©"doubtnut

India's Number 1 Education App

MATHS

BOOKS - INDEPENDENTLY PUBLISHED MATHS (ENGLISH)

ADDITIONAL TOPICS IN MATH

Example

To find the perimeter of trapezoid ABCD above,
first draw $\overline{E C}$ parallel to $\overline{A D}$ thereby forming
rectangle ABCD, which means that
$E C=A D=12$ and $E A=C D=4$.
2. In the accomapanying figure, $\overline{A B}|\mid \overline{C D}$. If
$A B=40, C D=16$, and $B C=49$, what is
the length of $\overline{B E}$?

- Watch Video Solution

3. If the length of two sides of an isosceles
triangle are 3 and 7 , what is the perimeter of the triangle?

- Watch Video Solution

4. To find the area of parallelgram $A B C D$, draw perpendicular segment, BH, as shown. Since BH is the side opposite a 45° angle in a right triangle.
5. To find the area of rectangle $A B C D$, note that the diagonal form a (5-12-13) right triangle so the width of the rectangle is 5 . Hence,Find area of triangle.:

- Watch Video Solution

6. If rhombus $A B C D$ has a side length of 10 and
the longer diagonal measures 16 , then the
shorter diagonal measures 12 since,Find area of rhombus.

- Watch Video Solution

7. To find the area of $\triangle A B C$, note that the
lengths of the sides of $\triangle A B C$ form (3-4-5)
Pythagorean triple, where $A C=4$. Hence,
Find the area of $\triangle A B C$.

- Watch Video Solution

8. To Find the area of $\triangle J K L$, drop a perpendicular segment from vertex J to side

KL , extending it as necessary. Since $\triangle J K H$
measures 30° :

- Watch Video Solution

9. If the area of regular hexagon is $96 \sqrt{3}$, what is its perimeter?

D Watch Video Solution
10. To find the area of trapezoid $A B C D$, use the
fact that the lengths of the sides of right triangle AEB form a (5-12-13) Pythagorean triple, where height $B E=12$. The length of lower base
$A D=A E+E D=5+5+27=32$

D Watch Video Solution

11. To find the area of trapezoid $A B C D$, first the length of base CD by drawing heigth BH to CD.

Since parallel lines are everywhere equidistant,
$B H=A D=15$. The lengths of the sides of
right triangle BHC from an (8-15-17)

Pythagorean triple, where $\mathrm{CH}=8$. Thus,
$C D=C H+H D=8+10=18$.

- Watch Video Solution

12. In circle O above, $A B=3$ and $C D=2$.

Which of the following statements must be

true?

I. $\angle A B C$ and $\angle B C D$ have equal measures
II. $\overline{A B}|\mid \overline{C D}$
III. $2(A E)=3(C E)$
A. I and II
B. I and III
C. I only
D. III only

Answer: D

13. If in the accompanying figure the length of $\operatorname{arc} A B$ of circle O is 8π, what is the number of square units in the area of the shaded region?

A. 16π
B. 32π

C. 64π

D. 96π

Answer: D
(D) Watch Video Solution

14.

In the figure above, the segments PA and PB are tangent to circle O at points A and B, respectively, and the measure of $\angle A P B$ is 60°
. Segment OP is drawn. If $O P=\frac{14}{\pi}$, what is the length of minor arc $A B$?

15.

In the figure above, the radius of each circle is

1. If circles O and P touch the sides of rectangle $A B C D$ only at the lettered points, what is the area of the shaded region?

D Watch Video Solution

16.

In the figure above, $\overline{P Q}$ is a diameter of circle
O, $\overline{A B}\|\overline{P Q}\| \overline{C D}$, and $\overline{A B}=\overline{C D}$. The length of chord $\overline{A B}$ is $\frac{3}{4}$ of the length of diameter $\overline{P Q}$. If r represents the radius length of circle O , what is the distance between chords $\overline{A B}$ and $\overline{C D}$ in terms r ?

5

A. $\frac{5}{4} r$
B. $\frac{\sqrt{7}}{4} r$
C. $\frac{3}{2} r$
D. $\frac{\sqrt{7}}{2} r$

Answer: D

D Watch Video Solution

17. Which equation could represents the circle
shown in the graph below that passes
through the point $(0,-1)$?

A. $(x-3)^{2}+(y+4)^{2}=16$
B. $(x+3)^{2}+(y-4)^{2}=18$
C. $(x+3)^{2}+(y-4)^{2}=16$
D. $(x-3)^{2}+(y+4)^{2}=18$

Answer: D

- Watch Video Solution

18. What is the center and radius of a circle whose equation is
$3 x^{2}+3 y^{2}-12 x+18 y=69 ?$

- Watch Video Solution

19. An oil tank has the shape of a right circular
cylinder is 12 centimeters in height and has a
volume of 108π cubic centimeters. What is the diameter of the base of the cylinder, in centimeters?

D Watch Video Solution

20. A coffee shop makes coffee in 5 gallon
capacity urn and serves it in cylinderical-
shaped mugs with an internal diameter of 3 inches. Coffee is poured into each mug at a height of about 4 inches. What is the lagrest number of full mugs of coffee that can be
filled from the coffee urn if the urn is filled to
capacity? (Note: There are 231 cubic inches in 1 gallon)

- Watch Video Solution

21.

What is the volume, in cubic centimeters,of
the height circular cone in the figure above, in term of π ?
22.

To determine the distance across a river, as
shown in the figure above, a surveyor marked
two points on one riverbank, H and $F, 65$
meters apart. She also marked one point, K, on
the opposite bank such that $\left.\overline{K H}\right|_{\overline{H F}}$. If
$\angle K=54^{\circ}$ and x is the width of the river,
which of the following equations could be used to find x ?

> A. $\tan 54^{\circ}=\frac{x}{65}$
> B. $\sin 36^{\circ}=\frac{x}{65}$
> C. $\tan 36^{\circ}=\frac{x}{65}$
> D. $\sin 54^{\circ}=\frac{x}{65}$

Answer: C

D Watch Video Solution

23. If $P(-3,4)$ is a point on the terminal side of angle θ, what is the value of $\cos \theta$?

> A. $-\frac{3}{4}$
> B. $-\frac{3}{5}$
> C. $\frac{3}{4}$
> D. $\frac{4}{5}$

Answer: B

- Watch Video Solution

24.

In the xy-plane above, O is the center of the circle, and the measure of angle θ is $k \pi$ radians. If $0 \leq \theta \leq 2 \pi$, what is the value of k ?

D Watch Video Solution
25.

In the figure above, if $\cos \theta=-0.36$, what is
the value of $\sin \theta$ to the nearest hundredth?
A. 0.64
B. 0.80
C. 0.93
D. -0.93

Answer: C

- Watch Video Solution

26. If $\sin w=a$ and $\frac{\pi}{2}<w<\pi$, what is tanw in terms of a ?

$$
\begin{aligned}
& \text { A. } \frac{a}{\sqrt{1-a^{2}}} \\
& \text { B. } \frac{-a}{\sqrt{1-a^{2}}} \\
& \text { C. } \frac{1}{1-a}
\end{aligned}
$$

D. $\frac{-a}{1-a}$

Answer: B

- Watch Video Solution

27. Point P is on the unit circle with center at O
and point A is the point at which the unit
circle intersects the positive x-axis. If angle
AOP measures $\frac{7 \pi}{6}$ radians, what are the coordinates of point P?

D Watch Video Solution
28. If $\cos \mathrm{x}=\mathrm{a}, \cos \mathrm{w}=-\mathrm{a}$, and $\frac{\pi}{2}<x<0$, which of the following is positive value of w ?
A. $\pi-x$
B. $x-\pi$
C. $2 \pi-x$
D. $x+2 \pi$

Answer: A

- Watch Video Solution

Multiple Choice

in the figure above , $x+y=$
A. 270
B. 230
C. 210
D. 190

Answer: B

- Watch Video Solution

2.

In the figure above, what is the value of y ?
A. 20
B. 30
C. 45
D. 60

Answer: B

- Watch Video Solution

3.

In the figure above, if $l_{1}| | l_{2}$, what is the value of x ?
A. 90
B. 85
C. 75
D. $70^{`}$

Answer: B

- Watch Video Solution

4.

In the figure above, what is the sum of the degree measures of all of the angles marked?
A. 540
B. 720
C. 900
D. 1080

Answer: D

- Watch Video Solution

5.

In the figure above, what is y in terms of x ?

3
A. $\frac{3}{2} x$
B. $\frac{4}{3} x$
C. x
D. $\frac{3}{4} x$

Answer: A

- Watch Video Solution

6.

In the figure above, if line segment $A B$ is parallel to line segment $C D$, what is the value of y ?
А. 12
B. 15
C. 18
D. 20

Answer: D

D Watch Video Solution

7.

Note: Figure not drawn to scale.

In $\triangle R S T$ above, what is the value of x ?
A. 80
B. 90
C. 100
D. 110

Answer: C

- Watch Video Solution

8.

In the figure above, $x=$
A. 4
B. 6
C. $4 \sqrt{2}$
D. $4 \sqrt{3}$

Answer: B

- Watch Video Solution

9.

In $\triangle J K L$ above, what is value of x ?
A. 2
B. 3
C. 4
D. 6

Answer: D

D Watch Video Solution

10.

In the figure above, what is the ratio of RW to
A. $\sqrt{2}$ to 1
B. $\sqrt{3}$ to 1
C. 2 to 1
D. 3 to 1

Answer: C

D Watch Video Solution

11. Katie hikes 5 miles north, 7 miles east, and
then 3 miles north again. What number of miles, measured in a straight line, is katie from her starting point?
A. $\sqrt{83}$
B. 10
C. $\sqrt{113}$
D. 13

Answer: C

12.

In $\triangle A B C$, if $\mathrm{AB}=\mathrm{CD}$, which of the following
statements must be true?
I. $x>z$
II. $y>x$
III. $A B>B C$
A. I only
B. II only
C. I and II only

D. II and III only

Answer: A

D Watch Video Solution
13. How many different triangles are there for which the lengths of the sides are 3,8 , and n, where n is an integer and $3<n<8$?

A. Two

B. Three
C. Four
D. Five

Answer: A

D Watch Video Solution

14.

If, in the figure above, $A C=3, D B=4$, and $A B=14$,
then $A E=$
A. 4.5
B. 6
C. 8
D. 10.5

Answer: B

D Watch Video Solution

15. What is the number of sides of a polygen in
which the sum of the degree measure of the
interior angles is 4 times the sum of the degree measures of the exterior angles?
A. 10
B. 12
C. 14

D. No such polygon exist

Answer: A

D Watch Video Solution

For parallelogram ABCD above, if $A B>B D$
which of the following statements must be true?
I. $C D>B D$
II. $\angle A D B>\angle C$
$\angle C B D>\angle A$
A. None
B. I only
C. II and III only
D. I and III only

Answer: C

- Watch Video Solution

17.

If, in the figure above, $C D=1, A B=-2$, and $A D=6$,
then $\mathrm{BC}=$
A. 5
B. 9
C. $2+\sqrt{5}$
D. $3 \sqrt{5}$

Answer: D

- Watch Video Solution

18.

In the figure above, what is the sum of the degree measures of the marked angles?
A. 120
B. 180
C. 360
D. It cannot be determined from the information given

Answer: C

- Watch Video Solution

19. If each interior angle of a regular polygon
measures 140°, how many side does the polygon have?
A. 5 sides
B. 6 sides
C. 9 sides
D. 10 sides

Answer: C

- Watch Video Solution

20.

(2)

In the figure above, what is the area of parallelogram $A B C D$?
A. $4 \sqrt{2}$
B. $4 \sqrt{3}$
C. $6 \sqrt{2}$
D. $6 \sqrt{3}$

Answer: D

D View Text Solution

21. What is the area of square with an diagonal
of $\sqrt{2}$?
A. $\frac{1}{2}$
B. 1
C. $\sqrt{2}$
D. 2

Answer: B

- Watch Video Solution

22.

In the figure above, what is the area of quadrilateral $A B C D$?
A. 28
B. 32
C. 36
D. 42

Answer: C

- Watch Video Solution

23.

In the figure above, if the area of square $A B C D$
is 64. What is the area equilateral triangle BEC?
A. 8
B. $8 \sqrt{3}$
C. $12 \sqrt{3}$

D. $16 \sqrt{3}$

Answer: D

D Watch Video Solution

24.

In the figure above, the ratio of $A D$ to $D C$ is 3
to. If the area of $\triangle A B C$ is 40 , what is the area of $\triangle B D C ?$
A. 16
B. 24
C. 30
D. 36

Answer: A
(Watch Video Solution
25. Question 6-7 are based on the diagram
below.

Q. What is the perimeter of quadrilateral

ABCD?
A. $16+3 \sqrt{2}$
B. $16+6 \sqrt{2}$
C. 28

D. $22+6 \sqrt{2}$

Answer: B

D Watch Video Solution

26. Question 6-7 are based on the diagram below.

Q. What is the area of quadrilateral $A B C D$?

A. 20
B. 24
C. 30
D. 36

Answer: C

- Watch Video Solution

27.

If the perimeter above is 18 , what is the area of the triangle?
A. $2 \sqrt{33}$
B. $6 \sqrt{5}$
C. 14

D. $9 \sqrt{5}$

Answer: B

D Watch Video Solution

28.

In rectangle $A B C D$, point P divide $B C$ such that
$B P$ is 25% of the length of $B C$. If the area of
quadrlateral ABPD is $\frac{3}{4}$, what is the area of rectangle $A B C D$?

$$
\begin{aligned}
& \text { A. } \frac{15}{6} \\
& \text { B. } \frac{9}{8} \\
& \text { C. } \frac{6}{5} \\
& \text { D. } \frac{3}{2}
\end{aligned}
$$

Answer: C
(Watch Video Solution

In the figure above, what is an equation of the
line that contains diagonal $A C$ of square ABCD?

$$
\text { A. } y=2 x+1
$$

$$
\text { B. } y=\frac{1}{2} x-2
$$

C. $y=2 x-8$
D. $y=x-1$

Answer: D

- Watch Video Solution

In
the
figure
above,
$\overline{O A} \perp \overline{A B \text { and } m \angle B O C=45^{\circ}}$. If the coordinates of point A are $(0,3)$ and the coordinates of point C are $(7,0)$, what is the number of square units in the area of qudrilateral $O A B C$?
A. 15
B. 20
C. 25
D. 30

Answer: A

- Watch Video Solution

31. If one pair of opposite sides of a square are increased in length by 20% and the other pair of sides are increased in length by 50%, by what percent is the area of the rectangle that
results greater than the area of the original square?
A. 80%
B. 77%
C. 75%
D. 70%

Answer: A
(Watch Video Solution

In the figure above, what is the area of quadrilateral BCDE?
A. $8 \sqrt{3}$
B. $16 \sqrt{3}$
C. $8+4 \sqrt{3}$

D. $4+12 \sqrt{3}$

Answer: B

- Watch Video Solution

33.

Circles O and P intersect at exactly one point, as shown in the figure above. If the radius of
circle O is 2 and the radius of circle P is 6 , what
is the circumference of any circle that has OP as a diameter?
A. 4π
B. 8π
C. 12π
D. 16π

Answer: B

D Watch Video Solution
34. What is the area of circle with a

circumference of 10π ?

A. $\sqrt{10 \pi}$
B. 5π
C. 25π
D. 100π

Answer: C

35. Every time the pedals go through a 360° rotation on a certain bicycle, the tires rotate three times. If the tires are 24 inches in diameter, what is the minimum number of complete rotations of the pedals needed for the bicycle to travel at least 1 mile?
(1mile=5,280feet)
A. 24
B. 281
C. 561
D. 5,280

Answer: B

36.

Kristine is riding in car 4 of the ferris wheel
represented in the diagram above, which is 84 $\frac{84}{\pi}$ meters from car 8. The ferris wheel is rotating in the direction indicated by the arrows. If each of the cars are equally spaced
around the circular wheel, what is the best estimate of the number of meters in the distance through which kristine's car will travel to reach the botton of the ferris wheel before her car returns to the same position?
A. 42.0
B. 52.50
C. 64.75
D. 105.0

Answer: B
37.

Which of the following could be an equation of the circle above?
A. $(x-4)^{2}+(y+2)^{2}=17$
B. $(x+4)^{2}+(y-2)^{2}=17$
C. $(x-4)^{2}+(y+2)^{2}=13$
D. $(x+4)^{2}+(y-2)^{2}=13$

Answer: C

D Watch Video Solution

38. If the equation of a circle of a circle is
$10 x^{2}-10 x+y^{2}+6 y=-9$, which of the
following lines contains a diameter of the circle?

$$
\begin{aligned}
& \text { А. } y=2 x-7 \\
& \text { В. } y=-2 x+7 \\
& \text { C. } y=2 x+13 \\
& \text { D. } y=-2 x+13
\end{aligned}
$$

Answer: B
(Watch Video Solution

39.

In the figure above, if the radius length of circle O is $10 . \overline{O Y} \perp \overline{A B}$, and $A b=16$, what is the length of segment XY ?
A. 2
B. 3
C. 4
D. 6

Answer: C

D Watch Video Solution

40. If a bicycle wheel has traveled $\frac{f}{\pi}$ feet after n complete revolutions, what is the length in feet of the diameter of the bicycle wheel?

$$
\text { A. } \frac{f}{n \pi^{2}}
$$

B. $\frac{\pi^{2}}{f n}$
C. $\frac{n f}{\pi^{2}}$
D. $n f$

Answer: A

- Watch Video Solution

41. $x^{2}+y^{2}-6 x+8 y=56$

What is the area of a circle whose equation is given above?
A. 25π
B. 81π
C. 162π
D. $6,561 \pi$

Answer: B

- Watch Video Solution

42.

In the figure above, X and Y are the centers of two overlapping circles. If the area of each circle is 7 , what is the area of rectangle $A B C D$?

$$
\begin{aligned}
& \text { A. } 14-\frac{17}{\pi} \\
& \text { В. } 7+\frac{14}{\pi} \\
& \text { С. } \frac{28}{\pi}
\end{aligned}
$$

D. $\frac{42}{\pi}$

Answer: D

D Watch Video Solution

43.

In rectangle $A B C D$ above, arcs $B P$ and $C P$ are quarter circles with centers at points A and D,
respectively. If the area of each quarter circle is
π, what is the area of the shaded region?

$$
\begin{aligned}
& \text { A. } 4-\frac{\pi}{2} \\
& \text { B. } 4-\pi \\
& \text { C. } 8-\pi \\
& \text { D. } 8-2 \pi
\end{aligned}
$$

Answer: D

44.

In the figure above, point P is the center of each circle. The circumference of the larger circle exceeds the circumference of the smaller circle by 12π. What is the width, w, of the region between the two circles?
A. 4
B. 6
C. 8
D. 9

Answer: B

- Watch Video Solution

45.

The circle shown above has center O and a
radius length of 12 . If P is the midpoint of
$\overline{O A}$ and $\overline{A B}$ is tangent to circle O at B , what is the area of the shaded region?
A. 81π
B. 96π
C. 120π
D. 128π

Answer: C
(Watch Video Solution

46.

In the figure above, OACB is a square with area
$4 x^{2}$. If $O A$ and $O B$ are radii of a sector of a
circle O, what is the perimeter, in terms of x, of the unbroken figure?
A. $x(4+3 \pi)$
B. $x(3+4 \pi)$
C. $x(6+4 \pi)$
D. $x(x+2 \pi)$

Answer: A

- Watch Video Solution

In the figure above, OABC is a square. If the area of circle O is 2π, what is the area of the shaded region?

$$
\begin{aligned}
& \text { A. } \frac{\pi}{2}-1 \\
& \text { B. } 2-\frac{\pi}{2}
\end{aligned}
$$

C. $\pi-2$
 D. $\frac{\pi-1}{2}$

Answer: B

- Watch Video Solution

48.

In the figure above, the vertices of square
ACEG are the centers of four quarter circles of equal are. What is best approximation for the area of the shaded region? (Use $\pi=3.14$)
A. 0.64
B. 0.79
C. 0.86
D. 1.57

Answer: C

- Watch Video Solution

49.

In the figure above, if circle O is inscribed in square $A B C D$ in such a way that each side of
the square is tangent to the circle, which of the following statements must be true?

$$
\text { I. } A B \times C D<\pi \times \rtimes r
$$

II. Area $\mathrm{ABCD}=4 r^{2}$
III. $r<\frac{2(C D)}{\pi}$
A. I and II
B. I and III
C. II and III
D. II only

Answer: C

- Watch Video Solution

50.

In the figure above, $O A B C$ is a square and B is a points on the circle with center O . If $A B=6$, what is the area of the shaded region?
A. $9(\pi-2)$
B. $9(\pi-1)$

C. $12(\pi-2)$

D. $18(\pi-2)$

Answer: D

- Watch Video Solution

51.

In the figure above, arc PBQ is one-quarter of a circle with center at O, and $O A B C$ is a rectangle. If $A O C$ is an isosceles right triangle with $A C=8$, what is the perimeter of the figure that encloses the shaded region?

$$
\text { A. } 24-4 \pi
$$

B. $24-4 \sqrt{2}+4 \pi$
 C. $16-4 \sqrt{2}+4 \pi$
 D. $16+4 \pi$

Answer: D

D Watch Video Solution

52. The center of circle Q has coordinates
$(3,-2)$ in the $x y$-plane. If an endpoint of a radius of circle Q has coordinates $R(7,1)$, what is the equation of circle Q ?
A. $(x-3)^{2}+(y+2)^{2}=5$
B. $(x+3)^{2}+(y-2)^{2}=25$
C. $(x-3)^{2}+(y+2)^{2}=25$
D. $(x+3)^{2}+(y-2)^{2}=5$

Answer: C

- Watch Video Solution

53.

In the pully system illustrated in the figure above, a belt with negligible thickness is strected tightly around two identical wheels represented by circles A and B. If the radius of each wheel is $\frac{12}{\pi}$ inches and the measure of
$\angle N H J$ is 60°, what is the length of the belt?

$$
\begin{aligned}
& \text { A. } 32+\frac{48 \sqrt{3}}{\pi} \\
& \text { B. } 48+\frac{32 \sqrt{3}}{\pi}
\end{aligned}
$$

C. $(32+48 \sqrt{3}) \pi$
D. $80 \pi \sqrt{3}$

Answer: A

D Watch Video Solution

54. A pyramid has a height of 12 centimeters
and a square base. If the valume of the pyramid is 256 cubic centimeters, how many centimeters are in the length aof one side of its base?
A. 8
B. 16
C. 32
D. $\frac{8}{\sqrt{3}}$

Answer: A

D Watch Video Solution

55. The volume of a rectangle box is 144 cubic inches. The height of the solid is 8 inches.

Which measurements, in inches, could be the

dimensions of the base?

A. 3.3×5.5
B. 2.5×7.2
C. 12.0×8.0
D. 9.0×9.0

Answer: B

D Watch Video Solution

56.

The cylinderical tank shown in the diagram above is to be painted. The tank is open at the top, and the bottom does not need to be painted. Only the outside needs to be painted.

Each can of paint covers 500 square feet. What is the least number of cans of paint that must be purchased to complete the job?
A. 2
B. 3
C. 4
D. 5

Answer: C

- Watch Video Solution

57.

In the figure above of a right circular cone,
what is the approximate number of cubic centimeters in the volume of cone?
A. 49
B. 105
C. 210
D. 306

Answer: A

- Watch Video Solution

58. Sophie has a hard rubber ball whose circumference measures 13 inches. She wants to store it in a box. What is the number of cubic inches in the volume of the smallest
cube shaped box with integer dimensions that she can use?
A. 64
B. 81
C. 125
D. 216

Answer: C
(Watch Video Solution
59. The amount of light produced by a
cylindrical fluorescent light bulb depends on
its lateral area. A certain cylindrical fluorescent
light bulb is 36 inches long, has a 1 inch diameter, and is manufactured to produce
0.283 wants of light per square inch. What is
the best estimate for the total amount of light that it is able to produce?
A. 32 watts
B. 34 watts
C. 40 watts
D. 48 watts

Answer: A

D Watch Video Solution

60. A rectangular fish tank fish has a base 2
feet wide and 2 feet long. When the tank is
partially filled with water, a solid cube with an edge length of 1 foot is placed in the tank. If no overflow of water from the tank is assumed, by how many inches will be level of the water
in the tank rise when the cube becomes
completely submerged?
A. $\frac{1}{6}$
B. $\frac{1}{2}$
C. 2
D. 3

Answer: D
(Watch Video Solution
61. The volume of a cylinder of radius r is $\frac{1}{4}$ of
the volume of a rectangular box with a square
base of side length x. If the cylinder and the box have equal heights, what is r in terms of
$x ? \frac{x^{2}}{2 \pi}$ (b) $\frac{x}{2 \sqrt{\pi}}$ (c) $\frac{\sqrt{2 x}}{\pi}$ (d) $\frac{\pi}{2 \sqrt{x}}$
A. $\frac{x^{2}}{2 \pi}$
B. $\frac{x}{2 \sqrt{\pi}}$
C. $\frac{\sqrt{2 x}}{\pi}$
D. $\frac{\pi}{\sqrt{2 x}}$
62. The height of sand in a cylinder-shaped can drops 3 inches foot of sand is poured out.

What is the diameter, in inches of the cylinder?

$$
\begin{aligned}
& \text { A. } \frac{2}{\sqrt{\pi}} \\
& \text { B. } \frac{4}{\sqrt{\pi}} \\
& \text { C. } \frac{16}{\pi} \\
& \text { D. } \frac{48}{\sqrt{\pi}}
\end{aligned}
$$

63. The height h of a cylinder equals the circumference of the cylinder. In terms of h, what is the volume of the cylinder?

> A. $\frac{h^{3}}{4 \pi}$
> B. $\frac{h^{2}}{2 \pi}$
> C. $\frac{h^{3}}{2}$
D. $h^{2}+4 \pi$

- Watch Video Solution

64.

As shown in the figure above, a worker uses a
cylindrical roller to help pave a road. The roller
has a radius of 9 inches and a width of 42
inches. To the nearest square inch, what is the
area of the roller covers in one complete rotation?
A. 2,374
B. 2,375
C. 10,682
D. 10,688

Answer: B
(Watch Video Solution
65. The density of lead is approximately 0.41 pounds per cubic inch. What is the approximately mass, in pounds, of a lead ball that has a 5 inch diameter?
A. 26.8
B. 78.5
C. 80.4
D. 214.7

Answer: A

66.

In the figure above, if the edge length of the
cube is 4 , what is the shortest distance from A
to D ?
A. $4 \sqrt{2}$
B. $4 \sqrt{3}$
C. 8
D. $4 \sqrt{2} \div 4$

Answer: B

- Watch Video Solution

67.

A cylindrical tube with ngligible thichness is
placed into a rectangular box that is 3 inches
by 4 inches by 8 inches, as shown in the
accompanying diagram. If the tubes fits exactly
into the box diagonally from the bottom left corner to the top right back corner, what is
the best approximately of the number of inches in the length of the cube?
A. 3.9
B. 5.5
C. 7.8
D. 9.4

Answer: D
68.

In the pyramid shown in the diagram above G is the certer of square base $\mathrm{ABCD}, \overline{E F} \perp \overline{A B}$
and h height of the pyramid. Which statements must be true?
I. $E A=E C$
II. $\triangle B F C$ is isosceles
III. EF=EG
A. I and II only
B. I and III only
C. I only
D. II only

Answer: A

D Watch Video Solution
69. If pyramid with a square base with side length s and a right cone with radius r have equal heights and equal volumes, then which equation must be true?
A. $s=\sqrt{\pi r}$
B. $s=\frac{\sqrt{r}}{\pi}$
C. $s=\pi \sqrt{r}$
D. $s=r \sqrt{\pi}$

Answer: D

70. An ice cube has a surface area of 150 square centimeters. If the ice cube melts at a constant rate of 13.0 cubic centimeter per minute, the number of minutes that elapse before the ice cube is completely melted is closest to which of the following?
A. 10
B. 11
C. 12

D. 14

Answer: A

D Watch Video Solution

71. A hot water tank with a capacity of 85.0 gallons of water is being designed to have the
shape of a right circular cylinder with diameter
a 1.8 feet. Assuming that there are a 7.48 gallons in 1 cubic foot, how high in feet will the tank need to be?
A. 4.50
B. 4.75
C. 5.00
D. 5.25

Answer: A

- Watch Video Solution

72. For Question 19-20 use the figure above

A lamp shade with a circular base is an example of a solid shape called a frustrum. In
the figure above, the shaded region represents a frustrum of a right cone in which
the portion of the original cone that lies 12
inches below its vertex has been cut off by
slicing plane (not shown) parallel to the base.
Q. If the height and slant height of the frustrum are 8 inches and 10 inches, respectively, what is the number of inches in the radius length, R, of the original cone?
A. 9
B. 12
C. 15
D. 8

Answer: C

- Watch Video Solution

73. For Question 19-20 use the figure above

A lamp shade with a circular base is an example of a solid shape called a frustrum. In
the figure above, the shaded region
represents a frustrum of a right cone in which
the portion of the original cone that lies 12 inches below its vertex has been cut off by slicing plane (not shown) parallel to the base.
Q. What is the volume, in cubie inches, of the frustrum?
A. 324π
B. 812π
C. $1,089 \pi$
D. $1,179 \pi$

74.

If in the figure above $\frac{\sin A}{\cos B}=1$, then $\mathrm{x}=$
A. 6
B. 26
C. 29
D. 59

Answer: C

D Watch Video Solution

75. By law, a wheelchair service ramp may be inclined no more than 4.76°. If the base of a
ramp begins 15 feet from the base of a public building, which equation could be used to determine the maximum height, h, of the ramp where it reaches the building's entrance?
A. $h=15 \sin 4.76^{\circ}$

15
 B. $h=\frac{15}{\sin 4.76^{\circ}}$
 C. $h=\frac{\tan 4.76^{\circ}}{15}$
 D. $h=15 \tan 4.76^{\circ}$

Answer: D

- Watch Video Solution

76. What is the number of radians through which the number hand of a clock turns in 24 minutes?
A. 0.2π
B. 0.4π
C. 0.6π
D. 0.8π

Answer: D

D Watch Video Solution

77. If $x=1.75$ radians, then the value of $\cos x$ is closet in value of which of the following?
A. $-\cos 1.39$
B. $\cos 4.89$
C. $\cos 4.53$
D. $-\cos 0.18$

Answer: A

D Watch Video Solution

78. If $\sin \left(\frac{2}{9}\right) \pi=\cos x$, then $\mathrm{x}=$
A. $\frac{7}{9} \pi$

> B. $\frac{5}{18} \pi$ C. $\frac{\pi}{3}$ D. $\frac{13}{18} \pi$

Answer: B

D Watch Video Solution

79. The bottom of a pendulum traces an arc 3 feet in length when the pendulum swings through an angle of $\frac{1}{2}$ radians. What is the number of feet in the length of the pendulum?
A. 1.5
B. 6
C. $\frac{1.5}{\pi}$
D. 6π

Answer: B

- Watch Video Solution

80. What is the radian measure of the smaller angle formed by the hands of a clock at 7 o'clock?
A. $\frac{\pi}{2}$
B. $\frac{2 \pi}{3}$
C. $\frac{5 \pi}{6}$
D. $\frac{7 \pi}{6}$

Answer: C

D Watch Video Solution

81. A wheel has a radius of 18 inches. The distance, in inches, the wheel travels when it
rotates through an angle of $\frac{2}{3} \pi$ radians is closest to which value?
A. 45
B. 37
C. 13
D. 11

Answer: B

D Watch Video Solution

82. A wedge shaped piece is cut from a circular
pizza. The radius of the pizza is 14 inches and
the angle of the pointed end of the pizza measures 0.35 radians. The number of inches
in the length of the rounded edge of the crust is closest to which values?
A. 4.0
B. 4.9
C. 5.7
D. 7.5

Answer: B

D Watch Video Solution

83. I. $x=y$
II. $9(x+y)=\pi$
$I I I . \cos x=\cos y I f 01 t x, y l t(\mathrm{pi}) /(2)^{\prime}$, and $\sin x=\cos y$,
then which of the statements above must be
true?
A. I and II only
B. I and III only

C. II only

D. III only

Answer: B

- Watch Video Solution

84. If $\cos \theta=-\frac{3}{4}$ and $\tan \theta$ is negative, the value of $\sin \theta$ is
A. $-\frac{4}{5}$
B. $-\frac{\sqrt{7}}{4}$
C. $\frac{4 \sqrt{7}}{7}$
D. $\frac{\sqrt{7}}{2}$

Answer: D

D Watch Video Solution

85. If $\cos \mathrm{A}=\frac{4}{5}$ and $\angle A$ is not is Quadrant I, what is the value of $\sin A$?

$$
\text { A. }-0.6
$$

$$
\text { B. }-0.2
$$

C. 0.6
D. 0.75

Answer: A

- Watch Video Solution

86. If $\sin A=b$, what is the value of product
$\sin A \cdot \cos A \cdot \tan A$ in terms of b ?
A. 1
B. $\frac{1}{b}$
C. b
D. b^{2}

Answer: D

D Watch Video Solution

87. The equatorial diameter of the earth is approximately 8,000 miles. A communications satellite makes a circular orbitals around the earth. If the satellite completes one orbit every

5 hours, how many miles does the satellite

travel in 1 hour?

A. $1,120 \pi$
B. $1,940 \pi$
C. $2,240 \pi$
D. $2,560 \pi$

Answer: C
(Watch Video Solution
88. A rod 6 inches long is pivoted at a one end.

If the free end of the 165 revolutions per minute, what is the total distance, in inches, traveled by the end of the rod in one seconds?
A. 14.5π
B. 16.5π
C. 29π
D. 33π

Answer: D

89. The path traveled by a roller coaster is modeled by the equation $y=27 \sin 13 x+30$ where y is measured in meters. What is the number of meters in the maximum altitude of the roller coaster?
A. 13
B. 27
C. 30
D. 57

Answer: D

- Watch Video Solution

90.

The unit circle above has radius $\overline{O C}$, angle

AOB measures w radians. $\overline{B A}$ is tangent to circle O at A , and $\overline{C D}$ is perpendicular to the $\mathrm{x}-$ axis. The length of which the segment represents sinw?
A. $\overline{O D}$
B. $\overline{C D}$
C. $\overline{A B}$
D. $\overline{O B}$

Answer: B
91. If x is an acute angle, which expressions is not equivalent to cosx?
A. $-\cos (-x)$
B. $\sin \left(\frac{\pi}{2}-x\right)$
C. $-\cos (2+\pi)$
D. $\cos (x-2 \pi)$

Answer: A

- Watch Video Solution

92.

In the figure above, θ is an angle in standard position and its terminal side passes through the point $P\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ on the unit circle. What is the possible value of θ ?
A. $\frac{2}{3} \pi$
B. $\frac{5}{6} \pi$
C. $\frac{7}{6} \pi$
D. $\frac{4}{3} \pi$

Answer: A

- Watch Video Solution

93.

In the unit circle above, a angle that measure

4 radians intercepts are $A B$. What is the length
of major arc $A B$?
A. $\frac{\pi}{2}$
B. 4
C. $\frac{\pi+2}{4}$
D. $\frac{4}{\pi}$

Answer: B

D Watch Video Solution

94. If θ is an angle in standard position and its
terminal side passes thorugh the point $\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$ on the unit circle, then a possible value of θ is
A. $\frac{7 \pi}{6}$
B. $\frac{4 \pi}{3}$
C. $\frac{5 \pi}{3}$
D. $\frac{11 \pi}{6}$

Answer: D

D Watch Video Solution

95. What are the coordinates of the image of
the point $(1,0)$ on the terminal side of an angle after a clockwise rotation of $\frac{\pi}{6}$ radians?
A. $\left.\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)\right)$
B. $\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
C. $\left(-\frac{\sqrt{3}}{2}, 1\right)$
D. $\left(\frac{1}{2},-\frac{1}{2}\right)$

Answer: A

D Watch Video Solution

96. What are the coordinates of the image of the point $(1,0)$ on the terminal side of an
angle after a counterclockwise rotation of $\frac{\pi}{6}$ radians?
A. $\left(\frac{\sqrt{3}}{2},-\frac{\sqrt{3}}{2}\right)$
B. $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
C. $(-\sqrt{2}, 1)$
D. $\left(-\frac{1}{2}, \frac{1}{2}\right)$

Answer: B

D Watch Video Solution

97. Which of the following expression is
equivalent to $\frac{\sin ^{2} x}{1+\cos x}$?
A. $1-\sin x$
B. $1-\cos x$
C. $\sin x+\cos x$
D. $\sin x-\cos x$

Answer: B

- Watch Video Solution

In the unit circle above, the ordered pair (x, y)
represents a point P where the terminal side
intersects the unit circle, as shown in the accompanying figure. If $\theta=\frac{\pi}{3}$ radians, what is the value of y ?

> A. $-\frac{\sqrt{3}}{2}$
> B. $-\frac{\sqrt{2}}{2}$
> C. $-\sqrt{3}$
> D. $-\frac{1}{2}$

Answer: A

D Watch Video Solution

99. If x is a positive acute angle and $\cos x=a$, an expression for $\tan x$ in terms of a is

$$
\begin{aligned}
& \text { A. } \frac{1-a}{a} \\
& \text { B. } \sqrt{1-a^{2}} \\
& \text { C. } \frac{\sqrt{1-a^{2}}}{a} \\
& \text { D. } \frac{1}{1-a}
\end{aligned}
$$

Answer: C

D Watch Video Solution

1.

In the accompaying figure of pentagon $A B C D E$,
points F, A, and B lie on the same line. What is
the value of y ?

D Watch Video Solution

2.

In the figure above, what is the value of x ?

- Watch Video Solution

In the figure above, $\overline{A B}|\mid \overline{C D}, \mathrm{AD}=30, \mathrm{AB}=21$, and $C D=15$. What is the length of $\overline{D E}$?

- Watch Video Solution

4. In the accompanying diagram of triangle
$\mathrm{ABC}, \mathrm{AC}=\mathrm{BC}, \mathrm{D}$ is point on $\overline{A C}, \overline{A B}$ is extended to E , and $\overline{D E F}$ is drawn so that
$\triangle A D E-\triangle A B C$. If $m \angle C=30$, what is the value of x ?

D Watch Video Solution

5. Two hikers started at the same location. One traveled 2 miles east and then 1 mile north.

The other traveled 1 mile west and then 3
miles south. At the end of their hikes, how many miles apart were the two hikers?

D Watch Video Solution

6. Brand X paint costs $\$ 14$ per gallon, and 1 gallon provides coverage of an area of at most

150 square feet. What is the minimum cost of the amount of brand X paint needed to cover the four walls of a rectangular room that is 12 feet wide, 16 feet long, and 8 feet high?

What is the area of the square above?

- Watch Video Solution

8.

In the figure above, P and Q are the midpoints of sides $A B$ and $B C$, respectively, of square
$A B C D$. Line segment $P B$ is extended by its own length to point E, and line segment $P Q$ is extended to point F so that $F E \perp P E$. If the area of square $A B C D$ is 9 , what is the area of quadrilateral QBEF?

- Watch Video Solution

9.

In the figure above, what is the number of square units in the area of the shaded region?

D Watch Video Solution
10. If the coordinates of the endpoints of a diagonal of square are $(-2,-3)$ and $(5,4)$, what is the number of square units in the area of the square?

D Watch Video Solution

11. What is the number of square units in the area of the region in the first quadrant of the xy-plane that is bounded by $y=|x|+2$, the
line $x=5$, the positive x-axis, ant the positive y axis?

D Watch Video Solution

12.

In the figure above, $A B C D E F G$ is a regular hexagon. Sides DC and GA are extended such
that A is the midpoint of $\overline{B G}$ and C is the midpoint of $\overline{B D}$. If the area of $\triangle A B C$ is
$9 \sqrt{3}$ square centimeters, what is the number of centimeters in the perimeter of polygon ABCDEFG?

- Watch Video Solution

13.

In the figure, MATH is a rectangle, $\mathrm{GB}=4.8$,
$M H=6$, and $H T=15$. The area of the shaded
region is how many times larger than the area of $\triangle M B A$?

D Watch Video Solution

14.

In the figure above, quadrilateral $A B E D, B F G C$,
and ACHJ are square. If the area of equilateral
$\triangle A B C$ is $16 \sqrt{3}$ square inches, what is the number of inches in the perimeter of polygon

ADEBFGCHJA?

15.

In the figure above, the sum of the area of the
three shaded semicircles with centers at A, B, and C is X, and the area of the larger semicircles below the line is Y . If $\mathrm{Y}-\mathrm{X}=\mathrm{kpi}$, what is the value of k ?

16.

In the figure above, each arc is a semicircle. If S
is the midpoint of $P Q$ and Q is the midpoint of
$P R$, what is the area of semicircles PS to the area of semicircles PR?

D Watch Video Solution

17. What is the distance in the xy-plane from the point $(3,-6)$ to the center of the circle whose equation is $x(x+4)+y(y-12)=9$?

- Watch Video Solution

18.

In the figure above, $\overline{P A}$ is tangent to circle O at point $\mathrm{A}, \overline{P B}$ is tangent to circle O at point B. Angle AOB measures 120° and $O P=\frac{4}{\pi}$. What is the length of minor arc $A B$?

The diagram above shows a semicircular arch over a street that has a radius of 14 feet. A banner is attached to the arch at points A and B, such that $A E=E B=5$ feets. How many feet above the ground are these points of attachment for the banner, correct to the nearest tenth of a foot?
20. The dimensions of a rectangular box are integers greater than 1 . If the area of one side of this box is 12 and the area of another side 15 , what is the volume of the box?

D Watch Video Solution

21. The Partside Packing Company needs a
rectangular shipping box. The box must have a
length of 1 foot, a width of 8 inches, and a
volume of at least 700 cubic inches. What is
the least number of inches in height of the box such that the height is a whole number?

D Watch Video Solution

22. A planned building was going to be 100 feet long, 75 feet deep, and 300 feet high. The owner decides to increase the volume of the building by 10% without changing the dimensions of the depth and the height. What will be the new length of this building in feet?

-	3 in.	3 in .	
3 in .			3 in.
3 in .			3 in .
	3 in .	3 in .	

23.

A box is constructed by cutting 3 -inche square
from the corner of a square sheet of cardboard, as shown in the accompanying
diagram, and then folding the sides up. If the
volume of the box is 75 inches, find the number of square inches in the area of the original sheet of cardboard?

D Watch Video Solution

24. Two spheres that are tangent to each other have columes of 36π cubic centimeters and 972π cubic centimeters. What is the greatest possible distance, in centimeters, between a point on one sphere and a a second point on the other sphere?
25. A sealed cylindrical can holds three tennis balls each with diameter of 2.5 inches. If the can is designed to have the smallest possible volume, find the number of cubic inches of unoccopied space inside the can correct to the nearest tenth of a cubic inch.

- Watch Video Solution

26.

The slant height of a pyramid is the perpendicular distance from the vertex of the pyramid to the base of a figure above, the height is labeled h, the length of a side of the square base is 24 cm , and the slant height is 15
cm , What is the volume, in cubic centimeters, of the pyramid?

D Watch Video Solution

27. A bookend that weights 0.24 pounds is
shaped like a pyramid with square base. How many pounds does a larger similar pyramid-
shaped booked weigh if it is made of the same material and each corresponding dimensions
is $2 \frac{1}{2}$ times as large?

28.

In the figure above, what is the value of $\sin A-\cos A ?$

D Watch Video Solution

Sprinkler head

29.

A lawn sprinkler sprays water in a circular pattern at a distance of 15 feet from the sprinkler head which rotates through the angle of $\frac{5 \pi}{3}$ radians, as shown by the shaded area in the diagram above. What is the area of the lawn, to the nearest square foot, that recieves water from this sprinkler?

In figure above, angles ACB and DEB are right angles, $A C=15, D E=12$, and $D E=10$. What is the value of $\cos x$?

- Watch Video Solution

31. For Question 4 and 5 refer to the diagram

A flagpole that stands on level ground. Two cables, r and s, are attached to the pole at a point 12 feet above the ground and form a right angle with each other. Cable r is attached to the ground to the ground at a point that makes $\tan \mathrm{x}=0.75$.
Q. What is the value of $\cos x$?

- Watch Video Solution

32. For Question 4 and 5 refer to the diagram

A flagpole that stands on level ground. Two cables, r and s, are attached to the pole at a point 12 feet above the ground and form a right angle with each other. Cable r is attached to the ground to the ground at a point that
makes $\tan x=0.75$.
Q. What is the sum of the lengths of cables r and s ?

D Watch Video Solution

Exercise

1. A solid cube is put in a sphere. What is the
least percentage of the volume of the sphere not occupied by the cube?
A. 44.44%
B. 50%
C. 57.66%
D. 63.24%

Answer: D

D Watch Video Solution

2. A circle intersects the X axis at $(1,0)$ and $(7,0)$.

If the radius of the circle is 5 , what is the sum of the coordinates of the center?

- Watch Video Solution

A hot air balloon was tied to a point on the ground using a rope 60 m long. If the rope
makes an angle of 60° with the ground, how
high, in meters, is the balloon above the ground level?
A. $\frac{30}{\sqrt{3}}$
B. 30
C. $\frac{60}{\sqrt{3}}$
D. $30 \sqrt{3}$

Answer: D

D Watch Video Solution
4. How many points with integer coordinates
lie on or inside a circle of radius three units centered at the origin?
A. 16
B. 28
C. 29
D. 30

Answer: C
(Watch Video Solution

5.

In the figure shown above, $A B$ and $E F$ are parallel and measure 4 and 24 , respectively. If
$A B$ is perpendicular to $A E$ and $A E$ measures 12, what is the perimeter of the figure to the nearest integer?
6. The imaginary number " I " is such that
$i^{2}=-1$. Which of the following statements
is true about the complex number equivalent to $(4-i) \times(1+2 i)+(1-i) \times(2-3 i)$?
A. It lies on the real axis
B. It lies in the first quadrant
C. It lies in the second quadrant
D. It lies in the third quadrant

Answer: B

7.

In the figure shown above, $A B C$ is a triangle right angled at B. What is the value of angle A, in degrees?

8.

Angle ADB equals 110°. What is the value of angle BAX if X is the centre of the circle?
A. 20°
B. 35°
C. 40°
D. 70°

Answer: A

- Watch Video Solution

9.

What is the area of the quadrilateral $A B C D$ as
shown in the figure above?
A. 74
B. 72
C. 56
D. 28

Answer: C

D Watch Video Solution

10. Which of the following statements is/are correct about the angle $\frac{10 \pi}{3}$ radians?
I. It is equivalent to 600°.
II. The angle falls in the third quadrant.
III. $(\cos) \frac{10 \pi}{3}$ is positive.
A. Only I
B. Only II
C. Both I and III
D. Both I and II

Answer: D

- Watch Video Solution

11.

In the figure $G H|\mid E F$. What is the length of HE ?

- Watch Video Solution

12.

If $\frac{P S}{P R}=\frac{1}{2}, \mathrm{PT}=6$ and $\mathrm{QS}=4$, what is the length of PS?
A. 12
B. 10
C. 9
D. 8

Answer: D

D Watch Video Solution

13. The imaginary number "I" is such that $i^{2}=-1$. Which of the following options is
equivalent to $\left(\frac{1-2 i}{2+3 i}\right)$?
A. $-\frac{4}{13}-\frac{i}{13}$
B. $\frac{4}{13}+\frac{i}{13}$
C. $8-7 i$

$$
\text { D. } \frac{8}{13}+i
$$

Answer: A

D Watch Video Solution

14. Matt has a garden in the shape of a rightangled triangle with one of the acute angles
as 30°. If the longest side of the triangle is 4
m long, what is the perimeter, in meters, of the garden?

- Watch Video Solution

15. The angular elevations of a tower CD at a place A due south of it is 60°, and at a place B due west of A , the elevation is 30°. If $A B=300 \mathrm{~m}$, what is the height, in meters, of the tower?
A. 30
B. $30 \sqrt{6}$
C. $30 \sqrt{10}$

D. $30 \sqrt{30}$

Answer: D

D Watch Video Solution

16. What is the perimeter, to the nearest
integer, of an equilateral triangle inscribed in
circle whose circumference is 6π units?

D Watch Video Solution
17. What is the area bounded by $x^{2}+y^{2}-8 x-6 y=25, x \geq 4$ and $y \geq 3$?
A. 39.3
B. 78.6
C. 123.4
D. 157

Answer: A

D Watch Video Solution
18.

2 parallel chords 24 cm , and 18 cm , are on the same side of the centre of a circle. If the distance between the chords is 3 cm , calculate the radius of the circle.
A. 15 cm
B. 14 cm

C. 13 cm

D. 12 cm

Answer: A
(D) Watch Video Solution

A right circular cone, with radius and height 8 and 6 respectively, is cut parallel at the middle of the height to get a smaller cone and a frustum. By what percentage, to the nearest
integer, is the combined total surface area of
the smaller cone less than of the frustum?

D Watch Video Solution

20.

PQRS is a rectangle. T is a point on RS such
that $\mathrm{ST}=2$. If the area of the triangle QRT is 24
and $Q R: R S=2: 1$, what is the measure of $Q R$?
A. 12
B. 14
C. 15
D. 16

Answer: A

- Watch Video Solution

> 21. What is the value of
> $\left(\frac{3 \pi^{c}}{4}+\frac{11 \pi^{c}}{5}+\frac{7 \pi^{c}}{10}\right)$, when converted to
degrees?
A. 135°
B. 245°
C. 657°
D. 810°

Answer: C

- Watch Video Solution

22.

$\Delta A B C, \mathrm{D}$ and E are the mid-points of AB and

AC. Again, F and G are the mid-points of $D B$ and EC. What is the ratio of areas of FDEG and BFGC?
A. $5: 7$
B. $3: 5$
C. 2:3
D. Data insufficient to answer

Answer: C

D Watch Video Solution

23. A car is being driven, in a straight line and at a uniform speed, towards the base of a
vertical tower of height 30 feet. The top of the tower is observed from the car and, in the process, the angle of elevation changes from
45° at B to 60° at A . What is the distance, in feet, to the nearest integer, between the points A and B ?

- Watch Video Solution

24. The biggest possible cube is taken out of a right solid cylinder of radius 4 and height 5 respectively. What is the volume of the cube?
A. 64
B. 125

C. $128 \sqrt{2}$

D. $256 \sqrt{2}$

Answer: B

- Watch Video Solution

25.

In the figure $A B|\mid D E, \mathrm{AC}=6, \mathrm{CE}=15$ and $D B=28$. What is the length of $C D$?
26. The imaginary number I is defined such
that $i^{2}=-1$. Which of the following options
is equivalent to $\left(\frac{1}{i}+\frac{1}{i^{2}}+\frac{1}{i^{3}}+\frac{1}{i^{4}}\right)$?
A. -1
B. 0
C. 1
D. $-i$

Answer: B

D Watch Video Solution
27. The imaginary number I is such that $i^{2}=-1$.

Which of the following options is equivalent to $\sqrt{5+12 i}$?
A. $1-i$
B. $3+i$
C. $3-2 i$
D. $3+2 i$

Answer: D

- Watch Video Solution

28. A right angled triangle $A B C$ of sides $A B=6$, $B C=8$ and $A C=10$ is spun once about $A B$ and once about $B C$. What is the difference in volumes of the two solids formed?
A. 24π
B. 32π
C. 64π
D. 96π

Answer: B
29. If $a+i b=\sqrt{5+12 i}$ where $a>0, b>0$,
which of the following is a possible value of $\left(a^{2} b^{2}\right) ?$
A. 36
B. 9
C. 45
D. 18

Answer: A

Watch Video Solution

30. Two friends, Amy and Bob, are standing in
line with a lamp post. The shadows of both friends meet at the same point on the ground.

If the heights of the lamp post, Amy and Bob are 6 meters, 1.8 meters and 0.9 meters respectively, and Amy is standing 2 meters away from the post, then how far (in meters) is Bob standing from Amy?

$$
\text { A. } 0.43
$$

B. 0.9
C. 1.8
D. 2

Answer: A

- Watch Video Solution

31.

In the figure $O A=\sqrt{80}, \mathrm{OB}=8, O C=\sqrt{20}$.
What is the length of OD?
A. 5
B. 6
C. 7
D. 8

Answer: B

D Watch Video Solution

32. In a right-angled triangle $A B C$, right angled
at B, an altitude $B D$ is dropped on $A C$. If $A B=8$
and $B C=6$, what is the length of $A D$?
A. 2.4
B. 3.6
C. 4.8
D. 6.4

Answer: D

- Watch Video Solution

33. If the equation of the circle having the coordinates of the ends of its diameter as $(3,5)$ and $(5,1)$ is $(x-a)^{2}+(y-b)^{2}=r^{2}$, what is the value of $(a+b+r)$ to the nearest tenth?

D View Text Solution

34. If $a+i b=(5+3 i)(6 i+1)$, what is the value of $a^{2}+b^{2}$?
A. 1258
B. 1528
C. 2158
D. 3168

Answer: A
(Watch Video Solution
35. A well, 2 m radius and 40 m deep, is being dug. The excavated soil is trasported using a truck of size $5 m \times 2 m \times \pi m$. How many trips will the truck have to clear the excavated soil if it can be filled to 80% of its height?
A. 10
B. 12
C. 20
D. 24

36.

In the figure shown, $A B C$ is a triangle, right
angled at B. Through B, a line is drawn
perpendicular to AC which meets AC in D.

What is the length of BD?

$$
\begin{aligned}
& \text { A. } \frac{4}{\sqrt{3}} \\
& \text { B. } \frac{8}{\sqrt{3}} \\
& \text { C. } 2 \sqrt{3} \\
& \text { D. } 4 \sqrt{3}
\end{aligned}
$$

Answer: D

37. From a cuboid of dimension
$4 m \times 6 m \times 8 m$, largest possible cube is cut out. What is the minimum possible number of cubes, all of equal size, into which remaining part of the solid can be cut, ensuring that no part of the solid remains?

38.

In the $\triangle A B C, \mathrm{DE} \mid \mathrm{BC}, \mathrm{AD}=3, \mathrm{BD}=6$, and $\mathrm{BC}=8$.
What is the ratio of the areas of triangle ADE and trapezium BDEC?
A. 1:3
B. 1:4
C. 1:8

D. $1: 9$

Answer: C

D Watch Video Solution

39. A vertical tower, OP stands at the center O of a square $A B C D$. Let h and b denote the length $O P$ and $A B$ respectively. If
$\angle A P B=60^{\circ}$, what is the relationship beween h and b ?

$$
\text { A. } 2 b^{2}=h^{2}
$$

B. $2 h^{2}=b^{2}$
C. $3 b^{2}=2 h^{2}$
D. $3 h^{2}=2 b^{2}$

Answer: B

D View Text Solution

40. What is the shortest distance between the circle $x^{2}+y^{2}-2 x-2 y=0$ and the line $x=4$?
A. 1.23
B. 1.59
C. 2.56
D. 3.25

Answer: B

D Watch Video Solution

41. A balloon leaves the earth and rises at a uniform velocity. At the end of 2 min , an observer situated at 200 m from the point the
balloon was released, finds the regular elevation of the balloon to be 60°. What is the speed in meters per second, to the nearest integer, of the balloon?

D Watch Video Solution

42.

In $\triangle A B C, \mathrm{D}$ and E are the mid-points of AB and AC. Again, F and G are the mid-points of $D B$ and $E C$, If $B C=12$, what is the length of $F G$?
A. 4
B. 6
C. 8
D. 9

Answer: D
(D) Watch Video Solution
43.

In the figure shown, area of triangle ACE is 48.
If $A C$ is parallel to $D E$, what is the length $C E$?
A. 6
B. 8
C. 10
D. 11

Answer: C

- Watch Video Solution

44.

In the figure above, the line TAB is tangent to
the given circle. If $\angle E A C=78^{\circ}$ and
$\angle T A E=71^{\circ}$, what is the measure, in degrees, of $\angle A B C$?
A. 21°
B. 25°
C. 31°
D. 40°

Answer: D
(Watch Video Solution
45.

In a parallelogram, the ratio of the two adjacent sides is $1: 2$. If the area of the parallelogram is 20 square units and the angle beween the two sides is 45°, what is the area, to the nearest integer, of the rectangle having the sides equal to that of the parallelogram?

D
 Watch Video Solution

