©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - TARGET PHYSICS (HINGLISH)

MODEL QUESTION PAPER

Model Question Paper I

1. The magnitude of the gravitational field at
distance r_{1} and r_{2} from the centre of a
uniform sphere of radius R and mass M are F_{1} and F_{2} respectively. Then:

$$
\begin{aligned}
& \text { A. } \frac{F_{1}}{F_{2}}=\frac{r_{1}}{r_{2}} \text { if } r_{1}<R \text { and } r_{2}<R \\
& \text { B. } \frac{F_{1}}{F_{2}}=\frac{2 r_{1}^{2}}{r_{2}} \text { if } r_{1}>R \text { and } r_{2}>R \\
& \text { C. } \frac{F_{1}}{F_{2}}=\frac{r_{1}}{r_{2}} \text { if } r_{1}>R \text { and } r_{2}>R \\
& \text { D. } \frac{F_{1}}{F_{2}}=\frac{r_{1}^{2}}{r_{1}^{2}} \text { if } r_{1}<R \text { and } r_{2}<R
\end{aligned}
$$

Answer: A

D Watch Video Solution

2. If the sum of two unit vectors is a unit
vector,then find the magnitude of their differences.
A. $\sqrt{2}$
B. $\sqrt{3}$
C. $\frac{1}{\sqrt{2}}$
D. $\sqrt{5}$

Answer: B

D Watch Video Solution
3. When a β-particle is emitted from a nucleus,
the neutron-proton ratio
A. is decreased
B. is increased
C. remains the same
D. first decreases and then increases

Answer: A

- Watch Video Solution

4. A satellite has to revolve round the earth in
a circular orbit of radius $8 \times 10^{3} \mathrm{~km}$. The velocity of projection of the satellite in this orbit will be -
A. $3 \mathrm{~km} / \mathrm{s}$
B. $16 \mathrm{~km} / \mathrm{s}$
C. $7.16 \mathrm{~km} / \mathrm{s}$
D. $8 \mathrm{~km} / \mathrm{s}$

Answer: C
5. A cylinderal tank has a hole of $1.6 \mathrm{~cm}^{2}$ in its bottom. If the water is allowed to flow into the
tank from a tube above it at the rate of $80 \mathrm{~cm}^{3} / \mathrm{s}$, then the maximum height up to which water can water can rise in the tank is
A. 0.25 cm
B. 2.5 cm
C. 5 cm
D. 1.27 cm

Answer: D

D View Text Solution

6. If momentum (P), area (A), time (T) and temperature (θ) are assumed to be
fundamental quantities, then thermal capacity has dimensional formula

$$
\begin{aligned}
& \text { A. }\left[P^{1} A^{-1 / 2} T^{-1} \theta^{-1}\right] \\
& \text { B. }\left[P^{1} A^{1 / 2} T^{-1} \theta^{-1}\right] \\
& \text { C. }\left[P^{2} A^{-1} T^{-1} \theta^{-1}\right]
\end{aligned}
$$

$$
\text { D. }\left[P^{1} A^{-1} T^{1} \theta^{1}\right]
$$

Answer: B

D View Text Solution

7. Pick up the correct statement.

A. Diffraction is exhibited by all the
electromagnetic waves but not by mechanical waves.
B. Diffraction cannot be observed with a plane polarised light.
C. The width of central maximum in th
diffraction pattern due to single slit decreases as wavelength incrcases.
D. The width of central maximum in the diffraction pattern due to single slit increases as wavelength increases.

Answer: D

8. In Young's experiment for $\lambda=4000 \AA \AA$ fringes
observed have width B. The light illuminating
the set up now has $\lambda=6000 \AA$ and the separation between the interfering sources is
halved. What is the ratio of distance between
the screen and the interfering sources before and now if the fringe width remains unaltered?
A. 1:3
B. 3:1
C. 3:4
D. 2:3

Answer: B

- Watch Video Solution

9. Which of the following is regarding mutual inductance?
A. unit of M is henry
B. unit of M is $W b /$ amper 2

$$
\text { C. }[M]=\left[M L^{2} T^{-2} A^{-2}\right]
$$

D. both (A) and (C)

Answer: D

D View Text Solution

10. A machine gun has a mass 4 kg . It fires 50
gram bullets at the rate of 45 bullets per minute at a speed of $400 \mathrm{~ms}^{-1}$. What force is required to keep the gun in position?
A. 10 N
B. 13.3 N
C. 15 N
D. 26 N

Answer: C

- Watch Video Solution

11. A wavefront is an imaginary surface, where
A. phase changes with constant rate in all
directions along the surface.
B. phase changes with the same rate per
unit length in all directions along the
surface.
C. constant phase difference is always
maintained.
D. phase is always the same for all the points.

- Watch Video Solution

12. A child is standing wiith hands at the centre of a platform rotating about its central axis. The kinetie energy of the system K. The chilid now seretches his arms so that of the kinetic energy of the system is now.
A. $\frac{K}{4}$
B. $\frac{K}{2}$
C. 2 K

D. 4 K

Answer: B

D Watch Video Solution

13. Two simple pendulums of lengths 1.44 m
and 1 m start swinging together. After how many vibrations will they again start swinging together
A. 5 oscillations of smaller pendulum

B. 6 oscillations of smaller pendulum

C. 4 oscillations of bigger pendulum
D. 6 oscillations of bigger pendulum

Answer: B

D Watch Video Solution

14. Two identical taqnks are placed on the two pans of a beam balance. One tank is empty and open to atomosphere. The second tank evacuated and then filled with helium until the
two tanks are balanced The pressure of helium
will be (Given that $\rho_{a i r}=7.5 \rho_{H e}$]
A. 15 atm
B. 7.5 atm
C. 4 atm
D. 1atm

Answer: B

D View Text Solution

15. Which of the following transitions will have

 highest emission wavelength ?A. $n=2$ to $n=1$
B. $\mathrm{n}=1$ to $\mathrm{n}=2$
C. $n=2$ to $n=5$
D. $\mathrm{n}=5$ to $\mathrm{n}=2$

Answer: D
(Watch Video Solution
16. A cyclist is riding with a speed of $28.8 \mathrm{~km} / \mathrm{h}$.

As he approaches a circular turn on the road of radius 80 m , he applies brakes and reduces
his speed at constant tale of 0.6 ms the magniltude of the net acceleration of the cyclist is
A. $1 m s^{-2}$
B. $0.5 m s^{-2}$
C. $0.75 \mathrm{~ms}^{-2}$
D. $1.25 m s^{-2}$

Answer: A

D View Text Solution

17. Einstein's photoelectric equation states
that $\mathrm{mv} \frac{1}{2} m v^{2}=h v-h v_{0}$. In this equation v refers to
A. velocity of all ejected electrons.
B. mean velecity of emitted electrons.
C. minimum velocity of emitted electrons.
D. maximum velocity of emitted electrons.

Answer: D

D Watch Video Solution

18. Angle of contact depends on
A. nature of liquids in contact only.
B. nature of solids in contact only.
C. the nature of solids and liquids both.
D. area of contact between the solid and the liquid.

D Watch Video Solution

19. Magnetic field produced by electrons in atoms and molecules is due to their
A. spin motion only.
B. orbital motion only.
C. spin and orbital motion both.
D. neither spin nor orbital motion.

Answer: C

D Watch Video Solution

20. In a step up transformer, if ratio of turns of
primary to secondary is $1: 10$ and primary
voltage si 230 V . If the load current is $2 A$. Then
the current in primary is
A. 20A
B. 10 A
C. 2A

Answer: A

D Watch Video Solution

21. A wire has breaking stress of
$6 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \quad$ and a densiity of
$3 \times 10^{4} \mathrm{~kg} / \mathrm{m}^{3}$. The length of the wire of the same material which will break under its own weight, (if $g=10 \mathrm{~m} / \mathrm{s}^{2}$) is
B. 20 m

C. 200m

D. 2000 m

Answer: A

- Watch Video Solution

22. Select the WRONG statement.
A. A potentiometer is a constant voltage device.
B. A potentiometer is a constant current device.
C. A potentiometer is used to measure e.m.fof a cell.
D. A potentiometer is used to measure potential drop between two points in an electric circuit.

Answer: A

23. When a particle is moved, in a verticle it has
A. it has constant radial and tangential acceleration.
B.it has variable tangential and radial acceleration.
C. it has only constant radial acceleration.
D. it has only constant tangential

Answer: B
24. The amplitude of sound is doubled and the frequency is reduced to one fourth. The intensity of sound at the same point will be
A. increased to double.
B. increased to four times.
C. decreased to half.
D. decreased to one fourth.

- Watch Video Solution

25. Three capacitors of capacity C_{1}, C_{2}, C_{3} are connected in series. Their total capacity will be
A. $C_{1}+C_{2}+C_{3}$
B. $1 /\left(C_{1}+C_{2}+C_{3}\right)$
C. $\left(C_{1}^{-1}+C_{2}^{-1}+C_{3}^{-1}\right)^{-1}$
D. None of these

Answer: C
26. When an electron in hydrogen atom is excited, from its 4th to 5the stationary orbit, the change in angular momentum of electron is (Planck's constant: $h=6.6 \times 10^{-34} \mathrm{~J}-s$)

$$
\begin{aligned}
& \text { A. } 4.16 \times 10^{-34} \mathrm{Js} \\
& \text { B. } 3.32 \times 10^{-34} \mathrm{Js} \\
& \text { C. } 1.05 \times 10^{-34} \mathrm{Js} \\
& \text { D. } 2.08 \times 10^{-34} \mathrm{Js}
\end{aligned}
$$

Answer: C

- Watch Video Solution

27. The total number of tubes of induction passing normally through a surface situated in an electric field is called
A. normal electric induction
B. total normal electric induction
C. electric flux
D. all the above

Answer: B

- Watch Video Solution

28. Two identical magnetic dipoles of magnetic

 moments $4 A-m^{2}$ each, are placed at a separation of 4 m with their axis perpendicular to each other. The resultant magnetic field at a point midway between the dipoles is$$
\text { A. } 5 \times 10^{-7} T
$$

B. $\sqrt{5} \times 10^{-7} T$
C. $10^{-7} T$
D. $\frac{\sqrt{5}}{2} \times 10^{-7} T$

Answer: D

D Watch Video Solution

29. The root mean square velocity of a gas molecule of mass m at a given temperature is proportional to
A. m^{0}
B. m
C. $m^{1 / 2}$
D. $m^{-1 / 2}$

Answer: D

D Watch Video Solution

30. What will happen to the weight of the body at the south pole, if the earth stops rotating about its polar axis?
A. no change
B. increases
C. decrease but does not become zero
D. reduces to zero

Answer: A

D Watch Video Solution
31. The coil of a moving coil galvanometer has

1000 turns each of area $3 \times 10^{-4} m^{2}$. Its
suspension fibre has restoring torque of
$2 \times 10^{-4} N-m$ per degree and the radial magnetic field of induction $0.08 \mathrm{~Wb} / \mathrm{m}$. If a current of $10 \mu \mathrm{~A}$ is passed through it, then the deflection produced is
A. 0.6°
B. 1.0°
C. 1.2°
D. 0.8°

Answer: C

32. A magnet is brought towards a coil (i)
speedly (ii) slowly then the induced
e.m.f./induced charge will be respectively
A. more in first case /more in first case
B. more in first case/equal in both case
C. less in first case/more in second case
D. less in first case/equal in both case

Answer: B

D Watch Video Solution

33. If L, M and P are the angular momentum, mass and linear momentum of a particle respectively, which of the following represents
the kinetic energy of the particle when the particle rotates in a circle of radius R ?

$$
\begin{aligned}
& \text { A. } \frac{L^{2}}{2 M} \\
& \text { B. } \frac{P^{2}}{2 M R} \\
& \text { C. } \frac{L^{2}}{2 M R^{2}} \\
& \text { D. } \frac{M P}{2}
\end{aligned}
$$

Answer: C

D Watch Video Solution

34. For the stationary wave
$y=4 \sin \left(\frac{\pi x}{15}\right) \cos (96 \pi t), \quad$ the distance between a node and the next antinode is
A. 7.5
B. 15
C. 22.5
D. 30

Answer: A

D Watch Video Solution

35. Two convex lenses of focal lengths
f_{1} and f_{2} are separated co-axially by a distance d. The power of the combination will be one if

$$
\begin{aligned}
& \text { A. } d=\left(f_{1}+f_{2}\right)-f_{1} f_{2} \\
& \text { B. } d=\left(f_{1}-f_{2}\right)+f_{1} f_{2} \\
& \text { C. } d=\sqrt{f_{1} f_{2}} . . f_{1}+f_{2}
\end{aligned}
$$

$$
\text { D. } d=\left(\frac{f_{1}-f_{2}}{2}\right)
$$

Answer: A

D Watch Video Solution

36. Length of antenna required to transmit the signals of frequency 100 MHz is nearly
A. 75 m
B. 7.5 m
C. 75 cm
D. 7.5 cm

Answer: C

D Watch Video Solution

37. The current sensitivity of a moving coil galvanometer can be increased by
A. decreasing the magnetic field of the permanent magnet.
B. decreasing the area of the deflecting
coil.
C. increasing the number of turns in the coil.
D. increasing the restoring couple of the
coil.

Answer: C
(Watch Video Solution
38. Sag in a bar of length T to weight applied
its mid-point when it is supported at its end
by fixed points at the same height proportional to
A. I
B. l^{2}
C. l^{3}
D. $\frac{1}{l}$

Answer: C
39. A long wire carries a steady curent. It is bent into a circle of one turn and the magnetic field at the centre of the coil is B. It is then bent into a circular loop of n turns. The magnetic field at the centre of the coil will be
A. 4 nB
B. $2 n^{2} B$
C. $\frac{n^{2} B}{4}$
D. $\frac{B}{2 n^{2}}$

Answer: C

- Watch Video Solution

40. In a concave mirrorr experiment, an object
is placed at a distance x_{1} from the focus and
the image is formed at a distance x_{2} from the
focus. The focus length of the mirrorr would be
A. $x_{1} x_{2}$
B. $\sqrt{x_{1} x_{2}}$
C. $\frac{x_{1}+x_{2}}{2}$
D. $\sqrt{\frac{x_{1}}{x_{2}}}$

Answer: B

D Watch Video Solution

41. The energy in the superposition of waves
A. is lost
B. increases
C. remains same, only redistribution
occurs.
D. may increase or decrease depending upon the medium.

Answer: C

D View Text Solution

42. In case of vibrating string, the frequency of the first overtone is equal to frequency of the first overtone is equal to frequency of the
A. fourth harmonic
B. first harmonic
C. second harmonic
D. third harmonic

Answer: C

- Watch Video Solution

43. Two electrons move parallel to each other with equal speed ' V ' the ratio of magnetic $\&$ electric force between them is
A. $\sqrt{\frac{v}{c}}$
B. $\left(\frac{c}{v}\right)^{2}$
C. $\left(\frac{v}{c}\right)^{2}$
D. $\sqrt{\frac{c}{v}}$

Answer: C

D Watch Video Solution

44. If numerical aperture of a microscope is increased, then its
A. resolving power decreases.
B. resolving power femains the same.
C. limit of resolution decreases.
D. limit of resolution increases.

Answer: C

D Watch Video Solution

45. A cyclotron of radius 64 cm accelerates deutrons $\quad\left(m=3.3 \times 10^{-27} \mathrm{~kg}\right) \quad$ if the
cyclotrons frequeney is 5 MHz , then the
maximom speed with which the dentrons emerge, is

A. $3 \times 10^{7} \mathrm{~m} / \mathrm{s}$
B. $2 \times 10^{7} \mathrm{~m} / \mathrm{s}$
C. $1.5 \times 10^{7} \mathrm{~m} / \mathrm{s}$
D. $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$

Answer: B
(Watch Video Solution
46. A turtle in water (refractive index μ) looks
at a stationary cloud vertically above in the air.

If h is the height of the cloud and d is the depth of the fortle from the surface, then the distance of the clond as estimated by the turfle is
A. $d+h\left(1+\frac{1}{\mu}\right)$
B. $h+d\left(1-\frac{1}{\mu}\right)$
C. $d+h\left(1-\frac{1}{\mu}\right)$
D. $d+\mu h$

Answer: D

- View Text Solution

Model Question Paper li

1. Two solid spheres of came metal bar of mass

8 M and 27 M fall simultaneouslyon a viscous
liquid and their terminal velocities are v and $n v$, then values n is
A. 16
B. 8.5
C. 4
D. 2.25

Answer: D

D Watch Video Solution

2. A stone of mass ied to a string of lengh I rotating along \& a circular path with constant speed v. The torque on the stone is
A. $m v^{2} l$
B. mvl
C. $m \frac{v}{l}$
D. zero

Answer: D

D Watch Video Solution

3. At which temperaure, he surface tension of

 water has a minimum value?A. $4^{\circ} C$
B. $10^{\circ} \mathrm{C}$
C. $27^{\circ} C$
D. $37^{\circ} \mathrm{C}$

Answer: D

D Watch Video Solution

4. If the distance between any two bodies in
the aniverse is reduwed to half the present
distance between them, then atraction between them will
A. increase 4 times.
B. increase 2 fames.
C. remain constant.
D. decrease by $1 / 2$.

Answer: A
(Watch Video Solution
5. In a spring block system if length of the spring is reduced by 1%, then time period
A. increase by 2%.
B. increase by 0.5\%
C. decrease by 2%.
D. decrease by 0.5\%.

Answer: D

D Watch Video Solution

6. A $5 \mu F$ capacitor is fully charged across a 12

V battery, It is then disconnected from the battery and connected to an uncharged capacitor, If the voltage across the capacitor becomes 3 V then the capacitance of the
A. $3 \mu F$
B. $15 \mu F$
C. $25 \mu F$
D. $60 \mu F$

Answer: B
7. In Wheatstone's bridge $P=9 o h m, Q=11$
ohm, $R=4 o h m$ and $S=6 o h m$. How much resistance must be put in parallel to the resistance S to balance the bridge
A. 24 ohm
B. $\frac{44}{9}$ ohm
C. 26.4 ohm
D. 18.7 ohm

Answer: C

D Watch Video Solution

8. A flywheel of mass 10 kg and radius 10 cm is
revolving at a speed of 240 r.p.m. Its kinetic energy is
A. $\frac{32}{\pi} J$
B. $3.2 \pi^{2} J$
C. $32 \pi J$
D. $32 \pi^{2} J$

- Watch Video Solution

9. Toroid is a solenoid of

A. infinite length.
B. infinite length of non-uniform radius.
C. finite length bent into a circle.
D. infinite length bent into a circle.

- Watch Video Solution

10. In a Young's double slit experiment, the slits are $2 m m$ apart and are illuminated with a mixture of two wavelength $\lambda_{0}=750 \mathrm{~nm}$ and
$\lambda=900 \mathrm{~nm}$. The minimum distance from the common central bright fringe on a screen $2 m$
from the slits where a bright fringe from one interference pattern coincides with a bright fringe from the other is
11. Select the correct statement. If a liquid surface is curved, then
A. the pressure on the concave side is less
than that on the convex side.
B. the pressure on the concave side is
equal to pressure on convex side.
C. the pressure on concave side is more
than that on convex side.

D. the pressure on the concvex side is

 atmospheric pressure.
Answer: C

D Watch Video Solution

12. A wheel is subjected to uniform angular acceleration about its axis. Initially, its angular
velocity is zero. In the first 2 sec , it rotates
through an angle θ_{1}, in the next 2 sec , it
rotates through an angle θ_{2}. The ratio of θ_{2} / θ_{1} is
A. 1
B. 2
C. 3
D. 5

Answer: C

- Watch Video Solution

13. A refrigerator with $C O P=1 / 3$ release 200 J at heat to a reservoir. Then the work done on the working substance is
A. $\frac{100}{3} J$
B. 100J
c. $\frac{200}{3} J$
D. 150J

Answer: D

- Watch Video Solution

14. In electromagnetic induction, the induced
charge in a coil is independent of
A. change in the flux
B. time
C. resistance of the circuit
D. time and resistance of the circuit

Answer: C

- Watch Video Solution

15. The capacitance of a parallel plate capacitor can be increased by
A. increasing the area of the plates.
B. decreasing the distances between the plates.
C. using a dielectric of higher permittivity.
D. all the above.

Answer: D

D Watch Video Solution
16. In the determination of Young's modulus
$\left(Y=\frac{4 M L g}{\pi / d^{2}}\right)$ by using Searle's method, a
wire of length $L=180 \mathrm{~cm}$ and a diametre $d=0.6$
mm is used. For a load $\mathrm{M}=4 \mathrm{~kg}$, an extension $\mathrm{I}=$
0.2 mm in the length of the wire is observed.

Quantities d and I are measured using a respectively. They have the same pitch of 0.5 mm . The number of divisions on their circular
scale is 100. The contributions to the maximum probable error of the measurement are
A. due to the errors in the measurements
of d and I are the same.
B. due to the error in the measurement of
d is 0.4% more than that due to the
error in the measurement of I.
C. due to the error in the measurement of I
is 0.83% more than that due to the error
in the measurement of d.
D. due to the error in the measurement of
d is four times that due to the error in

Answer: C

D View Text Solution

17. The centre of mass of a right circular cone of height h, radiusr and constant density ρ is at

> А. $\left(0,0, \frac{h}{4}\right)$
> в. $\left(0,0, \frac{h}{3}\right)$
C. $\left(0,0, \frac{h}{2}\right)$
D. $\left(0,0, \frac{h}{7}\right)$

Answer: A

D View Text Solution

18. A horizontal wire oarries 160 A current below which another wire of linear density $16 \times 10^{-3} \frac{\mathrm{~kg}}{\mathrm{~m}}$ carrying a current is kept at 1.2 cm distance. If the wire kept below hangs in air, what is the current in this wire?
A. 58.8 A1
B. 9.8 A
C. 98 A
D. 48 A

Answer: A

D Watch Video Solution
19. A charge q is spread uniformly over an isolated ring of radius ' R '. The ring is rotated about its natural axis and has magnetic dipole
moment of the ring as M . Angular velocity of rotation is

$$
\begin{aligned}
& \text { A. } \frac{M}{2 q R^{2}} \\
& \text { B. } \frac{M}{(q R)^{2}} \\
& \text { C. } \frac{2 M}{q R^{2}} \\
& \text { D. } \frac{q M}{2 R}
\end{aligned}
$$

Answer: C

20. An object is placed at a distance u from a concave mirror and its real image is received on a screen placed at a distance of v from the mirror. If f is the focal length of the mirror, then the graph between $1 / v$ versus $1 / u$ is
A.
B.
c.
D.

Answer: B

- Watch Video Solution

21. In forced vibration, the body vibrates with
the
A. same frequency of external force.
B. different frequency of external force.
C. exactly half of external force frequency.
D. same and different frequencies of external force frequency.

Answer: A

D View Text Solution

22. Light travels from a medium of refractive index H , to another of refractive index $\mu_{2}\left(\mu_{1}>\mu_{2}\right)$. For total internal reflection of light, which is NOT true?
A. Light can travel from medium of refractive index Hi to l_{2}.
B. Angle of incidence must be greater than the critical angle.
C. There is no refraction of light.
D. Light can travel from the medium of
refractive index μ_{1} to μ_{1}.

Answer: D

D Watch Video Solution

23. Huygen's priciple of secondary wavelets may be used to
A. find the velocity of light in vacum.
B. explain the particle behaviour of light.
C. find the new position of a wavefront.
D. explain sentering of light

Answer: C

D Watch Video Solution

24. The momentum of a photon of an electromagnetic radiation is $3.3 \times 10^{-29} \mathrm{~kg}$ $\mathrm{m} / \mathrm{sec}$. What is the frequency of the associated
waves ? $\left[h=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right]$
A. $1.5 \times 10^{13} \mathrm{~Hz}$
B. $7.5 \times 10^{12} \mathrm{~Hz}$
C. $6.0 \times 10^{3} \mathrm{~Hz}$
D. $3.0 \times 10^{3} \mathrm{~Hz}$

Answer: A
25. Two satellites of masses 3 m and m orbit the earth in circular orbits of radii r and $3 r$ respectively. The ratio of the their speeds is
A. 1
B. $\frac{1}{\sqrt{3}}$
C. $\frac{1}{3}$
D. $\frac{1}{2 \sqrt{3}}$

Answer: B
26. The reactance of a capacitanee at 50 Hz is
4Ω. If the frequeney is increased to 200 Hz ,
then the reactance is
A. 16Ω
B. 8Ω
C. 2Ω
D. 1Ω

Answer: D
27. A steel ring of radius r and cross section area A is fitted on to a wooden disc of radius
$R(R>r)$. If Young's modulus be R , then the force with which the steel ring is expanded is
A. $\frac{A Y R}{r}$
B. $\frac{A Y(R-r)}{r}$
C. $\frac{Y}{A} \frac{(R-r)}{r}$
D. $\frac{Y r}{A R}$

- Watch Video Solution

28. The second law of thermodynamies implies
A. whole of the heat can be converted into
mechanical energy
B. no heat engine can be 100% efficient
C. every heat engine has an effieienes of

D. a refrigerator can reduce the lemgeritre

 to absolute zero,Answer: B

D Watch Video Solution

29. A $1.00 \times 10^{-20} \mathrm{~kg}$ particvle is performing
S.H.M. with a period of $1.00 \times 10^{-5} s$ and with maximum velocity $1.00 \times 10^{3} \mathrm{~m} / \mathrm{s}$. The maximum displacement from the mean position is
A. 10 mm
B. 1.59 mm
C. 1 mm
D. 0.24 mm

Answer: B

D View Text Solution

30. In Davisson-Germer experiment, if the angle of diffraction is 52°, the find the glancing angle.
A. 26°
B. 64°
C. 52°
D. 104°

Answer: B

D Watch Video Solution
31. The refractive index of the material of an equilateral prism is 1.3 . The angle of minimum deviation due to the prism would be
A. 30°
B. less than 40°
C. 45°
D. between 30° and 60°

Answer: B

D View Text Solution

32. If a particle executing S.H.M. with amplitude A and maximum velocity vo, then its speed at displacement $A / 2$ is
A. $\frac{\sqrt{3}}{2} v_{0}$
B. $\frac{v_{0}}{2}$
C. v_{0}
D. $\frac{v_{0}}{\sqrt{2}}$

Answer: A

D Watch Video Solution

33. lonosphere is used for..........

A. Sky waves

B. space waves

C. ground waves
D. all

Answer: A

D Watch Video Solution

34. Electric field intensity at a point due to an
infinite sheet of charge having surface charge
density σ is E.If sheet were conducting electric intensity would be
A. $\mathrm{E} / 2$
B. E
C. 2 E
D. 4 E

Answer: C

- Watch Video Solution

35. The logic behind NOR gate is that it gives
A. high output when both the inputs are low.
B. low output when both the inputs are low.
C. high output when both the inputs are
D. Both (A) and (B).

Answer: A

D Watch Video Solution
36. Ratio of the amplinudes of interfering waves is 4 . Now de ratio of their intensities will he
A. $16: 1$
B. $49: 1$
C. 9:16
D. $3: 4$

Answer: C

D Watch Video Solution
37. The U-tabe with limbs of diameters 5 mm and 2 mm contains water of surface tension
$7 \times 10^{-2} \mathrm{Nm}^{-1}$. The angle of contact is zero and density $10^{3} \mathrm{kgm}^{-3}$. If g is $10 \mathrm{~ms}^{-2}$ then, the difference in levela in the twa limbs is
A. 8.4 cm
B. 8.4 cm
C. 8.4 m
D. 0.84 cm

Answer: B
38. In above question, if the centripetal force F is kept constant but the angular velocity is doubled, the new radius of the path (original radius R) will be
A. R/4
B. $\mathrm{R} / 2$
C. 2 R
D. 4 R

Answer: A

D Watch Video Solution

39. The sine of the angle between
$\hat{i}+3 \hat{j}+2 \hat{k}$ and $2 \hat{i}-2 \hat{j}+2 \hat{k}$ is
A. 1
B. 0.91
C. 0.76
D. 0.67

Answer: A

- Watch Video Solution

40. The instrument among the following which
measures the e.m.f of a cell most accurately is
A. a voltmeter
B. an ammeter
C. potentiometer
D. post office box

Answer: C

- Watch Video Solution

41. What is the shape of magnet in moving coil
galvanometer to make the radial magnetic field?
A. Concave.
B. Horse shoe magnet.
C. Convex.
D. Electromagnet.

D Watch Video Solution

42. An electron cannot be occupied in
A. valence band
B. conduction band
C. forbidden band

D. all of these

- Watch Video Solution

43. Beats are produced by the superimposition of two waves of nearly equal frequencies.

Which of the following statements is CORRECT?
A. All particles of the medium vibrate simple harmonically with frequency
equal to the difference between the
frequencies of the component waves.
B. The frequency of beats changes with the location of the observer.
C. The frequency of beats changes with
time.
D. Amplitude of vibration of particles at any
point changes simple harmonically with
frequency equal to one half of the the
difference between component waves.

Answer: D

44. Gyromagnetic ratio is a ratio of charge to
A. magnetic moment of electron.
B. electric dipole moment of electron.
C. mass of electron.
D. angular momentum of electron.

Answer: C

45. Which of the following is the fusion reaction?

$$
\begin{aligned}
& \text { A. }{ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He} \\
& \text { B. }{ }_{0}^{1} \mathrm{H}+{ }_{7}^{14} \mathrm{H} \rightarrow{ }_{6}^{14} \mathrm{C}+{ }_{1}^{1} \mathrm{H} \\
& \text { C. }{ }_{0}^{1} n+{ }_{92}^{238} \mathrm{U} \rightarrow{ }_{93}^{239} \mathrm{~Np}++\beta^{-1}+\gamma \\
& \text { D. }{ }_{1}^{3} \rightarrow{ }_{2}^{3} \mathrm{He}+\beta^{-1}+\gamma
\end{aligned}
$$

Answer: A

D Watch Video Solution

46. Light is incident at an angle i on a glass
slab. The reflected ray is completely polarished
. The angle of refraction is
A. $90^{\circ}-i$
B. $180^{\circ}-i$
C. $90^{\circ}+i$
D. i

Answer: A

D Watch Video Solution
47. If the length of a closed organ pipe is 1 m and velocity of sound is $330 \mathrm{~m} / \mathrm{s}$, then the frequency for the second note is
A. $4(330 / 4) \mathrm{Hz}$
B. $3(330 / 4) \mathrm{Hz}$
C. $2(330 / 4) \mathrm{Hz}$
D. $5(330 / 4) \mathrm{Hz}$

Answer: B

- Watch Video Solution

