- Watch Video Solution

72. To observe diffraction, the size of the obstacle
A. should be much larger than the
wavelength
B. has no relation to wavelength
C. should be of the order of wavelength
D. should be $\lambda / 2$, where λ is the wavelength.

Answer: C

D Watch Video Solution

73. The X-ray cannot be diffracted by means of an ordinary grating due to
A. high speed
B. short wavelenth
C. large wavelength
D. none of these.

Answer: B

D Watch Video Solution

74. In a Fraunhofer diffraction at a single slit, if
yellow light illuminating the slit is replaced by blue light, then diffraction bands
A. remain unchanged
B. become wider
C. disappear
D. become narrower

Answer: D

D Watch Video Solution

75. For Fraunhofer diffraction to occur
A. light source should be at infinity.
B. both source and screen should be at infinity.
C. only the source should be at finite distance
D. both source and screen should be at
finite distance

Answer: B

- Watch Video Solution

76. A plane wave front of wavelength λ is incident on a single slite of width b. What is the angular width for secondary maximum ?

> A. $\frac{\lambda}{a}$
> B. $\frac{2 \lambda}{a}$
> C. $\frac{a}{\lambda}$
> D. $\frac{a}{2 \lambda}$

Answer: B

D Watch Video Solution
77. For a parallel beam of monochromatic.

Light of wavelength ' λ ' diffraction is produced by a single slit whose width 'a' is of the order of the wavelength of the lightl. If ' D ' is the distance of the screen from the slit, the width of the central maxima will be
A. $\frac{2 D \lambda}{a}$
B. $\frac{D \lambda}{a}$
c. $\frac{D a}{\lambda}$
D. $\frac{2 D a}{\lambda}$

Answer: A

D Watch Video Solution

78. In a single slit diffraction experiment the
first minimum for red light of wavelength $6600 \AA$ coincides with the first maximum for other light of wavelength λ. The value of λ is
A. $2200 \AA$
B. $3300 \AA$
C. $4400 \AA$

D. $5000 \AA$

Answer: C

D Watch Video Solution

79. In a diffraction pattern due to a single slit of width a, the first minimum is observed at an angle 30° when light of wavelength $5000 \AA$ is incident on the slit. The first secondary minimum is observed at an angle of

$$
\text { A. } \sin ^{-1}\left(\frac{1}{2}\right)
$$

B. $\sin ^{-1}\left(\frac{3}{4}\right)$
C. $\sin ^{-1}\left(\frac{1}{4}\right)$
D. $\sin ^{-1}\left(\frac{2}{3}\right)$

Answer: B

D Watch Video Solution

80. A slit of width a is illuminated by white
light. For red light $(\lambda=6500 \AA)$, the first minima is obtained at $\theta=30^{\circ}$. Then the value of a will be
A. $3250 \AA$
B. $6.5 \times 10^{-4} \mathrm{~mm}$
C. 1.24 micro
D. $2.6 \times 10^{-4} \mathrm{~cm}$

Answer: C

D Watch Video Solution

81. The light of wavelength $6328 \AA$ is incident on a slit of width 0.2 mm perpendicularly, the angular width of central maxima will be
A. 0.36°
B. 0.18°
C. 0.72°
D. 0.09°

Answer: A

D Watch Video Solution

82. Light of wavelength 600 nm is incident normally on a slit of width 0.2 mm . The
angular width of central maxima in the diffraction pattern is
A. $6 \times 10^{-3} \mathrm{rad}$
B. $4 \times 10^{-3} \mathrm{rad}$
C. $2.4 \times 10^{-3} \mathrm{rad}$
D. $4.5 \times 10^{-3} \mathrm{rad}$

Answer: A
(Watch Video Solution
83. A beam of light of wavelength 600 nm from
a distant source falls on a single slit 1 mm
wide and the resulting diffraction pattern is
observed on a screen 2 m away. The distance
between the first dark fringes on either side of the central bright fringe is
A. 1.2 mm
B. 1.2 cm
C. 2.4 cm
D. $2.4 \mathrm{~cm} \%$

Answer: D

D Watch Video Solution

84. A linear aperture whose width is 0.02 cm is
placed immediately in front of a lens of focal
length 60 cm . The aperture is illuminated normally by a parallel beam of wavelength
$5 \times 10^{-5} \mathrm{~cm}$. The distance of the first dark band of the diffraction pattern from the centre of the screen is
A. 0.15 cm
B. 0.10 cm
C. 0.25 cm
D. 0.20 cm

Answer: A

D Watch Video Solution

85. In Fraunhofer diffraction pattern, slit width is 0.2 mm and screen is at 2 m away from the lens. If wavelength of light used is $5000 \AA$, then
the distance between the first minimum on either side of the central maximum is θ is small and measured in radian)
A. $10^{-1} m$
B. $10^{-2} \mathrm{~m}$
C. $2 \times 10^{-2} m$
D. $2 \times 10^{-1} m$

Answer: B

D Watch Video Solution
86. A plane wavefront $\left(\lambda=6 \times 10^{-7} m\right)$ falls
on a slit $0.4 m$ wide. A convex lens of focal
length $0.8 m$ placed behind the slit focuses the
light on a screen. What is the linear diameter of second maximum?
A. 6 mm
B. 12 min
C. 3 mm
D. 9 mm
87. The first minimum of a single slit diffraction pattern is observed at angle 2° with a light of wavelength 698 nm . The width of this slit is
A. 2 mm
B. 0.2 mm
C. 0.02 mm
D. 0.002 mm

Answer: C

- Watch Video Solution

88. Light of wavelength 589.3 nm is incident normally on the slit of width 0.1 mm . What will
be the angular width of the central diffraction maximum at a distance of $1 m$ from the slit?
A. 0.68°
B. 1.02°
C. 0.34°

D. none of these.

Answer: A

D Watch Video Solution

89. Light of wavelength λ is incident on a slit of width d. the resulting diffraction pattern is observed on a screen at a distance D. the linear width of the principal maximum is equal to the width of the slit if D equals

$$
\text { A. } \frac{d^{2}}{2 \lambda}
$$

B. $\frac{2 \lambda^{2}}{d}$
C. $\frac{d}{\lambda}$
D. $\frac{2 \lambda}{d}$

Answer: A

D Watch Video Solution

90. Red light of wavelength 625 nm is incident normally on a optical diffraction grating with
2×10^{5} lines/m. Including central principal
maxima, how many maxima may be observed on a screen which is far from the grating?
A. 15
B. 17
C. 8
D. 16

Answer: B
(Watch Video Solution
91. A telescope has an objective lens of 10 cm
diameter and is situated at a distance of one
kilometre from two objects. The minimum distance between these two objects, which can
be resolved by the telescope, when the mean
wavelength of light is $5000 \AA$, of the order of
A. 5 mm
B. 0.5 m
C. 5 cm
D. 0.5 cm

Answer: D

D Watch Video Solution

92. If numerical aperture of a microscope is
increased, then its
A. resolving power remains constant.
B. resolving power becomes zero
C. limit of resolution is decreased
D. limit of resolution in increased

Answer: C

- Watch Video Solution

93. In an astronomical telescope, the final image for normal vision is formed at
A. the focus of the eye piece
B. the least distance of the distinct vision
C. the focus of the objective lens
D. infinity

Answer: D

D Watch Video Solution

94. An astronomical refracting telescope will
have large angular magnification and high
angular resolution, when it has an objective lens of
A. small focal length and large diameter
B. laerge focal length and small diameter
C. large focal length and large diameter
D. smal focal length and small diameter

Answer: C

D Watch Video Solution

95. Resolving power of telescope increases
when
A. wavelength of light decreases
B. wavelength of light increases
C. focal length of eye-piece increases

D. focal length of eye- piece decreases

Answer: A

D Watch Video Solution

96. The ratio of resolving power of an optical
microscope for two wavelength $\lambda_{1}=4000 \AA$
and $\lambda_{2}=6000 \AA$ is:
A. $9: 4$
B. $3: 2$
C. 16: 81
D. $8: 27$

Answer: B

- Watch Video Solution

97. Assume that light of wavelength $6000 \AA$ is
coming from a star. What is the limit of resolution of a telescope whose objective has a diameter of 100 inch ? (NCERT Solved example)
A. 7.52×10^{-6}
B. 6.10×10^{-6}
C. 6.55×10^{-6}
D. 7.32×10^{-6}

Answer: D

D Watch Video Solution

98. Diameter of the objective of a telescope is

200 cm . What is the resolving power of a telescope? Take wavelength of light $=5000 \AA ̊$.
A. 6.56×10^{6}
B. 3.28×10^{5}
C. 1×10^{6}
D. 3.28×10^{6}

Answer: D

D Watch Video Solution

99. The resolving power of a telescope whose lens has a diameter of 1.22 m for a wavelength of $5000 \AA$ is
A. 2×10^{5}
B. 2×10^{6}
C. 2
D. 2×10^{2}

Answer: B

D Watch Video Solution

100. When a beam of light is used to determine the position of an object, the maximum accuracy is achieved if the light is
A. polarised
B. of longer wavelength
C. of shorter wavelength
D. of high intensity

Answer: C

D Watch Video Solution

101. Two slits at a distance of 1 mm are
illuminated by a light of wavelength
$6.5 \times 10^{-7} \mathrm{~m}$. The interference fringes are
observed on a screen placed at a distance of
$1 m$. The distance between third dark fringe and fifth bright fringe will be

A. 0.65 mm

B. 1.63 mm
C. 3.25 mm
D. 4.88 mm

Answer: B

D Watch Video Solution
102. In the Young's double slit experiment using a monochromatic light of wavelength λ, the path difference (in terms of an integer n) corresponding to any point having half the peak

$$
\begin{aligned}
& \text { A. }(2 n+1) \frac{\lambda}{2} \\
& \text { B. }(2 n+1) \frac{\lambda}{4} \\
& \text { C. }(2 n+1) \frac{\lambda}{8} \\
& \text { D. }(2 n+1) \frac{\lambda}{16}
\end{aligned}
$$

103. In Young's double slit experiment, the fringe width obtained by a monochromatic light of wavelength $6000 \AA$ is 2 mm . I fthe apparatus is dipped into water of R.I. 1:33, then change in fringe width will be
A. 0.5 mm
B. 1 mm
C. 1.2 mm
D. 1.5 mm

Answer: A

- Watch Video Solution

104. If initial fringe width is X, the distance between screen and slits is increased by 25% and distance between two slits is halved, then how many times does fringe width increase?
A. X
B. 1.5 X
C. 2.5X

D. 2 X

Answer: C

D Watch Video Solution

105. In Young's double slit experiment, one of
the slit is wider than other, so that amplitude
of the light from one slit is double of that
from other slit. If I_{m} be the maximum
intensity, the resultant intensity I when they interfere at phase difference ϕ is given by:
A. $\frac{I_{m}}{9}(4+5 \cos \phi)$
B. $\frac{I_{m}}{3}\left(1+2 \cos ^{2} \frac{\phi}{2}\right)$
C. $\frac{I_{m}}{5}\left(1+4 \cos ^{2} \frac{\phi}{2}\right)$
D. $\frac{I_{m}}{9}\left(1+8 \cos ^{2} \frac{\phi}{2}\right)$

Answer: D

D Watch Video Solution

106. In Young's double slit experiment, the intensity on the screen at a point where path
difference is λ is K. What will be the intensity
at the point where path difference is $\lambda / 4$?
A. $\frac{K}{4}$
B. $\frac{K}{2}$
C. K
D. Zero

Answer: B
(Watch Video Solution
107. In a Young's double slit experiment the intensity at a point where tha path difference is $\frac{\lambda}{6}$ (λ being the wavelength of light used) is
I. If I_{0} denotes the maximum intensity, $\frac{I}{I_{0}}$ is equal to
A. $\frac{\sqrt{3}}{2}$
B. $1 / 2$
C. $3 / 4$
D. $1 / \sqrt{3}$

- Watch Video Solution

108. In Young's double slit experiment, the two
slits acts as coherent sources of equal amplitude A and wavelength λ. In another experiment with the same set up the two slits are of equal amplitude A and wavelength λ but are incoherent. The ratio of the intensity of light at the mid-point of the screen in the first case to that in the second case is
A. 1:2
B. 2:1
C. $4: 1$
D. 1:1

Answer: B

D Watch Video Solution

109. The intensity at the maximum in a Young's double slit experiment is I_{0}. Distance between two slits is $d=5 \lambda$, where λ is the wavelength of light used in the experiement. What will be
the intensity in front of one of the slits on the screen placed at a distance $D=10 d$?

$$
\begin{aligned}
& \text { A. } \frac{3}{4} I_{0} \\
& \text { B. } \frac{I_{0}}{2} \\
& \text { C. }\left(I_{0}\right) \\
& \text { D. } \frac{I_{0}}{4}
\end{aligned}
$$

Answer: B
(Watch Video Solution
110. In a Young's double slit experiment, bichromatic light of wavelengths 400 nm and

560 nm are used. The distance between the slits is 0.1 mm and the distance between the plane of the slits and the screen is 1 m . The minimum distance between two successive regions of complete darkness is
A. 4 mm
B. 5.6 mm
C. 14 mm

D. 28 mm

Answer: D

D Watch Video Solution

111. In Young's double slit experiment intensity
at a point is $\left(\frac{1}{4}\right)$ of the maximum intersity.
Angular position of this point is

$$
\begin{aligned}
& \text { A. } \sin ^{-1}(\lambda / d) \\
& \text { B. } \sin ^{-1}(\lambda / 2 d)
\end{aligned}
$$

C. $\sin ^{-1}(\lambda / 3 d)$
 D. $\sin ^{-1}(\lambda / 4 d)$

Answer: C

D Watch Video Solution

112. In a double slit experiment, the two slits are 1 mm apart and the screen is placed $1 m$ away. A monochromatic light of wavelength 500 nm is used. What will be the width of each slit for obtaining ten maxima of double slit
within the central maxima of single-slit pattern?
A. 0.2 mm
B. 0.1 mm
C. 0.5 mm
D. 0.02 mm

Answer: A

D Watch Video Solution
113. In young's double slit experiment the separation d between the slits is $2 m m$, the wavelength λ of the light used is $5896 \AA$ and distance D between the screen and slits is

100 cm . It is found that the angular width of the fringes is 0.20°. To increases the fringe angular width to 0.21° (with same λ and D)
the separtion between the slits needs to be changed to
A. 1.8 mm
B. 1.9 mm
C. 2.1 mm
D. 1.7 mm

Answer: B

D Watch Video Solution

114. The angular width of the central maximum
in a single slit diffraction pattern is 60°. The width of the slit is $1 \mu m$. The slit is illuminated by monochromatic plane waves. If another slit of same width is made near it, Young's fringes
can be observed on a screen placed at a distance 50 cm from the slits. If the observed
fringe width is 1 cm , what is slit separation distance?
(i.e. distance between the centres of each slit.)
A. $75 \mu m$
B. $100 \mu m$
C. $25 \mu m$
D. $50 \mu \mathrm{~m}$

Answer: C
115. The diameter of the pupil of human eye is
2.5 mm . Assuming the wavelength of light used is $5000 \AA$. What must be the minimum distance between two point like objects to the seen clearly if they are a distance of 5 m from the eye?

$$
\text { A. } 1.34 \times 10^{-3} m
$$

B. $1.22 \times 10^{-3} m$
C. $1.5 \times 10^{-3} m$

$$
\text { D. } 1.6 \times 10^{-3} \mathrm{~m}
$$

Answer: B

D Watch Video Solution

116. Assuming human pupil to have a radius of
0.25 cm and a comfortable viewing distance of

25 cm , the minimum separation between two
objects than human eye can resolve at 500nm
wavelength is :
A. Wave length is
B. $1 \mu m$
C. $30 \mu m$
D. $100 \mu \mathrm{~m}$

Answer: C

D Watch Video Solution

117. The box of a pin hole camera, of length L,
has a hole of radius a . It is assumed that when
the hole is illuminated by a parallel beam of
light of wavelength λ the spread of the spot
(obtained on the opposite wall of the camera)
is the sum of its geometrical spread and the
spread due to diffraction. The spot would then have its minimum size (say b_(min)) when:

$$
\begin{aligned}
& \text { A. } a=\sqrt{\lambda L} \text { and } b_{\min }=\left(\frac{2 \lambda^{2}}{L}\right) \\
& \text { B. } a=\sqrt{\lambda L} \text { and } b_{\min }=\sqrt{4 \lambda L} \\
& \text { C. } a=\frac{\lambda^{2}}{L} \text { and } b_{\min }=\sqrt{4 \lambda L} \\
& \text { D. } a=\frac{\lambda^{2}}{L} \text { and } b_{\min }=\left(\frac{2 \lambda^{2}}{L}\right)
\end{aligned}
$$

Answer: B

Evaluation Test

1. In a Young's doule slit experiment, the slits
are 2 mm apart and are illuminated with a
mixture of two wavelengths $\lambda=750 \mathrm{~nm}$ and
$\lambda^{\prime}=900 \mathrm{~nm}$. At what distance from the common central bright fringe on a screen 1.5
m from the slits will a bright fringe from one
interference pattern coincide with a bright fringe from the other?
A. 0.8 mm

B. 1.6 mm

C. 2.4 mm
D. 3.4 mm

Answer: D

D Watch Video Solution

2. In a Young's double slit experiment, the separation between the slits is $2 \times 10^{-3} \mathrm{~m}$ and the distance of screen from the plane of
slits of 2 m . Light of wavelengths in the range
$3500 \AA$ to $7000 \AA$ is allowed to fall on the slits.
The wavelength that will have a maxima on the screen at $10^{-3} \mathrm{~m}$ from the central maxima is
A. $4000 \AA$
B. $500 \AA$
C. $5500 \AA$
D. $6000 \AA$

Answer: B

- Watch Video Solution

3. A double slit apparatus is immersed in liquid of refractive index μ_{m}. The distance between
the slits is d and distance between plane of slits and screen as $D(D \gg d)$. The slits are illuminated by parallel mem of wavelegth λ^{\prime}.

The smallest thickness of a sheet of refractive index μ_{p} to bring adjacent minima on the axis is

$$
\begin{aligned}
& \text { A. } \frac{\lambda^{\prime}}{2\left(\mu_{p}-\mu_{m}\right)} \\
& \text { B. } \frac{\left(\mu_{p}-\mu_{m}\right) \lambda^{\prime}}{2} \\
& \text { C. } \frac{\lambda^{\prime}}{\left(\mu_{p}-\mu_{m}\right)}
\end{aligned}
$$

D. $\left(\mu_{p}-\mu_{m}\right) \lambda^{\prime}$

Answer: A

D Watch Video Solution

4. In a double slit experiment, the separation
between the slits is d and distance of the screen from slits is D. If the wavelength of light used is λ and I is the intensity of central bright fringe, then intensity at distance from central maximum is
A. $I \cos ^{2}\left(\frac{\pi^{2} x d}{\lambda D}\right)$
B. $I^{2} \sin ^{2}\left(\frac{\pi x d}{2 \lambda^{\prime} D}\right)$
C. $I \cos ^{2}\left(\frac{\pi x d}{\lambda D}\right.$
D. $I \sin ^{2}\left(\frac{\pi x d}{\lambda D}\right)$

Answer: C

D Watch Video Solution

5. In Young's double slit experiment, one of the slit is wider than other, so that amplitude of
the light from one slit is double of that from
other slit. If I_{m} be the maximum intensity, the resultant intensity I when they interfere at phase difference ϕ is given by:

$$
\begin{aligned}
& \text { A. } \frac{I_{0}}{2}\left[1-8 \cos ^{2} \frac{\pi}{\lambda} d \sin \alpha\right] \\
& \text { B. } \frac{I_{0}}{6}\left[1-4 \cos ^{2} \frac{2 \pi}{\lambda} 2 d \sin \alpha\right] \\
& \text { C. } \frac{I_{0}}{9}\left[1+8 \cos ^{2} \frac{\pi}{\lambda} d \sin \alpha\right] \\
& \text { D. } \frac{I_{0}}{9}\left[1+4 \cos \frac{\pi}{\lambda} d \sin \alpha\right]
\end{aligned}
$$

Answer: C

D Watch Video Solution

6. In a single slit diffraction experiment, first minimum for a light of wavelength 540 nm coincides with the first maximum of another wavelength λ^{\prime}. Then λ^{\prime} is
A. $3600 \AA$
B. $2700 \AA$
C. $4800 \AA$
D. $5200 \AA$

Answer: A

D Watch Video Solution
7. A beam of 8 mW power and wavelength $6000 \AA$ has aperture 2 mm . If it is focused by a lens of focal length 6 cm the intensity of the image $\left(\times 10^{3}\right)$ is

> A. $0.52 \frac{\mathrm{~kW}}{\mathrm{~m}^{2}}$
> B. $1.32 \frac{\mathrm{~kW}}{\mathrm{~m}^{2}}$
> C. $2.63 \frac{\mathrm{~kW}}{\mathrm{~m}^{2}}$
> D. $5.20 \frac{\mathrm{~kW}}{\mathrm{~m}^{2}}$
8. Human eye is most sensitive to $5550 \AA$ and diameter of pupil is 1.8 mm . The greates distance at which a person can see clearly the milimetre marks on a scale is approximately
A. 1.7 m
B. 2.7 m
C. 3.7 m
D. 4.7 m

Answer: B

D View Text Solution

9. Two towers on the top of two hills are 40 km
apart. The line joining them presses 50 m above a hill half way between the towers.

What is the longest wavelength of radiowaves
which can be send between the towers
without apprecialbe fiffraction effects?
A. 12.5 cm
B. 24.4 cm
C. 33.3 cm
D. 42.2 cm

Answer: C

D Watch Video Solution

10. If the monochromatic source in Young's double slit experiment is white light, then
A. fringe pattern is not observed.
B. central fringe is white and the fringe
closest on either side of the central
white fringe is red.
C. central fringe is white and the fringe
closest on either side of the white fringe
is blue.
D. central fringe is white and the fringe
closest on either side of the white fringe
is dark.

- Watch Video Solution

11. White light is used to illuminate the two slits in Young's double slit experiment. The separation between the slits is b and the screen is at a distance $D \gg b$ from slits. At a point on the screen directly in front of one of the slits, the missing wavelengths are
A. $\frac{b^{2}}{D}, \frac{b^{2}}{3 D}$
B. $\frac{b}{D^{2}}, \frac{b}{3 D^{2}}$
c. $\frac{b^{2}}{2 D}, \frac{b^{2}}{4 D}$
D. $\frac{D^{2}}{b}, \frac{D^{2}}{3 b}$

Answer: A

- Watch Video Solution

12. In a Young's double slit experiment, the slits separated by 1 mm are illuminated by a mixture of two wavelengths $\lambda=600 \mathrm{~nm}$ and
$\lambda^{\prime}=750 \mathrm{~nm}$. The distance of screen from slits
is 1 m . The minimum distance from the common central bright fringe where the
bright frigne of one interference pattern will coincide with the bright fringe of second inteference pattern will be:
A. 0.8 mm
B. 3 mm
C. 0.3 m
D. 30 mm

Answer: B

D Watch Video Solution
13. From a TV tower waves are sent normally to
a plane reflector. A detector moves along this
normal and covers a distance S between
positions of first and nth successive maxima.

Velocity of light in air is c, then probable frequency of TV waves is

$$
\begin{aligned}
& \text { A. } \frac{(n-1)}{2} \frac{c}{S} \\
& \text { B. }\left(\frac{n+1}{2}\right) \frac{c}{S}
\end{aligned}
$$

C. $n \frac{c}{S}$
D. $\frac{(n+1)}{3} \frac{c}{S}$

Answer: A

- Watch Video Solution

14. For a normal eye, distance of near point from the eye is.
A. 8.3 m
B. 7.8 m
C. 6.3 m
D. 3.3 m

Answer: D

D Watch Video Solution

15. A parallel beam of x-rays is incident normally on a narrow slit. A fluorescent screen
is placed at a large distance from the slit. If
the speed of the electrons is increased, which of the following statements is correct?
A. Diffraction pattern is not observed on
the screen in the case of electrons.
B. The angular width of the central maximum of the diffraction pattern will increase.
C. The angular width of the central maximum will decrease
D. The angular width of the central maximum will be unaffected.

Answer: C

16. The aperture of the larges telescope in the world is about 5 m . If the separation between
the moon and the earth is $4 \times 10^{5} \mathrm{~km}$ and the wavelength of visible light is $6000 \AA$, then minimum separation between the objects on the surface of the moon which can be just resolved is approximately equal to
A. $29.5 m$
B. 59 m
C. 88.5 m
D. 1167 m

Answer: B

D Watch Video Solution

17. A slit whose width is 5.0 cm is irradiated
with microwaves of wavelength 3 cm . What is
the angular spread of the central maximum?
Assume normal incidence.
A. $\pm 18^{\circ}, 24^{\prime}$
B. $\pm 36^{\circ} 52^{\prime}$
C. $+43^{\circ} 23^{\prime}$

$$
\text { D. }-33^{\circ} 35^{\prime}
$$

Answer: B

- Watch Video Solution

18. In a single slit diffraction experiment first
minima for $\lambda_{1}=660 \mathrm{~nm}$ coincides with first
maxima for wavelength λ_{2}. Calculate the value of λ_{2}.
A. 240 nm

B. 300 nm

C. 345 nm
D. 400 nm

Answer: D

D Watch Video Solution

19.

By
passing
sodium
light
$\left(\lambda=5896 \times 10^{-10} m\right)$
through two slits 0.4 mm apart, an
interfernece pattern is formed on a screen
kept parallel to the plane of the slits and 60 cm from them. Find the distance along the screen between the third dark band and the tenth dark band on the opposite side of the central bright band.
A. 0.11 cm
B. 1.1 cm
C. 0.22 cm
D. 2.2 cm

Answer: B
20. Assertion: An excessively thin film appear black in reflected light.

Reason: The film absorbs all the radiations falling on it.
A. Assertion is True, Reason is True, Reason
is a correct explanation for Assertion
B. Assertion is True, Reason is True, Reason
is not a correct explanation for Assertion
C. Assertion is True Reason is False.
D. Assertion is False, Reason is True.

Answer: C

D Watch Video Solution

