

MATHS

BOOKS - INDEPENDENTLY PUBLISHED MATHS (ENGLISH)

1600 CLUB BACKGROUND TOPICS

Example

1. If a and b are nonzero numbers such that a

It b, which of the following must be true?

I.
$$\dfrac{1}{a} > \dfrac{1}{b}$$
II. $a^2 < b^2$

III.
$$b^2 \geq 1$$

C. II only

D. III only

Answer: A

2. A small bag contains 4 white and 3 red marbles . Two marbles are randmly removed from the bag . Find the probability that a white marble is removed, followed by a red.

A.
$$\frac{1}{7}$$

$$\mathsf{B.}\;\frac{2}{7}$$

C.
$$\frac{3}{7}$$
D. $\frac{4}{7}$

D.
$$\frac{4}{7}$$

Answer: B

3. A hat contains the integers 1 to 100, inclusive .If a number is drawn at random from the hat, what is the probability that a multiple of 5 or a multiple of 8 is drawn?

A.
$$\frac{3}{5}$$

3.
$$\frac{33}{100}$$

$$\mathsf{C.}\,\frac{3}{10}$$

D.
$$\frac{31}{100}$$

Answer: C

4. In a batch of 10 light bulbs , 2 are defective . If 3 of the bulbs are chosen at random, what is the probability that at least 1 of the chosen bulbs is defective ?

A.
$$\frac{8}{15}$$

B.
$$\frac{7}{15}$$

$$\mathsf{C.}\ \frac{3}{10}$$

D.
$$\frac{1}{4}$$

Answer: A

Watch Video Solution

5. A colony of bacteria numbers 2,000 at 1 P.M. and increases 20 percent per hour . What is the population at 4 P.M. that same day?

A. 2800

B. 3456

C. 3200

D. 3800

Answer: B

Watch Video Solution

6.
$$16^{-\frac{3}{4}}$$
 is equal to

$$A. - 8$$

$$c. - \frac{1}{8}$$

D.
$$\frac{1}{8}$$

Answer: D

7. If
$$x=2.4 imes 10^6$$
 and $y=6.0 imes^{10}$ ^ (-8) , express xy in scientific notation.

A.
$$1.44 imes 10^{-1}$$

B.
$$1.44 \times 10^{-2}$$

C.
$$14.4 \times 10^{-2}$$

D.
$$1.44 \times 10^{-3}$$

Answer: A

Watch Video Solution

8. If $x^2b^4=ab^{-1}$, what is a in terms of b and x ?

A. x^2b^3

B. x^2b^5

C. x^2b^{-3}

D. x^2b^{-5}

Answer: B

9. A P Q B

Let A,P , Q , and B be points on \overline{AB} , as shown above . If AP:PQ=1:4, PQ:QB=8:3 , and AP, PQ and QB are all integer lengths , which could be the length of AB ?

A. 62

B. 63

C. 64

D. 65

Answer: D

10.

What is the length of \overline{QR} ?

A. 5

B. $\frac{5\sqrt{2}}{2}$

$$\mathsf{C.}\ 10\sqrt{2}$$

D.
$$5\sqrt{2}$$

Answer: D

Watch Video Solution

In the figures shown above , \overline{WX} is parallel to

 \overline{ZY} . What is the perimeter of quadrilateral of

WXYZ?

A.
$$29+3\sqrt{3}+3\sqrt{6}$$

B.
$$29+6\sqrt{3}+6\sqrt{6}$$

$$\mathsf{C.}\,29 + 3\sqrt{3} + 3\sqrt{2}$$

D.
$$35+3\sqrt{2}$$

Answer: A

12.

In the figures above , \triangle ABC is rotated counterclockwise through 90° about the origin. Its image is \triangle A'B'C'. What is the slope of $\overline{A'B'}$?

A.
$$\frac{3}{4}$$

B.
$$\frac{4}{3}$$

$$C.-rac{3}{4}$$

D.
$$-\frac{4}{3}$$

Answer: D

13.

In the circle shown above, O is the center and \overline{AB} is a diameter . There are two semicircles with diameters \overline{AO} and \overline{BO} , and four smaller semicircles with congruent diameters \overline{AC} , \overline{CO} , \overline{OD} and \overline{DB} . A point is picked at

random in the large circle. What is the probability that it lands in a shaded region?

Watch Video Solution

Practice Test

1. Points A and B are on the number line in such a way that A corresponds to 0.625 and B corresponds to 0.637 . If P is the midpoint of \overline{AB} , and Q is on the number line two-thirds of

the distance from A to B, what is the ratio of

PQ to AQ?

A. 1:4

B. 1:3

C. 1: 2

D. 2:3

Answer: A

2. Ali is in a minivan with x children. Let y be the average (arithmetic mean) of the children's ages . If Ali's age is 6 times y, then her age is what fraction of the total ages of all the people in the minivan ?

A.
$$\frac{6}{6+y}$$

B.
$$\frac{6}{6+x}$$

$$\mathsf{C.}\,\frac{6}{x+y}$$

D.
$$\frac{x}{6y}$$

Answer: B

3. For the expression $x\sqrt{x}$, where -100 \leq x

 $\leq\,$ 100 , how many x values are there such

that the expression is an integer?

A. 100

B. 21

C. 20

D. 11

Answer: D

4.

In the figures shown above , given that

 $\overline{AC}\cong \overline{DC}$, the value of x is

A. $18\sqrt{6}$

 $\mathsf{B.}\ 18\sqrt{2}$

 $c. 9\sqrt{2}$

D. $9\sqrt{6}$

Answer: D

In the diagram above , PQRS is a parallelogram. What is the area of PQRS ?

A. 15

5.

B. 18

C. 30

D. $3\sqrt{34}$

Answer: C

Watch Video Solution

Triangle PQR, shown in the diagram above, is translated 4 units to the right and 5 units down. The resulting triangle is then rotated

 180° counterclockwise about the origin. What is the final image of point P ?

A. (-1,-2)

B. (1,2)

C. (2,1)

D. (-2,1)

Answer: B

7. A line intersects two parallel lines , forming eight angles . If one of the angles has measure a° , how many of the other seven angles are supplementary to it ?

A. 1

B. 2

C. 3

D. 4

Answer: D

8. $(3x^2y^{-3})^{-2}$ is equivalent to

A.
$$\dfrac{9}{x^4y^6}$$
B. $\dfrac{y^6}{9x^4}$

B.
$$\frac{y}{9x^4}$$

C.
$$\frac{9x^4}{y^6}$$

D.
$$-rac{9}{x^4y^6}$$

Answer: B

9. A population of bacteria doubles every 2 hours . What is the percent increase after 4 hours ?

A. 400

B. 500

C. 300

D. 600

Answer: C

10. Six chairs are placed in a row to seat six people . How many different seating arrangements are possible if two of the people insist on sitting next to each other:

11. The triangles inside \triangle ABC, shown above, are formed by joining the midpoints of the sides and then repeating the process. If a point is chosen at random inside \triangle ABC, what is the probability that the point lies in the shaded region ?

