

MATHS

BOOKS - INDEPENDENTLY PUBLISHED MATHS (ENGLISH)

CONIC SECTIONS

Examples

1.
$$\frac{(y-3)^2}{9} - \frac{(x-1)^2}{16} = 1$$

Which conic section does this equation

define? Also find, if they exist,

- (i) the center
- (ii) the vertex/vertices
- (iii) The directrix
- (v) the asymptotes
- (vi) the eccentricity

Watch Video Solution

2. $(y+4)^2 = -6(x-2)$

Which conic section does this define? Also find, if they exist,

- (i) the center
- (ii) the vertex/vertices
- (iii) the focus/foci
- (iv) the directrix
- (v) the asymtotes
- (vi) the eccentricity

Watch Video Solution

3.
$$\frac{\left(x+3\right)^2}{25} + \frac{\left(y-8\right)^2}{100} = 1$$

Which conic section does this equation define? Also find, if they exist,

- (i) the center
- (ii) the vertex/vertices
- (iii) the focus/foci
- (iv) the directrix
- (v) the asymtotes
- (vi) the eccentricity

Watch Video Solution

- 4. Name the conic by finding its standard-form equation.
- $2x^2 + 3y^3 + 12x 24y + 60 = 0$

5. Name the conic by finding its standard-form equation.

$$4x^2 + 4y^2 - 12x - 20y - 2 = 0$$

6. Find the foci of the conic $y^2 + 2x + 2y = 5$.

Watch Video Solution

7. Find the standard equation of a hyperbola with center (3,-4), vertices (3,1) and (3,7) and asymptotes $y+4=\pm\frac{3}{4}(x-3)$

Watch Video Solution

Exercises

1. Which of the following is a focus of

$$\frac{{{{\left({x - 2} \right)}^2}}}{4} + \frac{{{{\left({y + 1} \right)}^2}}}{5} = 1$$

A. (1,-1)

D.
$$(2,-2)$$

Watch Video Solution

2. Which of the following is an asymptote of

$$3x^2 - 4y^2 - -12 = 0?$$

A.
$$y = \frac{4}{3}x$$

$$\mathsf{B}.\,y = \,-\,\frac{2}{\sqrt{3}}x$$

$$\mathsf{C}.\,y=\ -\,\frac{3}{4}x$$

D.
$$y=rac{\sqrt{3}}{2}x$$

3. The standard equation of a parabola with focus (2,-3) and directrix x=6 is

A.
$$(y+3)^2 = 8(x-2)$$

B.
$$(y+3)^2 = -8(x-4)$$

C.
$$(x-2)^2 = 8(y+3)$$

D.
$$(x+2)^2 = -8(y-3)$$

4. The standard equation of an ellipse with vertices (-5,2) and (3,2) and minor axis of length 6 is

5. Which of the following is a vertex of

 $16x^2 - y^2 - 32x - 6y - 57 = 0?$

B.
$$\dfrac{(x-1)^2}{9}+\dfrac{(y+2)^2}{16}=1$$
C. $\dfrac{(x+1)^2}{9}+\dfrac{(y-2)^2}{16}=1$
D. $\dfrac{(x-1)^2}{16}+\dfrac{(y-2)^2}{9}=1$

Answer:

A. $\frac{(x+1)^2}{16} + \frac{(y-2)^2}{9} = 1$

A. (1,-1)

B. (1,3)

C. (1,5)

D. (-1,-3)

Answer: D

Watch Video Solution

6. The graph of $x^2=\left(2y+3\right)^2$ is

A. an ellipse

- B. a parabola
- C. a hyperbola
- D. intersecting lines

Watch Video Solution